2017年上海中学高考数学模拟试卷(1)
上海市黄浦区2017届高三4月高考模拟数学试题
绝密★启用前上海市黄浦区2017届高三4月高考模拟数学试题试卷副标题考试范围:xxx ;考试时间:63分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .2、如图所示,,圆与分别相切于点,,点是圆及其内部任意一点,且,则的取值范围是 ( )A .B .C .D .3、已知双曲线的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为 ( ) A . B . C .D .第II卷(非选择题)二、填空题(题型注释)4、下列函数中,周期为π,且在上为减函数的是()A.y = sin(2x+B.y = cos(2x+C.y = sin(x+D.y = cos(x+5、对于数列,若存在正整数,对于任意正整数都有成立,则称数列是以为周期的周期数列.设,对任意正整数n都有若数列是以5为周期的周期数列,则的值可以是_________.(只要求填写满足条件的一个m值即可)6、三棱锥满足:,,,,则该三棱锥的体积V的取值范围是________.7、若将函数的图像向左平移个单位后,所得图像对应的函数为偶函数,则的最小值是________.8、若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是________.9、已知向量,,如果∥,那么的值为________.10、已知圆和两点,若圆上至少存在一点,使得,则的取值范围是________.11、设变量满足约束条件 则目标函数的最小值为________.12、若函数 (a >0,且a ≠1)是R 上的减函数,则a 的取值范围是________.13、已知复数,(其中i 为虚数单位),且是实数,则实数t等于________.14、若“”是“”的必要不充分条件,则的最大值为_________.15、若关于的方程组有无数多组解,则实数_________.16、函数的定义域为 .三、解答题(题型注释)17、若函数满足:对于任意正数,都有,且,则称函数为“L 函数”. (1)试判断函数与是否是“L 函数”;(2)若函数为“L 函数”,求实数a 的取值范围;(3)若函数为“L 函数”,且,求证:对任意,都有.18、设椭圆M :的左顶点为、中心为,若椭圆M 过点,且 .(1)求椭圆M 的方程;(2)若△APQ 的顶点Q 也在椭圆M 上,试求△APQ 面积的最大值; (3)过点作两条斜率分别为的直线交椭圆M 于两点,且,求证:直线恒过一个定点.19、如果一条信息有n 种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为,则称(其中)为该条信息的信息熵.已知.(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;(2)某次比赛共有n 位选手(分别记为)参加,若当时,选手获得冠军的概率为,求“谁获得冠军”的信息熵关于n 的表达式.20、在中,角的对边分别为,且成等差数列.(1)求角的大小;(2)若,,求的值.21、如图,在直棱柱中,,,分别是的中点.(1)求证:;(2)求与平面所成角的大小及点到平面的距离.参考答案1、D2、B3、C4、A5、(或,或).6、;7、;8、;9、;10、;11、;12、;13、;14、;15、;16、17、(1)是“L函数”.不是“L函数”.(2)(3)见解析18、(1)(2)(3)19、(1)5(2)20、(1)(2)21、(1)见解析(2)【解析】1、试题分析:由三视图可知,该几何体是下部为圆柱体,上部是半径为1的球,直接求表面积即可。
2017年上海市高三数学第三次模拟测试试卷
2017年上海市高三数学第三次模拟测试试卷2017.5.18考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号.2.本试卷共有21道题,满分150分,考试时间120分钟.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分。
考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得满分,否则一律得零分. 1. 已知集合{}{}2=lg ,230A x y x B x xx ==--<,则A B È=____________.2. 如果(1)(1)i mi ++是实数,则实数=m _________________.3. 已知圆锥母线的轴截面的母线与轴的夹角是3p,母线长为3,则过圆锥顶点的截面面积的最大值=_________________________.4. 设等差数列{}n a 的前n 项和为n S ,若723742,S a a a =++则=_______________.5. 圆22:(2)4C x y -+=,直线12:,:1l y l y kx ==-,若12,l l 被圆C 所截得的弦长之比是1:2,则=k _______________. 6. 已知4()ln()f x x a x=+-,若对任意的m R Î,均存在00x >,使得0()f x m =,则实数a 的取值范围是________________________.7. 若直线(1)(0)y k x k =+>与抛物线24y x =相交于,A B 两点,且,A B 两点在抛物线的准线上的射影分别是,,2M N BN AM =且,则=k _____________. 8. 某几何体的三视图及部分数据如图所示,则此几何体的表面积是__________.9. 已知动点(,)x y 满足条件2123y x y x ì?ïïíï?+ïî,则y x 的取值范围是_________. 10. 若{},1,2,3,,11a b Î ,构造方程22221x y a b+=,则该方程表示的曲线为落在矩形区域{}(,)11,9x y x y <<内的椭圆的概率是_________________. 11. 已知ABC D ,若存在111A B C D ,满足111cos cos cos 1sin sin sin A B CA B C ===,则称111A B C D 是ABC D 的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是___________:(请写出符合要求的条件的序号)①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°; ③A=75°,B=75°,C=30°.12. 已知函数2(),()11x f x g x mx m x -==+--的图象相交于点,A B 两点,若动点P 满足2PA PB +=,则P 的轨迹方程是________________________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13. 已知数列{}n a 中,1111,1n na a a +==+,若利用下面程序框图计算该数列的第2017项,则判断框内的条件是( )A .n ≤2014B .n ≤2016C .n ≤2015D .n ≤201714. 已知三条直线,,a b c 两两互相垂直,P 为空间一个定点,则在过点P 的直线中,分别与,,a b c 所成的角都相等的直线有( )A.1条B.3条C.4条D.无数条15. 在锐角ABC D 中,内角,,A B C 的对边分别为,,a b c ,若221sin cos ,2C C -=则下列各式正确的是( )A.2a b c +=B.2a b c +?C.2a b c +<D.2a b c +? 16. 已知集合{}22(,)1M x y xy =+?,若实数,l m 满足:对任意的(),x y M Î,都有(),x y M l m Î,则称(),l m 是集合M的“和谐实数对”,则下列选项中,可以作为集合M 的“和谐实数对”的是( )A.{}(,)+=4l m l mB.{}22(,)+=4l m l mC.{}2(,)4=4l m lm - D.{}22(,)=4l m l m -三、解答题(本大题满分76分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。
上海市宝山区2017届高考数学一模试卷Word版含解析.pdf
2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩?U B=.3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z=.6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a=.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()13.设a∈R,则“a=1”A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λSk>0恒成立,求实数λ的最大值;(3)若整数集合A1?A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=2.【考点】极限及其运算.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩?U B={﹣1,0,1} .【考点】交、并、补集的混合运算.【分析】根据补集与交集的定义,写出?U B与A∩?U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以?U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩?U B={﹣1,0,1}故答案为:{﹣1,0,1}.3.不等式的解集为(﹣2,﹣1).【考点】其他不等式的解法.【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).4.椭圆(θ为参数)的焦距为6.【考点】椭圆的参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.5.设复数z满足(i为虚数单位),则z=1+i.【考点】复数代数形式的混合运算.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.6.若函数的最小正周期为aπ,则实数a的值为1.【考点】三角函数的周期性及其求法.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f﹣1(x)=2x ﹣1..【考点】反函数.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.8.已知向量,,则在的方向上的投影为.【考点】平面向量数量积的运算.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】旋转体(圆柱、圆锥、圆台).【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.11.设常数a>0,若的二项展开式中x5的系数为144,则a=2.【考点】二项式系数的性质.【分析】利用通项公式T r+1=(r=0,1,2,…,9).令9﹣2r=5,解得r,即可得出.【解答】解:T r+1==(r=0,1,2,…,9).令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【考点】排列、组合及简单计数问题.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.110【考点】分层抽样方法.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选C.15.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】相互独立事件的概率乘法公式.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.16.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2【考点】函数的最值及其几何意义.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═(|t|﹣1)2+≤,故选:C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC?h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】椭圆的简单性质.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=?=?=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【考点】数列与不等式的综合.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n ≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.(2)y n+1﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)与等比数列的求和公式即可得出y n.代入不等式,化简即可得出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n+1﹣y n=x n=,且y1=2,∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.【考点】对数函数的图象与性质.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即,∴,n∈N.解得:<x<,n∈N.又∵2+x>0,即x>﹣2,∴≥﹣2,n∈N.解得:k,∵k∈Z,∴k≥0.故得任意n∈N均成立,实数x的取值集合为(,),k∈N,n ∈N.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λSk>0恒成立,求实数λ的最大值;(3)若整数集合A1?A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】双曲线的简单性质.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λSk >0恒成立,?>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3?﹣m=n2,∴S m+S n﹣λSk>0恒成立,?>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n?F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n?F n=(﹣1)n+2?F n+2+(﹣1)n+1?F n+1,故A是自生集;②对于任意n≥2,对于任一正整数t∈[1,F2n+1﹣1],存在集合Ar一个有限子集{a1,a2,…,a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,则n=k+1时,只须对任何整数m∈[F2k+1,F2k+3]讨论,若m<F2k+2,则m=F2k+2+,∈(﹣F2k+1,0),故=﹣F2k+1+m′,m′∈[1,F2k+1),由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1的元素的和.因为m=F2k+2﹣F2k+1+m′=(﹣1)2k+2?F2k+2+(﹣1)2k+1?F2k+1+m′,所以m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.若m=F2k+2,则结论显然成立.若F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.。
2017年上海市高考数学模拟试卷 Word版含解析
2017年上海市高考数学模拟试卷一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=.3.已知复数(i为虚数单位),则|z|=.4.函数,若存在锐角θ满足f(θ)=2,则θ=.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=.7.设k为常数,且,则用k表示sin2α的式子为sin2α=.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为.9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=.+112.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.19.某租车公司给出的财务报表如下:1014年(1﹣121015年(1﹣121016年(1﹣11月)月)月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.2017年上海市高考数学模拟试卷参考答案与试题解析一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=﹣2.【考点】二阶矩阵.【分析】利用二阶行列式对角线法则直接求解.【解答】解:=4×1﹣3×2=﹣2.故答案为:﹣2.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=16.【考点】反函数.【分析】先求出x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,由此能求出f﹣1(4).【解答】解:∵函数f(x)=y=的反函数是f﹣1(x),∴x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,∴f﹣1(4)=42=16.故答案为:16.3.已知复数(i为虚数单位),则|z|=2.【考点】复数代数形式的乘除运算.【分析】利用复数模的计算公式即可得出.【解答】解:复数(i为虚数单位),则|z|==2.故答案为:2、4.函数,若存在锐角θ满足f(θ)=2,则θ=.【考点】三角函数的化简求值.【分析】运用两角和的正弦公式和特殊角的正弦函数值,计算即可得到所求值.【解答】解:函数=2(sinx+cosx)=2sin(x+),由若存在锐角θ满足f(θ)=2,即有2sin(θ+)=2,解得θ=﹣=.故答案为:.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为R.【考点】球面距离及相关计算.【分析】两点A、B间的球面距离为,可得∠AOB=,即可求出两点A,B 间的距离.【解答】解:两点A、B间的球面距离为,∴∠AOB=.∴两点A,B间的距离为R,故答案为:R.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=8.【考点】二项式系数的性质.【分析】由题意可得:2n=256,解得n.【解答】解:由题意可得:2n=256,解得n=8.故答案为:8.7.设k为常数,且,则用k表示sin2α的式子为sin2α=2k2﹣1.【考点】二倍角的正弦.【分析】利用两角差的余弦函数公式化简已知等式,进而两边平方利用二倍角的正弦函数公式,同角三角函数基本关系式即可求解.【解答】解:∵,∴(cosα+sinα)=k,可得:cosα+sinα=k,∴两边平方可得:cos2α+sin2α+2cosαsinα=2k2,可得:1+sin2α=2k2,∴sin2α=2k2﹣1.故答案为:sin2α=2k2﹣1.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为[﹣2,1] .【考点】椭圆的简单性质.【分析】由题意可知:焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),可得y2=1﹣,=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,则x2∈[0,4],的取值范围为[﹣2,1].【解答】解:如下图所示,在直角坐标系中作出椭圆:由椭圆,a=2,b=1,c=,则焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),由,可得y2=1﹣;=(﹣﹣x,﹣y),﹣=(﹣x,﹣y);=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,由题意可知:x∈[﹣2,2],则x2∈[0,4],∴的取值范围为[﹣2,1].故答案为:[﹣2,1].9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.【考点】余弦定理;同角三角函数基本关系的运用.【分析】先利用正弦定理化简sinC=2sinB,得到c与b的关系式,代入中得到a2与b2的关系式,然后利用余弦定理表示出cosA,把表示出的关系式分别代入即可求出cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.【解答】解:由sinC=2sinB得:c=2b,所以=•2b2,即a2=7b2,则cosA===,又A∈(0,π),所以A=.故答案为:10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.【考点】对数函数的图象与性质.【分析】由题意,f(x)=lgx在(0,+∞)上单调递增,利用f(﹣a)﹣f(a)>0,可得﹣a>a>0,即可求出实数a的取值范围.【解答】解:由题意,f(x)=lgx在(0,+∞)上单调递增,∵f(1﹣a)﹣f(a)>0,∴1﹣a>a>0,∴a∈,故答案为11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=﹣.+1【考点】极限及其运算.【分析】由已知推导出S2n=(1﹣),S2n﹣1=1+,从而a2n=S2n =﹣[1+(1﹣)],由此能求出.﹣S2n﹣1【解答】解:∵数列{a n}满足:a1=1,,n∈N*,∴(a1+a2)+(a3+a4)+…+(a2n﹣1+a2n)===(1﹣)=(1﹣),∴S2n=(1﹣),a1+(a2+a3)+(a4+a5)+…+(a2n+a2n﹣1)﹣2=1+=1+=1+,=1+,∴S2n﹣1∴a2n=S2n﹣S2n﹣1=﹣[1+(1﹣)],∴=﹣[1+(1﹣)]==﹣.故答案为:.12.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为90.【考点】平面向量的基本定理及其意义.【分析】取AB的中点D,AC的中点E,则P为DE的中点,利用相似比,可得结论.【解答】解:取AB的中点D,AC的中点E,则P为DE的中点,∵△ABC的面积为360,∴△PAB的面积=△ADE的面积==90.