证明题(四边形)
(完整版)四边形经典试题50题及答案
经典四边形习题50道(附答案)1.已知:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。
2.已知:直角梯形ABCD中,BC=CD=a且∠BCD=60︒,E、F分别为梯形的腰AB、DC的中点,求:EF的长。
3、已知:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD平分∠ABC交EF于G,EG=18,GF=10求:等腰梯形ABCD的周长。
4、已知:梯形ABCD中,AB∥CD,以AD,AC为邻边作平行四边形ACED,DC延长线交BE于F,求证:F是BE的中点。
5、已知:梯形ABCD中,AB∥CD,AC⊥CB,AC平分∠A,又∠B=60︒,梯形的周长是20cm, 求:AB的长。
6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。
7、已知:梯形ABCD的对角线的交点为E若在平行边的一边BC的延长线上取一点F,_B_C_A_B_A_B_E_A_B_B使S ABC ∆=S EBF ∆,求证:DF ∥AC 。
8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。
9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。
10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。
11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。
12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。
四边形证明习题
四边形证明习题1.如图,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .(1) 求∠ABD 的度数; (2)求线段BE 的长.2.如图,菱形ABCD 的对角线AC 及BD 相交于点O ,点E 、F 分别为边AB 、AD 的中点,连接EF 、OE 、OF .求证:四边形AEOF 是菱形.3. 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ; (2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.4. 已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.5.如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o,且EF 交正方形外角的平分线CF 于点F . (1)证明:∠BAE =∠FEC ; (2)证明:△AGE ≌△ECF ; (3)求△AEF 的面积.6. 已知梯形ABCD 中,BC AD //,AD AB = (如图所示).BAD ∠的平分线AE 交BC 于点E ,联结DE . (1) 在图中,用尺规作BAD ∠的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形; (2) 若︒=∠60ABC ,BE EC 2=,求证:DC ED ⊥.7. 如图,正方形ABCD 中,E F 、分别是AB BC 、边上的点,且.AE BF =求证.AF DE ⊥DABCO E60A F DB EOCEBDACFAF DE BCADBE F OCMA BCD8. 如图,将矩形纸片ABCD 沿EF 折叠,使点A 及点C 重合,点D 落在点G 处,EF为折痕.(1)求证:FGC EBC △≌△;(2)若84AB AD ==,,求四边形ECGF (阴影部分)的面积.9. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF .(1)求证:△BDF ≌△CDE ;(2)若AB =AC ,求证:四边形BFCE 是菱形.10.如图,在矩形ABCD (AB <AD )中,将△ABE 沿AE 对折,使AB 边落在对角线AC 上,点B 的对应点为F ,同时将△CEG 沿EG 对折,使CE 边落在EF 所在直线上,点C 的对应点为H .(1)证明:AF ∥HG (图(1));(2)证明:△AEF ∽△EGH (图(1));(3)如果点C 的对应点H 恰好落在边AD 上(图(2)).求此时∠BAC 的大小.11. 如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.12. 如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP . 求证:(1)∠E=∠F .(2)□ABCD 是菱形.13. 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD . (1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.14.如图1,已知矩形ABED ,点C 是边DE 的中点,且AB =2AD .DCFBEA(1)判断△ABC 的形状,并说明理由;(2)保持图1中的△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线AD 、BE 在直线MN 的同侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3)保持图2中的△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.15. 如图,ABC △是等腰直角三角形,90A ∠=,点P 、Q 分别是AB 、AC 上的动点,且满足BP AQ =,D 是BC 的中点. (1)求证:PDQ △是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,并说明理由.16. 在△ABC 中,∠BAC=45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M .(1)判断四边形AEMF 的形状,并给予证明. (2)若BD=1,CD=2,试求四边形AEMF 的面积.17. (1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°. 求证:BE =CF . (2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.19.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 及点C 重合,得GFC △. (1)求证:BE DG =;AQCDBP ABCD图1NMD CBAO(2)若60B ∠=°,当AB 及BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.20.将平行四边形纸片ABCD 按如图方式折叠,使点C 及A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.21.如图,点M 是平行四边形ABCD 的边AD 的中点 ,点P 是边BC 上的一个动点,PE ∥MB ,PF ∥MC ,分别交MC 于点E 、交MB 于点F ,如果AB ︰AD=1︰2,试判断四边形PEMF 的形状,并说明理由。
四边形证明题
四边形证明题1、如图,在□中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.2、如图,中,,是边上的中线,分别过点,作,的平行线交于点,且交于点,连接.(1)求证:四边形是菱形;(2)若,求的值.3、如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.4、如图,菱形ABCD的对角线AC、BD相交于点O,过点D 作DE∥AC且DE=AC,连接 CE、OE,连接AE交OD 于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.5、如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)如果∠A=60,菱形ABCD的面积为,求DF的长.6、如图,菱形中,,分别为,上的点,且,连接并延长,交的延长线于点,连接.(1)求证:四边形是平行四边形;(2)连接,若,,求的长.7、如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O 作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若AB=4,CF=1,∠ABC=60°,求的值.8、如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.9、如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D 作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=时,求tan∠EAD的值.10、已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形 ECGD是矩形.11、如图,菱形ABCD中,对角线AC,BD交于O点,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=8,BD=6,求四边形OFCD的面积.12、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的长.。
