线性代数复习题
线性代数基本复习题
1.1计算行列式 行列式的求法法一利用定义展开计算:1122111nnni i i i ni ni i i i A a A a A a A =======∑∑∑法二化为三角型行列式:11221122***0**0*0nn nnb b A b b b b ==2323342141344324241332131020102010201020143604560609010330253025301030150311015001523102001033311(5)(3)450053003r r r r r r r r r r r r r r r r r r ↔+↔+-----===+-----=+=⋅⋅⋅-⋅-=---1.2求逆矩阵 逆矩阵的求法法一行变换:()()1A I I A -−−−→ 行变换 法二行列式的方法:*1A A A-=利用初等行变换求下列矩阵的逆矩阵: (1)122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999221221999-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥∴-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦利用行列式的方法求下列矩阵的逆矩阵:*1A A A-=(1)套用公式()10ab d b ad bc cd c a ad bc -⎡⎤⎡⎤=-≠⎢⎥⎢⎥--⎣⎦⎣⎦, 得12525212521211522--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⋅-⋅⎣⎦⎣⎦⎣⎦.(2)套用上述公式, 得22cos sin cos sin cos sin 1sin cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦1.3利用逆矩阵定义证明 逆矩阵的定义1,AB BA I AB-==⇒=1.6设方阵A 满足矩阵方程220I --=AA , 证明A 及2I +A 都可逆, 并求1-A 及()12I -+A .由220I --=A A 得()12I I -=A A , 故A 可逆, 且()112I -=-AA . 由220I --=A A 也可得(2)(3)I I I+-=-A A 或1(2)(3)4I I I⎡⎤+--=⎢⎥⎣⎦A A , 故2I+A 可逆, 且()12I -+A 1(3)4I =--A . 1.4行列式与逆矩阵的关系 行列式,逆矩阵的关系**AA A A A I==*1*1A A A A AA--=⇔=*111,n A A A A--==1.21设3阶方阵A 的转置伴随矩阵为adj A 且1det 2=A , 求()1det 32(adj )A A -⎡⎤-⎣⎦.()()()()1*11*1*11133111111323232321222116323212333272A A A A I A A A I A E A A IAA A A --------------=-=-=-⎛⎫⎛⎫⎛⎫⎛⎫=-=-⋅⋅=-=-=-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 或 ()321****1243222...333A A A A A A A -⎛⎫⎛⎫-=-=-=-= ⎪ ⎪⎝⎭⎝⎭1.5矩阵的运算和运算律 矩阵的运算包括1*,,,,,,T B kA AB A A A A -+A注意特殊的运算律()()111TT Tn AB B A AB B A AB A B kA k A---====以下运算率不成立:00AB BAAB A ==⇒=或B=0所以,下面的公式也不成立:()()222222222()()AB A B A B A AB B A B A B A B =+=++-=+-(2)[]123321⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=35649⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,(3)213⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦[]12-=241236-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦1.4讨论下列命题是否正确: (1)若2=A , 则0=A ; (2)若2=AA, 则0=A 或=A E ;(3)若=AB AC 且0≠A , 则=B C .(1)不对. 反例:01000000⎛⎫⎛⎫=≠⎪ ⎪⎝⎭⎝⎭A ,但20000⎛⎫= ⎪⎝⎭A.(2)不对. 反例: 设1000⎛⎫= ⎪⎝⎭A , 则0≠A 且≠A E , 但2=AA.(3)不对. 反例: 设1000⎛⎫=⎪⎝⎭A ,0002⎛⎫= ⎪⎝⎭B ,0003⎛⎫= ⎪⎝⎭C , 则有=AB AC 且0≠A , 但=B C(1)1101n⎛⎫⎪⎝⎭, (2)100100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,2311111112,0101010111111213,010101011111111.01010101n n n ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭分块对角矩阵计算AB,1,A A-11112222A O B O A B O OA OB OA B ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭1122A OA A OA =1111122A O A O O A OA ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭2.1判断线性无关或相关方法1:利用线性无关和线性相关的定义 方法2:利用秩和行列式判断 方法3:利用定理证明(1) 123(2,1,0),(1,1,3),(1,0,3)=-=-=ααα(2) 12(1,3,4),(2,0,1)=-=αα (1)()12123131212333211011110,,110110011033000000r r r r T T Tr r r r +↔----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→-→ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα 可见{}123,,23R m =<=ααα, 故向量组线性相关.总结:计算秩来判断线性关系,证明题的时候才考虑用定义和定理 (2)()21312321312412020010,3010100141010100r r r T Tr r r r -+--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αα可见{}12,22R m ===αα, 故向量组线性无关.