故答案为90.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A【考点】元素与集合关系的判断.【分析】根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可得结论.【解答】解:根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可知B 正确.故选B.14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:A.当x=1,y=0时,满足|x|≥1时,但|x|+|y|=1>1不成立,不满足条件.B.当x=1,y=0时,满足|x+y|≥1时,但|x|+|y|=1>1不成立,不满足条件.C.当y≤﹣2时,|y|≥2,则|x|+|y|>1成立,即充分性成立,满足条件.D.当且,则|x|+|y|≥1,等取等号时,不等式不成立,即充分性不成立,不满足条件.故选:C.15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.【考点】曲线与方程.【分析】由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),即可得出结论.【解答】解:由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),故选C.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16【考点】集合的包含关系判断及应用.【分析】由题意M是集合{2,3,4,5}的非空子集,且2,4不同时出现,同时出现有4个,即可得出结论.【解答】解:由题意M是集合{2,3,4,5}的非空子集,有15个,且2,4不同时出现,同时出现有4个,故满足题意的M有11个,故选:A.三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积. 【分析】(1)设BD 的中点为O ,连结OA ,OC ,则OA ⊥平面BCD .由经能求出S 圆锥侧.(2)该几何体的体积V=(S △BCD +S 半圆)•AO ,由此能求出结果. 【解答】解:(1)设BD 的中点为O ,连结OA ,OC , ∵A 是圆锥的顶点,BD 是圆锥底面的直径, ∴OA ⊥平面BCD .∵BD=2,BC=1,AC 与底面所成角的大小为,过点A 作截面ABC ,ACD ,∴在Rt △AOC 中,OC=1,,AC=2,AO=,∴S 圆锥侧=πrl==2π.(2)该几何体为三棱锥与半个圆锥的组合体, ∵AO=,∠BCD=90°,∴CD=,该几何体的体积V=(S △BCD +S 半圆)•AO ==.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.【考点】双曲线的简单性质.【分析】(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),即可求双曲线Γ的方程;(2)设Γ与l的交点为P,求出P的坐标,利用夹角公式,即可求∠F1PF2的角平分线所在直线的方程.【解答】解:(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),∴双曲线方程为x2﹣y2=2;(2),显然∠F1PF2的角平分线所在直线斜率k存在,且k>0,,,于是.∴为所求.19.某租车公司给出的财务报表如下:1014年(1﹣12月)1015年(1﹣12月)1016年(1﹣11月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)【考点】函数模型的选择与应用.【分析】(1)根据空驶率的计算公式为,带入计算即可;(2)根据T2016的值,求出k的值,从而求出2016年前11个月的平均每单油费和平均每单里程.【解答】解:(1),,∴2014、2015年,该公司空驶率分别为41.14%和38.00%.(2),T2016=38%﹣20%=18%.由,∴2016年前11个月的平均每单油费为12.98元,平均每单里程为15.71km.20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?【考点】数列的求和;数列递推式.【分析】(1)由a4,a7,a8成等比数列,可得=a4•a8,可得(15+6d)2=(15+3d)(15+7d),化简解出即可得出..(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,对n分类讨论,利用等差数列的求和公式即可得出.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,利用指数运算性质、等差数列的求和公式及其二次函数的单调性即可得出.【解答】解:(1)∵a4,a7,a8成等比数列,∴=a4•a8,∴(15+6d)2=(15+3d)(15+7d),化为:d2+2d=0,∵d≠0,∴d=﹣2.(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,∴,∴.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,,∴当n=15或16时,T n最大.21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.【考点】抽象函数及其应用;函数奇偶性的性质.【分析】(1)根据“位差奇函数”的定义.考查h(x)=g(x+m)﹣g(m)=2x+m ﹣2m=2m(2x﹣1)即可,(2)依题意,是奇函数,求出φ;(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.假设h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需.【解答】解:(1)对于f(x)=2x+1,f(x+m)﹣f(m)=2(x+m)+1﹣(2m+1)=2x,∴对任意实数m,f(x+m)﹣f(m)是奇函数,即f(x)是位差值为任意实数m的“位差奇函数”;对于g(x)=2x,记h(x)=g(x+m)﹣g(m)=2x+m﹣2m=2m(2x﹣1),由h(x)+h(﹣x)=2m(2x﹣1)+2m(2﹣x﹣1)=0,当且仅当x=0等式成立,∴对任意实数m,g(x+m)﹣g(m)都不是奇函数,则g(x)不是“位差奇函数”;(2)依题意,是奇函数,∴(k∈Z).(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.依题意,h(x)对任意都不是奇函数,若h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需,且c∈R.2017年2月1日。
2017上海高考数学试题(含解析) (1)
2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654m P =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A. 0543B. 1024C. 1523D. 605414. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =【解析】{3,4}AB =2. 若排列数6654m P =⨯⨯,则m = 【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞4. 已知球的体积为36π,则该球主视图的面积等于 【解析】3436393r r S πππ=⇒=⇒= 5. 已知复数z 满足30z z+=,则||z =【解析】23||z z z =-⇒=⇒=6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为 【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为【解析】()31(2)918x f x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =【解析】222149161491612341234lg()()2lg()n n a b n n b b b b b a b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 6054【解析】C14. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+= 【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅=(2)tanθ== 18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【解析】(1)12341234()()96530935a a a a b b b b +++-+++=-= (2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.【解析】(1)联立22:14x y Γ+=与222x y +=,可得P (2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设00(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =,∴003(,3)2Q x y --,∵2AQ AC =,∴00133(,)42y C x --,代入并联立椭圆方程,解得09x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”. 【解析】(1)0a ≥;(2)略;(3)略.。
2017年上海市静安区高考数学一模试卷
2017年上海市静安区高考数学一模试卷一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1. “”是“”的充分非必要条件,则的取值范围是________.【答案】【考点】必要条件、充分条件与充要条件的判断【解析】根据充分必要条件的定义求出的范围即可.【解答】解:若“”是“”的充分非必要条件,则的取值范围是,故答案为:.2. 函数的最小正周期为________.【答案】【考点】三角函数的周期性及其求法【解析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得的最小正周期.【解答】解:函数的最小正周期为,故答案为:.3. 若复数为纯虚数,且满足(为虚数单位),则实数的值为________.【答案】【考点】复数代数形式的乘除运算【解析】由,得,然后利用复数代数形式的乘除运算化简复数,由复数为纯虚数,列出方程组,求解即可得答案.【解答】解:由,得,∵复数为纯虚数,∴,解得.则实数的值为:.故答案为:.4. 二项式展开式中的系数为________.【答案】【考点】二项式定理的用法【解析】利用二项式展开式的通项公式即可求得答案.【解答】解:设二项式展开式的通项为,则,令得,∴二项式展开式中的系数为.故答案为:.5. 用半径米的半圆形薄铁皮制作圆锥型无盖容器,其容积为________立方米.【答案】【考点】柱体、锥体、台体的体积计算【解析】由已知求出圆锥的底面半径,进一步求得高,代入圆锥体积公式得答案.【解答】解:半径为米的半圆的周长为,则制作成圆锥的底面周长为,母线长为,设圆锥的底面半径为,则,即.∴圆锥的高为.∴(立方米).故答案为:.6. 已知为锐角,且,则________.【答案】【考点】两角和与差的余弦公式的应用【解析】由为锐角求出的范围,利用同角三角函数间的基本关系求出的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵为锐角,∴,∵,∴,则.故答案为:7. 根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)毫克毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为毫克毫升,经过个小时,酒精含量降为毫克毫升,且满足关系式(为常数).若某人饮酒后血液中的酒精含量为毫克毫升,小时后,测得其血液中酒精含量降为毫克毫升,则此人饮酒后需经过________小时方可驾车.(精确到小时)【答案】【考点】函数模型的选择与应用【解析】先求出,再利用,即可得出结论.【解答】解:由题意,,∴,∵,∴,故答案为.8. 已知奇函数是定义在上的增函数,数列是一个公差为的等差数列,满足,则的值为________.【答案】【考点】数列与函数的综合【解析】设设,则,则,结合奇函数关于原点的对称性可知,,.设数列通项.得到通项.由此能求出的值.【解答】解:设,则,∵,∴,结合奇函数关于原点的对称性可知,∴,即.∴,设数列通项∴.故答案为:9. 直角三角形中,,,,点是三角形外接圆上任意一点,则的最大值为________.【答案】【考点】向量在几何中的应用【解析】建立坐标系,设,则,,【解答】解:如图建立平面直角坐标系,,,,三角形外接圆,设,则,,,故答案为:.10. 已知(且且,,,若对任意实数均有,则的最小值为________.【答案】【考点】基本不等式【解析】根据对任意实数均有,求出,的关系,可求的最小值.【解答】解:,,那么:,即.对任意实数均成立,可得,,故得.那么:,当且仅当时取等号.故的最小值为.故答案为:.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.若空间三条直线、、满足,,则直线与A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能【答案】D【考点】空间中直线与直线之间的位置关系【解析】利用正方体的棱与棱的位置关系及异面直线所成的角的定义即可得出,若直线、、满足、,则,或与相交,或与异面.【解答】解:如图所示:,,与可以相交,异面直线,也可能平行.从而若直线、、满足、,则,或与相交,或与异面.故选.在无穷等比数列中,,则的取值范围是()A. B.C. D.【答案】D【考点】数列的极限【解析】利用无穷等比数列和的极限,列出方程,推出的取值范围.【解答】解:在无穷等比数列中,,可知,则,.故选:.某班班会准备从含甲、乙的名学生中选取人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.种B.种C.种D.种【答案】A【考点】排列、组合及简单计数问题【解析】根据题意,分种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.【解答】根据题意,分种情况讨论,若只有甲乙其中一人参加,有=种情况;若甲乙两人都参加,有=种情况,则不同的发言顺序种数=种,已知椭圆,抛物线焦点均在轴上,的中心和顶点均为原点,从每条曲线上各取两个点,将其坐标记录于表中,则的左焦点到的准线之间的距离为()【答案】B【考点】抛物线的求解椭圆的定义和性质【解析】由表可知:抛物线焦点在轴的正半轴,设抛物线,则有,将,在上,代入求得,即可求得抛物线方程,求得准线方程,设椭圆,把点,,即可求得椭圆方程,求得焦点坐标,即可求得的左焦点到的准线之间的距离.【解答】解:由表可知:抛物线焦点在轴的正半轴,设抛物线,则有,据此验证四个点知,在上,代入求得,∴抛物线的标准方程为.则焦点坐标为,准线方程为:,设椭圆,把点,代入得,,解得:,∴的标准方程为;由,左焦点,的左焦点到的准线之间的距离,故选.已知与都是定义在上的奇函数,且当时,,,若恰有个零点,则正实数的取值范围是()A. B.C. D.【答案】C【考点】根的存在性及根的个数判断【解析】问题转化为和有个交点,画出函数,的图象,结合图象得到关于的不等式组,解出即可.【解答】解:若恰有个零点,即和有个交点,画出函数,的图象,如图示:,结合图象得:,解得:,故选:.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.已知正四棱柱,,,,分别是棱,的中点.(1)求异面直线与所成角的大小;(2)求四面体的体积.【答案】解:(1)连接,∵,分别是棱,的中点,∴,则,∴为异面直线与所成角.在中,由,,得,,∴,∴异面直线与所成角的大小为;(2).【考点】柱体、锥体、台体的体积计算异面直线及其所成的角【解析】(1)连接,由,分别是棱,的中点,可得,进一步得到,可知为异面直线与所成角.然后求解直角三角形得答案;(2)直接利用等体积法把四面体的体积转化为三棱锥的体积求解.【解答】解:(1)连接,∵,分别是棱,的中点,∴,则,∴为异面直线与所成角.在中,由,,得,,∴,∴异面直线与所成角的大小为;(2).设双曲线,,为其左右两个焦点.(1)设为坐标原点,为双曲线右支上任意一点,求的取值范围;(2)若动点与双曲线的两个焦点,的距离之和为定值,且的最小值为,求动点的轨迹方程.【答案】解:(1)设,,左焦点,…对称轴,…(2)由椭圆定义得:点轨迹为椭圆,,…由基本不等式得,当且仅当时等号成立,所求动点的轨迹方程为…【考点】直线与双曲线的位置关系【解析】(1)设,,左焦点,通过利用二次函数的性质求出对称轴,求出的取值范围.(2)写出点轨迹为椭圆,利用,,结合余弦定理,以及基本不等式求解椭圆方程即可.【解答】解:(1)设,,左焦点,…对称轴,…(2)由椭圆定义得:点轨迹为椭圆,,…由基本不等式得,当且仅当时等号成立,所求动点的轨迹方程为…在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(看做一点)的东偏南角方向,的海面处,并以的速度向西偏北方向移动.台风侵袭的范围为圆形区域,当前半径为,并以的速度不断增大.(1)问小时后,该台风是否开始侵袭城市,并说明理由;(2)城市受到该台风侵袭的持续时间为多久?【答案】解:(1)如图建立直角坐标系,…则城市,当前台风中心,设小时后台风中心的坐标为,则,此时台风的半径为,小时后,,台风的半径为,∵,…∴小时后,该台风还没有开始侵袭城市.…(2)由(1)知小时后台风侵袭的范围可视为以为圆心,为半径的圆,若城市受到台风侵袭,则,∴,即,…解得…∴该城市受台风侵袭的持续时间为小时.…【考点】圆的综合应用【解析】(1)建立直角坐标系,…,则城市,当前台风中心,设小时后台风中心的坐标为,由题意建立方程组,能求出小时后,该台风还没有开始侵袭城市.(2)小时后台风侵袭的范围可视为以为圆心,为半径的圆,由此利用圆的性质能求出结果.【解答】解:(1)如图建立直角坐标系,…则城市,当前台风中心,设小时后台风中心的坐标为,则,此时台风的半径为,小时后,,台风的半径为,∵,…∴小时后,该台风还没有开始侵袭城市.…(2)由(1)知小时后台风侵袭的范围可视为以为圆心,为半径的圆,若城市受到台风侵袭,则,∴,即,…解得…∴该城市受台风侵袭的持续时间为小时.…设集合存在正实数使得定义域内任意都有.(1)若,试判断是否为中的元素,并说明理由;(2)若,且,求的取值范围;(3)若,且,求的最小值.【答案】解:(1)∵,∴.…(2)由…∴,…故.…(3)由,…即:∴对任意都成立∴…当时,;…当时,;…当时,.…综上:…【考点】函数与方程的综合运用【解析】(1)利用,判断.(2),化简,通过判别式小于,求出的范围即可.(3)由,推出,得到对任意都成立,然后分离变量,通过当时,当时,分别求解最小值即可.【解答】解:(1)∵,∴.…(2)由…∴,…故.…(3)由,…即:∴对任意都成立∴…当时,;…当时,;…当时,.…综上:…由个不同的数构成的数列,,…中,若时,(即后面的项小于前面项),则称与构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列,,,由于在第一项后面比小的项有个,在第二项后面比小的项有个,在第三项后面比小的项没有,因此,数列,,的逆序数为;同理,等比数列的逆序数为.(1)计算数列的逆序数;(2)计算数列为奇数为偶数的逆序数;(3)已知数列,,…的逆序数为,求,,…的逆序数.【答案】解:(1)∵为单调递减数列,∴逆序数为.(2)当为奇数时,.当为偶数时:∴.当为奇数时,逆序数为;当为偶数时,逆序数为.(3)在数列,,…中,若与后面个数构成个逆序对,则有不构成逆序对,所以在数列,,…中,逆序数为.【考点】数列的求和【解析】(1)由为单调递减数列,可得逆序数为.(2)当为奇数时,.当为偶数时:.可得逆序数.(3)在数列,,…中,若与后面个数构成个逆序对,则有不构成逆序对,可得在数列,,…中,逆序数为.【解答】解:(1)∵为单调递减数列,∴逆序数为.(2)当为奇数时,.当为偶数时:∴.当为奇数时,逆序数为;当为偶数时,逆序数为.(3)在数列,,…中,若与后面个数构成个逆序对,则有不构成逆序对,所以在数列,,…中,逆序数为.。
2017年上海中学高考数学模拟试卷(1)+Word版含解析