初三-四边形证明复习及习题
初三()班姓名:学号:一、【考点链接】1、n边形的内角和为.外角和为.2、平面图形的镶嵌:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个_________时,就拼成一个平面图形。
某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种 B.3种 C.2种 D.1种3、平行四边形、矩形、菱形、正方形的性质:平行四边形矩形菱形正方形图形性质1.对边且;2.对角;邻角;3.对角线;1.对边且;2.对角且四个角都是3.对角线;1.对边且四条边都;2.对角;3.对角线且每条对角线;1.对边且四条边都;2.对角且四个角都是;3.对角线且每条对角;面积公式对称性4、平行四边形、矩形、菱形、正方形、梯形的判定定理,具体“2010版公式定理汇编”_四边形5、中点四边形如图:四边形ABCD 中,E 、F 、G 、H 分别为各边的中点,顺次连结E 、F 、G 、H ,得到: ⑴。
四边形一定是 形⑵。
当AC 与BD 满足_ ______时,四边形EFGH 为矩形; ⑶.当AC 与BD 满足___ ____时,四边形EFGH 为菱形;⑷。
当AC 与BD 满足__ _ ____时,四边形EFGH 为正方形。
二、【中考演练】6、在下列命题中,是真命题的个数有( )①两条对角线互相垂直的四边形是矩形 ②两条对角线相等的四边形是菱形 ③两条对角线相等的四边形是平行四边形 ④两条对角线互相平分的梯形是等腰梯形 ⑤两条对角线互相垂直且相等的四边形是正方形 A 0个 B.1个 C.2个 D 。
3个7、下列给出的条件中,能判断四边形ABCD 是平行四边形的是( )A 。
AB ∥CD ,AD=BC B 。
AB=AD ,CB=CD C.∠B=∠C ,∠A=∠D D 。
AB=CD ,AD=BC8、如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A 、当AB=BC 时,它是菱形B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=900时,它是矩形 D 、当AC=BD 时,它是正方形9、若正方形的一条对角线长为cm 2,则这个正方形的面积是 10、如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相 交于点O ,以下四个结论:①DCB ABC ∠=∠ ,②OA =OD , ③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是( ) A 。
平行四边形证明典型题
平行四边形证明典型题1.如下图,已知平行四边形ABCD,E为AD上的点,且AE=AB,BE和CD的延长线交于F,且∠BFC=40°,求平行四边形ABCD各内角的度数.2.已知平行四边形一组邻角的比是2∶3,求它的四个内角的度数.3.如下图所示,ABCD是平行四边形,以AD、BC为边在形外作等边三角形ADE和CBF,连结BD、EF,且它们相交于O,求证:EO=FO,DO=BO.4.已知:平行四边形ABCD中,AD=2AB,延长AB到F,使BF=AB,延长BA到E使AE=AB,求证:CE⊥DF5.如图所示,已知平行四边形ABCD,直线FH与AB、CD相交,过A、B、C、D向FH作垂线,垂足为E、H、G、F,求证:AE-DF=CG-BH6.平行四边形ABCD中,E为DC中点,延长BE与AD的延长线交于F,求证:E为BF中点,D为AF的中点.7.如图所示,平行四边形ABCD中,以BC、CD为边向内作等边三角形BCE和CDF.求证:△AEF为等边三角形.8.如图所示,在△ABC中,BD平分∠B,DE∥BC交AB于E,EF∥AC交BC于F,求证:BE=FC9.如图所示,平行四边形ABCD中,E是AB的中点,F是CD中点,分别延长BA和DC到G、H,使AG=CH,连结GF、EH,求证:GF∥EH10.如图所示,平行四边形ABCD中,E、F分别在AD、BC上,且AE=CF,AF与BE相交于G,CE与DF相交于H.求证:EF与GH互相平分11.在四边形ABCD中,AB∥DC,对角线AC、BD交于O,EF过O交AB于E,交DC于F,且OE=OF,求证:四边形ABCD是平行四边形.12.如图所示,已知△ABC,分别以AB、BC、AC为边向BC同侧作等边三角形ABE、BCD、ACF.求证:DEAF为平行四边形.13.已知:如下图,在四边形ABCD中,AB=DC,AE⊥BD,CF⊥BD,垂足分别是E、F,AE=CF,求证:四边形ABCD是平行四边形.14.点O是平行四边形ABCD的对角线的交点,△AOB的面积为7cm2,求平行四边形ABCD 的面积.15.有两个村庄A和B位于一条河的两岸,假定河岸是两条平行的直线,现在要在河上架一座与河岸垂直的桥PQ,问桥应架在何处,才能使从A到B总的路程最短.【中考真题演练】1.(河南省中考题)已知:如图,平行四边形ABCD中,对角线AC的平行线MN分别交DA、DC延长线于点M、N,交AB、BC于点P、Q.求证:MQ=NP.2.(黄冈市中考题)如图所示,平行四边形ABCD中,G、H是对角线BD上两点,且DG=BH,DF=BE.求证:四边形EHFG是平行四边形.3.(江西省中考题)已知:如图,平行四边形ABCD中,AE⊥BC,CF⊥BD,垂足分别为E、F,G、H分别是AD、BC的中点,GH交BD于点O.求证:GH与EF互相平分.。
四边形经典证明题
四边形证明题1.如图,在正方形ABCD 中,E 、F 是AB 、BC 的中点,连接EC 交,BD DF 于 ,G H 。
则::CH GH EG =__________________2..如图,梯形ABCD 中,2//,3AG EF BC GC =,则GFAD=_____________.3.如图,ABC ∆中,90,6,8B AB BC ∠===,将ABC ∆沿DE 折叠,使点C 落在AB 边的'C 处。
并且'//C D BC ,则CD 的长是( ) A .409B .509C .154D .2544.如图,梯形ABCD 中,AD //BC ,⊥DC BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A '处,若20A BC '∠=︒,则A BD '∠的度数为( ) A. 15° B. 20°C. 25°D. 30°A CBP重庆中考几何证明题26.(7分)如图,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:∠BAE =∠DCF 。
第26题图FEDCBA30﹡、(8分)如图,AB 是△ABC 的外接圆⊙O 的直径,D 是⊙O 上的一点,DE ⊥AB 于点E ,且DE 的延长线分别交AC 、⊙O 、BC 的延长线于F 、M 、G 。
(1)求证:AE ·BE =EF ·EG ;(2)连结BD ,若BD ⊥BC ,且EF =MF =2,求AE 和MG 的长。
∙第30题图OMGFEDCB A20..如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°.∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点 F.以下四个结论:①1cos 2BFE ∠=;②BC BD =;③EF FD =;④2BF DF =.其中结论一定正确的序号数是25. (10分)如图,在梯形ABCD 中,AB//DC ,∠BCD=90︒,且AB=1,BC=2,ta n ∠ADC=2.⑴求证:DC=BC ;⑵E 是梯形内的一点,F 是梯形外的一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135︒时,求sin ∠BFE 的值。
四边形典型题!
