可见紫外分光光度法

合集下载

紫外-可见分光光度法

紫外-可见分光光度法
30.01mg→100ml 5→50ml 浓度为30.01ug/ml
E=A / C C为100ml溶液中所含被测物质的重量 (按干燥品或无水物计算),g
(C = 0.003001g ×(1-水分)/ 100ml)
二.鉴别: 按各该品种项下的规定,测定供试品
溶液在有关波长处的最大及最小吸收,有 的并须测定其各最大吸收峰值或最大吸收 与最小吸收的比值,均应符合规定。
在高精度的分析测定中(紫外区尤其 重要),吸收池要挑选配对。因为吸收池 材料本身的吸光特征以及吸收池的光程长 度的精度等对分析结果都有影响。
玻璃吸收池因为能吸收紫外光,故只 能用于320nm以上的可见光区。
石英吸收池因不吸收紫外光而常用 于300nm以下的紫外光区,但也可用于 可见光区。
最常用的光路长度为: 1cm的吸收池。
表示方法:
(1)百分吸收系数(E):

E 1% 1cm
表示。
E=A/C(%)×L(cm)
中国药典规定的吸收系数即为
E 1% 1cm

在用吸收系数法计算含量时,E11c%m 通常要
大于100
(2)摩尔吸收系数(ε):
当溶液的浓度(C)为1mol/L,光路长 度(L)为1cm时,相应的吸光度为摩尔吸 收系数,以ε表示。
通常使用的紫外-可见分光光度计的工作波长 范围为190~900nm。
第二节 光吸收基本定律和吸收系数
1.光吸收基本定律: 比尔—郎伯(Beer—Lambert)定律
为光吸收基本定律,是分光光度分析的 理论基础。 Lambert于1730年提出了光 强度与吸收介质厚度的关系。1852年 Beer提出了光强度与吸收介质中吸光物 质浓度之间的关系。
光源为空心阴极灯。每种元素都 有各自的空心阴极灯,因此原子 吸收光谱是锐线光谱。

第十章 紫外可见分光光度法

第十章  紫外可见分光光度法

如果用△ E电子,△ E振动以及△E转动表示各能级 差,则:
E电 E振 E转
能级差 E h h c
由分子中的电子能级、振动能级和转动能级跃迁产 生的光谱称分子吸收光谱。
2.分子吸收光谱的分类: 分子内运动涉及电子能级、振动能级和转动
能级三种跃迁能级,
E电 E振 E转
对应的波谱区范围如下:
吸收曲线与最大吸收波长 max
①同一种物质对不同波长光的吸光度 不同。如KMnO4在400nm吸收少, 在525nm吸收最大,吸光度最大处 对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲 线形状相似,λmax不变。而对于不同 物质,它们的吸收曲线形状和λmax 则不同。 ③吸收曲线可以提供物质的结构信息,
电子的基团。 例: C=C;C=O;C=N;—N=N— 注:当出现几个生色团共轭,则几个生色团所产生的
吸收带将消失,代之出现新的共轭吸收带,其波 长将比单个生色团的吸收波长长,强度也增强。
下面为某些常见生色团的吸收光谱
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯
溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
称最小吸收波长(λmin) 。
3.肩峰:在一个吸收峰旁边 产生的一个曲折。 4.末端吸收:只在图谱短波 呈现强吸收而不成峰形的
部分。
5. 生色团
所谓生色团,是指有机化合物分子结构中含有p -
p*和n-p*中跃迁的基团,即能在紫外-可见光范围内产 生吸收的原子团。 对有机化合物:主要为具有不饱和键和未成对
概述
一、紫外-可见分光光度法:是研究物质在紫外可见光区(200 ~ 800 nm)分子吸收光谱的分析方 法。
可见光区 400~760nm;紫外光区200~400nm。 二.紫外—可见分光光度法的特点 (1)灵敏度较高:灵敏度可达10-5~10-7g/mL (2)选择性较好:多组分共存溶液中,无需化学