2017年上海中学高考数学模拟试卷(1)一、填空题1.定义在R上的奇函数f(x)以2为周期,则f(1)=.2.如果复数(b∈R)的实部和虚部互为相反数,则b等于.3.若(1+2x)n展开式中含x3项的系数等于含x项系数的8倍,则正整数n=.4.(文)若,则目标函数z=2x+y的最小值为.5.已知a<0,则关于x的不等式的解集为.6.点P是椭圆上一点,F1、F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限内时,P点的纵坐标为.7.数列{a n}满足:a n=,它的前n项和记为S n,则S n=.8.某市为加强城市圈的建设,计划对周边如图所示的A、B、C、D、E、F、G、H八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的概率为.9.若方程仅有一个实数根,则k的取值范围是.10.在△ABC中,已知|AB|=2,,则△ABC面积的最大值为.11.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠,使P,Q,R,S四点重合,则需要个这样的几何体,就可以拼成一个棱长为12的正方体.12.若函数y=a x(a>1)和它的反函数的图象与函数y=的图象分别交于点A、B,若|AB|=,则a约等于(精确到0.1).13.老师告诉学生小明说,“若O为△ABC所在平面上的任意一点,且有等式,则P点的轨迹必过△ABC的垂心”,小明进一步思考何时P点的轨迹会通过△ABC的外心,得到的条件等式应为=.(用O,A,B,C四个点所构成的向量和角A,B,C的三角函数以及λ表示)二.选择题14.若函数y=cos2x与函数y=sin(x+φ)在区间上的单调性相同,则φ的一个值是()A.B.C.D.15.△ABC中,A=,BC=3,则△ABC的周长为()A.4sin(B+)+3 B.4sin(B+)+3 C.6sin(B+)+3 D.6sin (B+)+316.若点M(a,)和N(b,)都在直线l:x+y=1上,则点P(c,),Q(,b)和l 的关系是()A.P和Q都在l上B.P和Q都不在l上C.P在l上,Q不在l上D.P不在l上,Q在l上17.数列{a n}满足:a1=,a2=,且a1a2+a2a3+…+a n a n+1=na1a n+1对任何的正整数n都成立,则的值为()A.5032 B.5044 C.5048 D.5050三.解答题18.已知函数的最小正周期为π,且当x=时,函数有最小值.(1)求f(x)的解析式;(2)作出f(x)在[0,π]范围内的大致图象.19.设虚数z满足|2z+15|=|+10|.(1)计算|z|的值;(2)是否存在实数a,使∈R?若存在,求出a的值;若不存在,说明理由.20.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.21.在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:如果该公司今年有5位职工,计划从明年起每年新招5名职工.(1)若今年算第一年,将第n年该公司付给职工工资总额y(万元)表示成年限n的函数;(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p的最小值.22.已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.(1)当b=2,m=﹣4时,f(x)≥g(x)恒成立,求实数c的取值范围;(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.23.若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,,问λ1+λ2是否为定值?说明理由.2017年上海中学高考数学模拟试卷(1)参考答案与试题解析一、填空题1.定义在R上的奇函数f(x)以2为周期,则f(1)=0.【考点】3Q:函数的周期性;3L:函数奇偶性的性质.【分析】根据f(x)是奇函数可得f(﹣x)=﹣f(x),又根据f(x)是以2为周期的周期函数得f(x+2)=f(x),取x=﹣1可求出f(1)的值.【解答】解:∵f(x)是以2为周期的周期函数,∴f(1)=f(﹣1),又函数f(x)是奇函数,∴﹣f(1)=f(﹣1)=f(1),∴f(1)=f(﹣1)=0故答案为:02.如果复数(b∈R)的实部和虚部互为相反数,则b等于0.【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成复数的代数标准形式,根据实部和虚部互为相反数,得到实部和虚部和为0,得到结果.【解答】解:∵===,∵实部和虚部互为相反数,∴,∴,∴b=0,故答案为:03.若(1+2x)n展开式中含x3项的系数等于含x项系数的8倍,则正整数n=5.【考点】DC:二项式定理的应用.=C n r(2x)r=2r C n r x r分别令r=3,r=1可得含x3,x项的系【分析】由题意可得T r+1数,从而可求=C n r(2x)r=2r C n r x r【解答】解:由题意可得二项展开式的通项,T r+1令r=3可得含x3项的系数为:8C n3,令r=1可得含x项的系数为2C n1∴8C n3=8×2C n1∴n=5故答案为:54.(文)若,则目标函数z=2x+y的最小值为4.【考点】7C:简单线性规划.【分析】先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+y,过可行域内的点A(1,2)时的最小值,从而得到z最小值即可.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,A(1,2),(4,2),C(1,5),则目标函数z=2x+y的最小值为4.故答案为:4.5.已知a<0,则关于x的不等式的解集为(2a,﹣a)∪(﹣a,﹣4a).【考点】R2:绝对值不等式.【分析】把不等式转化为0<|x+a|<﹣3a,利用绝对值不等式的几何意义,即可求出不等式的解集.【解答】解:因为a<0,则关于x的不等式,所以不等式0<|x+a|<﹣3a,根据绝对值不等式的几何意义:数轴上的点到﹣a的距离大于0并且小于﹣3a,可知不等式的解集为:(2a,﹣a)∪(﹣a,﹣4a).故答案为:(2a,﹣a)∪(﹣a,﹣4a).6.点P是椭圆上一点,F1、F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限内时,P点的纵坐标为.【考点】K4:椭圆的简单性质.【分析】由椭圆的定义可知|PF1|+|PF2|=10,根据椭圆方程求得焦距,利用内切圆的性质把三角形PF1F2分成三个三角形分别求出面积,再利用面积相等建立等式求得P点纵坐标.【解答】解:根据椭圆的定义可知|PF1|+|PF2|=10,|F1F2|=6,令内切圆圆心为O则=++=(|PF1|r+|PF2|r+|F1F2|r)=(|PF1|+|PF2|+|F1F2|)•1=8又∵=|F1F2|•y P=3y P.所以3y p=8,y p=.故答案为7.数列{a n}满足:a n=,它的前n项和记为S n,则S n=.【考点】8E:数列的求和;6F:极限及其运算.【分析】先分奇数与偶数分别求前n项和记为S n,再求它们的极限.【解答】解:当n=2k时,当n=2k+1时,∴S n=故答案为8.某市为加强城市圈的建设,计划对周边如图所示的A、B、C、D、E、F、G、H八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的概率为.【考点】C7:等可能事件的概率.【分析】把城市A被选中的情况和城市A未被选中的情况都找出来,即可得到城市A被选中的概率.【解答】解:从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的情况有:ACE、ACF、ACG、ACH、ADF、ADG、ADH、AEG、AEH、AFH,共10种.则城市A未被选中的情况有:BDF、BDG、BDH、BEG、BEH、BFH、CEG、CEH、CFH、DFH 共10种.故城市A被选中的概率为:=,故答案为:.9.若方程仅有一个实数根,则k的取值范围是(﹣∞,﹣1)∪(1,+∞)∪{0} .【考点】J9:直线与圆的位置关系.【分析】据题意设y1=,y2=﹣kx+2,画出函数y1=图象,结合图象,即可得到k的取值范围.【解答】解:根据题意设y1=,y2=﹣kx+2,当k=0时,方程只有一个解x=0,满足题意;当k≠0时,根据题意画出图象,如图所示:根据图象可知,当﹣k>1或﹣k<﹣1时,直线y=﹣kx+2与y=只有一个交点,即方程只有一个解,综上,满足题意k的取值范围为k=0或k>1或k<﹣1.故答案为:(﹣∞,﹣1)∪(1,+∞)∪{0}10.在△ABC中,已知|AB|=2,,则△ABC面积的最大值为.【考点】9S:数量积表示两个向量的夹角;93:向量的模;HP:正弦定理.【分析】由题意可得:|AC|=|BC|,设△ABC三边分别为2,a,a,三角形面积为S,根据海仑公式得:16S2=﹣a4+24a2﹣16=﹣(a2﹣12)2+128,再结合二次函数的性质求出答案即可.【解答】解:由题意可得:|AC|=|BC|,设△ABC三边分别为2,a,a,三角形面积为S,所以设p=所以根据海仑公式得:S==,所以16S2=﹣a4+24a2﹣16=﹣(a2﹣12)2+128,当a2=12时,即当a=2时,△ABC的面积有最大值,并且最大值为2.故答案为.11.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠,使P,Q,R,S四点重合,则需要24个这样的几何体,就可以拼成一个棱长为12的正方体.【考点】L3:棱锥的结构特征;L2:棱柱的结构特征.【分析】先把判断几何体的形状,把展开图沿虚线折叠,得到一个四棱锥,求出体积,再计算棱长为12的正方体的体积,让正方体的体积除以四棱锥的体积,结果是几,就需要几个四棱锥.【解答】解:把该几何体沿图中虚线将其折叠,使P,Q,R,S四点重合,所得几何体为下图中的四棱锥,且底面四边形ABCD为边长是6的正方形,侧棱PD⊥平面ABCD,PD=6=×6×6×6=72∴V四棱锥P﹣ABCD∵棱长为12的正方体体积为12×12×12=1728∵,∴需要24个这样的几何体,就可以拼成一个棱长为12的正方体.故答案为2412.若函数y=a x(a>1)和它的反函数的图象与函数y=的图象分别交于点A、B,若|AB|=,则a约等于8.4(精确到0.1).【考点】4R:反函数.【分析】根据题意画出图形,如图,设A(x,a x),函数y=a x(a>1)和它的反函数的图象与函数y=的图象关于直线x﹣y=0 对称,得出点A到直线y=x的距离为AB的一半,利用点到直线的距离公式及A(x,a x)在函数y=的图象上得到a=()≈8.4即可.【解答】解:根据题意画出图形,如图,设A(x,a x),∵函数y=a x(a>1)和它的反函数的图象与函数y=的图象关于直线x﹣y=0 对称,∴|AB|=,⇒点A到直线y=x的距离为,∴⇒a x﹣x=2,①又A(x,a x)在函数y=的图象上,⇒a x=,②由①②得:﹣x=2⇒x=,∴a﹣(﹣1)=2,⇒a=()≈8.4故答案为:8.4.13.老师告诉学生小明说,“若O为△ABC所在平面上的任意一点,且有等式,则P点的轨迹必过△ABC的垂心”,小明进一步思考何时P点的轨迹会通过△ABC的外心,得到的条件等式应为=.(用O,A,B,C四个点所构成的向量和角A,B,C的三角函数以及λ表示)【考点】F3:类比推理;LL:空间图形的公理.【分析】由题意可得:•=0,即与垂直,设D为BC的中点,则=,可得=,即可得到,进而得到点P在BC的垂直平分线上,即可得到答案.【解答】解:由题意可得:•=﹣||+||=0∴与垂直设D为BC的中点,则=,所以,所以=,因为与垂直所以,又∵点D为BC的中点,∴点P在BC的垂直平分线上,即P的轨迹会通过△ABC的外心.故答案为:.二.选择题14.若函数y=cos2x与函数y=sin(x+φ)在区间上的单调性相同,则φ的一个值是()A.B.C.D.【考点】H5:正弦函数的单调性;HA:余弦函数的单调性.【分析】可把A,B,C,D四个选项中的值分别代入题设中进行验证,只有D项的符合题意.【解答】解:y=cos2x在区间上是减函数,y=sin(x+)[0,]上单调增,在[,]上单调减,故排除A.y=sin(x+)在[0,]单调增,在[,]上单调减,故排除B.y=sin(x+)在[0,]单调增,在[,]上单调减,故排除C.在区间上也是减函数,故选D.15.△ABC中,A=,BC=3,则△ABC的周长为()A.4sin(B+)+3 B.4sin(B+)+3 C.6sin(B+)+3 D.6sin (B+)+3【考点】HP:正弦定理.【分析】根据正弦定理分别求得AC和AB,最后三边相加整理即可得到答案.【解答】解:根据正弦定理,∴AC==2sinB,AB==3cosB+sinB∴△ABC的周长为2sinB+3cosB+sinB+3=6sin(B+)+3故选D.16.若点M(a,)和N(b,)都在直线l:x+y=1上,则点P(c,),Q(,b)和l 的关系是()A.P和Q都在l上B.P和Q都不在l上C.P在l上,Q不在l上D.P不在l上,Q在l上【考点】IH:直线的一般式方程与直线的性质.【分析】先根据点M、N在直线上,则点坐标适合直线方程,通过消元法可求得a与c的关系,从而可判定点P(c,),Q(,b)和l 的关系,选出正确选项.【解答】解:∵点M(a,)和N(b,)都在直线l:x+y=1上∴a+=1,b+=1则b=即+=1化简得c+=1∴点P(c,)在直线l上而b+=1则Q(,b)在直线l上故选A.17.数列{a n }满足:a 1=,a 2=,且a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1对任何的正整数n 都成立,则的值为( ) A .5032B .5044C .5048D .5050【考点】8H :数列递推式;8E :数列的求和.【分析】a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1,①;a 1a 2+a 2a 3+…+a n a n +1+a n +1a n +2=(n +1)a 1a n +2,②;①﹣②,得﹣a n +1a n +2=na 1a n +1﹣(n +1)a 1a n +2,,同理,得=4,整理,得,是等差数列.由此能求出.【解答】解:a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1,① a 1a 2+a 2a 3+…+a n a n +1+a n +1a n +2=(n +1)a 1a n +2,② ①﹣②,得﹣a n +1a n +2=na 1a n +1﹣(n +1)a 1a n +2,∴, 同理,得=4,∴=,整理,得,∴是等差数列.∵a 1=,a 2=,∴等差数列的首项是,公差,.∴==5044.故选B .三.解答题18.已知函数的最小正周期为π,且当x=时,函数有最小值.(1)求f(x)的解析式;(2)作出f(x)在[0,π]范围内的大致图象.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(1)利用三角函数的恒等变换化简函数f(x)=1﹣sin,再由它的周期等于π求出ω=1,故f(x)=1﹣sin.(2)由x∈[0,π],可得2x+∈[,],列表作图即得所求.【解答】解:(1)∵=+1﹣=1﹣sin.由于它的最小正周期为π,故=π,∴ω=1.故f(x)═1﹣sin.(2)∵x∈[0,π],∴2x+∈[,].列表如下:如图:19.设虚数z满足|2z+15|=|+10|.(1)计算|z|的值;(2)是否存在实数a,使∈R?若存在,求出a的值;若不存在,说明理由.【考点】A8:复数求模.【分析】(1)设z=a+bi(a,b∈R且b≠0)则代入条件|2z+15|=|+10|然后根据复数的运算法则和模的概念将上式化简可得即求出了|z|的值(2)对于此种题型可假设存在实数a使∈R根据复数的运算法则设(z=c+bi(c,b∈R且b≠0))可得=+()∈R即=0再结合b≠0和(1)的结论即可求解.【解答】解:(1)设z=a+bi(a,b∈R且b≠0)则∵|2z+15|=|+10|∴|(2a+15)+2bi|=|(a+10)﹣bi|∴=∴a2+b2=75∴∴|z|=(2)设z=c+bi(c,b∈R且b≠0)假设存在实数a使∈R则有=+()∈R∴=0∵b≠0∴a=由(1)知=5∴a=±520.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.【考点】MI:直线与平面所成的角;LF:棱柱、棱锥、棱台的体积.【分析】(1)判断知,B1C与C1A垂直,可在平面BA1内,过B1作B1D⊥AB于D,证明B1C⊥平面ABC1,再由线面垂直的定义得出线线垂直;(2)由图形知,,变换棱锥的底与高后,求出它的体积即可;【解答】解:(1)B1C⊥C1A证明如下:在平面BA1内,过B1作B1D⊥AB于D,∵侧面BA1⊥平面ABC,∴B1D⊥平面ABC,∠B1BA是BB1与平面ABC所成的角,∴∠B1BA=π﹣=,连接BC1,∵BB1CC1是菱形,∴BC1⊥B1C,CD⊥平面A1B,B1D⊥AB,∴B 1C ⊥AB , ∴B 1C ⊥平面ABC 1, ∴B 1C ⊥C 1A .(2)解:由题意及图,答:四棱锥B ﹣ACC 1A 1的体积为221.在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:如果该公司今年有5位职工,计划从明年起每年新招5名职工.(1)若今年算第一年,将第n 年该公司付给职工工资总额y (万元)表示成年限n 的函数;(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p 的最小值. 【考点】8B :数列的应用.【分析】(1)y=10n(1+10%)n +0.2n 2+1.8n ,n ∈N * (2)由0.2n 2+1.8n ≤10n ⋅1.1n ⋅p%,得p%≥,令a n =,由此能求出p 的最小值.【解答】解:(1)y=10n (1+10%)n +0.2n 2+1.8n ,n ∈N * (2)由0.2n 2+1.8n ≤10n ⋅1.1n ⋅p%, 得p%≥, 令a n =,由,得1≤n≤2,∴p%≥a1=a2=,∴p≥.22.已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.(1)当b=2,m=﹣4时,f(x)≥g(x)恒成立,求实数c的取值范围;(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.【考点】3R:函数恒成立问题.【分析】(1)将b=2,m=﹣4代入函数解析式,根据f(x)≥g(x)恒成立将c 分离出来,研究不等式另一侧函数的最大值即可求出c的取值范围;(2)将c=﹣3,m=﹣2代入函数解析式得(|x|﹣b)2=x+1有四个不同的解,然后转化成(x﹣b)2=x+1(x≥0)有两个不同解以及(x+b)2=x+1(x<0)也有两个不同解,最后根据根的分布建立关系式,求出b的取值范围.【解答】解:(1)∵当b=2,m=﹣4时,f(x)≥g(x)恒成立,∴c≥x﹣4﹣(|x|﹣2)2=,由二次函数的性质得c≥﹣.(2)(|x|﹣b)2﹣3=x﹣2,即(|x|﹣b)2=x+1有四个不同的解,∴(x﹣b)2=x+1(x≥0)有两个不同解以及(x+b)2=x+1(x<0)也有两个不同解,由根的分布得b≥1且1<b<,∴1<b<.23.若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,,问λ1+λ2是否为定值?说明理由.【考点】KG:直线与圆锥曲线的关系.【分析】(1),由根的差别式能得到l与椭圆C相切.(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C 的外部.是真命题.联立方程得(aby02+a2x02)x2﹣2ax0x+1﹣by02=0.由△=4a2x02﹣4a(by02+ax02)(1﹣by02)>0,能求出N(x0,y0)在椭圆C的外部.(3)此时l与椭圆相离,设M(x1,y1),A(x,y)则代入椭圆C:ax2+by2=1,利用M在l上,得(ax02+by02﹣1)λ12+ax12+by12﹣1=0.由此能求出λ1+λ2=0.【解答】解:(1)即ax2﹣2ax0x+ax02=0∴△=4a2x02﹣4a2x02=0∴l与椭圆C相切.(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C 的外部.是真命题.联立方程得(aby02+a2x02)x2﹣2ax0x+1﹣by02=0则△=4a2x02﹣4a(by02+ax02)(1﹣by02)>0∴ax02﹣by02+b2y04﹣ax02+abx02y02>0∴by02+ax02>1∴N(x0,y0)在椭圆C的外部.(3)同理可得此时l与椭圆相离,设M(x1,y1),A(x,y)则代入椭圆C:ax2+by2=1,利用M在l上,即ax0x1+by0y1=1,整理得(ax02+by02﹣1)λ12+ax12+by12﹣1=0同理得关于λ2的方程,类似.即λ1、λ2是(ax02+by02﹣1)λ2+ax12+by12﹣1=0的两根∴λ1+λ2=0.2017年7月7日。
上海市2017-2018学年高考数学模拟试卷(含解析).pdf
2017-2018学年上海市高考数学模拟试卷一.填空题最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。
1.函数f(x)=lnx+的定义域为.2.若双曲线x2﹣y2=a2(a>0)的右焦点与抛物线y2=4x的焦点重合,则a= .3.某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为.4.若方程x2+x+p=0有两个虚根α、β,且|α﹣β|=3,则实数p的值是.5.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为.6.将函数的图象向左平移m(m>0)个单位长度,得到的函数y=f(x)在区间上单调递减,则m的最小值为.7.若的展开式中含有常数项,则当正整数n取得最小值时,常数项的值为.8.若关于x,y,z的三元一次方程组有唯一解,则θ的取值的集合是.9.若实数x,y满足不等式组则z=|x|+2y的最大值是.10.如图,在△ABC中,AB=AC=3,cos∠BAC=, =2,则?的值为.11.已知f(x)=的最大值和最小值分别是M和m,则M+m= .12.已知四数a1,a2,a3,a4依次成等比数列,且公比q不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q的取值集合是.二.选择题13.直线(t为参数)的倾角是()A.B.arctan(﹣2)C.D.π﹣arctan214.“x>0,y>0”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件15.若一个水平放置的图形的斜二测直观图是一个底角为45°且腰和上底均为1的等腰梯形,则原平面图形的面积是()A.B.C.2+D.1+16.对数列{a n},如果?k∈N*及λ1,λ2,…,λk∈R,使a n+k=λ1a n+k﹣1+λ2a n+k﹣2+…+λk a n 成立,其中n∈N*,则称{a n}为k阶递归数列.给出下列三个结论:①若{a n}是等比数列,则{a n}为1阶递归数列;②若{a n}是等差数列,则{a n}为2阶递归数列;③若数列{a n}的通项公式为,则{a n}为3阶递归数列.其中,正确结论的个数是()A.0 B.1 C.2 D.3三.简答题17.若向量,在函数的图象中,对称中心到对称轴的最小距离为,且当的最大值为1.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)的单调递增区间.18.如图,O为总信号源点,A,B,C是三个居民区,已知A,B都在O的正东方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5km.(1)求居民区A与C的距离;(2)现要经过点O铺设一条总光缆直线EF(E在直线OA的上方),并从A,B,C分别铺设三条最短分光缆连接到总光缆EF.假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m(m为常数).设∠AOE=θ(0≤θ<π),铺设三条分光缆的总费用为w(元).①求w关于θ的函数表达式;②求w的最小值及此时tanθ的值.19.如图,在四棱锥P﹣ABCD中,侧棱PA⊥平面ABCD,E为AD的中点,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1;(1)求二面角C﹣PB﹣E的余弦值;(2)在线段PE上是否存在点M,使得DM∥平面PBC?若存在,求出点M的位置,若不存在,说明理由.20.如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C: +y2=1上一点,从原点O向圆M:(x﹣x0)2+(y﹣y0)2=r2作两条切线分别与椭圆C交于点P,Q.直线OP,OQ 的斜率分别记为k1,k2(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;(2)若r=,①求证:k1k2=﹣;②求OP?O Q的最大值.21.已知m是一个给定的正整数,m≥3,设数列{a n}共有m项,记该数列前i项a1,a2,…,a i中的最大项为A i,该数列后m﹣i项a i+1,a i+2,…,a m中的最小项为B i,r i=A i﹣B i(i=1,2,3,…,m﹣1);(1)若数列{a n}的通项公式为(n=1,2,…,m),求数列{r i}的通项公式;(2)若数列{a n}满足a1=1,r1=﹣2(i=1,2,…,m﹣1),求数列{a n}的通项公式;(3)试构造项数为m的数列{a n},满足a n=b n+c n,其中{b n}是公差不为零的等差数列,{c n}是等比数列,使数列{r i}是单调递增的,并说明理由.2017年上海市复旦附中高考数学模拟试卷(5月份)参考答案与试题解析一.填空题1.函数f(x)=lnx+的定义域为{x|0<x≤1} .【考点】33:函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,从而求出f(x)的定义域.【解答】解:∵函数f(x)=lnx+,∴,解得0<x≤1;∴函数f(x)的定义域为{x|0<x≤1}.故答案为:{x|0<x≤1}.2.若双曲线x2﹣y2=a2(a>0)的右焦点与抛物线y2=4x的焦点重合,则a= .【考点】K8:抛物线的简单性质.【分析】先根据抛物线y2=4x的方程求出焦点坐标,得到双曲线的c值,进而根据双曲线的性质得到答案.【解答】解:抛物线y2=4x的焦点坐标为(1,0),故双曲线x2﹣y2=a2(a>0)的右焦点坐标为(1,0),故c=1,由双曲线x2﹣y2=a2的标准方程为:,故2a2=1,又由a>0,∴a=.故答案为:。