当A 是方阵的时候用行列式来判断线性关系(1) 12123131212333*********,,1101100110033000000r r r r T T Tr r r r A +↔----==-=-=-=ααα可见0A =, 故向量组线性相关(1)设向量组123,,ααα线性无关, 则下列向量组线性相关的是 C . (A)11213,,++ααααα (B)112123,,+++αααααα (C)123123,,+++αααααα (D)121331,,++-αααααα(B)不是线性相关的, 因为()()()()11212312312312323300k k k k k k k k k +++++=+++++=ααααααααα123123233000000k k k k k k k k k ++==⎧⎧⎪⎪⇒+=⇒=⎨⎨⎪⎪==⎩⎩(C)是线性相关的, 因为()()()112233123131232233()0()0k k k k k k k k k +++++=+++++=ααααααααα131232323010110k k k k k k k k k +==⎧⎧⎪⎪⇒+=⇒=⎨⎨⎪⎪=-+=⎩⎩(B)112123,,+++αααααα []112323111,,011001αβββαα⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ()3R =A(C)123123,,+++αααααα[]112323101101,,011011011000αβββαα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()2R =A2.2求秩定义法和行阶梯形阵方法 2.3方程组有解的条件1111221211222211220(1)0(2)0()n n n n m m mn n a x a x a x a x a x a x a x a x a x m ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 线性方程组齐次方程组有唯一零解()R n ⇔=A当A 是方阵时,0A A ⇔≠⇔可逆A ⇔行向量或者列向量线性无关有无穷多解()R n ⇔<A当A 是方阵时,0A A ⇔=⇔不可逆A ⇔行向量或者列向量线性相关 非齐次方程组有唯一解()()R R B n ⇔==A当A 是方阵时,0()()A R R B n ⇔≠==且A有无穷多解()R(B)R n ⇔<=A 当A 是方阵时,0()()A R R B n ⇔===且A无解()R(B)R ⇔≠A2.4**求最大无关组与线性表示----找出最大无关组,包括利用最大无关组进行线性表示方法:利用列向量组成矩阵进行行变换,目标是行最简形矩阵 例题2.7求下列向量组的最大无关组,并把其他向量用此无关组线性表示。
线性代数深刻复知识题(选择填空题)
线性代数复习题一、选择题练1、如果排列12345a a a a a 的逆序数为a ,则排列54321a a a a a 的逆序数为 BA 、a -B 、10a -C 、10a -D 、2a -或2a +练2、如果排列12...n a a a 的逆序数为k ,则排列11...n n a a a -的逆序数为 CA 、1k -B 、n k -C 、(1)2n n k -- D 、2n k - 练3、若12335445i j a a a a a 是五阶行列式中带正号的一项,则j i ,的值为 AA 、1=i 2=jB 、2=i 1=jC 、2=i 3=jD 、3=i 2=j4、下列各项中,为某五阶行列式中带有正号的项是___A_______A 、1544223153a a a a a B 、2132411554a a a a a C 、3125431452a a a a a D 、1344324155a a a a a 练5、行列式103100204199200395301300600等于___A______A 、2000B 、2000-C 、1000D 、1000-练6、行列式0001002003004000等于 AA 、24B 、24-C 、0D 、12练7、根据行列式定义计算212111()321111xx x f x x x -=中4x 的系数是 BA 、1B 、2、C 、2-D 、1-练8、利用克莱姆法则判断齐次线性方程组解的个数时,当系数行列式0D =时,说明方程解的个数是 CA 、1B 、0C 、无穷多个D 、无法判断练9、如果能够利用克莱姆法则求解线性方程组时,若方程的个数是m 个,未知数的个数是n 个,则 CA 、n m <B 、n m >C 、m n =D 、无法比较和m n10、已知齐次线性方程组1231231230020ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩有非零解,则,a b 满足 DA 、1a b +=B 、1a b -=C 、01a b ==或D 、10a b ==或练11、若齐次线性方程组000x y z x y z x y z λλλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= BA 、1或1-B 、1或2-C 、1-或2-D 、1-或212、若 304050x ky z y z kx y z ++=⎧⎪+=⎨⎪--=⎩有非零解,则k =___B_____A 、0k =或 2k =B 、1k = 或3k =C 、2k =或2k =-D 、2k =-13、设A 是三阶方阵,且4A =,则212A ⎛⎫= ⎪⎝⎭ B A 、4 B 、14C 、1D 、2 练14、设X 是n 维列向量,则X λ= DA 、X λB 、X λC 、n X λD 、n X λ练15、设A 为三阶方阵,2λ=-,3A =,则A λ=___B_______A 、 24B 、24-C 、6D 、6-练16、设C B A ,,都是n 阶方阵,且E CA BC AB ===,则222A B C ++= AA 、E 3B 、E 2C 、ED 、O17、设,A B 都是(2n n ≥)阶方阵,则必有__B_____A 、AB A B +=+ B 、AB BA =C 、AB BA =D 、 A B B A -=- 练18、设B A 、都是n 阶方阵,λ为常数,则下列正确的是___D_______A 、()///AB A B = B 、()111AB A B ---= C 、/A A λλ= D 、B A AB = 练19、若n 阶方阵A 、B 都可逆,AXB C =,则X = CA 、11ABC -- B 、11CB A -- C 、11A CB --D 、11B CA --练20、设A 是()2≥n n 阶方阵,A *是A 的伴随矩阵,则A A *=_____D_____A 、2AB 、 n AC 、2 n AD 、21 n A -练21、设A 是()2n n >阶方阵,A *是A 的伴随矩阵,则正确的是 CA 、AA A *=B 、/1A A A*= C 、0A ≠,则0A *≠ D 、若()1R A =,则()1R A *= 练22、设A 是n ()2n ≥阶方阵,B 是A 经过若干次初等变换后得到的矩阵,则DA 、AB = B 、A B ≠C 、若0A >则0B >D 、若0A =,则一定有0B = 练23、以下的运算中,能同时利用初等行变换和初等列变换求解的是 AA 、计算行列式的值B 、求逆矩阵C 、解线性方程组D 、以上都不是练24、设A 是n 阶方阵,B 是m 阶方阵,⎪⎪⎭⎫ ⎝⎛=00B A C ,则C 等于__D_____ A 、B A B 、B A - C 、()B A n m 1-+ D 、()B A mn 1- 练25、设矩阵A 是m n ⨯矩阵,矩阵C 是n 阶可逆矩阵,秩()R A r =,矩阵B AC =,且()1R B r =,则 ____C______A 、1r r <B 、1r r >C 、1r r =D 、无法判断练26、下列矩阵中,不是初等矩阵的是 BA 、⎪⎪⎪⎭⎫ ⎝⎛001010100B 、⎪⎪⎪⎭⎫ ⎝⎛010000001 C 、 ⎪⎪⎪⎭⎫ ⎝⎛100020001 D 、⎪⎪⎪⎭⎫ ⎝⎛-100210001 练27、向量组12,,...,n ααα线性相关的充要条件为___C_____A 、12,,...,n ααα中有一个零向量B 、12,,...,n ααα中任意两个向量成比例C 、12,,...,n ααα中至少有一个向量是其余向量的线性组合D 、12,,...,n ααα中任意一个向量都是其余向量的线性组合练28、n 维向量组12,,...,s ααα()n s ≤≤3线性无关的充要条件为_____C________A 、12,,...,s ααα中任何两个向量都线性无关B 