第一章 紫外-可见分光光度法

第一章 紫外-可见分光光度法

➢ *跃迁:可以发生在任何具有不饱和键的 有机化合物分子中,其最大摩尔吸光系数max 很大。
➢ n*跃迁:发生在含有杂原子(O、N、S、P 、卤素等)的不饱和化合物中,其最大摩尔吸 光系数max 比较小。
二、常用术语
➢ *生色团:分子中可以吸收光子产生电子跃迁的基团 。含有键的不饱和基团
➢ *助色团:有些基团本身没有生色作用,但却能增强 生色团的生色能力,即它们与生色团相连时,会使其 吸收带最大吸收波长发生红移,并且增加其强度。通 常是带有非键电子对的杂原子的饱和基团,如-OH、 -NH2、-OR、-SH、-SR、-Cl、-Br、-I等。
不需参比液(消除了由于参比池的不同和制备空白溶液等产生 的误差)、克服了电源不稳而产生的误差,灵敏度高。
(4)光多道二极管阵列检测分光光度计
具有快速扫描的特点
可在0.1秒内获得190~ 820nm范围的全光光谱。 用于追踪化学反应的反应 动力学研究。 操作简单,只需将样品放 入无盖开放式样品室,并 点击“开始”即可。
音:
1 暗噪音:检测器与放大电路等各部件不确定性引起。
2 讯号噪音:亦称讯号散粒噪音 电子跃迁的不相等性
测量光强的不确定性
c 0.434K 1 1 c lgT T
➢ 当相对误差 c/c 最小时,求得T=0.368 或 A=0.4343。即当 A=0.4343 时,误差最小!
➢ 通常可通过调节溶液浓度或改变光程l 来控制 A 的读数在 0.2~0.7 范围内。
2. 杂散光 从单色器得到的单色光中与所需波长相 隔较远的光。
3. 散射光与反射光 使透光强度减弱 ,吸光度值偏高。
4. 非平行光 使l 增大影响测量值
(三)透光率测量误差T
由于光源不稳定性、读数不准等带来的误差。

可见分光光度法和紫外分光光度法

可见分光光度法和紫外分光光度法

及其增敏规律有了更深刻的认识。

(3)多元显色体系。

这类方法中,增效试剂以阳离子表面活性剂用得最多。

但多数情况下是在二元体系中加入不同的表面活性剂。

(4)动力学光度法。

近年来,该方法的研究文献快速增长。

金属离子催化氧化染料褪色仍然为主要研究内容。

(5)导数分光光度法。

导数分光光度法具有提高狭窄谱带吸收强度的特点,可克服通常的显色反应对某些组分难以进行测定的困难。

不少研究工作者将其与别的测定方法相结合以充分发挥其作用。

(6)双波长分光光度法。

该领域可供研究的课题很多。

利用常规显色反应双波长测定,能明显提高方法的灵敏度和选择性。

利用双波长对性质相近的元素进行测定,效果十分令人满意。

双波长结合多波长线性回归法测多种共存组分,体现出明显的优越性。

双波长标准加入法应用研究也有新的突破。

(7)萃取分光光度法。

经典的萃取分光光度法仍有较高的实用价值,此外诸如茜素配合剂-La(Ⅲ)二甲苯胺法测氟、邻苯二甲胺法测硒等颇具新颖的萃取分光光度法的出现,丰富和充实了萃取光度法的内容。

(8)流动注射分光光度法。

该法因在分析领域的广泛应用而获得迅速发展。

它与其它多种分析技术相结合使过去许多难以进行定量分析的化学反应中间体或不稳定产物的测定成为现实,拓宽了光度分析的应用范围。

二、紫外-可见分光光度计的类型及发展趋势1918年,美国国家标准局制成了第一台紫外可见分光光度计。

此后经不断改进,出现了自动记录、自动打印、数字显示、微机控制等各种类型的仪器,灵敏度和准确度不断提高,应用范围也不断扩大。

紫外-可见光分光光度计可分为单波长和双波长分光光度计两类。

单波长分光光度计又分为单光束和双光束分光光度计(附:双光束分光光度计的工作原理动画)。

分光光度计的发展趋势可以从下列两个方面来看:(1)分光光度计的组件(如单色器、检测器、显示或记录系统、光源等)的改善与发展(2)分光光度计的结构(如单波长,双波长快速扫描、微处理机控制等)的发展。