【上海中学】2017年高考模拟数学试卷(一)-答案
上海中学2017年高考模拟数学试卷(一)答 案一、填空题 1.0 2.0 3.5 4.45.()(24)a a a a ---U ,,6.837.1924 8.129.11()0)({}-∞-+∞U U ,,10.11.24 12.8.413.cos cos (2||||OB OC AB B AC COP AB AC l +=++u u u r u u u r u u u r u u u ru u u r u u u u r u u u r 二、选择题 14-17.DDAB 三、解答题18.解:(1)∵222cos π()cos ()11sin(2)226x f x x x x x x =-∈∈=+-=-+R R ,w w w w w w .由于它的最小正周期为π,故2ππw=,∴1w =.故π1sin(2(6))f x x -+=.(2)∵]π[0x ∈,, ∴ππ13π2[]6x +∈,.列表如下:如图:19.解:(1)设i z a b =+(a ,b R ∈且0b ≠)则i z a b =-∵||21510|z z +=+∴|()|2152i (+10)i|a b a b ++-∴2275a b +==∴||z =(2)设i z c b =+(c ,b ∈R 且0b ≠)假设存在实数a 使z aa z+∈R 则有2222()R z a c ac b ab a z a c b a c b +=++-∈++ ∴220b ab a c b-=+ ∵0b ≠∴a =由(1=∴a =±20.解:(1)11B C C A ⊥证明如下: 在平面1BA 内,过1B 作1B D AB ⊥于D , ∵1BA ABC ⊥侧面平面,∴1B D ABC ⊥平面,1B BA ∠是1BB 与平面ABC 所成的角,∴1π2ππ33B BA ∠=-=,连接1BC , ∵11BB CC 是菱形,∴11BC B C ⊥,1CD A B ⊥平面,1B D AB ⊥, ∴1B C AB ⊥, ∴11B C ABC ⊥平面, ∴11B C C A ⊥.(2)解:由题意及图,11111222423B ACC A B A AC A ABC V V V ---===⨯答:四棱锥11B ACC A -的体积为221.解:(1)210110%0.(1)2.8y n n n n n =+++∈N *, (2)由20.2 1.810 1.1%n n n p +≤⨯g ,得0.2 1.8%10 1.1nn p +≥⨯, 令0.2 1.810 1.1n nn a +=⨯,由11n n nn a a a a +-≥⎧⎨≥⎩,得12n ≤≤, ∴122%11p a a ≥==, ∴20011p ≥. 22.解:(1)∵当2b =,4m =-时,()()f x g x ≥恒成立,∴2225804||28()30x x x c x x x x x ⎧-+-≥⎪≥=⎨---<⎪⎩,---,,由二次函数的性质得74c ≥-.(2)2()||32x b x --=-,即2(||)1b x x -=+有四个不同的解,∴2()(1)0xb x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解, 由根的分布得1b ≥且514b <<, ∴514b <<. 23.解:(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩即220020ax ax x ax -+= ∴222200440a x a x ∆=-= ∴l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点00()N x y ,在椭圆C 的外部.是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣ 则22222000044()0(1)a x a by ax by =+>△﹣﹣ ∴22242220000000ax by b y ax abx y -+-+> ∴22001by ax +>∴00()N x y ,在椭圆C 的外部.(3)同理可得此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y l l l l +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l 上,即01011ax x by y +=,整理得12222001112()10ax by ax by l +-++-= 同理得关于2l 的方程,类似.即1l 、2l 是222200211(0)1ax by ax by l +-++-=的两根 ∴120+=λλ.上海中学2017年高考模拟数学试卷(一)解 析一、填空题1.【考点】3Q :函数的周期性;3L :函数奇偶性的性质.【分析】根据()f x 是奇函数可得()()f x f x -=-,又根据()f x 是以2为周期的周期函数得()()2f x f x +=,取1x =-可求出()1f 的值.【解答】解:∵()f x 是以2为周期的周期函数, ∴1(1)()f f =-, 又函数()f x 是奇函数, ∴()(111)()f f f -=-=, ∴()(0)11f f =-= 故答案为:02.【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成复数的代数标准形式,根据实部和虚部互为相反数,得到实部和虚部和为0,得到结果. 【解答】解:∵1(1)(1)1(1)111(1)(1)222bi bi i b b i b b i i i i ++-++-+-===+++-, ∵实部和虚部互为相反数,∴11022b b +-+=, ∴202b =,∴0b =, 故答案为:03.【考点】DC :二项式定理的应用.【分析】由题意可得(122)Tr Cnr x r rCnrxr +==分别令3r =,1r =可得含3x ,x 项的系数,从而可求 【解答】解:由题意可得二项展开式的通项,(122)Tr Cnr x r rCnrxr +== 令3r =可得含3x 项的系数为:38Cn ,令1r =可得含x 项的系数为12Cn ∴31882Cn Cn =⨯ ∴5n = 故答案为:54.【考点】7C :简单线性规划.【分析】先根据条件画出可行域,设2z x y =+,再利用几何意义求最值,将最小值转化为y 轴上的截距,只需求出直线2z x y =+,过可行域内的点2(1)A ,时的最小值,从而得到z 最小值即可.【解答】解:设变量x 、y 满足约束条件126x y x y ≥⎧⎪≥⎨⎪+≤⎩,在坐标系中画出可行域三角形,A (1,2),(4,2),C (1,5), 则目标函数2z x y =+的最小值为4. 故答案为:4.5.【考点】R2:绝对值不等式.【分析】把不等式转化为0||3x a a <+<-,利用绝对值不等式的几何意义,即可求出不等式的解集. 【解答】解:因为0a <,则关于x 的不等式3||1ax a>+,所以不等式0||3x a a <+<-, 根据绝对值不等式的几何意义:数轴上的点到a -的距离大于0并且小于3a -, 可知不等式的解集为:()()24a a a a -⋃--,,. 故答案为:()()24a a a a -⋃--,,. 6.【考点】K4:椭圆的简单性质.【分析】由椭圆的定义可知12||10||PF PF +=,根据椭圆方程求得焦距,利用内切圆的性质把三角形PF 1F 2分成三个三角形分别求出面积,再利用面积相等建立等式求得P 点纵坐标. 【解答】解:根据椭圆的定义可知12||10||PF PF +=,12||6F F =, 令内切圆圆心为O则1212121212|||1(2|||)PF F POF POF OF F PF r PF r S S S S F F r =++++=△△△△=1212||||11(||)28PF PF F F +⋅=+=又∵12121||23PF F F F yP yP S ⋅==△. 所以38yp =,83yp =.故答案为83.7.【考点】8E :数列的求和;6F :极限及其运算.【分析】先分奇数与偶数分别求前n 项和记为S n ,再求它们的极限.【解答】解:当2n k =时,221111[1()][1()]9924111149nnSn --=+-- 当21n k =+时,1221111[1()][1()]9924111149nn Sn +--=+-- ∴lim21193824n n S −−→∞=+=故答案为1924. 8.【考点】C7:等可能事件的概率.【分析】把城市A 被选中的情况和城市A 未被选中的情况都找出来,即可得到城市A 被选中的概率. 【解答】解:从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A 被选中的情况有:ACE ACF ACG ACH ADF ADG ADH AEG AEH AFH 、、、、、、、、、,共10种.则城市A 未被选中的情况有:BDF BDG BDH BEG BEH BFH CEG CEH CFH DFH 、、、、、、、、、,共10种.故城市A 被选中的概率为:101=10+102, 故答案为:12. 9.【考点】J9:直线与圆的位置关系.【分析】据题意设1y 22y kx =-+,画出函数1y k 的取值范围.【解答】解:根据题意设1y 22y kx =-+, 当0k =时,方程只有一个解0x =,满足题意; 当0k ≠时,根据题意画出图象,如图所示:根据图象可知,当1k ->或1k -<-时,直线2y kx =-+与y 综上,满足题意k 的取值范围为0k =或1k >或1k <-. 故答案为:11()0)({}-∞-⋃+∞⋃,,.10.【考点】9S :数量积表示两个向量的夹角;93:向量的模;HP :正弦定理.【分析】由题意可得:|||AC BC =,设△ABC 三边分别为2,a ,三角形面积为S ,根据海仑公式得:22422162416(12128)S a a a =-+-=--+,再结合二次函数的性质求出答案即可.【解答】解:由题意可得:|||AC BC =,设△ABC 三边分别为2,a ,三角形面积为S ,所以设22a p +=所以根据海仑公式得:S = 所以22422162416(12128)S a a a =-+-=--+,当212a =时,即当a =ABC 的面积有最大值,并且最大值为故答案为11.【考点】L3:棱锥的结构特征;L2:棱柱的结构特征.【分析】先把判断几何体的形状,把展开图沿虚线折叠,得到一个四棱锥,求出体积,再计算棱长为12的正方体的体积,让正方体的体积除以四棱锥的体积,结果是几,就需要几个四棱锥.【解答】解:把该几何体沿图中虚线将其折叠,使P Q R S ,,,四点重合,所得几何体为下图中的四棱锥, 且底面四边形ABCD 为边长是6的正方形,侧棱PD ABCD ⊥平面,6PD =∴1666723P ABCD V =⨯⨯⨯=四棱锥﹣∵棱长为12的正方体体积为1212121728⨯⨯= ∵17282472=, ∴需要24个这样的几何体,就可以拼成一个棱长为12的正方体. 故答案为2412.【考点】4R :反函数.【分析】根据题意画出图形,如图,设()A x ax ,,函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,得出点A 到直线y x =的距离为AB 的一半,利用点到直线的距离公式及()A x ax ,在函数1y x=的图象上得到18.4a =≈即可. 【解答】解:根据题意画出图形,如图, 设()A x ax ,,∵函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,∴||AB =,⇒点A 到直线y x =,x=⇒2ax x =﹣,① 又()A x ax ,在函数1y x=的图象上,⇒1ax x =,②由①②得:12x x -=⇒1x x=,∴11)2-=,⇒18.4a =≈ 故答案为:8.4.13.【考点】F3:类比推理;LL :空间图形的公理.【分析】由题意可得:cos cos (0||||AB B AC C BC AB AC l ⋅+=u u u r u u u r u u u r u u u u r u u u r ,即BC u u u r 与cos cos (||||AB B AC CAB AC l +u u u r u u u ru u u u r u u u r 垂直,设D 为BC 的中点,则2OB OCOD+=u u u r u u u ru u u r ,可得cos cos (||||AB B AC C DP AB AC +=u u u r u u u r u u u r u u u u r u u u r λ,即可得到0BC DP ⋅=u u u r u u u r ,进而得到点P 在BC 的垂直平分线上,即可得到答案.【解答】解:由题意可得:cos cos (||||0||||AB B AC CBC BC BC AB AC l ⋅+=-+=u u u r u u u ru u u r u u u r u u u r u u u u r u u u r ∴BC u u u r 与cos cos (||||AB B AC CAB AC l +u u u r u u u ru u u u r u u u r 垂直 设D 为BC 的中点,则2OB OC OD +=u u u r u u u ru u ur ,所以cos cos (2||||OB OC AB B AC COP AB AC l +=++u u u r u u u r u u u r u u u r u u u r u u u u r u u u r , 所以cos cos (||||AB B AC C DP AB AC l +=u u u r u u u ru u ur u u u u r u u u r , 因为BC u u u r 与cos cos (||||AB B AC CAB AC l +u u u r u u u r u u u u r u u u r 垂直 所以0BC DP ⋅=u u u r u u u r,又∵点D 为BC 的中点,∴点P 在BC 的垂直平分线上,即P 的轨迹会通过△ABC 的外心.故答案为:cos cos (2||||OB OC AB B AC COP AB AC l +=++u u u r u u u r u u u r u u u r u u u r u u u u r u u u r . 二.选择题14.【考点】H5:正弦函数的单调性;HA :余弦函数的单调性.【分析】可把A B C D ,,,四个选项中的值分别代入题设中进行验证,只有D 项的符合题意.【解答】解:cos2y x =在区间π[0]2,上是减函数,πsin )6π([0]3y x =+,上单调增,在ππ[]32,上单调减,故排除A .πsin )4π([0]4y x =+,在π[0]4,单调增,在ππ[]42,上单调减,故排除B .πsin )3π([0]6y x =+,在π[0]6,单调增,在ππ[]62,上单调减,故排除C .(πsin )2y x =+在区间π[0]2,上也是减函数,故选D .15.【考点】HP :正弦定理.【分析】根据正弦定理分别求得AC 和AB ,最后三边相加整理即可得到答案. 【解答】解:根据正弦定理sin sin BC ACA B =,sin sin(120)BC AB A B =-o∴sin sin BC AC B B A ==,sin(120)s 3cos in B A CB B AB B =-=o ∴△ABC的周长为π3cos 36sin 3)6(B B B B ++=++故选D .16.【考点】IH :直线的一般式方程与直线的性质.【分析】先根据点M 、N 在直线上,则点坐标适合直线方程,通过消元法可求得a 与c 的关系,从而可判定点)(1P c a ,,1()Q b c,和l 的关系,选出正确选项.【解答】解:∵点)(1M a b ,和)(1N b c ,都在直线l :1x y +=上∴11a b +=,11b c += 则11b a =-即1111a c+=-化简得11c a +=∴点)(1P c a ,在直线l 上而11b c +=则1()Q b c,在直线l 上故选A .17.【考点】8H :数列递推式;8E :数列的求和.【分析】1223111n n n a a a a a a na a ++⋯++=+,①;12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②;①-②,得11()12112n n n n a a na a n a a -++=+++﹣,1214n n n n a a +++-=,同理,得114n n n na a ++-=,整理,得12211n n n a a a ++=+,1{}an是等差数列. 由此能求出1297111...a a a ++. 【解答】解:1223111n n n a a a a a a na a ++⋯++=+,①12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②①-②,得11()12112n n n n a a na a n a a -++=+++﹣,∴1214n n n na a +++-=, 同理,得114n n n na a ++-=, ∴12111n n n n n n n n a a a a ++++--=-, 整理,得12211n n n a a a ++=+, ∴1{}an 是等差数列. ∵114a =,215a =,∴等差数列1{}an 的首项是114a =,公差2111541d a a =-=-=,14(1)13nn n a =+-⨯=+. ∴12971119796 (974150442)a a a ⨯++=⨯+⨯=. 故选B .18.【考点】HK :由(n )si y A x w j =+的部分图象确定其解析式.【分析】(1)利用三角函数的恒等变换化简函数π1sin(2())6f x x w =-+,再由它的周期等于π求出1w =,故π1sin(2(6))f x x =-+.(2)由]π[0x ∈,,可得ππ13π2[]666x +∈,,列表作图即得所求. 19.【考点】A8:复数求模.【分析】(1)设z a bi =+(a ,b R ∈且0b ≠)则z a bi =-代入条件||21510|z z +=+然后根据复数的运||z 的值(2)对于此种题型可假设存在实数a 使z aR a z+∈根据复数的运算法则设(z c bi =+(c ,b R ∈且0b ≠))可得2222()z a c ac b ab R a z a c b a c b +=++-∈++即220b ab a c b -=+再结合0b ≠和(1)的结论即可求解.20.【考点】MI :直线与平面所成的角;LF :棱柱、棱锥、棱台的体积.【分析】(1)判断知,B 1C 与C 1A 垂直,可在平面BA 1内,过B 1作1B D AB ⊥于D ,证明11B C ABC ⊥平面,再由线面垂直的定义得出线线垂直;(2)由图形知,111122B ACC A B A AC A ABC V V V ---==,变换棱锥的底与高后,求出它的体积即可; 21.【考点】8B :数列的应用.【分析】(1)210110%0.2( 1.8)N *y n n n n n =+++∈, (2)由20.2 1.8101.1%n n n n p +≤⋅,得0.2 1.8%10 1.1nn p +≥⨯,令0.2 1.810 1.1nn n a +=⨯,由此能求出p 的最小值. 22.【考点】3R :函数恒成立问题.【分析】(1)将2b =,4m =-代入函数解析式,根据()()f x g x ≥恒成立将c 分离出来,研究不等式另一侧函数的最大值即可求出c 的取值范围;(2)将3c =-,2m =-代入函数解析式得2()||1x b x =+﹣有四个不同的解,然后转化成2()(1)0x b x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解,最后根据根的分布建立关系式,求出b 的取值范围.23.【考点】KG :直线与圆锥曲线的关系.【分析】(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩,由根的差别式能得到l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点)00(N x y ,在椭圆C 的外部.是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣.由22222000044()0(1)a x a by ax by =+>△﹣﹣,能求出00()N x y ,在椭圆C 的外部.(3)此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y l l l l +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l上,得222220011111()0ax by ax by l +-++-=.由此能求出120l l +=.。
2017年上海市青浦区高考数学一模试卷