、存在不全为0的数12,,...,s k k k ,使得1122...0s s k k k ααα+++≠C 、12,,...,s ααα中任何一个向量都不能由其余向量的线性表示D 、12,,...,s ααα中存在一个向量不能由其余向量的线性表示29、设向量组123,,ααα线性无关,则下列向量组线性相关的是 AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、1α,12αα+,123ααα++D 、122αα+,232αα+,312αα+ 练30、设向量组123,,ααα线性无关,则下列向量组线性相关的是 AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、122αα-,232αα-,312αα-D 、122αα+, 232αα+,312αα+ 练31、设向量组123,,ααα线性无关,则下列向量组线性相关的是 AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、1α,12αα+,123ααα++D 、12αα+,232αα+,313αα+ 练32、已知12,ββ是方程组Ax b =的两个不同的解,12,αα是方程组0Ax =的基础解系,12,k k 是任意常数,则Ax b =的通解为____B________A 、()12112122k k -++ββαα+αB 、()12112122k k ++-+ββααα C 、()12112122k k -+++ββαββ D 、()12112122k k ++++ββαββ 33、若A 是正交阵,则下列各式中 D 是错误的A 、E A A ='B 、E A A ='C 、1-='A AD 、A A ='练34、下列矩阵中哪个是正交矩阵 DA 、⎪⎪⎪⎪⎭⎫ ⎝⎛-212221B 、⎪⎪⎭⎫ ⎝⎛-0111C 、⎪⎪⎪⎪⎭⎫ ⎝⎛53545453D 、⎪⎪⎪⎪⎭⎫ ⎝⎛-53545453 35、已知三阶矩阵A 有特征值1,1,2-,则下列矩阵中可逆的是 D A、E A - B 、E A + C 、2E A - D 、2E A +练36、设⎪⎪⎪⎭⎫ ⎝⎛-=10021421x A ,且A 的特征值为1,2,3 ,则=x __B_______A 、5B 、4C 、3D 、1-练37、n 阶方阵A 可逆的充要条件是 BA 、A 的特征值全为0B 、A 的特征值全不为0C 、A 至少有一个特征值不为0D 、A 的特征值全为0或1练38、设2λ=是可逆矩阵A 的特征值,则矩阵123A -⎛⎫ ⎪⎝⎭有一个特征值等于______C______A 、43 B 、12 C 、34 D 、14练39、n 阶方阵A 有n 个不同的特征值是与对角矩阵相似的 BA 、充分必要条件B 、充分非必要条件C 、必要非充分条件D 、既非充分又非必要条件练40、n 阶方阵A 与对角矩阵相似,则 DA 、方阵A 有n 个不都相等的特征值B 、()r A n =C 、方阵A 一定是对称阵D 、方阵A 有n 个线性无关的特征向量41、、设三阶实对称矩阵A 的特征值为122λλ==,38λ=,对应于122λλ==的特征向量是1110x -⎛⎫⎪= ⎪ ⎪⎝⎭ ,2101x -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则对应于38λ=的特征向量是 C A 、12,x x 中的一个 B 、()/123 C 、()/111 D 、相交但不垂直 练42、设A 为三阶矩阵,1231,1,2λλλ==-=为A 的3个特征值,对应的特征向量依次为123,,ααα,令321(,2,3)P ααα=,则1P AP -= DA 、100010002⎛⎫ ⎪- ⎪ ⎪⎝⎭B 、200020003⎛⎫ ⎪- ⎪ ⎪⎝⎭C 、100020006⎛⎫ ⎪- ⎪ ⎪⎝⎭D 、200010001⎛⎫ ⎪- ⎪ ⎪⎝⎭ 练43、实二次型()2322212132132,,x tx x x x x x x f +++=,当=t B ,其秩为2 A 、0 B 、1 C 、2 D 、3二、填空题练1、排列2,6,3,5,1,9,8,4,7的逆序数是 13 练2、当i = 8 ,j = 3 时,1274569i j 是偶排列练3、带负号且包含因子23a 和31a 的项为 14233142a a a a -练4、带正号且包含因子23a 和31a 的项为 14233241a a a a5、在五阶行列式中,项1231544325a a a a a 的符号应取 正号练6、在六阶行列式中,项132432455661a a a a a a 的符号应取 负号练7、在函数xx x x x x f 21112)(---=中,3x 的系数为 28、311()13x f x x x x x -=--中,3x 的系数为 3-练9、211203101311112x x ----的展开式中2x 的系数为 7 练10、设111213212223313233a a a A a a a a a a =,且3A =,则1112132122233132332222222222a a a A a a a a a a == 24 练11、设五阶行列式3A =,先交换第1,5两行,再转置,最后用2乘以所有元素,其结果为 96-练12、设行列式010200003D =,ij A 是D 中元素ij a 的代数余子式,则313233A A A ++=2-13、计算()40132573⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭= ()5- 14、222()2A B A AB B +=++的充要条件为 AB BA =练15、22()()A B A B A B -=+-的充分必要条件是 AB BA =16、设3318A ⨯= ,则()22A = 1 17、设442A ⨯=,552B ⨯=-,则A B -= 6418、设A 是3阶矩阵,2A =,1A -为A 的逆矩阵,则12A -的值为______4________ 练19、设A 是3阶矩阵,12A =,则1(3)A A -*-= 1108- 练20、已知为A 四阶方阵,A *为A 的伴随矩阵,且3A =,则1143A A *--=_27__ 练21、设A 是3阶矩阵,且9A *=,则1A -= 13± 练22、设A 是三阶方阵,且13A -=,则2A = 83练23、设,A B 都是n 阶方阵,且2A =,3B =-,则12A B *-= 2123n -- 24、设111111111111k k A k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,且秩()3r A =,则k = 3- 练25、A 为n 阶反对称矩阵,则/A A += 0练26、设矩阵A 满足240A A E +-=,其中E 为三阶单位矩阵,则1()A E --= 1(2)2A E + 练27、设矩阵A 满足220A A E --=,其中E 为三阶单位矩阵,则1A -= 1()2A E - 28、设是3阶矩阵,且AB E =,200010003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则B = 10020101003B ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭29、设33100111100011111011001222001⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪---= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭1145520228⎛⎫ ⎪ ⎪ ⎪⎝⎭30、已知向量()()()1231,1,0,0,1,1,3,4,0ααα===,则12αα-=_()1,0,1-_______31、已知向量()()()1231,1,0,0,1,1,3,4,0ααα===,则12332ααα+-=__()0,1,2__32、已知1233()2()5()αααααα-++=+,其中()12,5,1,3,α=()210,1,5,10,α=()34,1,1,1,α=-则α=_()6,12,18,24__________练33、已知)9,7,5,3(=α,()1,5,2,0β=- ,x 满足βα=+x 32 ,则=x ()17,5,12,183- 34、设向量()(2,0,1,3),(1,7,4,2),0,1,0,1=-=-=αβγ,则23+-=αβγ (5,4,2,1)35、设向量()(2,0,1,3),(1,7,4,2),0,1,0,1=-=-=αβγ,若有x ,满足3520x -++=αβγ,则x = 57,1,,822⎛⎫-- ⎪⎝⎭练36、当=k 8- 时)5,,1(k =β能由1(1,3,2)α=-,2(2,1,1)α=-线性表示37、设有向量组()13,2,5α=,()22,4,7α=,()35,6,αλ=,()1,3,5β=。