1. 如图,已知矩形ABCD,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是 -( )A.线段EF 的长逐渐增大B.线段EF 的长逐渐减少C.线段EF 的长不改变D.线段EF 的长不能确定2. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,求PB+PE 的最小值。
3. 如图1,在正方形ABCD 内有一点P 满足AP=AB ,PB=PC ,连结AC 、PD.(1)求证:△APB ≌△DPC ;(2)求证:∠PAC=21∠BAP ; (3)*若将原题中的正方形ABCD 变为等腰梯形ABCD ,如图2,AD ∥BC ,且BA=AD=DC ,形内一点P 仍满足AP=AB ,PB=PC ,试问(2)中结论还成立吗?若成立请给予证明:若不成立,请说明理由.4. 已知,点P是△ABC的边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点。
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系式________;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立??请画出图形并给予证明。
5.请设计一种方案:把正方形ABCD剪两刀,使剪得的三块图形能够拼成一个三角形,画出必要的示意图.(1)使拼成的三角形是等腰三角形;(图1)(2)使拼成的三角形既不是直角三角形也不是等腰三角形.(图2)6. 已知下面各图形被一条直线将其面积平分,认真观察图形,用所得到的结论或启示将下面每个图形(或其阴影部分)的面积平分。
(不写画法,保留作图痕迹)(1)(2)7. 如图,,□ABCD中,点E,F在直线AC上(点E在点F左侧),BE∥DF。
八年级数学四边形证明(四边形性质探索)拔高练习(含答案)
八年级数学四边形证明(四边形性质探索)拔高练
习
试卷简介:本卷共一道证明题,时间20分钟,满分100分。
学习建议:认真领会四边形证明的特征,寻找有利条件进行证明。
一、证明题(共1道,每道100分)
1.如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)证明:△ABF≌△ECF
(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
答案:(1)证明:∵AB∥CE ∴∠BAF=∠CEF,∠ABF=∠FCE 又∵AB=CD=CE ∴△ABF≌△ECF(ASA)(2)由△ABF≌△ECF得:AB=EC 再由题意中AB∥EC可得:四边形ABEC为平行四边形∵BC∥AD ∴∠D=∠BCE ∵∠AFC=2∠D ∴∠AFC=2∠BCE ∵∠AFC为△EFC的一个外角∴∠AFC=∠BCE+∠FEC 从而∠BCE=∠FEC,即EF=FC ∴AE=BC ∴四边形ABEC为矩形
解题思路:观察图形找矩形的判别条件
易错点:∠AFC=2∠D怎样运用
试题难度:四颗星知识点:平行四边形的判定
第 1 页共 1 页。
平行四边形证明典型题
平行四边形证明典型题1.已知平行四边形ABCD,点E在AD上,且AE=AB。
BE和CD的延长线交于F,且∠BFC=40°。
求平行四边形ABCD各内角的度数。
2.已知平行四边形一组邻角的比是2∶3.求它的四个内角的度数。
3.平行四边形ABCD中,以AD、BC为边在形外作等边三角形ADE和CBF,连结BD、EF,且它们相交于O。
证明EO=FO,DO=BO。
4.已知平行四边形ABCD中,AD=2AB。
延长AB到F,使BF=AB。
延长BA到E使AE=AB。
证明XXX。
5.已知平行四边形ABCD,直线FH与AB、CD相交。
过A、B、C、D向FH作垂线,垂足为E、H、G、F。
证明AE-DF=CG-BH。
6.平行四边形ABCD中,E为DC中点,延长BE与AD 的延长线交于F。
证明E为BF中点,D为AF的中点。
7.平行四边形ABCD中,以BC、CD为边向内作等边三角形BCE和CDF。
证明△AEF为等边三角形。
8.在△ABC中,BD平分∠B,DE∥BC交AB于E,EF∥AC交BC于F。
证明BE=FC。
9.平行四边形ABCD中,E是AB的中点,F是CD中点,分别延长BA和DC到G、H,使AG=CH。
连结GF、EH。
证明GF∥EH。
10.平行四边形ABCD中,E、F分别在AD、BC上,且AE=CF。
AF与BE相交于G,CE与DF相交于H。
证明EF与GH互相平分。
11.在四边形ABCD中,AB∥DC,对角线AC、BD交于O。
EF过O交AB于E,交DC于F,且OE=OF。
证明四边形ABCD是平行四边形。
12.已知△ABC,分别以AB、BC、AC为边向BC同侧作等边三角形ABE、BCD、ACF。
证明DEAF为平行四边形。
13.已知四边形ABCD中,AB=DC,AE⊥BD,CF⊥BD,垂足分别是E、F,AE=CF。
证明四边形ABCD是平行四边形。
14.点O是平行四边形ABCD的对角线的交点,△AOB的面积为7cm。
中考专题百题过关训练 08四边形证明题
001(2019•安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.002(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD 上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=1,2求AO的长.003(2019•福建)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF =BE.求证:AF=CE.004(2019•甘肃)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A 作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.005(2019•海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P 是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.006(2019•江西)(1)计算:﹣(﹣1)+|﹣2|+(√2019−2)0;(2)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA =OD.求证:四边形ABCD是矩形.007(2019•贵阳)如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;,求点B到点E的距离.(2)若DA=DB=2,cos A=14008(2019•云南)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.009(2019•新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.010(2019•宁夏)如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF ⊥EC,且AE=CD.(1)求证:AF=DE;AD,求tan∠AFE.(2)若DE=25011(2019•包头)如图,在四边形ABCD中,AD∥BC,AB=BC,∠BAD=90°,AC 交BD于点E,∠ABD=30°,AD=√3,求线段AC和BE的长.(注:a+b =√a−√b(a+b)(a−b)=√a−√ba−b)012(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.013(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.014(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:015(2019•梧州)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.016(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2√2,EB=4,tan∠GEH=2√3,求四边形EHFG的周长.017(2019•大庆)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.018(2019•哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面.积的18019(2019•本溪)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.020(2019•沈阳)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;,∠CBG=45°,BC=4√2,则▱ABCD的面积是.(2)若tan∠CAB=25021(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.022(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.023(2019浙江宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.024(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.025(2019•鄂州)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.026(2019•荆门)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2√13.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.027(2019•天门)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.028(2019•郴州)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.029(2019•怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.030(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA (不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.031(2019•湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.032(2019•岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE =DF,求证:∠1=∠2.033(2019•张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.034(2019•长沙)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.035(2019•株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=1,2求正方形OEFG的边长.036(2019•常州)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.037(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.038(2019•南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE 相交于点F.