现分述如下。

紫外可见分光光度法

紫外可见分光光度法

波长和颜色的关系
λ(nm) 400-450 450-480 480-490 490-500 500-560 560-580 580-610 610-650 650-760
颜色 紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 橙 红
互补光 黄绿 黄 橙 红 红紫 紫 蓝 绿蓝 蓝绿
二、物质对光的选择性吸收
1、物质对光的吸收的本质
定性分析: 1、与标准品或标准图谱对比,鉴定未知物; 2、鉴别异构体 如:顺反异构、互变异构(如酮-烯醇式) 3、纯度检查
定量分析: 1、单一组分测定 2、多组分同时测定
第二节 紫外可见分光光度计
一、紫外可见分光光度计的构造
光源
单色器 吸收池
检测 系统
信号显 示系统
(一)光源
1、作用:提供符合要求的入射光。
3、分类: (1)可见光光源:
①钨丝灯:是最常见的可见光光源,它可发射波长 为325-2500nm范围的连续光谱,其中最适宜的使 用范围是320-1000nm,除用作可见光源外,还可 用作近红外光源。
②卤钨灯
在钨丝中加入适量的卤化物或卤素,灯泡用石 英制成,具有较长的寿命和高的发光效率。
(2) 紫外光光源: 多为气体放电光源,其中应用最多的是氢灯和
➢ 以光的衍射现象和干涉现象为基础(平面反射光栅和平面 凹面光栅)Βιβλιοθήκη (三)吸收池(又称比色皿)
1、作用:盛装被测溶液和参比溶液。 2、分类: (1)玻璃比色皿:适用于可见光区。(能否用于紫 外光区?) (2)石英比色皿:适用于紫外及可见光区。
3、主要规格: 0.5cm、1.0cm、2.0cm、3.0cm等。
紫外可见分光光度计基本组成
钨灯卤素 灯或氘灯
棱镜或光 栅,玻璃 或石英

第四章紫外-可见分光光度法

第四章紫外-可见分光光度法
3. 红移和紫移:吸收带的最大吸收波长发生移动, 向长波方向移动称为红移,向短波方向移动称为 紫移。
(三)有机化合物的紫外、可见光谱
1. 饱和烃及其取代衍生物 σ→σ*、n→σ* 2. 不饱和烃及共轭烯烃 σ→σ*、π→π* 3. 羰基化合物 n→σ*、π→π*和n→π* 4. 苯及其衍生物 E1带、 E2带、 B带 5. 稠环和杂环
当l以cm,c以mol/L为单位时,k称为摩尔吸 光系数,用ε表示,它比a更为常用,ε的单位 为L mol-1 cm-1,即: A = ε c l
当l以cm,c以百分浓度g/100mL为单位时,k 称为比吸光系数,用A1cm1%表示 ε = 0.1 M A1cm1%
用比吸光系数的表示方法特别适用于摩尔质 量未知的化合物。
(二)配位场跃迁
1. f-f跃迁
镧系和铜系元素的离子对紫外和可见光的吸收是 基于内层f电子跃迁而产生的,其吸收光谱是由一些狭 窄的特征吸收峰组成,且这些吸收峰不易受金属离子 所处的配位环境的影响。
2. d-d跃迁
过渡金属离子的d轨道在受到配位体场的作用时 产生分裂。d电子在能级不同的d轨道间跃迁,吸收紫 外或可见光产生吸收光谱。这种光谱的吸收带比较 宽,吸收峰强烈地受配位环境的影响。
光。
3. 吸收池
功能:盛放分析试样(一般是液体)
4. 检测器 功能:检测光信号,测量单色光透过溶
液后光强度变化的一种装置。 5. 信号显示系统
6. 紫外一可见分光光度计的类型
(1) 单波长单光束分光光度计
缺点:测量结果受电源波动的影响较大, 误差较大。
(2) 单波长双光束分光光度计
一个环外双键
5nm
同环二烯 39nm 一个β烷基 12nm 三个γ+烷基 54nm