线性代数 复习题
第一章 行列式1.4 独立作业1.4.1 基础训练1.设ij a D =为n 阶行列式,则11342312n n n a a a a a - 在行列式中的符号为( ) . (A) 正 (B) 负 (C) 1)1(--n (D) 2)1()1(--n n2.行列式n D 为0的充分条件是( ).(A) 零元素的个数大于n; (B) n D 中各行元素的和为零; (C) 次对角线上元素全为零; (D) 主对角线上元素全为零. 3.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D)保持相同的正负号.4.方程0881441221111132=--x xx 的根为 ( ).(A) 1,2,2- (B)1,2,3 (C)1,1-,2 (D)0,1,25.如果4333231232221131211==a a a a a a a a a D ,则=------=3332333123222321131213111434343a a a a a a a a a a a a D ( ). (A)-12 (B)12 (C)48 (D)-486.行列式=9092709262514251( ).7.abba log 11log = ( ).8.行列式cb dc a bcb a, 则=++312111A A A ( ).9.函数xx xxx f 121312)(-=中,3x 的系数为( ). 10.4444333322225432154321543215432111111= ( ).11.49362516362516925169416941, 12.0000000x yy x y x x y D =13.20001200000013012000101--=D , 14.xyz zx yyz x111 15.520003520003520035200035, 16.44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++17.nn n n a a a a a a b b b b b 13221132100000000-----,(其中),,2,1(,0n i a i =≠) 18.nx x x D0100101111021= (),,2,1,0n i x i =≠19.43211111111111111111x x x x ++++, 20.n222232222222221 21.211121112=n D .22.当μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解?23.证明αααααααsin )1sin(cos 211cos 200000cos 210001cos 210001cos 2+=n(其中0sin ≠α).1.4.2 提高练习1.设A 为n 阶方阵,*A 为A 的伴随矩阵,则*A A 为( )(A) 2A (B) 12-n A (C) nA 2 (D) nA2.设A 为n 阶方阵,B 为m 阶方阵,=00AB ( ).(A)BA - (B)BA (C)B A mn )1(- (D) BA n m +-)1(3.若xx x x xx g 171341073221)(----=,则2x 的系数为( ).(A) 29 (B) 38 (C) —22 (D) 344.347534453542333322212223212---------------=x x x xx x x x x x x x x x x x g(x),则方程=)(x g 0的根的个数为( ). (A)1 (B)2 (C)3 (D)45.当≠a ( )时,方程组⎪⎩⎪⎨⎧=+-=++=+02020z y ax z ax x z ax 只有零解.(A)-1 (B) 0 (C) -2 (D) 26.排列n r r r r 321可经过( )次对换后变为排列121r r r r n n n --. 7.四阶行列式中带负号且含有因子12a 和21a 的项为( ).8.设y x ,为实数,则当=x ( ),=y ( )时,01100=---x yy x. 9.设A 为4阶方阵,B 为5阶方阵,且,2,2-==B A 则 =-A B ( ),=-B A ( ).10.设A ,B 为n 阶方阵,且,2,3-==B A 则 =-1*3B A ( ).11.设A 为3阶正交矩阵,0>A ,若73=+B A ,则=+T AB E 21( ). 12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=653042001A ,则=+-12A E ( ).13.解方程组011112222212112=nnn nnnn b b b b b b b b b x x x,其中n b b b b ,,,,321 为各不相同的常数.14.证明:)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a dx d nn n n n n =∑=n i nn n n in i i n x a x a x a x a dx dx a dx d x a dxd x a x a x a 1212111211)()()()()()()()()(15.设xx x x x x x g 620321)(332=,求)(x g '.16.设17131231533111)(85222------=x x x x x x x g ,试证:存在)1,0(∈ξ,使得0)(='ξg .17.证明:奇数阶反对称矩阵的行列式为零. 18.设z y x ,,是互异的实数,证明:0111333=z y x z y x 的充要条件是0=++z y x . 19.设4322321143113151-=A ,计算44434241A A A A +++的值,其中)4,3,2,1(4=i A i 是A 的代数余子式.20.利用克莱默法则求解方程组⎪⎩⎪⎨⎧=+-=+-=-+3232222321321321x x x x x x x x x .21.求极限111cos sin 3212sin 1231lim230x x x x x x x →.第一章 参考答案1.4 独立作业 1.4.1 基础训练1. (C) 2. (B) 3. (C) 4.(A) 5. (B) 6.解=⨯==17092142512000200070922000425190927092625142515682000.7.0 , 8. 解 0111312111==++cb c acb A A A ,故答案为09.解 因为在此行列式的展开式中,含有3x 的只有主对角线上的元素的积,故答案为2- 10.解 由范德蒙行列式得行列式的值为28811.解0222222229753169411311971197597531694149362516362516925169416941===.12.