求证:△ADF≌△CEF.039(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD 上,且BE=DF=3.2(1)求证:四边形AECF是菱形;(2)求线段EF的长.040(2019•徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.041(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE =8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.042(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.043(2019•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.044(2019•潍坊)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.045(2019•广安)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.046(2019•凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.047(2019•内江)如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.048(2019•遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.049(2019•雅安)如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.050(2018辽宁鞍山)如图,在矩形ABCD中,分别取AB,BC,CD,DA的中点E,F,G,H,连接EF,FG,GH,HE,求证:四边形EFGH是菱形.051(2018北京)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.052(2018陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.053(2018•宁夏)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.054(2018福建A)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.055(2018重庆A)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.056(2018•重庆B)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.057(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.058(2018•乌鲁木齐)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.059(2018新疆)(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC 上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.060(2018•曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.061(2018内蒙包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)062(2018贵州毕节)如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.063(2018•贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE 的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.064(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.065(2018甘肃)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.066(2018•广西)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.067(2018•柳州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.068(2018广西玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.069(2018 广西梧州)如图,在▱ABCD 中,对角线AC,BD 相交于点O,过点O 的一条直线分别交A D,BC 于点E,F.求证:AE=CF.070(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.071(2018辽宁沈阳)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C 作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.072(2018湖北恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.073(2018湖北黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.074(2018•本溪)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED 的周长.075(2018湖北孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.076(2018湖南郴州)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.077(2018湖南娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.078(2018湖南湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.079(2018湖南湘西州)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.080(2018湖南永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.081(2018湖南岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE 是平行四边形.082(2018湖南张家界)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证.DF=AB;(2)若∠FDC=30°,且AB=4,求AD.083(2018湖南株洲)如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB 和AD,其中AM=AN.(1)求证:Rt△ABM≌Rt△AND;(2)线段MN与线段AD相交于T,若AT=,求tan∠ABM的值.084(2018江苏淮安)已知:如图,▱ABCD的对角线AC、BD相交于点O,过点O 的直线分别与AD、BC相交于点E、F.求证:AE=CF.085(2018江苏南京)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.086(2018江苏南通)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC 延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.087(2018江苏无锡市)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE.088(2018江苏宿迁)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H.求证:AG=CH.089(2018江苏盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.090(2018江苏扬州)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.091(2018浙江杭州•临安)(6分)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.092(2018浙江衢州)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.093(2018浙江温州)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.094(2018四川巴中)如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.095(2018四川广安)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.096(2018四川南充)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.097(2018四川内江)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.098(2018四川遂宁)如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.099(2018山东聊城)如图,正方形ABCD中,E是BC上的一点,连接AE,过B 点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.100(2018山东青岛)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.。
四边形证明题(精选多篇)
四边形证明题(精选多篇)第一篇:特殊平行四边形:证明题特殊四边形之证明题1、如图8,在abcd中,e,f分别为边ab,cd的中点,连接de,bf,bd.?(1)求证:△ade≌△cbf.(2)若ad?bd,则四边形bfde是什么特殊四边形?请证明你的结论.f ca e b2、如图,四边形abcd中,ab∥cd,ac平分?bad,ce∥ad交ab于e.(1)求证:四边形aecd是菱形;(2)若点e是ab的中点,试判断△abc的形状,并说明理由.3.如图,△abc中,ac的垂直平分线mn交ab于点d,交ac于点o,ce∥ab交mn于e,连结ae、cd.(1)求证:ad=ce;(2)填空:四边形adce的形状是.admnb4.如图,在△abc中,ab=ac,d是bc的中点,连结ad,在ad的延长线上取一点e,连结be,(1)求证:△abe≌△(2)当ae与ad满足什么数量关系时,四边形abec是菱形?并说明理由5.如图,在△abc和△dcb中,ab = dc,ac = db,ac与db交于点m.(1)求证:△abc≌△dcb ;(2)过点c作cn∥bd,过点b作bn∥ac,cn与bn交于点n,试判断线段bn与cn的数量关系,并证明你的结论.6、如图,矩形abcd中,o是ac与bd的交点,过o点的直线ef与ab,cd的延长线分别交于e,f.(1)求证:△boe≌△dof;(2)当ef与ac满足什么关系时,以a,e,c,f为顶点的四边形是菱形?证明你的结论.fabed b n7.600,它的两底分别是16cm、30cm。