2017年上海市青浦区高考数学一模试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)已知复数z=2+i(i为虚数单位),则.2.(4分)已知集合,则A∩B=.3.(4分)在二项式(x+)6的展开式中,常数项是.4.(4分)等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于.5.(4分)如果由矩阵=表示x,y的二元一次方程组无解,则实数a=.6.(4分)执行如图所示的程序框图,若输入n=1的,则输出S=.7.(5分)若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为.8.(5分)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为.9.(5分)将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为.(精确到0.01)10.(5分)已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=.11.(5分)若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是.12.(5分)已知数列{a n}满足:对任意的n∈N*均有a n+1=ka n+3k﹣3,其中k为不等于0与1的常数,若a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)已知f(x)=sin x,A={1,2,3,4,5,6,7,8}现从集合A中任取两个不同元素s、t,则使得f(s)•f(t)=0的可能情况为()A.12种B.13种C.14种D.15种14.(5分)已知空间两条直线m,n两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊊α,n⊊β⇒n⊥α;③m∥n;m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β.其中正确的序号是()A.①④B.②③C.①②④D.①③④15.(5分)如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是()A.B.C.D.16.(5分)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=2x﹣2};④M={(x,y)|y=sinx+1}.其中是“垂直对点集”的序号是()A.①②③B.①②④C.①③④D.②③④三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.18.(14分)已知函数f(x)=sin2x+cos2(﹣x)﹣(x∈R).(1)求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,若A<B,且f(A)=f(B)=,求的值.19.(14分)如图,F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,且焦距为2,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.20.(16分)如图,已知曲线及曲线,C1上的点P1的横坐标为.从C1上的点作直线平行于x轴,交曲线C2于Q n点,再从C2上的点作直线平行于y轴,交曲线C1于P n点,点P n(n=1,2,3…)的横坐标构成数列{a n}.+1(1)求曲线C1和曲线C2的交点坐标;(2)试求a n与a n之间的关系;+1(3)证明:.21.(18分)已知函数f(x)=x2﹣2ax(a>0).(1)当a=2时,解关于x的不等式﹣3<f(x)<5;(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.2017年上海市青浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)已知复数z=2+i(i为虚数单位),则=3﹣4i.【分析】把复数z代入z2,然后展开,再求出得答案.【解答】解:由z=2+i,得z2=(2+i)2=3+4i,则=3﹣4i.故答案为:3﹣4i.【点评】本题考查了复数代数形式的乘除运算,考查了共轭复数的求法,是基础题.2.(4分)已知集合,则A∩B=[﹣1,3).【分析】利用指数函数的性质求出集合A中不等式的解集,确定出集合A,求出集合B中函数的定义域,确定出B,找出两集合的公共部分,即可求出两集合的交集.【解答】解:集合A中的不等式变形得:2﹣1≤2x<24,解得:﹣1≤x<4,∴A=[﹣1,4);由集合B中函数得:9﹣x2>0,即x2<9,解得:﹣3<x<3,∴B=(﹣3,3),则A∩B=[﹣1,3).故答案为:[﹣1,3)【点评】此题属于以其他不等式的解法及函数的定义域为平台,考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(4分)在二项式(x+)6的展开式中,常数项是4320.【分析】在二项展开式的通项公式中,令x的幂指数等于零,求得r的值,可得展开式的常数项.=•6r•x6﹣2r,【解答】解:二项式(x+)6的展开式的通项公式为T r+1令6﹣2r=0,求得r=3,可得常数项为=4320,故答案为:4320.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.4.(4分)等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于4.【分析】抛物线y2=16x的准线为x=﹣4.与双曲线的方程联立解得.可得4=|AB|=,解出a 即可得出.【解答】解:抛物线y2=16x的准线为x=﹣4.联立,解得.∴4=|AB|=,解得a2=4.∴a=2.∴双曲线C的实轴长等于4.故答案为:4.【点评】本题考查了抛物线与双曲线的标准方程及其性质,属于基础题.5.(4分)如果由矩阵=表示x,y的二元一次方程组无解,则实数a=﹣2.【分析】由矩阵=表示x,y的二元一次方程组无解,得到,即可求出a.【解答】解:∵由矩阵=表示x,y的二元一次方程组无解,∴,∴a=﹣2.故答案为﹣2.【点评】本题考查二元一次方程组无解问题,考查学生的计算能力,正确转化是关键.6.(4分)执行如图所示的程序框图,若输入n=1的,则输出S=log319.【分析】模拟程序的运行,当n=19时满足条件n>3,退出循环,可得:S=log319,即可得解.【解答】解:模拟程序的运行,可得n=1不满足条件n>3,执行循环体,n=3,不满足条件n>3,执行循环体,n=19,满足条件n>3,退出循环,可得:S=log319.故答案为:log319.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理,属于基础题.7.(5分)若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为16π.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵设圆锥的母线长是l,底面半径为r,母线与底面所成的角为,可得①∵侧面积是20π,∴πrl=20π,②由①②解得:r=4,l=5,故圆锥的高h===3则该圆锥的体积为:×πr2×3=16π故答案为:16π.【点评】本题考查了圆锥的有关计算,解题的关键是正确的进行圆锥与扇形的转化.8.(5分)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).>a n,化简整理,再利用【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.9.(5分)将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为 3.62.(精确到0.01)【分析】由题意,正三角形ABC的高为5,利用余弦定理求出△A′B′C′中最短边的边长.【解答】解:由题意,正三角形ABC的高为5,∴△A′B′C′中最短边的边长为≈3.62.故答案为3.62.【点评】本题考查“斜二测”画法,考查余弦定理,考查学生的计算能力,属于中档题.10.(5分)已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=4.【分析】由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△AOB是边长为2的等腰直角三角形,即可求•=||||cos45°.【解答】解:由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△AOB是边长为2的等腰直角三角形,则•=||||cos45°=2×=4.故答案为:4【点评】本题考查了向量的平方即为模的平方,考向量数量积的运算,属于中档题11.(5分)若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是[,+∞).【分析】根据对称函数的定义,结合h(x)≥g(x)恒成立,转化为点到直线的距离d≥1,利用点到直线的距离公式进行求解即可.【解答】解:解:∵x∈D,点(x,g(x))与点(x,h(x))都关于点(x,f (x))对称,∴g(x)+h(x)=2f(x),∵h(x)≥g(x)恒成立,∴2f(x)=g(x)+h(x)≥g(x)+g(x)=2g(x),即f(x)≥g(x)恒成立,作出g(x)和f(x)的图象,若h(x)≥g(x)恒成立,则h(x)在直线f(x)的上方,即g(x)在直线f(x)的下方,则直线f(x)的截距b>0,且原点到直线y=2x+b的距离d≥1,d=⇒b≥或b(舍去)即实数b的取值范围是[,+∞),【点评】本题主要考查不等式恒成立问题,根据对称函数的定义转化为点到直线的距离关系,利用数形结合是解决本题的关键.综合性较强,有一定的难度.12.(5分)已知数列{a n}满足:对任意的n∈N*均有a n+1=ka n+3k﹣3,其中k为不等于0与1的常数,若a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为.+3=k(a n+3),再对a1=﹣3与a1≠﹣3讨论,特别是【分析】依题意,可得a n+1a1≠﹣3时对公比k分|k|>1与|k|<1,即可求得a1所有可能值,从而可得答案.【解答】解:∵a n=ka n+3k﹣3,+1+3=k(a n+3),∴a n+1∴①若a1=﹣3,则a1+1+3=k(a1+3)=0,a2=﹣3,同理可得,a3=a4=a5=﹣3,即a1=﹣3复合题意;②若a1≠﹣3,k为不等于0与1的常数,则数列{a n+3}是以k为公比的等比数列,∵a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,a n+3可以取﹣675,﹣75,25,225,∵﹣75=25×(﹣3),225=﹣75×(﹣3),﹣675=225×(﹣3),∴若公比|k|>1,则k=﹣3,由a2+3=22+3=﹣3(a1+3)得:a1=﹣﹣3=﹣;若公比|k|<1,则k=﹣,由a2+3=﹣675=﹣(a1+3)得:a1=2025﹣3=2022;综上所述,满足条件的a1所有可能值为﹣3,﹣,2022.∴a1所有可能值的和为:﹣3﹣+2022=..故答案为:.【点评】本题考查数列递推式的应用,考查等价转化思想与分类讨论思想的综合+3=k(a n+3)的理解与应用是难点,对公比k分|k|>1与|k|<1讨运用,对a n+1论是关键,考查逻辑思维与推理运算能力,属于难题.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)已知f(x)=sin x,A={1,2,3,4,5,6,7,8}现从集合A中任取两个不同元素s、t,则使得f(s)•f(t)=0的可能情况为()A.12种B.13种C.14种D.15种【分析】对于s值,求出函数的值,然后用排列组合求出满足f(s)•f(t)=0的个数.【解答】解:已知函数f(x)=sin x,A={1,2,3,4,5,6,7,8},现从A中任取两个不同的元素s、t,则使得f(s)•f(t)=0,s=3时f(s)=sin=0,满足f(s)•f(t)=0的个数为s=3时7个t=3时7个,重复1个,共有13个.故选:B.【点评】本题考查排列组合的应用,注意满足题意,不重复不要漏,考查计算能力.14.(5分)已知空间两条直线m,n两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊊α,n⊊β⇒n⊥α;③m∥n;m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β.其中正确的序号是()A.①④B.②③C.①②④D.①③④【分析】①,两条平行线中的一条垂直一个平面,另一条也垂直此平面;②,n与α不一定垂直;③,m∥n;m∥α⇒n∥α或n⊂α;④,m∥n,m⊥α⇒n⊥α,又∵α∥β⇒n⊥β.【解答】解:已知空间两条直线m,n两个平面α,β对于①,两条平行线中的一条垂直一个平面,另一条也垂直此平面,故正确;对于②,n与α不一定垂直,显然错误;对于③,m∥n;m∥α⇒n∥α或n⊂α,故错;对于④,m∥n,m⊥α⇒n⊥α,又∵α∥β⇒n⊥β,故正确.故选:A.【点评】本题考查了空间线面,线线,面面位置关系,属于基础题.15.(5分)如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是()A.B.C.D.【分析】求矩形ABCD面积的表达式,又要注意P点在长方形ABCD内,所以要注意分析自变量的取值范围,并以自变量的限制条件为分类标准进行分类讨论.判断函数的图象即可.【解答】解:设AD长为x,则CD长为16﹣x又因为要将P点围在矩形ABCD内,∴a≤x≤12则矩形ABCD的面积为x(16﹣x),当0<a≤8时,当且仅当x=8时,u=64当8<a<12时,u=a(16﹣a)u=,分段画出函数图形可得其形状与C接近故选:B.【点评】解决本题的关键是将S的表达式求出来,结合自变量的取值范围,分类讨论后求出S的解析式.16.(5分)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=2x﹣2};④M={(x,y)|y=sinx+1}.其中是“垂直对点集”的序号是()A.①②③B.①②④C.①③④D.②③④【分析】由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.【解答】解:由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.①M={(x,y)|y=},其图象向左向右和x轴无限接近,向上和y轴无限接近,据幂函数的图象和性质可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=}是“垂直对点集”.②M={(x,y)|y=log2x},(x>0),取(1,0),则不存在点(x2,log2x2)(x2>0),满足1×x2+0=0,因此集合M不是“垂直对点集”;对于③M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,据指数函数的图象和性质可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.对于④M={(x,y)|y=sinx+1},在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故④符合;综上可得:只有①③④是“垂直对点集”.故选:C.【点评】本题考查了新定义“垂直对点集”、直线垂直与斜率的关系,考查了推理能力与计算能力,属于中档题.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.【分析】(Ⅰ)取BC的中点D,连接OD,AD,则OD∥A1C,∠AOD(或其补角)为异面直线A1C与AB1的所成角,利用余弦定理,可求异面直线A1C与AB1的所成角的大小;(II)设圆柱的底面半径为r,母线长度为h,当点C是弧弧AB的中点时,求出三棱柱ABC﹣A1B1C1的体积,求出三棱锥A1﹣ABC的体积为,从而求出四棱锥A1﹣BCC1B1的体积,再求出圆柱的体积,即可求出四棱锥A1﹣BCC1B1与圆柱的体积比.【解答】解:(Ⅰ)如图,取BC的中点D,连接OD,AD,则OD∥A1C,∴∠AOD(或其补角)为异面直线A1C与AB1的所成角,设正方形的边长为2,则△AOD中,OD=A1C=,AO=,AD=,∴cos∠AOD==∴∠AOD=;(Ⅱ)设圆柱的底面半径为r,母线长度为h,当点C是弧AB的中点时,,,,∴.【点评】本小题主要考查直线与直线的位置关系,以及几何体的体积等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想,属于中档题.18.(14分)已知函数f(x)=sin2x+cos2(﹣x)﹣(x∈R).(1)求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,若A<B,且f(A)=f(B)=,求的值.【分析】(1)利用三角恒等变换的应用可化简f(x)=sin(2x﹣),再利用正弦函数的单调性可求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,由A<B,且f(A)=f(B)=,可求得A=,B=,再利用正弦定理即可求得的值.【解答】(本题满分14分)第(1)小题满分(6分),第(2)小题满分(8分).解:f(x)=sin2x+cos2(﹣x)﹣=•+﹣=sin2x﹣cos2x=sin(2x﹣)(1)由于0≤x≤,因此﹣≤2x﹣≤,所以当2x﹣=即x=时,f(x)取得最大值,最大值为1;(2)由已知,A、B是△ABC的内角,A<B,且f(A)=f(B)=,可得:2A﹣=,2B﹣=,解得A=,B=,所以C=π﹣A﹣B=,得==.【点评】本题考查三角函数的图象与性质,考查三角恒等变换的应用,突出考查正弦函数的单调性与最值及正弦定理,属于中档题.19.(14分)如图,F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,且焦距为2,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.【分析】(1)由题意焦距求得c,由对称性结合|F1A|+|F1B|=4可得2a,再由隐含条件求得b,则椭圆方程可求;(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0),分别写出PA、PB所在直线方程,求出M、N的坐标,进一步求出MF2、NF2的斜率分别为k1、k2,结合A、B在椭圆上可得k1•k2是定值.【解答】解:(1)∵焦距,∴2c=2,得c=,由椭圆的对称性及已知得|F1A|=|F2B|,又∵|F1A|+|F1B|=4,|F1B|+|F2B|=4,因此2a=4,a=2,于是b=,因此椭圆方程为;(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0),直线PA的方程为,令x=0,得,故M(0,);直线PB的方程为,令x=0,得,故N(0,);∴,,因此.∵A,B在椭圆C上,∴,∴.【点评】本题考查椭圆标准方程的求法,考查了直线与椭圆位置关系的应用,考查计算能力,是中档题.20.(16分)如图,已知曲线及曲线,C1上的点P1的横坐标为.从C1上的点作直线平行于x轴,交曲线C2于Q n点,再从C2上的点作直线平行于y轴,交点,点P n(n=1,2,3…)的横坐标构成数列{a n}.曲线C1于P n+1(1)求曲线C1和曲线C2的交点坐标;与a n之间的关系;(2)试求a n+1(3)证明:.【分析】(1)取立,能求出曲线C1和曲线C2的交点坐标.(2)设P n(),,由已知,能求出.(3)由,,得与异号,由此能证明a2n.﹣1【解答】解:(1)∵曲线及曲线,取立,得x=,y=,∴曲线C1和曲线C2的交点坐标是().(2)设P n(),,由已知,又,===,.证明:(3)a n>0,由,,得与异号,∵0<a1,,,,.∴a2n﹣1【点评】本题考查两曲线交点坐标的求法,考查数列中前一项与后一项的关系的求法,考查不等式的证明,是中档题,解题时要认真审题,注意函数性质的合理运用.21.(18分)已知函数f(x)=x2﹣2ax(a>0).(1)当a=2时,解关于x的不等式﹣3<f(x)<5;(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.【分析】(1)a=2时,把不等式﹣3<f(x)<5化为不等式组﹣3<x2﹣4x<5,求出解集即可;(2)由二次函数的图象与性质,讨论a>0时|f(x)|≤5在x∈[0,M(a)]上恒成立时,M(a)最大,此时对应的方程f(x)=±5根的情况,从而求出M (a)的解析式;(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0,分类讨论,利用y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.【解答】解:(1)当a=2时,函数f(x)=x2﹣4x,∴不等式﹣3<f(x)<5可化为﹣3<x2﹣4x<5,解得,∴不等式的解集为(﹣1,1)∪(3,5);(2)∵a>0时,f(x)=x2﹣2ax=(x﹣a)2﹣a2,∴当﹣a2<﹣5,即a>时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=﹣5的较小的根,即M(a)=a﹣;当﹣a2≥﹣5,即0<a≤时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=5的较大的根,即M(a)=a+;综上,M(a)=.(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0.①若t=0,则a≥t+1,且f(x)min=f(a)=﹣4,或f(x)min=f(2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,a=﹣2不合题意,舍去当f(2)=4﹣4a=﹣4时,a=2,②若t+2=2a,则a≤t+1,且f(x)min=f(a)=﹣4,或f(x)min=f(2a﹣2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,若a=2,t=2,符合题意;若a=﹣2,则与题设矛盾,不合题意,舍去当f(2a﹣2)=﹣4时,a=2,t=2综上所述,a=2,t=0和a=2,t=2符合题意.【点评】本题考查了不等式的解法与应用问题,也考查了二次函数的图象与性质的应用问题,是较难理解的题目.。
【上海中学年】2017学年高考模拟数学年试题(一)