解 xy xy x x x y y y x y xyy x y x x y D 0000000000000000--==22222)(y x xyy x xxyy x y --=-=13.解 013120101420000013012001012200012000000130012000101-⨯-=-⨯-=--=D2031124313120014=--⨯-=--⨯-=14.解 yz x z x y x z y xz x y z x y yz x xyzzx y yz x----=------=11))(()(0)(01111=))()((x z z y y x ---15.解 52000352000352000350000335200035200035200035200032520003520003520035200035+==52003520035200353252000352000352000350000332000032000032000320000325+=+== 66516.解1413121414131213141312121413121144342414433323134232221241312111y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ---+---+---+---+=++++++++++++++++=017.解132111322113210000000000)1(0000000-+------⨯-=---=n n n n n n n n a a a a b a a a a a a b b b b b D=--⨯+----12221122100000n n n n n a a a a a b b b b a==+- 121n n n n nD a a b a a a )(121∑=ni ii n a b a a a18.解 由第i (n i ,,2,1 =)列的ix 1-倍加到第一列上去.nni inx x x x x x x D000000111101001001111021121∑=-===)1(121∑=-ni in x x x x19.解43211114321100100111111111111111111x x x x x x x x x x x ---+=++++432111413121100000001x x x x x x x x x x x x x ---++++==3214214314324321x x x x x x x x x x x x x x x x ++++20.解 2020012000200021222232222222221--=n n202012002--=n=)!2(2--n21.解 211121111)1(211121111*********+=+++==n n n n D n111011001)1(+=+=n n22.解 由齐次线性方程组有非零解的条件可知0111213142=------μμμ解之得μ=0,2,3. 于是当μ=0,2,3时,齐次方程组⎪⎩⎪⎨⎧=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解.23.证明 (1)当1=n 时,结论显然成立, (2)假设当k n ≤时,结论成立, (3)当1+=k n 时11cos 210001cos 200000cos 210001cos 210001cos 2++=k k D αααααk k D ααααcos 2100010000cos 210001cos 2100001)1(cos 23-+=ααααααααααsin )2sin(sin sin sin sin cos 2sin )1sin(cos 21+=-=-+=-k k k D k k ααsin ]1)1sin[(++=k 故结论成立. 1.4.2 提高练习1.B , 2.C , 3.D , 4.B , 5.D, 6.2)1(-n n , 7.44332112a a a a 8.0, 0, 9.32, 64 , 10.2312--n , 11.277, 12.613.提示:用范德蒙行列式将行列式展开求解,答案为i b x =,(n i ,,2,1 =), 14.(用行列式的定义和导数的运算法则)证明))()()()1(()()()()()()()()()(11)(12122221112112211x a x a x a dx dx a x a x a x a x a x a x a x a x a dx d n n p p p p p p t nn n n n n ∑-==))())(()()()1((111)(12211x a x a dx d x a x an i n p p p p p p p t∑-=∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dxd x a x a x a 1212111211)()()()()()()()()(15.利用(14)的结论进行计算便可得结果,答案为62x .16.(用罗尔中值定理证)证明 (1)显然)(x g 是多项式,故)(x g 在]1,0[上连续,在)1,0(内可导,且0)1()0(==g g ,从而由罗尔中值定理知,存在)1,0(∈ξ,使得0)(='ξg . 17.用行列式的性质3的推论(同济四版)18.证明 333333333333001111xz xy x z x y x z x y x x z x y xz y x z y x----=----=0))()()((11))((2222=++---=++++--=z y x y z x z x y x xz z x xy y x z x y由于z y x ,,是互异的实数,故要使上式成立,当且仅当0=++z y x .19.解 61111321143113151********=-=+++A A A A , 20. 11=x ,22=x ,33=x21.解 (用罗必塔法则求解)111000132120012300001112310011sin cos 3212sin 1230230cos 11231lim111cos sin 3212sin 1231lim2230230=+=-+=→→x x x x x x x x x x x x x x x x x。
线性代数期末复习题
《线性代数》综合复习题一、单项选择题:1、若三阶行列式D 的第三行的元素依次为1、2、3,它们的余子式分别为4、2、1,则D =( )(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶方阵A 的列向量组,且齐次线性方程组AX =O 仅有零解,则( )(A) 1α可由23,αα线性表示 (B) 2α可由13,αα线性表示 (C) 3α可由12,αα线性表示 (D) 以上说法都不对3、设A 为n(n ≥2)阶方阵,且A 的行列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于( )(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a , B =⎪⎪⎪⎭⎫ ⎝⎛+++133311311232232122131112a a a a a a a a a a a a ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则有( )(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是( ) (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的行向量组是正交单位向量组 6、设A 是n 阶方阵,且O E A A =+-232,则( )(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ⎛⎫⎪= ⎪ ⎪⎝⎭,矩阵B 满足2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13; (B )19; (C )14; (D )13。