求它的腰长。
(两种添线方法)c8.如图(七),在梯形abcd中,ad∥bc,ab?ad?dc,ac?ab,将cb延长至点f,使bf?cd.(1)求?abc的度数;(2)求证:△caf为等腰三角形.cb 图七f第二篇:平行四边形证明题平行四边形证明题由条件可知,这是通过三角形的中位线定理来判断fg平行da,同理he平行da,ge平行cb,fh平行cb!~我这一化解,楼主应该明白了吧!~希望楼主采纳,谢谢~!不懂再问!!!此题关键就是对于三角形的中位线定理熟不!~!~·已知:f,g是△cda的中点,所以fg是△cda的中位线,所以fg平行da同理he是△bad的中位线,所以he平行da,所以fg平行he同理可得:fh平行ge!~即四边形fgeh是平行四边形(两组对边分别平行的四边形是平行四边形2证明:∵e,f,g,h分别是ab,cd,ac,bd的中点∴fg//ad,he//ad,fh//bc,eg//bc∴fg//he,fh//eg∴四边形egfh是平行四边形3.理由:连接一条对角线,ac吧。
初二下四边形证明题含答案
一:解答题1、已知:如图7,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。
求证:∠CDF=∠ABE2、如图8,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H.求证:HC=HF.3、已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△AB外角∠CAM的平分线,CE⊥AN,垂足为点E,猜想四边形ADCE的形状,并给予证明.4、如图10,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形.答案:1、证明:(1)∵ ABCD 是平行四边形,∴DC=AB ,DC ∥AB,∴∠DCF=∠BAE ,∵ AE=CF , ∴△ADF ≌△CBE ,∴∠CDF =∠ABE2、如图8,把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H .求证:HC=HF.解:证明:连结AH ,∵四边形ABCD ,AEFG 都是正方形.∴90B G ∠=∠=°,AG AB =,BC=GF ,又AH AH =.Rt Rt ()AGH ABH HL ∴△≌△,HG HB =∴,∴HC=HF.3、解:猜想四边形ADCE 是矩形。
证明:在△A BC 中, AB =AC ,AD ⊥BC . ∴ ∠BAD =∠DA C .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠.∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.又 ∵ AD ⊥BC ,CE ⊥AN ,∴ ADC CEA ∠=∠=90°,∴ 四边形ADCE 为矩形.4、证明:根据题意可知 DE C CDE 'ΔΔ≅则 '''CD C D C DE CDE CE C E =∠=∠=,,∵AD//BC ∴∠C ′DE=∠CED ,∴∠CDE=∠CED ∴CD=CE ∴CD=C ′D=C ′E=CE ∴四边形CDC ′E 为菱形1.如图,正方形ABCD 和正方形A ′OB ′C ′是全等图形,则当正方形A•′OB ′C ′绕正方 形ABCD 的中心O 顺时针旋转的过程中. (1)四边形OECF 的面积如何变化.(2)若正方形ABCD 的面积是4,求四边形OECF 的面积.解:在梯形ABCD 中由题设易得到:△ABD 是等腰三角形,且∠ABD=∠CBD=∠ADB=30°.过点D 作DE ⊥BC ,则DE=12BD=23,BE=6。
多边形证明 --特殊四边形证明(解析版)-中考数学重难点题型专题汇总
多边形证明-中考数学重难点题型特殊四边形证明(专题训练)1.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.【分析】根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.【解答】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,AB=AD∠B=∠DBE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.2.如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.【分析】四边形ABCD是菱形,可得AB=BC=CD=DA,∠DCA=∠BCA,∠DAC=∠BAC,可以证明△CDF≌△CBF,△DAE≌△BFC,△DCF≌△BEA,进而证明平行四边形BEDF是菱形.【解答】证明:∵四边形ABCD是菱形,∴BC=CD,∠DCA=∠BCA,∴∠DCF=∠BCF,∵CF=CF,∴△CDF≌△CBF(SAS),∴DF=BF,∵AD∥BC,∴∠DAE=∠BCF,∵AE=CF,DA=AB,∴△DAE≌△BFC(SAS),∴DE=BF,同理可证:△DCF≌△BEA(SAS),∴DF=BE,∴四边形BEDF是平行四边形,∵DF=BF,∴平行四边形BEDF是菱形.3.如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.【答案】证明见试题解析.【分析】由矩形的性质和已知得到DF=BE,AB∥CD,故四边形DEBF是平行四边形,即可得到答案.【详解】∵四边形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE=BF.考点:1.矩形的性质;2.全等三角形的判定.4.已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.【分析】只要证明△AOD≌△EOC(ASA)即可解决问题;【解答】证明:∵O 是CD 的中点,∴OD=CO,∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO 和△ECO 中,∠D =∠OCE OD =OC ∠AOD =∠EOC ,∴△AOD≌△EOC(ASA),∴AD=CE.5.如图,在▱ABCD 中,点E 在AB F 在CD 的延长线上,满足BE=DF.连接EF,分别与BC,AD 交于点G,H.求证:EG=FH.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AB∥CD,∠ABC=∠FDH,在△BEG 与△DFH 中,∠E =∠F BE =DF ∠EBG =∠FDH ,∴△BEG≌△DFH(ASA),∴EG=FH.6.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=32,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=32,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.7.已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【解析】证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.【点睛】本题考查了平行四边形的性质、等腰三角形的判定、菱形的判定,解题关键是熟练运用相关知识进行推理证明,特别注意角平分线加平行,可证等腰三角形.8.如图,四边形ABCD 是菱形,点E 、F 分别在边AB 、AD 的延长线上,且BE DF =.连接CE 、CF .求证:CE CF =.【答案】见解析【分析】根据菱形的性质得到BC=CD,∠ADC=∠ABC,根据SAS 证明△BEC≌△DFC,可得CE=CF.【详解】解:∵四边形ABCD 是菱形,∴BC=CD,∠ADC=∠ABC,∴∠CDF=∠CBE,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△DFC(SAS),∴CE=CF.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.9.如图,在ABC 中,BAC ∠的角平分线交BC 于点D,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE 是正方形,根据对角线AD 求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE 是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE 是平行四边形,∵AD 平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE 是菱形;(2)∵∠BAC=90°,∴四边形AFDE 是正方形,∵AD=,=2,∴四边形AFDE 的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.10.如图,矩形ABCD 的对角线AC、BD 相交于点O,//BE AC ,//AE BD .(1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,4AC =,求菱形AOBE 的面积.【答案】(1)证明过程见解答;(2)【分析】(1)根据BE∥AC,AE∥BD,可以得到四边形AOBE 是平行四边形,然后根据矩形的性质,可以得到OA=OB,由菱形的定义可以得到结论成立;(2)根据∠AOB=60°,AC=4,可以求得菱形AOBE 边OA 上的高,然后根据菱形的面积=底×高,代入数据计算即可.【解析】解:(1)证明:∵BE∥AC,AE∥BD,∴四边形AOBE 是平行四边形,∵四边形ABCD 是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OB,∴四边形AOBE 是菱形;(2)解:作BF⊥OA 于点F,∵四边形ABCD 是矩形,AC=4,∴AC=BD=4,OA=OC=12AC,OB=OD=12BD,∴OA=OB=2,∵∠AOB=60°,∴BF=OB•sin∠AOB=2=∴菱形AOBE的面积是:OA•BF=2【点睛】本题考查菱形的判定、矩形的性质,解答本题的关键是明确菱形的判定方法,知道菱形的面积=底×高或者是对角线乘积的一半.11.如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB AE=,求证:四边形ACED是矩形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED 是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED 是平行四边形,∴四边形ACED 是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.12.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O,过点O 的直线EF 与BA、DC 的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.【答案】(1)见解析;(2)EF⊥BD 或EB=ED,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF;(2)连接BF,DE,由AOE COF V V ≌,得到OE=OF,又AO=CO,所以四边形AECF 是平行四边形,则根据EF⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA=OC,BE∥DF∴∠E=∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE=CF(2)当EF⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF,DE∵四边形ABCD 是平行四边形∴OB=OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF⊥BD,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.13.