上海中学2017年高考模拟数学试卷(一)答 案一、填空题 1.0 2.0 3.5 4.4 5.()(24)a a a a ---,,6.837.1924 8.129.11()0)({}-∞-+∞,,10.11.24 12.8.413.cos cos (2||||OB OC AB B AC COP AB AC +=++二、选择题 14-17.DDAB 三、解答题18.解:(1)∵2223cos π()cos ()sin 11sin(2)26x f x x x x x x =-∈∈=+-=-+R R ,.由于它的最小正周期为π,故2ππ=,∴1=.故π1sin(2(6))f x x -+=.(2)∵]π[0x ∈,, ∴ππ13π2[]6x +∈,.列表如下:如图:19.解:(1)设i z a b =+(a ,b R ∈且0b ≠)则i z a b =-∵||21510|z z +=+∴|()|2152i (+10)i|a b a b ++-∴2275a b +==∴||z =(2)设i z c b =+(c ,b ∈R 且0b ≠)假设存在实数a 使z aa z+∈R 则有2222()R z a c ac b ab a z a c b a c b +=++-∈++ ∴220b ab a c b-=+ ∵0b ≠∴a =由(1=∴a =±20.解:(1)11B C C A ⊥证明如下: 在平面1BA 内,过1B 作1B D AB ⊥于D , ∵1BA ABC ⊥侧面平面,∴1B D ABC ⊥平面,1B BA ∠是1BB 与平面ABC 所成的角, ∴1π2ππ33B BA ∠=-=,连接1BC , ∵11BB CC 是菱形,∴11BC B C ⊥,1CD A B ⊥平面,1B D AB ⊥, ∴1B C AB ⊥, ∴11B C ABC ⊥平面, ∴11B C C A ⊥.(2)解:由题意及图,11111222423B ACC A B A AC A ABC V V V ---===⨯答:四棱锥11B ACC A -的体积为221.解:(1)210110%0.(1)2.8y n n n n n =+++∈N*, (2)由20.2 1.810 1.1%n n n p +≤⨯,得0.2 1.8%10 1.1n n p +≥⨯,令0.2 1.810 1.1n nn a +=⨯,由11n n nn a a a a +-≥⎧⎨≥⎩,得12n ≤≤, ∴122%11p a a ≥==, ∴20011p ≥. 22.解:(1)∵当2b =,4m =-时,()()f x g x ≥恒成立,∴2225804||28()30x x x c x x x x x ⎧-+-≥⎪≥=⎨---<⎪⎩,---,,由二次函数的性质得74c ≥-.(2)2()||32x b x --=-,即2(||)1b x x -=+有四个不同的解,∴2()(1)0x b x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解, 由根的分布得1b ≥且514b <<, ∴514b <<. 23.解:(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩ 即220020ax ax x ax -+= ∴222200440a x a x ∆=-= ∴l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点00()N x y ,在椭圆C 的外部. 是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣则22222000044()0(1)a x a by ax by =+>△﹣﹣ ∴22242220000000ax by b y ax abx y -+-+> ∴22001by ax +>∴00()N x y ,在椭圆C 的外部.(3)同理可得此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l 上, 即01011ax x by y +=,整理得12222001112()10ax by ax by +-++-=同理得关于2的方程,类似.即1、2是222200211(0)1ax by ax by +-++-=的两根∴120+=λλ.上海中学2017年高考模拟数学试卷(一)解 析一、填空题1.【考点】3Q :函数的周期性;3L :函数奇偶性的性质.【分析】根据()f x 是奇函数可得()()f x f x -=-,又根据()f x 是以2为周期的周期函数得()()2f x f x +=,取1x =-可求出()1f 的值.【解答】解:∵()f x 是以2为周期的周期函数, ∴1(1)()f f =-, 又函数()f x 是奇函数, ∴()(111)()f f f -=-=, ∴()(0)11f f =-= 故答案为:02.【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成复数的代数标准形式,根据实部和虚部互为相反数,得到实部和虚部和为0,得到结果. 【解答】解:∵1(1)(1)1(1)111(1)(1)222bi bi i b b i b b i i i i ++-++-+-===+++-, ∵实部和虚部互为相反数, ∴11022b b +-+=, ∴202b=, ∴0b =, 故答案为:03.【考点】DC :二项式定理的应用.【分析】由题意可得(122)Tr Cnr x r rCnrxr +==分别令3r =,1r =可得含3x ,x 项的系数,从而可求 【解答】解:由题意可得二项展开式的通项,(122)Tr Cnr x r rCnrxr +== 令3r =可得含3x 项的系数为:38Cn ,令1r =可得含x 项的系数为12Cn ∴31882Cn Cn =⨯ ∴5n = 故答案为:54.【考点】7C :简单线性规划.【分析】先根据条件画出可行域,设2z x y =+,再利用几何意义求最值,将最小值转化为y 轴上的截距,只需求出直线2z x y =+,过可行域内的点2(1)A ,时的最小值,从而得到z 最小值即可.【解答】解:设变量x 、y 满足约束条件126x y x y ≥⎧⎪≥⎨⎪+≤⎩,在坐标系中画出可行域三角形,A (1,2),(4,2),C (1,5), 则目标函数2z x y =+的最小值为4. 故答案为:4.5.【考点】R2:绝对值不等式.【分析】把不等式转化为0||3x a a <+<-,利用绝对值不等式的几何意义,即可求出不等式的解集. 【解答】解:因为0a <,则关于x 的不等式3||1ax a>+,所以不等式0||3x a a <+<-, 根据绝对值不等式的几何意义:数轴上的点到a -的距离大于0并且小于3a -, 可知不等式的解集为:()()24a a a a -⋃--,,. 故答案为:()()24a a a a -⋃--,,. 6.【考点】K4:椭圆的简单性质.【分析】由椭圆的定义可知12||10||PF PF +=,根据椭圆方程求得焦距,利用内切圆的性质把三角形PF 1F 2分成三个三角形分别求出面积,再利用面积相等建立等式求得P 点纵坐标. 【解答】解:根据椭圆的定义可知12||10||PF PF +=,12||6F F =, 令内切圆圆心为O则1212121212|||1(2|||)PF F POF POF OF F PF r PF r S S S S F F r =++++=△△△△=1212||||11(||)28PF PF F F +⋅=+=又∵12121||23PF F F F yP yP S ⋅==△. 所以38yp =,83yp =. 故答案为83.7.【考点】8E :数列的求和;6F :极限及其运算.【分析】先分奇数与偶数分别求前n 项和记为S n ,再求它们的极限.【解答】解:当2n k =时,221111[1()][1()]9924111149nnSn --=+--当21n k =+时,1221111[1()][1()]9924111149nn Sn +--=+-- ∴lim21193824n n S −−→∞=+=故答案为1924. 8.【考点】C7:等可能事件的概率.【分析】把城市A 被选中的情况和城市A 未被选中的情况都找出来,即可得到城市A 被选中的概率. 【解答】解:从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A 被选中的情况有:ACE ACF ACG ACH ADF ADG ADH AEG AEH AFH 、、、、、、、、、,共10种.则城市A 未被选中的情况有:BDF BDG BDH BEG BEH BFH CEG CEH CFH DFH 、、、、、、、、、,共10种.故城市A 被选中的概率为:101=10+102, 故答案为:12. 9.【考点】J9:直线与圆的位置关系.【分析】据题意设1y =22y kx =-+,画出函数1y =k 的取值范围.【解答】解:根据题意设1y =22y kx =-+, 当0k =时,方程只有一个解0x =,满足题意; 当0k ≠时,根据题意画出图象,如图所示:根据图象可知,当1k ->或1k -<-时,直线2y kx =-+与y = 综上,满足题意k 的取值范围为0k =或1k >或1k <-. 故答案为:11()0)({}-∞-⋃+∞⋃,,.10.【考点】9S :数量积表示两个向量的夹角;93:向量的模;HP :正弦定理.【分析】由题意可得:|||AC BC ,设△ABC 三边分别为2,a ,三角形面积为S ,根据海仑公式得:22422162416(12128)S a a a =-+-=--+,再结合二次函数的性质求出答案即可.【解答】解:由题意可得:|||AC BC =,设△ABC 三边分别为2,a ,三角形面积为S ,所以设22a p +=所以根据海仑公式得:S 所以22422162416(12128)S a a a =-+-=--+,当212a =时,即当a =ABC 的面积有最大值,并且最大值为故答案为11.【考点】L3:棱锥的结构特征;L2:棱柱的结构特征.【分析】先把判断几何体的形状,把展开图沿虚线折叠,得到一个四棱锥,求出体积,再计算棱长为12的正方体的体积,让正方体的体积除以四棱锥的体积,结果是几,就需要几个四棱锥.【解答】解:把该几何体沿图中虚线将其折叠,使P Q R S ,,,四点重合,所得几何体为下图中的四棱锥, 且底面四边形ABCD 为边长是6的正方形,侧棱PD ABCD ⊥平面,6PD =∴1666723P ABCD V =⨯⨯⨯=四棱锥﹣∵棱长为12的正方体体积为1212121728⨯⨯= ∵17282472=, ∴需要24个这样的几何体,就可以拼成一个棱长为12的正方体. 故答案为2412.【考点】4R :反函数.【分析】根据题意画出图形,如图,设()A x ax ,,函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,得出点A 到直线y x =的距离为AB 的一半,利用点到直线的距离公式及()A x ax ,在函数1y x=的图象上得到18.4a =≈即可. 【解答】解:根据题意画出图形,如图, 设()A x ax ,,∵函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,∴||AB =,⇒点A 到直线y x =x=2ax x =﹣,①又()A x ax ,在函数1y x=的图象上,⇒1ax x =,②由①②得:12x x -=⇒1x x=,∴11)2-=,⇒18.4a =≈ 故答案为:8.4.13.【考点】F3:类比推理;LL :空间图形的公理. 【分析】由题意可得:cos cos (0||||AB B AC C BC AB AC ⋅+=,即BC 与cos cos (||||AB B AC CAB AC +垂直,设D 为BC 的中点,则2OB OC OD +=,可得cos cos (||||AB B AC CDP AB AC +=λ,即可得到0BC DP ⋅=,进而得到点P 在BC 的垂直平分线上,即可得到答案. 【解答】解:由题意可得:cos cos (||||0||||AB B AC CBC BC BC AB AC ⋅+=-+=∴BC 与cos cos (||||AB B AC CAB AC +垂直 设D 为BC 的中点,则2OB OCOD +=, 所以cos cos (2||||OB OC AB B AC COP AB AC +=++, 所以cos cos (||||AB B AC C DP AB AC +=,因为BC 与cos cos (||||AB B AC CAB AC +垂直 所以0BC DP ⋅=, 又∵点D 为BC 的中点,∴点P 在BC 的垂直平分线上,即P 的轨迹会通过△ABC 的外心. 故答案为:cos cos (2||||OB OC AB B AC COP AB AC +=++. 二.选择题14.【考点】H5:正弦函数的单调性;HA :余弦函数的单调性.【分析】可把A B C D ,,,四个选项中的值分别代入题设中进行验证,只有D 项的符合题意.【解答】解:cos2y x =在区间π[0]2,上是减函数,πsin )6π([0]3y x =+,上单调增,在ππ[]32,上单调减,故排除A .πsin )4π([0]4y x =+,在π[0]4,单调增,在ππ[]42,上单调减,故排除B .πsin )3π([0]6y x =+,在π[0]6,单调增,在ππ[]62,上单调减,故排除C .(πsin )2y x =+在区间π[0]2,上也是减函数,故选D .15.【考点】HP :正弦定理.【分析】根据正弦定理分别求得AC 和AB ,最后三边相加整理即可得到答案. 【解答】解:根据正弦定理sin sin BC AC A B =,sin sin(120)BC AB A B =- ∴sin sin BC AC B BA ==,sin(120)s 3cos inB AC B B AB B =-=∴△ABC的周长为π3cos 36sin 3)6(B B B B ++=++ 故选D .16.【考点】IH :直线的一般式方程与直线的性质.【分析】先根据点M 、N 在直线上,则点坐标适合直线方程,通过消元法可求得a 与c 的关系,从而可判定点)(1P c a,,1()Q b c ,和l 的关系,选出正确选项. 【解答】解:∵点)(1M a b,和)(1N b c ,都在直线l :1x y +=上 ∴11a b +=,11b c += 则11b a =-即1111a c+=- 化简得11c a += ∴点)(1P c a,在直线l 上 而11b c+= 则1()Q b c,在直线l 上 故选A .17.【考点】8H :数列递推式;8E :数列的求和.【分析】1223111n n n a a a a a a na a ++⋯++=+,①;12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②;①-②,得11()12112n n n n a a na a n a a -++=+++﹣,1214n n n n a a +++-=,同理,得114n n n n a a ++-=,整理,得12211n n n a a a ++=+,1{}an是等差数列. 由此能求出1297111...a a a ++. 【解答】解:1223111n n n a a a a a a na a ++⋯++=+,①12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②①-②,得11()12112n n n n a a na a n a a -++=+++﹣,∴1214n n n n a a +++-=, 同理,得114n n n n a a ++-=, ∴12111n n n n n n n n a a a a ++++--=-, 整理,得12211n n n a a a ++=+, ∴1{}an是等差数列. ∵114a =,215a =, ∴等差数列1{}an 的首项是114a =,公差2111541d a a =-=-=, 14(1)13nn n a =+-⨯=+. ∴12971119796 (974150442)a a a ⨯++=⨯+⨯=. 故选B .18.【考点】HK :由(n )si y A x =+的部分图象确定其解析式.【分析】(1)利用三角函数的恒等变换化简函数π1sin(2())6f x x =-+,再由它的周期等于π求出1=,故π1sin(2(6))f x x =-+. (2)由]π[0x ∈,,可得ππ13π2[]666x +∈,,列表作图即得所求. 19.【考点】A8:复数求模.【分析】(1)设z a bi =+(a ,b R ∈且0b ≠)则z a bi =-代入条件||21510|z z +=+然后根据复数的运||z 的值(2)对于此种题型可假设存在实数a 使z a R a z +∈根据复数的运算法则设(z c bi =+(c ,b R ∈且0b ≠))可得2222()z a c ac b ab R a z a c b a c b +=++-∈++即220b ab a c b -=+再结合0b ≠和(1)的结论即可求解. 20.【考点】MI :直线与平面所成的角;LF :棱柱、棱锥、棱台的体积.【分析】(1)判断知,B 1C 与C 1A 垂直,可在平面BA 1内,过B 1作1B D AB ⊥于D ,证明11B C ABC ⊥平面,再由线面垂直的定义得出线线垂直;(2)由图形知,111122B ACC A B A AC A ABC V V V ---==,变换棱锥的底与高后,求出它的体积即可;21.【考点】8B :数列的应用.【分析】(1)210110%0.2( 1.8)N*y n n n n n =+++∈,(2)由20.2 1.8101.1%n n n n p +≤⋅,得0.2 1.8%10 1.1nn p +≥⨯,令0.2 1.810 1.1n n n a +=⨯,由此能求出p 的最小值. 22.【考点】3R :函数恒成立问题.【分析】(1)将2b =,4m =-代入函数解析式,根据()()f x g x ≥恒成立将c 分离出来,研究不等式另一侧函数的最大值即可求出c 的取值范围; (2)将3c =-,2m =-代入函数解析式得2()||1x b x =+﹣有四个不同的解,然后转化成2()(1)0x b x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解,最后根据根的分布建立关系式,求出b 的取值范围.23.【考点】KG :直线与圆锥曲线的关系.【分析】(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩,由根的差别式能得到l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点)00(N x y ,在椭圆C 的外部.是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣.由22222000044()0(1)a x a by ax by =+>△﹣﹣,能求出00()N x y ,在椭圆C 的外部.(3)此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l上,得222220011111()0ax by ax by +-++-=.由此能求出120+=.。
2017年上海市高考模拟数学
. 6
5.已知球的半径为 R, 若球面上两点 A, B 的球面距离为 解析:两点 A、B 间的球面距离为 答案:R.
R
3
, 则这两点 A, B 间的距离为_____.
R
3
,可得∠AOB=
,即可求出两点 A,B 间的距离. 3
6.若(2+x) 的二项展开式中,所有二项式的系数和为 256,则正整数 n=_____. n 解析:由题意可得:2 =256,解得 n=8. 答案:8.
2
-1
2
-1
3.已知复数 z=1+ 3 ·i(i 为虚数单位),则|z|=_____. 解析:利用复数模的计算公式即可得出. 答案:2.
4.函数 f(x)=sinx+ 3 ·cosx,若存在锐角θ满足 f(θ)=2,则θ=_____. 解析:运用两角和的正弦公式和特殊角的正弦函数值,计算即可得到所求值. 答案:
)
B.{0} A C.φ∈A D.{0}∈A 解析:根据元素与集合的关系,用∈,集合与集合的关系,用 ,可得结论. 答案:B. 14.设 x,y∈R,则“|x|+|y|>1”的一个充分条件是( A.|x|≥1 B.|x+y|≥1 C.y≤-2 D.|x|≥ )
1 1 且|y|≥ 2 2
解析:根据充分条件和必要条件的定义进行判断即可. 答案:C. 15.图中曲线的方程可以是( )
11.已知数列{an}满足:a1=1,an+1+an=( 12.已知△ABC 的面积为 360,点 P 是三角形所在平面内一点,且 AP
1 1 AB AC ,则△ 4 4
PAB 的面积为_____. 解析:取 AB 的中点 D,AC 的中点 E,则 P 为 DE 的中点,利用相似比,可得结论. 答案:90. 二、选择题(本大题满分 20 分) 13.已知集合 A={x|x>-1},则下列选项正确的是( A.0 A
2017年上海市金山区高考数学一模试卷
2017年上海市金山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)若集合M^(x\x- 2x<0],N={x||x|>l},贝J MAN=.2.(4分)若复数z满足2z+z=3-2z,其中,为虚数单位,则2=.3.(4分)若sina=-且,且a为第四象限角,则tana的值等于.134.(4分)函数f(x)=c°sx药以的最小正周期t=.sinx cosx5.(4分)函数f(x)=2x+m的反函数为y=f'(x),且y=f1(x)的图象过点。
(5,2),男|3么m=.2°6.(4分)点(1,0)到双曲线号一一/二1的渐近线的距离是.'2x-y<07.(5分)若尤,y满足<x+y^3,则2x+y的最大值为.8.(5分)从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课代表,共有种不同的选法(结果用数值表示).9.(5分)方程尤2+};2一4a- 2邛+3F-4=03为参数)所表示的圆的圆心轨迹方程是(结果化为普通方程)10.(5分)若。
〃是(2+x)〃(〃6N*,xGR)展开式中x项的二项式系数,则lim(―+^+-+^)=,n—8a2a3a n11.(5分)设数列0}是集合{小=3」3。
sVf且s,佐N}中所有的数从小到大排列成的数列,即。
1=4,。
2=1。
,。
3=12,。
4=28,。
5=30,。
6=36,,,,,将数列{缶}中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则Q15的值为.4101228303612.(5分)曲线。
是平面内到直线h: x=-1和直线12:>=1的距离之积等于常数F(k>0)的点的轨迹,下列四个结论:①曲线。
过点(-1,1);②曲线C关于点(-1,1)成中心对称;③若点P在曲线C±,点A、B分别在直线小上,则IB4I+IPBI不小于2农④设R)为曲线。
2017年上海市七宝中学高考模拟数学试题