紫外—可见分光光度法

紫外—可见分光光度法
10
(三)溶剂对吸收光谱的影响
1.对最大吸收波长的影响 溶剂极性增大, *红移, n*蓝移。
产生*跃迁的基团, 激发态的极性比基态强, 溶剂化作用使激发态能 量降低,吸收峰红移。
产生n*跃迁的基团, 基态时n电子会与极性 溶剂形成氢键,n轨道 能量降低,吸收峰蓝移。
11
溶剂对亚异丙酮紫外吸收光谱的影响。
3、*跃迁 吸收峰一般接近或大于200 nm,其特征是摩尔吸光 系数大,一般max104,为强吸收带。如乙烯(蒸气) 的最大吸收波长max为162 nm(孤立)。丁二烯为 217nm(离域)。
5
4、n*跃迁 虽然所需跃迁能量最小,但n轨道和*
轨道重叠少,跃迁机率很小。其特点是谱带强度弱, 摩尔吸光系数小,通常小于100,属于禁阻跃迁。
共轭体系 最大吸收波长红移,但摩尔吸收系数
显著变化。 1,3-丁二烯 217nm, 20 900 Lmol-1cm-1
*
碳氧双键与烯键
220nm, 15 000 Lmol-1cm-1
的共轭
CH3CH=HCHO 322nm, 28 Lmol-1cm-1
170nm
280nm
n*
8
助色团是指带有非键电子对的基团,如184OnHm、 5-O0R0、00 -LNmHRo、l-1-cSmH-、1 -Cl、 -Br、-I等,它们本身不能吸收大 204于nm200n7m40的0光L,m但ol-是1c当m它-1 们与生 色团相连时,会使生色团的吸收 254峰nm向长2波00方L向m移ol动-1,cm并-1且增加其 吸收强度。
1
2
§2 紫外—可见吸收光谱
一、有机化合的紫外-可见吸收光谱 (一)电子跃迁类型
3
4

紫外可见分光光度法

紫外可见分光光度法
E— 吸光系数(absorptivity)
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。

紫外可见光分光光度法

紫外可见光分光光度法

紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。

当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。

因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。

从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmin。

物质的吸收光谱具有与其结构相关的特征性。

因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。

用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。

紫外-可见分光光度法

紫外-可见分光光度法

单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。 吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
4 检测器 检测器的作用是检测光信号,并将光 信号转变为电信号。现今使用的分光光度 计大多采用光电管或光电倍增管作为检测 器。 5 信号显示系统 常用的信号显示装置有直读检流计, 电位调节指零装置,以及自动记录和数用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光 源有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
2 单色器
单色器的主要组成:入射狭缝、出射 狭缝、色散元件和准直镜等部分。
4 要点与注意事项 4.1 开机前将样品室内的干燥剂取出, 仪器自检过程中禁止打开样品室盖。 4.2 比色皿内溶液以皿高的2/3~4/5为 宜,不可过满以防液体溢出腐蚀仪器。 测定时应保持比色皿清洁,池壁上液 滴应用滤纸擦干,切勿用手捏透光面。 测定紫外波长时,需选用石英比色皿。
4.3 测定时,禁止将试剂或液体物质放在 仪器的表面上,如有溶液溢出或其它原因 将样品槽弄脏,要尽可能及时清理干净。 4.4 如果仪器不能初始化,关机重启。 4.5 如果吸收值异常,依次检查:波长设 置是否正确(重新调整波长,并重新调 零)、测量时是否调零(如被误操作,重 新调零)、比色皿是否用错(测定紫外波 段时,要用石英比色皿)、样品准备是否 有误(如有误,重新准备样品)。
2.1.2 按数字[1]键进入%T/ABS(透过率/吸 光度测定)子菜单,选中对应的数字键来 设定测定条件:①NUM WL(设定测试波长 的数目,最多可设定6个不同波长);②WL Setting (设定测试波长具体数值)③ Data Mode( 选择测定吸光度或透光率 ) ,设定完 毕后点击 [Enter] 键确定,所有项目设定完 毕后按数字[0] 键确定,等待仪器调整至准 备状态。