如图,在▱ABCD 中,对角线AC 与BD 相交于点O,点E,F 分别在BD 和DB 的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD 平分∠ABC 时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,∠ADC=∠CBA,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC ⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.14.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF ⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.【分析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)证明△AEO≌△CFO(AAS)可得结论.【解答】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD∥BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.15.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=12∠BAD,∠DCF=12∠BCD,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.16.如图,点E 是▱ABCD 的边CD 的中点,连结AE 并延长,交BC 的延长线于点F.(1)若AD 的长为2,求CF 的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F 的度数.【分析】(1)由平行四边形的性质得出AD∥CF,则∠DAE=∠CFE,∠ADE=∠FCE,由点E 是CD 的中点,得出DE=CE,由AAS 证得△ADE≌△FCE,即可得出结果;(2)添加一个条件当∠B=60°时,由直角三角形的性质即可得出结果(答案不唯一).【解析】(1)∵四边形ABCD 是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E 是CD 的中点,∴DE=CE,在△ADE 和△FCE 中,∠DAE =∠CFE ∠ADE =∠FCE DE =CE ,∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).17.如图,四边形ABCD 是平行四边形,DE∥BF,且分别交对角线AC 于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD 为菱形.【分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE=∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF 全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵DE∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,在△ADE和△CBF中,∠DAE=∠BCF∠AED=∠CFBAD=CB,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:由(1)知△ADE≌△CBF,则DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.18.如图,点E,F在▱ABCD的边BC,AD上,BE=13BC,FD=13AD,连接BF,DE.求证:四边形BEDF是平行四边形.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,进而得出DF=BE,利用平行四边形的判定解答即可.【解析】∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=13BC,FD=13AD,∴BE=DF,∵DF∥BE,∴四边形BEDF是平行四边形.20.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=12BD=12,OM=12MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD 和△NOB 中,∠DMO =∠BNO ∠MOD =∠NOB OD =OB ,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM 是平行四边形,∵MN⊥BD,∴四边形BNDM 是菱形;(2)解:∵四边形BNDM 是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB =12BD=12,OM =12MN=5,在Rt△BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13,∴菱形BNDM 的周长=4BM=4×13=52.。
四边形证明(习题及答案)
四边形证明(习题)➢例题示范例1:如图,在□ABCD 中,E 是BC 边的中点,连接AE 并延长,交DC 的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC,BF,若∠AEC=2∠D,求证:四边形ABFC 为矩形.【思路分析】①读题标注:②梳理思路:(1)在□ABCD 中,AB∥CD,因为E 是BC 边的中点,平行夹中点结构,所以△ABE≌△FCE.(2)由(1)可得,AB=FC,因为AB∥FC,所以四边形ABFC 是平行四边形.要证四边形ABFC 为矩形,根据题目中已有的条件选择判定定理:有一个角是直角的平行四边形是矩形.由三角形外角定理和等角对等边得到AE=BE=CE,由定理“如果三角形的一边中线等于这边的一半,那么这个三角形是直角三角形”,得∠BAC=90°,故四边形ABFC 为矩形.【过程书写】证明:如图,(1)∵四边形ABCD 是平行四边形∴AB∥CD∴∠1=∠2∵E 是BC 边的中点∴BE=CE∵∠3=∠4∴△ABE≌△FCE(ASA)(2)∵△ABE≌△FCE∴AB=FC∵AB∥FC∴四边形ABFC 为平行四边形∴∠D=∠1∵∠AEC=2∠D∴∠AEC=2∠1∵∠AEC 是△ABE 的一个外角∴∠AEC=∠1+∠5∴∠1=∠5∴AE =BE=CE∴∠BAC=90°∴四边形ABFC 为矩形➢巩固练习1.如图,在四边形ABCD 中,AD∥BC,点E,F 在边BC 上,且AB∥DE,AF∥DC,四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由.(2)当AB=DC 时,求证:平行四边形AEFD 是矩形.2.如图,在矩形ABCD 中,O 是对角线AC,BD 的交点,过点O的直线分别交AB,CD 的延长线于点E,F.(1)求证:△BOE≌△DOF;(2)当EF 与AC 满足什么关系时,以A,E,C,F 为顶点的四边形是菱形?证明你的结论.3.如图,在△ABC 中,D 是AB 的中点.E 是CD 的中点,过点C 作CF∥AB,交AE 的延长线于点F,连接BF.(1)求证:DB=CF;(2)若AC=BC,试判断四边形CDBF 的形状,并证明你的结论.4.如图,在矩形ABCD 中,M,N 分别是AD,BC 的中点,P,Q 分别是BM,DN 的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ 是什么样的特殊四边形?请说明理由.5.如图,在△ABC 中,O 是AC 边上的一动点,过点O 作直线MN∥BC,直线MN 与∠ACB 的平分线相交于点E,与∠DCA (△ABC 的外角)的平分线相交于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC 的长;(3)当点O 运动到何处时,四边形AECF 是矩形?请证明你的结论.【参考答案】➢巩固练习1.(1)BC=3AD,理由略(2)证明略2.(1)证明略(2)当EF⊥AC 时,以A,E,C,F 为顶点的四边形是菱形证明略3.(1)证明略提示:证明△ADE≌△FCE,则DB=DA=CF(2)四边形CDBF 是矩形,证明略提示:先证四边形CDBF 是平行四边形,因为AC=BC,D 是AB 的中点,所以∠BDC=90°,进而得证4.(1)证明略(2)四边形MPNQ 是菱形,理由略提示:由△MBA≌△NDC 得,BM=DN连接MN,则四边形AMNB,四边形DMNC 均为矩形,可利用直角三角形中斜边中线等于斜边一半进行证明5.(1)证明略提示:由角平分线+平行线,可以得到OE=OC,OF=OC13(2)OC2(3)当点O 运动到AC 中点时,四边形AECF 是矩形,证明略。
人教版初二数学8年级下册 第18章(平行四边形)证明题专题训练(含答案)
人教版八年级下册数学第十八章平行四边形证明题专题训练1.如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE=CF.求证:四边形EBFD 是平行四边形.2.如图,在△ABC中,点D,E分别是BC,AC的中点,延长BA至点F,使得AF= 1AB,连接DE,AD,EF,DF.2(1)求证:四边形ADEF是平行四边形;(2)若AB=6,AC=8,BC=10,求EF的长.的对角线AC的垂直平分线与边AD,BC分别相交于点E,3.如图所示,ABCDF.求证:四边形AFCE是菱形.AC BD交于点,O过点O任作直线分别交4.如图,在平行四边形ABCD中,对角线,AB CD于点E F,、.求证:OE OF =.5.已知:如图,在ABCD 中,,E F 是对角线BD 上两个点,且BE DF =.求证:.AE CF =6.已知:如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别相交于点E 、F .(1)求证:△BOE ≌△DOF ;(2)当EF 与AC 满足什么关系时,以A 、E 、C 、F 为顶点的四边形是菱形?并给出证明.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)求证:四边形AEBO 的为矩形;(2)若OE =10,AC =16,求菱形ABCD 的面积.8.已知:如图,在ABC 中,中线,BE CD 交于点,,O F G 分别是,OB OC 的中点.求证:(1)//DE FG ;(2)DG 和EF 互相平分.9.如图,在平行四边形ABCD 中,AC 是对角线,且AB =AC ,CF 是∠ACB 的角平分线交AB 于点F ,在AD 上取一点E ,使AB =AE ,连接BE 交CF 于点P .(1)求证:BP =CP ;(2)若BC =4,∠ABC =45°,求平行四边形ABCD 的面积.10.如图,AB,CD相交于点O,AC∥DB,OA=OB,E、F分别是OC,OD中点.(1)求证:OD=OC.(2) 求证:四边形AFBE平行四边形.11.如图所示,在菱形ABCD中,E、F分别为AB、AD上两点,AE=AF.(1)求证:CE=CF;(2)若∠ECF=60°,∠B=80°,试问BC=CE吗?请说明理由.12.