绝密★启用前2017年上海市七宝中学高考模拟数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.若z ∈C ,i 为虚数单位,且234||55z i z =- ,则复数z 等于( ) A .3455i + B .3455-i C .5534i - D .4355i - 2.直线l 在平面上α,直线m 平行于平面α,并与直线l 异面.动点P 在平面上α,且到直线l 、m 的距离相等.则点P 的轨迹为( ). A .直线B .椭圆C .抛物线D .双曲线3.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数1,()=22(1),x x A f x x x B ⎧+∈⎪⎨⎪-∈⎩,若0x A ∈,且()0f f x A ∈⎡⎤⎣⎦,则0x 的取值范围是( )A .10,4⎛⎤ ⎥⎝⎦B .11,42⎡⎫⎪⎢⎣⎭C .11,42⎛⎫⎪⎝⎭D .30,8⎡⎤⎢⎥⎣⎦二、多选题4.设集合{}22|,,M a a x y x y ==-?Z ,则对任意的整数n ,形如4,41,42,43n n n n +++的数中,是集合M 中的元素的有( )第II卷(非选择题)请点击修改第II卷的文字说明三、填空题5.已知定义在[﹣1,1]上的函数f(x)值域为[﹣2,0],则y=f(cosx)的值域为_____.6.5051﹣1被7除后的余数为_____.7.已知直线l的参数方程是10.820.6x ty t=+⎧⎨=+⎩(t为参数),则它的普通方程是_____.8.一名工人维护3台独立的游戏机,一天内3台需要维护的概率分别为0.9、0.8和0.85,则一天内至少有一台游戏机不需要维护的概率为_____(结果用小数表示)9.已知地球的半径为R,在北纬45︒东经30︒有一座城市A,在北纬45︒西经60︒有一座城市B,则坐飞机从城市A飞到B的最短距离是.(飞机的飞行高度忽略不计) 10.如果复数z满足|z+i|+|z﹣i|=2(i是虚数单位),则|z|的最大值为_____.11.已知定义在R上的增函数()y f x=满足()()40f x f x+-=,若实数,a b满足不等式()()0f a f b+≥,则22a b+的最小值是______.12.已知点P是棱长为1的正方体1111ABCD A B C D-的底面1111DCBA上一点(包括边界),则PA PC⋅u u u r u u u r的取值范围是_________.13.椭圆22221(0)43x yaa a+=>的左焦点为F,直线x m=与椭圆相交于点A B、,则FAB∆的周长的最大值是__________.14.已知函数45(),()sin213xf xg x a x axπ-+==++(a>0),若对任意x1∈[0,2],总存在x2∈[0,2].使g(x1)=f(x2)成立,则实数a的取值范围是_______.15.在直角坐标平面上,已知点A(0,2),B(0,1),D(t,0)(i>0),M为线段AD上的动点,若|AM|≤2|BM|恒成立,则正实数t的最小值为________.16.设ω为正实数.若存在a、b(π≤a<b≤2π),使得sinωa+sinωb=2,则ω的取值范围是______.四、解答题…………○………………线…………○…:___________班级:________…………○………………线…………○…17.如图,正四棱柱ABCD ﹣A 1B 1C 1D 1中,O 是BD 的中点,E 是棱CC 1上任意一点.(1)证明:BD ⊥A 1E ;(2)如果AB =2,CE =OE ⊥A 1E ,求AA 1的长.18.如图,某污水处理厂要在一个矩形污水处理池ABCD 的池底水平铺设污水净化管道(Rt FHE ∆三条边,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上,已知20AB =米,AD =米,记BHE θ∠=.(1)试将污水净化管道的总长度L (即Rt FHE ∆的周长)表示为θ的函数,并求出定义域;(2)问θ取何值时,污水净化效果最好?并求出此时管道的总长度.19.若函数y =f (x )对定义域的每一个值x 1,在其定义域均存在唯一的x 2,满足f (x 1)f (x 2)=1,则称该函数为“依赖函数”. (1)判断21y x=,y =2x 是否为“依赖函数”; (2)若函数y =a +sinx (a >1),[,]22x ππ∈-为依赖函数,求a 的值,并给出证明. 20.已知椭圆22122:1x y C a b += (a >b >0)长轴的两顶点为A 、B ,左右焦点分别为F 1、F 2,焦距为2c 且a =2c ,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为3. (1)求椭圆C 的方程;(2)在双曲线22:143x y T -= 上取点Q (异于顶点),直线OQ 与椭圆C 交于点P ,若直线AP 、BP 、AQ 、BQ 的斜率分别为k 1、k 2、k 3、k 4,试证明:k 1+k 2+k 3+k 4为定值; (3)在椭圆C 外的抛物线K :y 2=4x 上取一点E ,若EF 1、EF 2的斜率分别为12,k k '',求121k k ''的取值范围. 21.设T n 为数列{a n }的前n 项的积,即T n =a 1•a 2…•a n . (1)若T n =n 2,求数列{a n }的通项公式; (2)若数列{a n }满足T n =12(1﹣a n )(n ∈N *),证明数列1{}n T 为等差数列,并求{a n }的通项公式;(3)数列{a n }共有100项,且满足以下条件: ①121002a a a ⋅⋅⋅=L ;②1211002k k a a a a a k ++=+L L (1≤k ≤99,k ∈N *). (Ⅰ)求5a 的值;(Ⅱ)试问符合条件的数列共有多少个?为什么?参考答案1.B 【解析】 【分析】设复数z 代数形式,再根据复数的模以及复数相等求结果. 【详解】设(,)z x yi x y R =+∈,则2222223434(),()5555x yi i x x y y x y x y +=-∴=+⨯=-+⨯+2222222223434()01,,,5555x y x y x y x y x y z i ∴+=++≠∴+===-=-Q故选:B 【点睛】本题考查复数的模以及复数相等,考查基本分析求解能力,属基础题. 2.D 【解析】 【详解】设m 在平面α上的投影'm ,'m 与直线l 交于点O .在平面α上,以O 为原点、直线l 为y 轴建立直角坐标系.则设'm 的方程为y kx =. 又设点P (x , y ).则点P 到直线l 的距离x ,点P 到直线'm.从而,点P 到直线m 的距离平方等于()2221y kx a k -++,其中,a 为直线m 到平面α的距离.因此,点P 的轨迹方程为()22221y kx a x k-+=+,即为双曲线.3.C 【解析】 【分析】根据0x A ∈以及10,2A ⎡⎫=⎪⎢⎣⎭,可以求出()0f f x ⎡⎤⎣⎦的表达式,再根据()0f f x A ∈⎡⎤⎣⎦求出0x【详解】 ∵0102x <…,∴()0011,122f x x ⎡⎫=+∈⎪⎢⎣⎭,∴()()0000112121222f f x f x x x ⎡⎤⎛⎫⎛⎫=⨯-=⨯-+=⨯-⎡⎤⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎣⎦⎝⎭⎝⎭⎣⎦∴()0f f x A ∈⎡⎤⎣⎦,∴0110222x ⎛⎫⨯-< ⎪⎝⎭…,∴01142x <…,又∵0102x <…,∴01142x <<.故选:C 【点睛】本题考查了复合函数与分段函数的综合应用,考查了数学运算能力. 4.ABD 【解析】 【分析】将4,41,43n n n ++分别表示成两个数的平方差,故都是集合M 中的元素,再用反证法证明42n M +?. 【详解】∵224(1)(1)n n n =+--,∴4n M Î.∵2241(21)(2)n n n +=+-,∴41n M +?. ∵2243(22)(21)n n n +=+-+,∴43n M +?. 若42n M +?,则存在,Z x y Î使得2242x y n -=+,则42()(),n x y x y x y +=+-+和x y -的奇偶性相同.若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数,不成立; 若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,不成立,∴42n M +?. 故选:ABD.本题考查集合描述法的特点、代表元元素特征具有的性质P ,考查平方差公式及反证法的灵活运用,对逻辑思维能力要求较高. 5.[﹣2,0] 【解析】 【分析】根据cosx 范围确定函数f (x )自变量,再根据条件确定值域. 【详解】∵f (x )的定义域是[﹣1,1],值域是[﹣2,0], 而cosx ∈[﹣1,1],故f (cosx )的值域是[﹣2,0], 故答案为:[﹣2,0]. 【点睛】本题考查函数定义域与值域,考查基本分析求解能力,属基础题. 6.0 【解析】 【分析】先根据二项式定理展开,再研究整除后的余数. 【详解】5151051150505151515151501(491)14949491C C C C -=+-=++++-L 05115050515151494949C C C =+++L因为49是7的倍数,所以5051﹣1被7除后的余数为0. 故答案为:0 【点睛】本题考查二项式定理应用,考查基本分析求解能力,属基础题. 7.3x ﹣4y +5=0 【解析】 【分析】根据加减消元得普通方程.10.83438345020.6x t x y x y y t=+⎧∴-=-⇒-+=⎨=+⎩Q 故答案为:3450x y -+= 【点睛】本题考查参数方程化普通方程,考查基本分析求解能力,属基础题. 8.0.388 【解析】 【分析】先求其对立事件概率,再根据对立事件概率关系求结果. 【详解】一天内至少有一台游戏机不需要维护的对立事件是三台都需要维护, ∴一天内至少有一台游戏机不需要维护的概率: p =1﹣0.9×0.8×0.85=0.388. 故答案为:0.388. 【点睛】本题考查对立事件概率,考查基本分析求解能力,属基础题. 9.3R π【解析】 【分析】欲求坐飞机从A 城市飞到B 城市的最短距离,即求出地球上这两点间的球面距离即可.A 、B 两地在同一纬度圈上,计算经度差,求出AB 弦长,以及球心角,然后求出球面距离.即可得到答案. 【详解】解:由已知地球半径为R ,则北纬45R , 又∵两座城市的经度分别为东经30°和西经60°,故连接两座城市的弦长L ==R ,则A ,B 两地与地球球心O 连线的夹角∠AOB 3π=,则A 、B 两地之间的距离是3R π.故答案为3R π.【点睛】本题考查球面距离及其他计算,考查空间想象能力,是基础题. 10.1 【解析】 【分析】根据复数几何意义确定复数z 对应点轨迹,根据轨迹确定模的最大值. 【详解】复数z 满足|z +i |+|z ﹣i |=2(i 是虚数单位),复数z 的几何意义是到虚轴上的点到A (0,1),B (0,﹣1)的距离之和等于2,因此复数z 对应点轨迹为线段AB,因此|z |的最大值为:1, 故答案为:1. 【点睛】本题考查复数几何意义以及复数的模,考查基本分析求解能力,属中档题. 11.8 【解析】 【分析】由()()40f x f x +-=知()()4f b f b -=-,可将不等式变为()()4f a f b ≥-,利用函数单调性可得40a b +-≥,根据线性规划的知识,知22a b +的几何意义为原点O 与可行域中的点的距离的平方,从而可知所求最小值为O 到直线40a b +-=的距离的平方,利用点到直线距离公式求得结果. 【详解】由()()40f x f x +-=得:()()4f b f b -=-()()0f a f b ∴+≥等价于()()()4f a f b f b ≥-=- ()f x Q 为R 上的增函数 4a b ∴≥-,即40a b +-≥则可知可行域如下图所示:则22a b +的几何意义为原点O 与可行域中的点的距离的平方 可知O 到直线40a b +-=的距离的平方为所求的最小值()222min8a b ∴+== 本题正确结果;8 【点睛】本题考查函数单调性的应用、线性规划中的平方和型的最值的求解,关键是能够利用平方和的几何意义,将问题转化为两点间距离的最值的求解问题.12.1,12⎡⎤⎢⎥⎣⎦【解析】 【分析】建立空间直角坐标系,设(),,0P x y ,[](),0,1x y ∈.可得,()()22111111222PA PC x x y y x y ⎛⎫⎛⎫⋅=----+=-+-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v ,即可得出答案.【详解】 如图所示: 建立空间直角坐标系.则()()()10,0,0,0,0,1,1,1,1A A C . 设(),,0P x y ,[](),0,1x y ∈.则(),,1PA x y =--u u u v, ()1,1,1PC x y =--u u u v.()()111PA PC x x y y ∴⋅=----+u u u v u u u v22111222x y ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭.[],0,1x y ∈Q ,∴当11,22x y ==时, PA PC⋅u u u v u u u v 有最小值12. 当点P 取()()()()0,0,0,1,0,0,1,1,0,0,1,0时,PA PC ⋅u u u v u u u v有最大值1.故答案为:1,12⎡⎤⎢⎥⎣⎦【点睛】本题考在空间直角坐标系中两向量数量积的坐标表示:121212+a b x x y y z z ⋅=+v v及其取值范围的求解;建立合适的空间直角坐标系是求解本题的关键;着重考查学生的运算能力和知识迁移能力; 属于中档题. 13.8α 【解析】设椭圆的右焦点为M ,椭圆的长轴为2×2a=4a , △FAB 的周长AF +FB+AB≤FA+AM+FB+BM=2×2a+2×2a=8a , 故答案为:8a点睛:本题充分体现了解析几何的思想方法:数形结合,利用椭圆的定义结合三角形的基本性质得到周长的最值.14.50,3⎛⎤ ⎥⎝⎦【解析】 【分析】先将恒成立存在性问题转化为对应函数值域包含关系,即()g x 在[0,2]上值域包含于()f x 在[0,2]上值域,再分别求对应值域,最后根据集合包含关系列式求解. 【详解】459[0,2]()4[1,5]11x x f x x x -+∈∴==-+∈-++Q [0,2],0,()[2,3]x a g x a a ∈>∴∈Q由题意得21,05[2,3][1,5]0353a a a a a a ≥->⎧⊆-∴∴<≤⎨≤⎩故答案为:50,3⎛⎤⎥⎝⎦【点睛】本题考查函数恒成立存在性问题、函数值域以及根据集合包含关系求参数取值范围,考查综合分析求解能力,属中档题.15【详解】 设M(x,y).由22242,39AM BM x y ⎛⎫≤+-≥ ⎪⎝⎭得. 故线段AD 恒在阿波罗尼斯圆222439x y ⎛⎫+-= ⎪⎝⎭的外部.当t 最小时,线段AD 与圆相切,从而,:12AD x yl t +=.233t =⇒=.16.ω∈[94,52]∪[134,+∞)【解析】 【分析】由sinωa +sinωb =2⇒sinωa =sinωb =1. 而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数k 、l(k <l),使得ωπ≤2k π+π2<2l π+π2≤2ωπ ①,再对ω分类讨论求出ω的范围. 【详解】由sinωa +sinωb =2⇒sinωa =sinωb =1.而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数k 、l(k <l),使得 ωπ≤2k π+π2<2l π+π2≤2ωπ. ①当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π,故必存在k 、l 满足式①. 当0<ω<4时,注意到,[ωπ,2ωπ]⊆(0,8π). 故只要考虑如下几种情形: (1)ωπ≤π2<5π2≤2ωπ,此时,ω≤12,且ω≥54,无解; (2)ωπ≤5π2<9π2≤2ωπ,此时,94≤ω≤52; (3)ωπ≤9π2<13π2≤2ωπ,此时,134≤ω≤92⇒134≤ω<4.综上,并注意到ω≥4也满足条件,知ω∈[94,52]∪[134,+∞).故答案为:ω∈[94,52]∪[134,+∞)【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.17.(1)证明见解析(2)【解析】【分析】(1)根据正四棱柱性质得AA1⊥平面ABCD,即得AA1⊥BD,根据正方形性质的AC⊥BD,再根据线面垂直判定定理得BD⊥平面ACC1A1,即可得结论;(2)根据勾股定理列等量关系,解得结果.【详解】(1)证明:连结AC,A1C1,∵AA1⊥平面ABCD,BD⊂平面ABCD,∴AA1⊥BD,∵四边形ABCD是正方形,∴AC⊥BD,又AC∩AA1=A,AC⊂平面ACC1A1,AA1⊂平面ACC1A1,∴BD⊥平面ACC1A1,又A1E⊂平面ACC1A1,∴BD⊥A1E.(2)∵AB=2,∴AO=CO,A1C1,设AA1=a,则C1E=a,∴OE2=4,A1O2=a2+2,A1E2=(a)2+8=a2﹣a+10,∵OE⊥A1E,∴A1O2=OE2+A1E2,即a2+2=4+a2﹣a+10,解得a=AA1=【点睛】本题考查线面垂直判定与性质定理,考查基本分析论证能力,属基础题. 18.(1)sin θcos θ1L 10sin θcos θ++=⨯⋅,ππθ,.63⎡⎤∈⎢⎥⎣⎦; (2)πθ6=或πθ3=时,L 取得最大值为)201米..【解析】 【分析】(1)解直角三角形求得得EH 、FH 、EF 的解析式,再由 L=EH +FH +EF 得到污水净化管道的长度L 的函数解析式,并注明θ的范围.(2)设sinθ+cosθ=t ,根据函数 L=201t - 在[12上是单调减函数,可求得L 的最大值.所以当t =πθ6= 或πθ3= 时,L 取得最大值为)201+米.【详解】()1由题意可得10EH cos θ=,10FH sin θ=,10EF sin θcos θ=,由于 BE 10tan θ=≤10AF tan θ=≤tan θ≤≤ππθ,63⎡⎤∈⎢⎥⎣⎦, 101010L cos θsin θsin θcos θ∴=++,ππθ,.63⎡⎤∈⎢⎥⎣⎦即sin θcos θ1L 10sin θcos θ++=⨯⋅,ππθ,.63⎡⎤∈⎢⎥⎣⎦()2设sinθcosθt+=,则2t1sinθcosθ2-=,由于ππθ,63⎡⎤∈⎢⎥⎣⎦,π1sinθcosθtθ.42+⎛⎫∴+==+∈⎪⎝⎭⎣由于20Lt1=-在⎣上是单调减函数,∴当t=时,即πθ6=或πθ3=时,L取得最大值为)201米.【点睛】三角函数值域得不同求法:1.利用sin x和cos x的值域直接求2.把所有的三角函数式变换成()siny A xωϕ=+(),0Aω≠的形式求值域3.通过换元,转化成其他类型函数求值域19.(1)21yx=不是,y=2x是(2,证明见解析【解析】【分析】(1)根据“依赖函数”的定义进行判断即可,(2)只需要函数y=a+sinx的最大值和最小值满足f(x1)f(x2)=1即可,建立方程关系进行求解即可.【详解】(1)解:(1)函数21yx=,由f(x1)f(x2)=1,得221222121111x xx x⋅=∴=,对应的x1、x2不唯一,所以21yx=不是“依赖函数”;对于函数y=2x,由f(x1)f(x2)=1,得12122210x x x x⋅=∴+=,所以x2=﹣x1,可得定义域内的每一个值x1,都存在唯一的值x2满足条件,故函数y=2x是“依赖函数”.(2)当[,]22xππ∈-时,函数y=a+sinx(a>1)为增函数,且函数关于(0,a)对称,若函数y=a +sinx (a >1),[,]22x ππ∈-为依赖函数,则只需要函数的最大值和最小值满足f (x 1)f (x 2)=1即可, 则函数的最大值为a +1,最小值为a ﹣1, 则由(a +1)(a ﹣1)=1得a 2﹣1=1, 得a 2=2,因为a >1,所以得a. 【点睛】本题考查函数新定义以及三角函数最值,考查基本分析求解能力,属基础题.20.(1)22143x y += (2)0(3)5(,0)(0,)24-⋃+∞【解析】 【分析】(1)由椭圆的通径公式及a =2c ,即可求得a 和b 的值,即可求得椭圆方程方程; (2)根据直线的斜率公式,求得112132x k k y +=-, 234232x k k y +=,由,OP OQ u u u r u u u r 共线,得1212x x y y =,即可求得结论;(3)先用E 点坐标表示12,k k '',再根据函数单调性即可求得121k k ''的取值范围.【详解】(1)由题意a =2c ,椭圆的通径为22b a=3, 因为a 2=b 2+c 2,所以a =2,bc =1,∴椭圆的标准方程:22143x y +=;(2)由(1)可知:A (﹣2,0),B (2,0),F 1(﹣1,0),F 2(1,0),设P (x 1,y 1),则2211143x y +=,则12k k +=111122y y x x ++-=1111221122443x y x y yx =--1132x y =-设Q (x 2,y 2),则2222143x y -=,则则34k k += 222222y y x x ++-=2222222222443x y x y y x =-=2232x y , 又,OP OQ u u u r u u u r 共线,∴1212x x y y =,12340k k k k ∴+++= (3)设2(,)4y E y ,由2221434x y y x⎧+=⎪⎨⎪=⎩,解得:222383x y ⎧=⎪⎪⎨⎪=⎪⎩, 由E 在椭圆C 外的抛物线K :y 2=4x 上一点,则283y >, 则EF 1 、EF 2的斜率分别为1222,1144k y k y yy ''==+-,(28,23y y >≠±) 则42222121611()1616161y y t k y k t y y t ==-'--==',(8,43t t >≠) 在(83,4),(4,+∞)上分别单调递增,∴121k k ''的取值范围5(,0)(0,)24-⋃+∞. 【点睛】本题考查椭圆方程、椭圆中定值与范围问题,考查综合分析求解能力,属中档题.21.(1)221,1,2(1)n n a n n n =⎧⎪=⎨≥⎪-⎩(2)2121n n a n -=+(3)(Ⅰ)见解析(Ⅱ)299【解析】 【分析】(1)(1)利用作商法求a n ;(2)利用等差数列的定义证明数列1{}nT 为等差数列,并求得{a n }的通项公式;(3)(Ⅰ)由题意联立方程组求得T 4,T 5,则由a 5=54T T 即得;(Ⅱ)由(Ⅰ)可得T k 是方程x 2﹣(k +2)x +2=0的一个实根(△>0),当数列前k (2≤k ≤98)项确定后,其前k 项积T k 确定,由T k +1可得到两个a k+1,即得符合条件的数列共有299个. 【详解】(1)当n =1时,a 1=T 1=1;当n ≥2时,a n =221(1)n n T n T n -=-, ∴221,1,2(1)n n a n n n =⎧⎪=⎨≥⎪-⎩(2)当n =1时,a 1=T 1=12(1﹣a 1),所以a 1=13, 当n ≥2时,2T n =1﹣a n =1﹣1nn T T -,所以n 1T ﹣11n T -=2,数列{n 1T }为等差数列 n 1T =3+2(n ﹣1)=2n +1,T n =121n +,a n =1﹣2T n =2121n n -+ (3)(Ⅰ)由121002a a a ⋅⋅⋅=L ,12451006a a a a a +=L L ;可得T 4, 由121002a a a ⋅⋅⋅=L ,12561007a a a a a +=L L ;可得T 5所以554T T a ==(Ⅱ)121002a a a ⋅⋅⋅=L ,121003a a a +=L ,所以a 1=1或2 T k 是方程x 2﹣(k +2)x +2=0的一个实根(其中△>0),当数列前k (2≤k ≤98)项确定后,其前k 项积T k 确定,由T k +1可得到两个a k +1 所以符合条件的数列共有299个 【点睛】本题考查根据递推关系求通项、等差数列定义以及解一元二次方程,考查综合分析论证与求解能力,属较难题.。