第二章 紫外-可见分光光度法

第二章 紫外-可见分光光度法

1、光源
作用:供给符合要求的入射光。 (1)可见光光源 常见的可见光光源有:钨丝灯和卤钨灯。 (2)紫外光光源 常见的紫外光光源有:氢灯和氘灯。 •另外,为了使光源发出的光在测量时稳定,光 源的供电一般都要用稳压电源,即加有一个稳 压器。
2、单色器
作用:把光源发出的连续光谱分解成单色光,并 能准确方便地“取出”所需要的某一波长的光, 它是分光光度计的心脏部分。 组成:单色器一般由狭缝、色散元件(棱镜和光 栅)、透镜系统组成。 (1)棱镜单色器 •玻璃棱镜:可吸收紫外光,只能用于可见光区域。 •石英棱镜:用于紫外、可见和近红外三个光区域。 (2)光栅单色器 •可用于紫外、可见及红外光区域,目前生产的紫外可见分光光度计大多采用光栅作为色散元件。
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
四、分光光度计的维护 1、仪器对工作环境的要求
•稳固、温度15~28℃、干燥、无腐蚀性气体、 光线不宜过强
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
2、紫外-可见分光光度计——双光束
•/vlabcq/flash/分光光度计/分光光度 计.html
二、紫外-可见分光光度计的类型及特点 1、按使用的波长范围分
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。

4紫外-可见分光光度法

4紫外-可见分光光度法
在进行光度测量时,调节仪器的零点,消除由于吸收池壁及溶剂对 入射光的反射和吸收带来的误差,有时还可以扣除干扰的影响
• 2.参比溶液的选择原则:
• (1)溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂 不吸收时,直接采用溶剂(多为蒸馏水)为参比;
• (2) 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反 应时,可以试样作参比(不能加显色剂)。
紫外-可见分光光度法
紫外-可见分光光度法
一、紫外-可见分光光度法原理 二、紫外-可见分光光度计 三、紫外-可见分光光度法应用
紫外-可见分光光度法
分子的能量变化E为各种形式能量变化的总和:
ΔΕ ΔΕe ΔΕv ΔΕr
电子能级间隔比振动能级和转 动能级间隔大1~2个数量级, 在发生电子能级跃迁时,伴有 振-转能级的跃迁,形成所谓的 带状光谱。
第一节 基本原理
二 Lambert- Beer 定律
Lambert-Beer 定律适用范围: ①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。
吸光度具有加和性:
不仅适用于紫外光、可见光,也适用红外光;在同一波长下, 各组分吸光度具有加和性
A=A1+A2++An
(1)入射光必须为单色光 (2)被测样品必须是均匀介质 (3)在吸收过程中吸收物质之间不能发生相
偏离Lambert-Beer 定律的因素 1. 样品性质影响
1)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收 能力发生变化--- 变化;
2)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; 3)被测溶液不均匀导致的偏离
第一节 基本原理
二 Lambert- Beer 定律