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)当AB:AD的值为多少时,四边形MENF是正方形?请说明理由.13.如图,在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD 和CB于点E,F连接AF,CE.(1)求证:OE=OF;(2)求证:四边形AFCE是菱形.14.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC 于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.15.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.16.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D在AB边上一点.过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当点D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.17.如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD、EC.(1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案:1.解:证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形EBFD是平行四边形.2.(1)证明:∵点D,E分别是BC,AC的中点,∴DE是△ABC的中位线,∴DE∥AB,DE=12 AB,∵AF=12 AB,∴DE=AF,DE∥AF,∴四边形ADEF是平行四边形;(2)解:由(1)得:四边形ADEF是平行四边形,∴EF=AD,∵AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∵点D是BC的中点,∴AD=12BC=5,∴EF=AD=5.3.证明:∵四边形ABCD 是平行四边形∴//AE FC ,AO CO =,∴EAC FCA ∠=∠,∵EF 是AC 的垂直平分线,∴EF AC ⊥,在AOE △与COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△,∴EO FO =,∴四边形AFCE 为平行四边形,又∵EF AC ⊥,∴四边形AFCE 为菱形.4.解:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠EAO =∠FCO ,在△AEO 和△CFO 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO ≌△CFO (ASA ),∴OE =OF .5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠ABE =∠CDF .在△ABE 和△CDF 中AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS )∴AE =CF .6.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形. 证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.7.解:(1)证明:∵//BE AC ,//AE BD ,∴四边形AEBO 为平行四边形,又∵四边形ABCD 为菱形,∴BD AC ⊥,∴90AOB ∠=︒,∴平行四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形,∴AB =OE =10,又∵四边形ABCD 为菱形,∴AO =12AC =8,∴90AOB ∠=︒,∴6BO ==,∴BD =2BO =12,∴菱形ABCD 的面积=12121696⨯⨯=.8.(1)在△ABC 中,∵BE 、CD 为中线∴AD =BD ,AE =CE ,∴DE ∥BC 且DE =12BC .在△OBC 中,∵OF =FB ,OG =GC ,∴FG ∥BC 且FG =12BC .∴DE ∥FG(2)由(1)知:DE ∥FG ,DE =FG .∴四边形DFGE 为平行四边形.∴DG 和EF 互相平分9.解:(1)设AP 与BC 交于H ,∵在平行四边形ABCD 中,AD ∥BC ,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=12BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.10.证明:(1)∵AC∥DB,∴∠CAO=∠DBO,∵∠AOC=∠BOD,OA=OB,∴△AOC≌△BOD,∴OC=OD;(2)∵E是OC中点,F是OD中点,∴OE=12OC,OF=12OD,∵OC=OD,∴OE=OF,又∵OA=OB,∴四边形AFBE是平行四边形.11.(1)证明:∵ABCD是菱形,∴AB =AD ,BC =CD ,∠B =∠D ,∵AE =AF ,∴AB ﹣AE =AD ﹣AF ,∴BE =DF ,在△BCE 与△DCF 中,∵BE DF B D BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF ,∴CE =CF ;(2)结论是:BC =CE .理由如下:∵ABCD 是菱形,∠B =80°,∴∠A =100°,∵AE =AF ,∴180100402AEF AFE ︒-︒∠=∠==︒由(1)知CE =CF ,∠ECF =60°,∴△CEF 是等边三角形,∴∠CEF =60°,∴∠CEB =180°﹣60°﹣40°=80°,∴∠B =∠CEB ,∴BC =CE .12.(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°,∵M 为AD 中点,∴AM =DM ,在△ABM 和△DCM ,AM DM A D AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)解:当AB :AD =1:2时,四边形MENF 是正方形,理由:当四边形MENF 是正方形时,则∠EMF =90°,∵△ABM ≌△DCM ,∴∠AMB =∠DMC =45°,∴△ABM 、△DCM 为等腰直角三角形,∴AM =DM =AB ,∴AD =2AB ,即当AB :AD =1:2时,四边形MENF 是正方形.13.解:(1)∵四边形ABCD 是矩形,∴//AD BC ,∴∠EAO =∠FCO ,∵AC 的中点是O ,∴OA =OC ,在EOA △和FOC 中,AOE COF AO COEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EOA FOC ASA ∴ ≌,∴OE =OF ;(2)∵OE =OF ,AO =CO ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴四边形AFCE 是菱形.14.证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD平分∠ABC,∠ABC,∴∠ABD=∠DBF=12∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,DF,DH,∴FH=12∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC DH=6,∴DF=,∴菱形BEDF的边长为15.(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt △ABG 和Rt △AFG 中,AG=AG AB=AF ⎧⎨⎩,∴△ABG ≌△AFG (HL );(2)∵△ABG ≌△AFG ,∴∠BAG =∠FAG ,∴∠FAG =12∠BAF ,由折叠的性质可得:∠EAF =∠DAE ,∴∠EAF =12∠DAF ,∴∠EAG =∠EAF +∠FAG =12(∠DAF +∠BAF )=12∠DAB =12×90°=45°;(3)∵E 是CD 的中点,∴DE =CE =12CD =12×6=3,设BG =x ,则CG =6﹣x ,GE =EF +FG =x +3,∵GE 2=CG 2+CE 2∴(x +3)2=(6﹣x )2+32,解得:x =2,∴BG =2.16.(1)证明:∵DE ⊥BC ,∴∠DFB =90°,∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE ,∵MN ∥AB ,即CE ∥AD ,∴四边形ADEC 是平行四边形,∴CE =AD ;(2)解:四边形BECD 是菱形,理由是:∵D 为AB 中点,∴AD =BD ,∵CE =AD ,∴BD =CE ,∵BD ∥CE ,∴四边形BECD 是平行四边形,∵∠ACB =90°,D 为AB 中点,∴CD =BD ,∴四边形BECD 是菱形.17.(证明:(1)∵四边形ABDE 是平行四边形(已知),∴AB ∥DE ,AB =DE (平行四边形的对边平行且相等);∴∠B =∠EDC (两直线平行,同位角相等);又∵AB =AC (已知),∴AC =DE (等量代换),∠B =∠ACB (等边对等角),∴∠EDC =∠ACD (等量代换);∵在△ADC 和△ECD 中,AC ED ACD EDC DC CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ECD (SAS );(2)∵四边形ABDE 是平行四边形(已知),∴BD ∥AE ,BD =AE (平行四边形的对边平行且相等),∴AE ∥CD ;又∵BD =CD ,∴AE =CD (等量代换),∴四边形ADCE 是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC (等腰三角形的“三合一”性质),∴∠ADC =90°,∴▱ADCE 是矩形.18.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF =⎧⎨=⎩,∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.19.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴∠CBE=∠AEB ,∵EB 平分∠AEC ,∴∠CBE=∠BEC ,∴CB=CE ,∴△CBE 是等腰三角形;(2)如图2中,∵四边形ABCD 是平行四边形,∠A=90°,∴四边形ABCD 是矩形,∴∠A=∠D=90°,BC=AD=5,在Rt △ECD 中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,3AB CD ∴====,在Rt AEB 中,∵∠A=90°,AB=3.AE=1,BE ∴===20.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC ,∠AFD=∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC=∠ACD ,∵∠BAC=∠DAC ,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.。
八年级数学下册四边形分类证明题