上海市宝山区2017届高考数学一模试卷-Word版含解析
2017年上海市宝山区高考数学一模试卷一。
填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B=.3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z=.6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a=.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二。
选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数"的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3 C.D.2三。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海中学高考数学模拟试卷(1)一、填空题1.定义在R上的奇函数f(x)以2为周期,则f(1)=.2.如果复数(b∈R)的实部和虚部互为相反数,则b等于.3.若(1+2x)n展开式中含x3项的系数等于含x项系数的8倍,则正整数n=.4.(文)若,则目标函数z=2x+y的最小值为.5.已知a<0,则关于x的不等式的解集为.6.点P是椭圆上一点,F1、F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限内时,P点的纵坐标为.7.数列{a n}满足:a n=,它的前n项和记为S n,则S n=.8.某市为加强城市圈的建设,计划对周边如图所示的A、B、C、D、E、F、G、H八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的概率为.9.若方程仅有一个实数根,则k的取值范围是.10.在△ABC中,已知|AB|=2,,则△ABC面积的最大值为.11.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠,使P,Q,R,S四点重合,则需要个这样的几何体,就可以拼成一个棱长为12的正方体.12.若函数y=a x(a>1)和它的反函数的图象与函数y=的图象分别交于点A、B,若|AB|=,则a约等于(精确到0.1).13.老师告诉学生小明说,“若O为△ABC所在平面上的任意一点,且有等式,则P点的轨迹必过△ABC的垂心”,小明进一步思考何时P点的轨迹会通过△ABC的外心,得到的条件等式应为=.(用O,A,B,C四个点所构成的向量和角A,B,C的三角函数以及λ表示)二.选择题14.若函数y=cos2x与函数y=sin(x+φ)在区间上的单调性相同,则φ的一个值是()A.B.C.D.15.△ABC中,A=,BC=3,则△ABC的周长为()A.4sin(B+)+3 B.4sin(B+)+3 C.6sin(B+)+3 D.6sin (B+)+316.若点M(a,)和N(b,)都在直线l:x+y=1上,则点P(c,),Q(,b)和l 的关系是()A.P和Q都在l上B.P和Q都不在l上C.P在l上,Q不在l上D.P不在l上,Q在l上17.数列{a n}满足:a1=,a2=,且a1a2+a2a3+…+a n a n+1=na1a n+1对任何的正整数n都成立,则的值为()A.5032 B.5044 C.5048 D.5050三.解答题18.已知函数的最小正周期为π,且当x=时,函数有最小值.(1)求f(x)的解析式;(2)作出f(x)在[0,π]范围内的大致图象.19.设虚数z满足|2z+15|=|+10|.(1)计算|z|的值;(2)是否存在实数a,使∈R?若存在,求出a的值;若不存在,说明理由.20.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.21.在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:如果该公司今年有5位职工,计划从明年起每年新招5名职工.(1)若今年算第一年,将第n年该公司付给职工工资总额y(万元)表示成年限n的函数;(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p的最小值.22.已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.(1)当b=2,m=﹣4时,f(x)≥g(x)恒成立,求实数c的取值范围;(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.23.若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,,问λ1+λ2是否为定值?说明理由.2017年上海中学高考数学模拟试卷(1)参考答案与试题解析一、填空题1.定义在R上的奇函数f(x)以2为周期,则f(1)=0.【考点】3Q:函数的周期性;3L:函数奇偶性的性质.【分析】根据f(x)是奇函数可得f(﹣x)=﹣f(x),又根据f(x)是以2为周期的周期函数得f(x+2)=f(x),取x=﹣1可求出f(1)的值.【解答】解:∵f(x)是以2为周期的周期函数,∴f(1)=f(﹣1),又函数f(x)是奇函数,∴﹣f(1)=f(﹣1)=f(1),∴f(1)=f(﹣1)=0故答案为:02.如果复数(b∈R)的实部和虚部互为相反数,则b等于0.【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成复数的代数标准形式,根据实部和虚部互为相反数,得到实部和虚部和为0,得到结果.【解答】解:∵===,∵实部和虚部互为相反数,∴,∴,∴b=0,故答案为:03.若(1+2x)n展开式中含x3项的系数等于含x项系数的8倍,则正整数n=5.【考点】DC:二项式定理的应用.=C n r(2x)r=2r C n r x r分别令r=3,r=1可得含x3,x项的系【分析】由题意可得T r+1数,从而可求=C n r(2x)r=2r C n r x r【解答】解:由题意可得二项展开式的通项,T r+1令r=3可得含x3项的系数为:8C n3,令r=1可得含x项的系数为2C n1∴8C n3=8×2C n1∴n=5故答案为:54.(文)若,则目标函数z=2x+y的最小值为4.【考点】7C:简单线性规划.【分析】先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+y,过可行域内的点A(1,2)时的最小值,从而得到z最小值即可.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,A(1,2),(4,2),C(1,5),则目标函数z=2x+y的最小值为4.故答案为:4.5.已知a<0,则关于x的不等式的解集为(2a,﹣a)∪(﹣a,﹣4a).【考点】R2:绝对值不等式.【分析】把不等式转化为0<|x+a|<﹣3a,利用绝对值不等式的几何意义,即可求出不等式的解集.【解答】解:因为a<0,则关于x的不等式,所以不等式0<|x+a|<﹣3a,根据绝对值不等式的几何意义:数轴上的点到﹣a的距离大于0并且小于﹣3a,可知不等式的解集为:(2a,﹣a)∪(﹣a,﹣4a).故答案为:(2a,﹣a)∪(﹣a,﹣4a).6.点P是椭圆上一点,F1、F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限内时,P点的纵坐标为.【考点】K4:椭圆的简单性质.【分析】由椭圆的定义可知|PF1|+|PF2|=10,根据椭圆方程求得焦距,利用内切圆的性质把三角形PF1F2分成三个三角形分别求出面积,再利用面积相等建立等式求得P点纵坐标.【解答】解:根据椭圆的定义可知|PF1|+|PF2|=10,|F1F2|=6,令内切圆圆心为O则=++=(|PF1|r+|PF2|r+|F1F2|r)=(|PF1|+|PF2|+|F1F2|)•1=8又∵=|F1F2|•y P=3y P.所以3y p=8,y p=.故答案为7.数列{a n}满足:a n=,它的前n项和记为S n,则S n=.【考点】8E:数列的求和;6F:极限及其运算.【分析】先分奇数与偶数分别求前n项和记为S n,再求它们的极限.【解答】解:当n=2k时,当n=2k+1时,∴S n=故答案为8.某市为加强城市圈的建设,计划对周边如图所示的A、B、C、D、E、F、G、H八个中小城市进行综合规划治理,第一期工程拟从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的概率为.【考点】C7:等可能事件的概率.【分析】把城市A被选中的情况和城市A未被选中的情况都找出来,即可得到城市A被选中的概率.【解答】解:从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A被选中的情况有:ACE、ACF、ACG、ACH、ADF、ADG、ADH、AEG、AEH、AFH,共10种.则城市A未被选中的情况有:BDF、BDG、BDH、BEG、BEH、BFH、CEG、CEH、CFH、DFH 共10种.故城市A被选中的概率为:=,故答案为:.9.若方程仅有一个实数根,则k的取值范围是(﹣∞,﹣1)∪(1,+∞)∪{0} .【考点】J9:直线与圆的位置关系.【分析】据题意设y1=,y2=﹣kx+2,画出函数y1=图象,结合图象,即可得到k的取值范围.【解答】解:根据题意设y1=,y2=﹣kx+2,当k=0时,方程只有一个解x=0,满足题意;当k≠0时,根据题意画出图象,如图所示:根据图象可知,当﹣k>1或﹣k<﹣1时,直线y=﹣kx+2与y=只有一个交点,即方程只有一个解,综上,满足题意k的取值范围为k=0或k>1或k<﹣1.故答案为:(﹣∞,﹣1)∪(1,+∞)∪{0}10.在△ABC中,已知|AB|=2,,则△ABC面积的最大值为.【考点】9S:数量积表示两个向量的夹角;93:向量的模;HP:正弦定理.【分析】由题意可得:|AC|=|BC|,设△ABC三边分别为2,a,a,三角形面积为S,根据海仑公式得:16S2=﹣a4+24a2﹣16=﹣(a2﹣12)2+128,再结合二次函数的性质求出答案即可.【解答】解:由题意可得:|AC|=|BC|,设△ABC三边分别为2,a,a,三角形面积为S,所以设p=所以根据海仑公式得:S==,所以16S2=﹣a4+24a2﹣16=﹣(a2﹣12)2+128,当a2=12时,即当a=2时,△ABC的面积有最大值,并且最大值为2.故答案为.11.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠,使P,Q,R,S四点重合,则需要24个这样的几何体,就可以拼成一个棱长为12的正方体.【考点】L3:棱锥的结构特征;L2:棱柱的结构特征.【分析】先把判断几何体的形状,把展开图沿虚线折叠,得到一个四棱锥,求出体积,再计算棱长为12的正方体的体积,让正方体的体积除以四棱锥的体积,结果是几,就需要几个四棱锥.【解答】解:把该几何体沿图中虚线将其折叠,使P,Q,R,S四点重合,所得几何体为下图中的四棱锥,且底面四边形ABCD为边长是6的正方形,侧棱PD⊥平面ABCD,PD=6=×6×6×6=72∴V四棱锥P﹣ABCD∵棱长为12的正方体体积为12×12×12=1728∵,∴需要24个这样的几何体,就可以拼成一个棱长为12的正方体.故答案为2412.若函数y=a x(a>1)和它的反函数的图象与函数y=的图象分别交于点A、B,若|AB|=,则a约等于8.4(精确到0.1).【考点】4R:反函数.【分析】根据题意画出图形,如图,设A(x,a x),函数y=a x(a>1)和它的反函数的图象与函数y=的图象关于直线x﹣y=0 对称,得出点A到直线y=x的距离为AB的一半,利用点到直线的距离公式及A(x,a x)在函数y=的图象上得到a=()≈8.4即可.【解答】解:根据题意画出图形,如图,设A(x,a x),∵函数y=a x(a>1)和它的反函数的图象与函数y=的图象关于直线x﹣y=0 对称,∴|AB|=,⇒点A到直线y=x的距离为,∴⇒a x﹣x=2,①又A(x,a x)在函数y=的图象上,⇒a x=,②由①②得:﹣x=2⇒x=,∴a﹣(﹣1)=2,⇒a=()≈8.4故答案为:8.4.13.老师告诉学生小明说,“若O为△ABC所在平面上的任意一点,且有等式,则P点的轨迹必过△ABC的垂心”,小明进一步思考何时P点的轨迹会通过△ABC的外心,得到的条件等式应为=.(用O,A,B,C四个点所构成的向量和角A,B,C的三角函数以及λ表示)【考点】F3:类比推理;LL:空间图形的公理.【分析】由题意可得:•=0,即与垂直,设D为BC的中点,则=,可得=,即可得到,进而得到点P在BC的垂直平分线上,即可得到答案.【解答】解:由题意可得:•=﹣||+||=0∴与垂直设D为BC的中点,则=,所以,所以=,因为与垂直所以,又∵点D为BC的中点,∴点P在BC的垂直平分线上,即P的轨迹会通过△ABC的外心.故答案为:.二.选择题14.若函数y=cos2x与函数y=sin(x+φ)在区间上的单调性相同,则φ的一个值是()A.B.C.D.【考点】H5:正弦函数的单调性;HA:余弦函数的单调性.【分析】可把A,B,C,D四个选项中的值分别代入题设中进行验证,只有D项的符合题意.【解答】解:y=cos2x在区间上是减函数,y=sin(x+)[0,]上单调增,在[,]上单调减,故排除A.y=sin(x+)在[0,]单调增,在[,]上单调减,故排除B.y=sin(x+)在[0,]单调增,在[,]上单调减,故排除C.在区间上也是减函数,故选D.15.△ABC中,A=,BC=3,则△ABC的周长为()A.4sin(B+)+3 B.4sin(B+)+3 C.6sin(B+)+3 D.6sin (B+)+3【考点】HP:正弦定理.【分析】根据正弦定理分别求得AC和AB,最后三边相加整理即可得到答案.【解答】解:根据正弦定理,∴AC==2sinB,AB==3cosB+sinB∴△ABC的周长为2sinB+3cosB+sinB+3=6sin(B+)+3故选D.16.若点M(a,)和N(b,)都在直线l:x+y=1上,则点P(c,),Q(,b)和l 的关系是()A.P和Q都在l上B.P和Q都不在l上C.P在l上,Q不在l上D.P不在l上,Q在l上【考点】IH:直线的一般式方程与直线的性质.【分析】先根据点M、N在直线上,则点坐标适合直线方程,通过消元法可求得a与c的关系,从而可判定点P(c,),Q(,b)和l 的关系,选出正确选项.【解答】解:∵点M(a,)和N(b,)都在直线l:x+y=1上∴a+=1,b+=1则b=即+=1化简得c+=1∴点P(c,)在直线l上而b+=1则Q(,b)在直线l上故选A.17.数列{a n }满足:a 1=,a 2=,且a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1对任何的正整数n 都成立,则的值为( ) A .5032B .5044C .5048D .5050【考点】8H :数列递推式;8E :数列的求和.【分析】a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1,①;a 1a 2+a 2a 3+…+a n a n +1+a n +1a n +2=(n +1)a 1a n +2,②;①﹣②,得﹣a n +1a n +2=na 1a n +1﹣(n +1)a 1a n +2,,同理,得=4,整理,得,是等差数列.由此能求出.【解答】解:a 1a 2+a 2a 3+…+a n a n +1=na 1a n +1,① a 1a 2+a 2a 3+…+a n a n +1+a n +1a n +2=(n +1)a 1a n +2,② ①﹣②,得﹣a n +1a n +2=na 1a n +1﹣(n +1)a 1a n +2,∴, 同理,得=4,∴=,整理,得,∴是等差数列.∵a 1=,a 2=,∴等差数列的首项是,公差,.∴==5044.故选B .三.解答题18.已知函数的最小正周期为π,且当x=时,函数有最小值.(1)求f(x)的解析式;(2)作出f(x)在[0,π]范围内的大致图象.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(1)利用三角函数的恒等变换化简函数f(x)=1﹣sin,再由它的周期等于π求出ω=1,故f(x)=1﹣sin.(2)由x∈[0,π],可得2x+∈[,],列表作图即得所求.【解答】解:(1)∵=+1﹣=1﹣sin.由于它的最小正周期为π,故=π,∴ω=1.故f(x)═1﹣sin.(2)∵x∈[0,π],∴2x+∈[,].列表如下:如图:19.设虚数z满足|2z+15|=|+10|.(1)计算|z|的值;(2)是否存在实数a,使∈R?若存在,求出a的值;若不存在,说明理由.【考点】A8:复数求模.【分析】(1)设z=a+bi(a,b∈R且b≠0)则代入条件|2z+15|=|+10|然后根据复数的运算法则和模的概念将上式化简可得即求出了|z|的值(2)对于此种题型可假设存在实数a使∈R根据复数的运算法则设(z=c+bi(c,b∈R且b≠0))可得=+()∈R即=0再结合b≠0和(1)的结论即可求解.【解答】解:(1)设z=a+bi(a,b∈R且b≠0)则∵|2z+15|=|+10|∴|(2a+15)+2bi|=|(a+10)﹣bi|∴=∴a2+b2=75∴∴|z|=(2)设z=c+bi(c,b∈R且b≠0)假设存在实数a使∈R则有=+()∈R∴=0∵b≠0∴a=由(1)知=5∴a=±520.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.【考点】MI:直线与平面所成的角;LF:棱柱、棱锥、棱台的体积.【分析】(1)判断知,B1C与C1A垂直,可在平面BA1内,过B1作B1D⊥AB于D,证明B1C⊥平面ABC1,再由线面垂直的定义得出线线垂直;(2)由图形知,,变换棱锥的底与高后,求出它的体积即可;【解答】解:(1)B1C⊥C1A证明如下:在平面BA1内,过B1作B1D⊥AB于D,∵侧面BA1⊥平面ABC,∴B1D⊥平面ABC,∠B1BA是BB1与平面ABC所成的角,∴∠B1BA=π﹣=,连接BC1,∵BB1CC1是菱形,∴BC1⊥B1C,CD⊥平面A1B,B1D⊥AB,∴B 1C ⊥AB , ∴B 1C ⊥平面ABC 1, ∴B 1C ⊥C 1A .(2)解:由题意及图,答:四棱锥B ﹣ACC 1A 1的体积为221.在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:如果该公司今年有5位职工,计划从明年起每年新招5名职工.(1)若今年算第一年,将第n 年该公司付给职工工资总额y (万元)表示成年限n 的函数;(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p 的最小值. 【考点】8B :数列的应用.【分析】(1)y=10n(1+10%)n +0.2n 2+1.8n ,n ∈N * (2)由0.2n 2+1.8n ≤10n ⋅1.1n ⋅p%,得p%≥,令a n =,由此能求出p 的最小值.【解答】解:(1)y=10n (1+10%)n +0.2n 2+1.8n ,n ∈N * (2)由0.2n 2+1.8n ≤10n ⋅1.1n ⋅p%, 得p%≥, 令a n =,由,得1≤n≤2,∴p%≥a1=a2=,∴p≥.22.已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.(1)当b=2,m=﹣4时,f(x)≥g(x)恒成立,求实数c的取值范围;(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.【考点】3R:函数恒成立问题.【分析】(1)将b=2,m=﹣4代入函数解析式,根据f(x)≥g(x)恒成立将c 分离出来,研究不等式另一侧函数的最大值即可求出c的取值范围;(2)将c=﹣3,m=﹣2代入函数解析式得(|x|﹣b)2=x+1有四个不同的解,然后转化成(x﹣b)2=x+1(x≥0)有两个不同解以及(x+b)2=x+1(x<0)也有两个不同解,最后根据根的分布建立关系式,求出b的取值范围.【解答】解:(1)∵当b=2,m=﹣4时,f(x)≥g(x)恒成立,∴c≥x﹣4﹣(|x|﹣2)2=,由二次函数的性质得c≥﹣.(2)(|x|﹣b)2﹣3=x﹣2,即(|x|﹣b)2=x+1有四个不同的解,∴(x﹣b)2=x+1(x≥0)有两个不同解以及(x+b)2=x+1(x<0)也有两个不同解,由根的分布得b≥1且1<b<,∴1<b<.23.若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,,问λ1+λ2是否为定值?说明理由.【考点】KG:直线与圆锥曲线的关系.【分析】(1),由根的差别式能得到l与椭圆C相切.(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C 的外部.是真命题.联立方程得(aby02+a2x02)x2﹣2ax0x+1﹣by02=0.由△=4a2x02﹣4a(by02+ax02)(1﹣by02)>0,能求出N(x0,y0)在椭圆C的外部.(3)此时l与椭圆相离,设M(x1,y1),A(x,y)则代入椭圆C:ax2+by2=1,利用M在l上,得(ax02+by02﹣1)λ12+ax12+by12﹣1=0.由此能求出λ1+λ2=0.【解答】解:(1)即ax2﹣2ax0x+ax02=0∴△=4a2x02﹣4a2x02=0∴l与椭圆C相切.(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C 的外部.是真命题.联立方程得(aby02+a2x02)x2﹣2ax0x+1﹣by02=0则△=4a2x02﹣4a(by02+ax02)(1﹣by02)>0∴ax02﹣by02+b2y04﹣ax02+abx02y02>0∴by02+ax02>1∴N(x0,y0)在椭圆C的外部.(3)同理可得此时l与椭圆相离,设M(x1,y1),A(x,y)则代入椭圆C:ax2+by2=1,利用M在l上,即ax0x1+by0y1=1,整理得(ax02+by02﹣1)λ12+ax12+by12﹣1=0同理得关于λ2的方程,类似.即λ1、λ2是(ax02+by02﹣1)λ2+ax12+by12﹣1=0的两根∴λ1+λ2=0.2017年7月7日。