线性代数复习题
线性代数复习题选择题(每小题3分,共24分)1.设行列式1122a b u a b =,1122c a v c a =,则111222a b c a b c +=+( ).(A )u v + (B )u v - (C )v u - (D)()u v -+ .2.下列排列中为奇排列的是( ).(A )12345 (B )35214 (C )45321 (D)54213.3.若齐次线性方程组1212200x x x kx -=⎧⎨+=⎩仅有零解,则( ).(A )2k ≠ (B )2k = (C )2k ≠- (D) 2k =-.4.设,A B 均为n 阶方阵,下列关系一定成立的是( ).(A )AB A B =(B )222()AB A B =(C )()111AB A B ---= (D) ()T T T AB A B =. 5.设矩阵233332,,,A B C ⨯⨯⨯则下列矩阵可以进行运算的是( ). (A )AB C - (B )ACB (C )B CA - (D)AC B -.6.设C 是m n ⨯矩阵,且T AC C B =,则A 的行列数为( ). (A )m m ⨯ (B )m n ⨯ (C )n m ⨯ (D) n n ⨯.7.设向量组1α=(1,1,1)-,2α=(1,2,3)-,3α=(1,0,)a 线性相关,则( ). (A )1a = (B )2a = (C )3a = (D)5a =. 8.设m n ⨯矩阵A 的秩等于n ,则必有( ).(A )m ﹤n (B )m ﹥n (C )m n ≤ (D)m n ≥. 二、填空题(每小题3分,共24分) 1.排列43215的逆序数是 .2.四阶行列式 ij a 的项23311442a a a a 的符号是 .3.已知1α=(1,1,2)-,2α=(3,3,2),且12320ααβ--=,则β= .4.设三阶可逆矩阵A 满足8A kA -=,则k = .5.用行列式的性质计算2561257111251135= .6.设矩阵()123A =,112231B ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则AB = .7.将向量α=(0,3,0,4)-化为单位向量 .8.方程组121220x x x x λλ-+=⎧⎨-=⎩有非零解,则λ .三、判断题(每小题2分,共12分)1.若两矩阵的乘积为零矩阵,则至少有一个矩阵为零矩阵.( )2.矩阵乘法满足交换律.( )3.含有零向量的向量组线性相关.( )4.奇次线性方程组一定有解.( )5.行列式转置后,再交换任意两行,其值不变.( )6.矩阵经初等变换后,其秩不变.( ) 四、运算题(每小题8分,共40分)1.计算行列式1212111120110111--2.用克莱姆法则解线性方程组1231231223221x x x x x x x x --=⎧⎪++=⎨⎪+=⎩3.设111102A -⎛⎫= ⎪--⎝⎭,021111120B -⎛⎫⎪=- ⎪ ⎪⎝⎭,求⑴AB ,⑵TBA . 4.判断矩阵113214124A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭是否可逆,若可逆求1A -.5.将向量β=(3,5,-6)表示为向量组1α=(1,1,1),2α=(1,0,1),3α=(0,-1,-1)的线性组合.线性代数复习题答案一、选择题(每小题3分,共24分)1.B2.C3.C4.A5.C6.C7.D8.D 二、填空题(每小题3分,共24分)1.62.负3. (0,-3,2)4. -25.143606. ()1407.34(0,,0,)55-8.=三、判断题(每小题2分,共12分)1.ⅹ2.ⅹ3.√4.√5.ⅹ6.√ 四、运算题(每小题8分,共40分)1.解:原式=1212030104130111---------3分 2. 解:∵D=211121110--=--2≠0∴方程组有唯一解--2分=301413111----------5分 又131122111D --==-4,2231121110D -==2,3213122111D -==-4------6分= -1----8分 ∴112D x D ==,221Dx D==-,332D x D== -----8分 3. 解:AB =010261-⎛⎫⎪--⎝⎭----3分 4. 解:∵ A =113214124----=1≠0 ∴A 可逆----2分 TA=111012-⎛⎫⎪ ⎪ ⎪--⎝⎭--5分1114424A -==--,1224414A =-=--,133A =,212A =,221A =-,231A =-,311A =-,322A =331A = ----5分TBA=321331⎛⎫ ⎪-- ⎪ ⎪-⎝⎭-------8分112131122232132333421412311A A A A A A A A A A *--⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭----6分14211412311A A A -*--⎛⎫⎪==- ⎪ ⎪-⎝⎭----8分5. 解:设112233k k k βααα=++ ---2分得方程组1213123356k k k k k k k +=⎧⎪-=⎨⎪+-=-⎩---5分解之1k =14,2k =-11,3k =9,即12314119βααα=-+ ---8分。
线性代数复习题
,
2 )T 3
,= α 2
(
2 3
,
1 3
,
−
2 )T 3
,α=3
( 2 , − 2 , 1)T 是 R3 的一组标准正 3 33
交基,则向量 β = (1,1,1)T 在这组基下的坐标为
.
28.设矩阵 A 的特征多项式 λE − A = (λ + 1)(λ + 5)(λ + 7) ,则 A−1 = __ _ .
A.
r
(α1
,
α
2
,
,
α
r)≥
r(β1,
β
2
,
,
βs )
B. r ≥ s
C. r(α1,α2 ,,αr)≤ r(β1, β2 ,, βs )
D. r ≤ s
14.设α1 , α2 是非齐次线性方程组 AX = b 的两个解,则下列仍为线性方程组 AX = b 的解的
(
).
A. α1 + α2 B. α1 − α2
3.
已知向量组 α1
=
−421,α
2
=
3 1 2
,α
3
=
−5 3 6
,
α
4
=
−2 2 0
,α
5
=
−8611,
.求向量组的秩
和一个极大线性无关组;将其余向量用所求的极大线性无关组线性表示.
x1 + x2 + x3 + x4 + x5 = a
4.
已知线性方程组
3x1
+2 x2
− 1
1
β1 = 1 , β 2 = 1 ,则 AX = b 的全部解可表示为
线性代数期末复习题