02-紫外可见分光光度法全

02-紫外可见分光光度法全

例:Cd2+浓度为140 umol ·L-1 ,双 硫腙法显色测定波长为520nm,液
层厚度2cm,吸光度为0.22,求 和
透光率T。
解: (1) A = b c
0.22 = 2 140 10-6
= 785.7 L ·mol-1 ·cm-1
(2) A =-lgT = 0.22 lgT = -0.22 T = 10-0.22 = 0.60 = 60%
(ε=200-2000L /(mol*cm ),如苯环。
(4) 210-250 nm有强吸收峰,表明可能含有2个共轭双键 ;在260nm,300 nm,330 nm有强吸收峰,说明是3个或3个以 上双键的共轭体系。
(5)若吸收峰延伸至可见光区,则可能是长链共轭或稠环 化合物
习题P46第21,22题
第三节 紫外可见分光光度法的定量分析 P9
照射分子,由于分子、原子或离子的能级是量子化的,不
连续的,只有光子的能量(h)与被照射物质粒子的基态和
激发态能量之差(E)相等时,才能被吸收。
△ E = h ( h为普朗克常数)
不同物质的基态和激发态的能量差不同,选择吸收光
子的能量也不同,即吸收的波长不同。
2、光的种类 P7
➢具有单一波长的光叫单色光,比如红,蓝光等。 ➢由不同波长的光组成的光叫复色光。比如日光等 ➢如两种适当颜色的单色光按适当的强度比例混合 能得到白光,则这两种颜色的光叫做互补色光。
A = K·b ·c
c:物质的量浓度(mol ·L-1) K:吸光系数。
b:为液层厚度(cm)
应用的条件:
入射光必须是单色光; 吸收发生在稀的均匀的介质中; 吸收过程中,吸收物质互相不发生作用。
3、吸光系数(K)

紫外-可见分光光度法

紫外-可见分光光度法

对固体物质来说,当白光照射到物质上时,如果物质对各种波长的光完全吸收,则呈现黑色;如果完全反射,则呈现白色;如果对各种波长的光均匀吸收,则呈现灰色;如果选择地吸收某些波长的光,则呈现反射或透射光的颜色。

对溶液来说,溶液呈现不同的颜色是由于溶液中的质点(离子或分子)对不同波长的光具有选择性吸收而引起的。

图朗伯-比尔定律示意图
当一束平行单色光照射到任何均匀、非散射的介质(固体、液体或气体)
如溶液时,光的一部分被吸收,一部分透过溶液,一部分被器皿的表面反射。

如果入射光的强度为I0,吸收光的强度为I a,透过光的强度为
I r,则
I0 = I a + I t + I r•
,其中
图分光光度工作曲线
非单色光引起的偏离。

非单色光引起的偏离朗伯-比尔定律的基本假设条件是入射光为单色光。

但目前仪器所提供的入射光实际上是由波长范围较窄的光带组成的复合光。

由于物质对不同波长光的吸收程度不同,因而引起了对比耳定律的
化学因素引起的偏离。

图光度计的一般结构图721型分光光度计的构造
Mo(SCN)
HR
图吸收波长的选择(选择510nm,而不是410nm) 控制适当的吸光度范围
浓度相对误差合透光度误差的关系式:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lambert―beer定律
A =εbc
A ═ ab ε= aM
T =10-bc
适用条件 Preconditions:



Parallel & Monochromatic incident light Homogeneous media No emission, scattering or photochemical reactions low concentration(c≤0.001mol· L-1)
第六章
紫外-可见分光光度法 (UV-vis Spectrophotometry)
内容提要
第一节 分光光度法基本原理 一、透光率和吸光度 二、物质的吸收光谱 三、Lambert-Beer定律 第二节 可见分光光度法 第三节 提高测量灵敏度和准确度的方法 一、分光光度法的误差 二、提高测量灵敏度和准确度的方法
I0= Ia+ It
第一节
分光光度法 基本原理
一、透光率(T)和吸光度(A) 透光率(transmittance) T = I t/ I 0 吸光度(absorbance)
I0 A = -lgT = lg It T = 10-A
第一节
分光光度法 基本原理
物质对光的选择性吸收
物质对光的吸收具有选择性,只有当 光子的能量(h )与被照射物质粒子 的基态和激发态能量之差(⊿E)相等 时才能被吸收。

吸光度的加合性 Addition of A
A1=1bc1 A2=2bc2 A=A1 +A2 =1bc1+ 2bc2
例:测试酶与腺苷酸(AMP)混合体系的吸光度 如下A(280nm) = 0.46, A(260nm) = 0.58, 试计算每一组分的浓度。 已知:酶的(280nm) = 2.96104Lmol-1cm-1 (260nm) = 1.52104Lmol-1cm-1 AMP的(280nm) = 2.4103Lmol-1cm-1 (260nm) = 1.5104Lmol-1cm-1 吸收池厚度为1.00cm。
③定量分析时,用λmax的单色光作入射光,
灵敏度最高。
三、 Lambert― Beer 定律
当入射光波长、强度、溶剂、吸光 物质的种类和溶液温度一定时,A与液 层厚度b和溶液浓度c 有关: ① c 一定, A∝b ② b 一定, A∝c
Lambert Beer
A =εbc
三、Lambert-Beer定律