平行四边形如图, Y ABCD的对角线AC,BD订交于点O,EF过点O,与BC,AD分别订交于点 E,F,?求证:OE=OF.如图,在平行四边形ABCD 中,DB =DC,∠C=70°,AE⊥BD 于 E,求∠DAE 的度数 .D CEA B已知:如下图,平行四边形ABCD 的对角线AC,BD 订交于点O,EF 经过点O 而且分别和 AB,CD 订交于点 E,F,点 G,H 分别为 OA ,OC 的中点.求证:四边形 EHFG 是平行四边形.如下图,在四边形ABCD 中, M 是 BC 中点, AM 、BD 相互均分于点 O,那么请说明 AM=DC且AM∥DC A DOBM C矩形如下图,在△ ABC 中,∠ABC=90°,BD 是△ ABC 的中线,延伸 BD 到 E,使DE=BD ,连结 AE,CE,求证:四边形 ABCE 是矩形.如图,矩形 ABCD 中, AB=3,BC=4,点 E 是 BC 边上一点,连结AE,把∠B 沿 AE 折叠,使点 B 落在点 B′处,当△ CEB′为直角三角形时,求BE 的长A DB′B E C如图,折叠长方形的一边,使点落在边上的点处,,,求:(1)的长;(2)的长.正方形如下图不,在正方形ABCD 中, M 是 BC 上一点,连结AM ,作 AM 的垂直均分线 GH 交 AB 于 G,交 CD 于 H ,若 AM=10cm,求 GH 的长。
A DHGB M C菱形如图,在菱形 ABCD 中,E 是 AB 的中点,且DE AB, AB a ,求:(1)ABC 的度数;(2)对角线AC的长;(3)菱形ABCD的面如图,在 Rt △ ABC 中,ACB 90 ,E为AB的中点,四边形BCDE是平行四边形.求证: AC 与 DE 相互垂直均分例 6、如图,在是△ ABC 中,∠ ACB=90 °, BC 的垂直均分线 DE 交 BC 于D,交 AB 于 E,点 F 在直线 DE 上, AF=CE .(1)说明,四边形 ACEF 是平行四边形;(2)当∠ B 的大小知足什么条件时,四边形 ACEF 是菱形?说明原因.(3)四边形 ACEF 可能是正方形吗?说明原因.BF E DA C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形1.已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AF=EC.求证:DE=BF.3.已知:如图,在平行四边形ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,AE = CG ,AH = CF ,且EG 平分HEF ∠. 求证:(1) △AEH ≌△CGF ;(2) 四边形EFGH 是菱形.4.如图,矩形ABCD 中,M 是BC 边上的中点,AB 、BM (AB>BM )的长是一元二次方程01272=+-x x 的两个根,求顶点D 到直线AM 的距离。
5.如图,已知在平行四边形ABCD 中,以AC 为斜边作Rt ⊿ACE ,且∠BED 为直角,求证:平行四边形ABCD 是矩形。
6.(2010山东青岛市) 已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.FD CE A OB AD CE DA DB E FO CD(第3题图)(图1)(图2)A B C D E F 7.如图,把矩形ABCD 的一边AB 沿直线AP 对折过来,使点B 落在边CD 上的点E 处,已知AB=15cm ,BC=12cm ,求折痕线AP 的长。
8.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE 。
已知∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF 。
(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形。
10.如图,已知菱形ABCD 中,点E 、F 分别在AB ,AD 上,且AE =AF ,求证:EC=FC.11.如图(1),在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H . (1)求证:CF =CH ; (2)如图(2),△ABC 不动,将△EDC 绕点C 旋转到∠BCE=45时,试判断四边形ACDM 是什么四边形?并证明你的结论.13.已知:正方形ABCD 的周长为16cm ,E 为AB 的中点,F 为BC 上一点,且BF ∶FC=1∶3,求:△DEF 的周长和面积.14.已知P 是正方形ABCD 的对角线BD 上的一点,PE ⊥BC ,PF ⊥CD ,E 、F 为垂足。
求证:AP=EF 。
D F B PEB A15.在正方形ABCD 中,M 、N 分别为AD 、CD 的中点,且CM 和BN 相交于P 点。
求证:PA=AB 。
16.如图,已知一个边长为3的正方形ABCD ,CN=2NB ,把AD 沿EF 翻折,使点A 和点N 重合,求S ⊿AFN 。
17.如图,正方形ABCD 中先折出折痕BD ,再折叠DA ,使其与DB 重合,得折痕DG ,设点A 与DB 上点H 重合,AB=2,求AG 的长。
18.(2008年上海市)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形; (2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.19.已知如图在梯形ABCD 中,AB ∥CD ,AD=AB=BC=6,CD=4,延长AB 到E ,使BE=CD ,过A 作AF ⊥CE 于F ,交DB 于G 。
(1)试证:△DAG ∽△EAF ; (2)求cos ∠ACF 的值。
B N M DC P GHD C A D EA第20题20. 如图,梯形ABCD 中,AB ∥CD ,︒=∠=∠90C B ,点F 在BC 边上(BF >CF ),DF AF ⊥,10,3,8===BC CD AB .求:(1)CF 的长;(6分)(2)FAD tg ∠的值.(4分)21. (2010·浙江湖州)如图,已知在梯形ABCD 中,DC ∥AB ,AD =BC ,BD 平分∠ABC ,∠A =60°.(1)求∠ABD 的度数; (2)若AD =2,求对角线BD 的长.22.如图,在ABC △中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作AF ∥BC 交ED 的延长线于点F ,联结AE CF ,.求证:(1)四边形AFCE 是平行四边形;(6分)(2)AE CE BE FG ⋅=⋅. (6分)23.如图,⊿ABC 中,点D 是BC 的中点,点E 是AD 的中点,连接BE 并延长交AC 于F ,求证:FC=2AF.ADC A E CBF DG24.如图,梯形ABCD 中,AB ∥CD ,DE ∥BC 交AB 于E ,交对角线AC 于F ,求证:S ⊿ACD =S ⊿BCF .25.已知:如图,AM 是△ABC 的中线,D 是线段AM 的中点,AM =AC ,AE ∥BC . 求证:四边形EBCA 是等腰梯形.26.如图,⊿ABC 中,AD ⊥BC ,垂足为D ,点E 、F 、G 分别是AC 、AB 、BC 的中点,求证:四边形DEFG 是等腰梯形.27.(2010昆明)已知:如图,在梯形ABCD 中,AD ∥BC ,∠DCB = 90°,E 是AD 的中点,点P 是BC 边上的动点(不与点B 重合),EP 与BD 相交于点O. (1)当P 点在BC 边上运动时,求证:△BOP ∽△DOE ;(2)设(1)中的相似比为k ,若AD ︰BC = 2︰3. 请探究:当k 为下列三种情况时,四边形ABPE 是什么四边形?①当k = 1时,是 ;②当k = 2时,是 ;③当k = 3时,是 . 并证明...k = 2时的结论.C ABDE POC28.已知:四边形ABCD 中,AB ∥CD ,AD=BC ,延长AB 到E , 使BE=CD , 求证:△AEC 是等腰三角形.29.已知:梯形ABCD 中,AB ∥CD ,E 为DA 的中点,且BC=DC+AB.求证:BE ⊥EC.30.已知:△ABC 中,∠ACB=90°,CD ⊥AB 于D ,BE 是角平分线,EF ⊥AB 于F ,BE 、CD 相交于G ,求证:四边形CEFG 是菱形.31.已知:梯形ABCD 中,AD ∥BC ,E 、F 分别是两条对角线的中点,若AD=4cm ,BC=10cm ,求:EF.D C B AE32.如图1,梯形ABCD 中,AD//BC ,AD ⊥DC ,M 为AB 的中点.(1)求证:MD=MC ; (2)平移AB 使AB 与CD 相交,且保持AD//BC 与 AD ⊥DC ,M 仍为AB 的中点(如图2),试问(1)的结论是否仍然成立?请证明你的结论.33.如图:在△ABC 中,CE 、CF 分别平分∠ACB 与它的邻补角∠ACD ,AE ⊥CE 于E ,AF ⊥CF 于F ,直线EF 分别交AB 、AC 于M 、N .求证:(1)四边形AECF 为矩形;(2)试猜想MN 与BC 的关系,并证明你的猜想.34.如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC =450. 翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E . 若AD =2,BC =8.求:(1)BE 的长;(2)∠CDE 的正切值.35.如图,平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为 (3,0),(3,4). 动点M 、N 分别从O 、B 同时出发,以每秒1个单位的速度运动. 其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动. 过点N 作NP ⊥AC ,交AC 于P ,连结MP . 已知动点运动了x 秒.(1)P 点的坐标为( , );(用含x 的代数式表示)(2)若△MP A 的面积y ,并y 与x 的函数关系式,并写出x 的取值范围.(3)请你探索:当x 为何值时,△MP A 是一个等腰三角形?你发现了几种情况?请写出你的探索成果.A B CDM 图2 A BC D M图1 N M F ECA36.已知:如图(7),在梯形ABCD 中,AD ∥BC ,AB =DC ,AE ⊥AD 交BD 于点E ,∠BAE =∠BDA ,(1)求证:△ADE ∽△DBC ;(2)如果AE =3,AD =4,求:梯形ABCD 的周长.37.如图,在矩形ABCD 中,DE//AC ,DE 与BC 的延长线交于点E ,AE 交CD 于F ,BF交AC 于G .(1)求证:G 是△ABE 重心;(2)已知cos ∠DAF=32,求证:∠BCG=∠BGC .38.(2008年大连市)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x ,EF 的长为y . ⑴求PM 的长(用x 表示);⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图).A B C D E图(7) 图 13图 12AHB CDA HBCD H MQP DC B A 图 13图 14图 12AH BC D H BC D H M Q P D C B A 图 13图 14图 12H B C D AH BC D M QP DCA39.如图:正方形ABCD 的边长为a ,点E 是CD 上一动点,点F 在CB 的延长线上,∠EAF=900,(1)求证:AE=AF ;(2)是否存在点E ,使△AEF 的面积是△ADE 面积的4倍?若存在,请求出DE 的长;若不存在,请说明理由。
40.(2010年镇江市) 如图,在直角坐标系OCD Rt OAB Rt xOy ∆∆和中,的直角顶点A ,C 始终在x 轴的正半轴上,B ,D 在第一象限内,点B 在直线OD 上方,OC=CD ,OD=2,M 为OD 的中点,AB 与OD 相交于E ,当点B 位置变化时,.21的面积恒为OAB Rt ∆ 试解决下列问题:(1)填空:点D 坐标为 ;(2)设点B 横坐标为t ,请把BD 长表示成关于t 的函数关系式,并化简; (3)等式BO=BD 能否成立?为什么?(4)设CM 与AB 相交于F ,当△BDE 为直角三角形时,判断四边形BDCF 的形状,并证明你的结论.41.如图,正方形ABCD 的边长为2。