线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 假设一个行列式等于零,则它必有一行〔列〕元素全为零,或有两行〔列〕完全一样,或有两行〔列〕元素成比例. () 3. 假设行列式D 中每个元素都大于零,则D > 0. () 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. () 5. 假设矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. () 6. 假设矩阵A 与矩阵B 等价,则矩阵的秩R (A )=R (B ). () 7. 零向量一定可以表示成任意一组向量的线性组合. () 8. 假设向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. () 9. 向量组s ααα,...,,21中,假设1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. () 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. () 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. () 12. 齐次线性方程组一定有解. ()13. 假设λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. () 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. () 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. () 16. 假设矩阵A 与矩阵B 相似,则R R =A B ()(). () 二、单项选择题 1.设行列式,,2123121322211211n a a a a m a a a a ==则行列式=++232221131211a a a a a a ()2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )3.四阶行列式111111111111101-------x 中*的一次项系数为 ( )4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )5.n 阶行列式a b b a bab a D n 0000000000=的值为 ( )6. ,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则以下运算结果是m 阶方阵的是 ( ) 9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ( )10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( ) 11. 设A 是方阵,假设有矩阵关系式AC AB =,则必有 ( ) 12. 方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )13. 设A 、B 为n 阶对称阵且B 可逆,则以下矩阵中为对称阵的是 ( ) 14. 设A 、B 均为n 阶方阵,下面结论正确的选项是 ( )(A) 假设A 、B 均可逆,则A +B 可逆 (B) 假设A 、B 均可逆,则AB 可逆 (C) 假设A+B 均可逆,则A -B 可逆 (D) 假设A +B 可逆,则A 、B 均可逆15. 以下结论正确的选项是 ( )(A) 降秩矩阵经过假设干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过假设干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为017. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E , (2) BAC = E , (3) CAB = E , (4) CBA = E 中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )19. 矩阵⎪⎪⎪⎭⎫⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6 (B) 6 (C) 2 (D) -220. A 为三阶方阵,R (A ) = 1,则 ( )21. 43⨯矩阵A 的行向量组线性无关,则矩阵A T的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性无关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得 (C) 存在不全为0的数s λλλ ..., , ,21使得(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( ) 25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示(C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 以下命题中正确的选项是 ( )(A) 任意n 个n +1维向量线性相关 (B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( ) 31. n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A 1)( )B (-=n R A 0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则以下结论错误的选项是 ( )(A) 21ηη+是0=Ax 的一个解 (B) )(2121ηη+是b Ax =的一个解(C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 假设4321 , , ,v v v v 是线性方程组0=Ax 的根底解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 根底解系(C) 通解(D) A 的行向量35. 假设η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)36. n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( ) 37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n 0 )B (≠A (C) A 的特征值都等于零(D)A 的特征值都不等于零38. A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则以下矩阵中是可逆矩阵的是 ( )39. 21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的积等于零40. A 是一个)3( ≥n 阶方阵,以下表达中正确的选项是 ( )(A) 假设存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 假设存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 假设321 , ,λλλ是A 的三个互不一样的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )42. 矩阵A 与B 相似,则以下说法不正确的选项是 ( )(A) R (A ) = R (B ) (B) A = BB A = )C ((D) A 与B 有一样的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D)A 的n 个列向量是一个正交向量组45. A 是正交矩阵,则以下结论错误的选项是 ( )1 )A (2=A A )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有一样的特征值(D) A 与B 合同三、填空题1. 44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++ 对应的三阶行列式为.3. 022150131=---x ,则* = . 