灵敏度高 检测限10-5~10-6mol.L-1适 于微量组分测定 准确度高 相对误差2~5% 操作简便,测定快速。显色--测定 应用广泛
第一节
分光光度法基本原理
一、透光率和吸光度 二、物质的吸收光谱 三、Lambert-Beer定律
第一节
分光光度法 基本原理
一、透光率(T)和吸光度(A) 入射光 I0 吸收Ia 透射It I0= Ia+ It+ Ir
显色剂、试 样均无吸收 试样无吸收 显色剂有吸 收 显色剂无吸 收,试样有 吸收
第三节 提高测量灵敏度和 准确度的方法
A1=1bc1
A2=2bc2
A=A1 +A2 =1bc1+ 2bc2
A(280nm) = 0.46= ∑[(280nm) bc]
A(260nm) = 0.58=∑[(260nm) bc]
第二节 可见分光光度法



1. 标准曲线法 配制系列浓度标准溶液; 测定系列标准溶液吸光度A,作吸 光度A对溶液浓度c的图,得过坐标 原点的直线--标准曲线; 在相同条件下,测量被测溶液的吸 光度,在标准曲线上查得溶液浓度。
参比(空白)溶液 blank
参比溶液的作用:扣除一切不来源于 目标产物的光吸收。
I
如:消除吸收池、溶剂、试剂、干扰物的影响。
常用参比溶液:
①溶剂空白 ②试剂空白 ③试样空白
常用参比溶液
成份 溶剂空白 试剂空白 试样空白 溶剂 显色剂 试样 其他 适用范围
√ √ √
h M*(激发态)
Why Absorption Occurs?
Energy level: E1
UV/Vis electronic Excited level
E1’
infrared
molecular vibration molecular rotation
E1’’
E0
Ground level
吸收光谱的特点:
①峰形曲线,具有最大吸收波长λmax。在此 波长下,溶液吸光度最大。 ②浓度越大,吸收峰越高(A越大)。 ③同一物质不同浓度的溶液,吸收光谱基本 形状相同。最大吸收波长λmax位置不变。
最大吸收波长λmax——重要参数
①同一物质的同种溶液λmax不随物质的浓度 而变。λmax与溶剂有关。 ②不同物质,λmax不同,λmax是定性分析的 依据(与吸光系数结合)。

A =bc
溶液厚度b, 单位:cm 浓度c,单位molL-1 摩尔吸光系数,单位Lmol -1cm-1 若用质量浓度代替c
A = ab
质量浓度 , 单位: gL-1 质量吸光系数a, 单位: Lg -1cm-1
吸光系数 ——重要参数



与入射光的波长、物质的性质、溶 剂和温度有关;与浓度无关; ≥103,可用于定量测定; 与λmax一起可以作为定性的依据。
第一节
分光光度法 基本原理
complementary colors
互补(色)光
若溶液选择性地吸收了某种颜色的光, 则溶液呈吸收光的互补色。
二.物质的吸收光谱
用不同波长的单色光依次 通过某一固定浓度的溶液, 分别测定其对不同波长的 吸光度,以波长为横坐 标,吸光度A为纵坐标作 图,即为吸收光谱 λ max (absorption spectra),或 称吸收曲线。 (邻二氮菲)合铁(II) 的吸收光谱
基本要求




掌握Lambert-Berr定律以及透光率、吸 光度、摩尔吸光系数等基本概念。 熟悉可见分光光度法的定量测定方法 标准曲线法。 熟悉吸收光谱的意义。 了解提高测量灵敏度和准确度的方法。
分光光度法
根据物质的吸收光谱及光的
吸收定律,对物质进行定性、定
量分析的一种方法。
分光光度法特点
相关文档
最新文档