4. A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 三阶矩阵A 的三个特征值分别为123-,,,则=---*134A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是阶矩阵,AB 是行 列矩阵.8. 矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是,阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,假设321 , ,ααα线性相关,则*,y 满足关系式.11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大.13. 设A 是43⨯矩阵,3)(=A R ,假设21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为.14. A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个根底解系中含有解的个数为.15. 方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+32121232121321x x x a a 无解,则a =.16. 假设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足.17. 矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则* =.18. 向量α、β的长度依次为2和3,则向量积[, ]+-=αβαβ. 19. 向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ,c =.20. ⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a =,b =. 21. 三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为.22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规形),,,,(54321z z z z z f 为.23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为.24. 二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足. 四、行列式计算1. A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010 (201) (02)=n D ,其中主对角线上的元素都是2,另外两个角落的元素是1,其它元素都是0.4. 计算n 阶行列式xaa a xa a ax D n .........=.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012 =n D .6. 计算行列式dx c b ad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (32)12121+++=n n n n x x x x x x x x x D .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求*.3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 均为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵*满足关系式E B C X =-T )(,求*.5. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求*.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;假设是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x kx x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A =,A 经过初等行变换为⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λA ,则 (1) 求对应的齐次线性方程组0=Ax 的一个根底解系; (2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,假设方阵A 与B 相似,求*、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值. 3. 三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵. 8. 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵. 九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型? 2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =++化成标准形.十、证明题1. 向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n A A .6. 向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个根底解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. A 为正交阵,k 为实数,证明:假设A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 假设A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。
线性代数复习题部分参考答案
线性代数复习题部分参考答案线性代数试题(一) 一、填空题(每小题4分)1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二)一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。
线性代数复习题含答案
(C )a +a ,a +a ,a +a (D )a −a ,a −a ,a −a
1 2 2 3 3 1 1 2 2 3 3 1
分析:(A )含有0 的向量组一定线性相关,0 +0a2 +0a3 0 ;
分析:∵A 的特征值是 1,2,−3 .
∴ A −E 0 , A −2E 0 , A +3E 0 .
∴ (A )A −E ,(D )A −2E ,(C )A +3E 不可逆.
二. 填空题
1. 已知a31a21a13a5k a44 是 5 阶行列式中的一项且带正号,则i 5 ,k 2 .
⎪ 21 1 22 2 2n n 2
⎨
⎪
n n−1 n−2 2 1 n n−1 n−2 2 1
共交换了n −2 次;……;r 与r 交换,共交换了 1 次.
2 1
( )
(A )D D (B )D =−D (C )D =−1 2 D (D )D =−1 D
(C )一定无解 (D )不能确定是否有解
分析:系数行列式D 0 =⇒R A <n ,方程组无解或无穷多解
( )
( ) ( )
) 1 ( ) 1
⎛a11 a12 a13 ⎞
2 1 2 1 2 ( ) 1 2 ( ) 1
分析:r 依次与r ,r ,,r ,r 交换,共交换了n −1次(r 移到第 1 行);r 依次与r ,,r ,r 交换,
1 2 3
----------------------- Page 2-----------------------
(A )0,a ,a (B )a ,2a ,a
线代复习题
线代复习题
1. 矩阵的基本概念
- 定义矩阵及其元素
- 矩阵的阶数
- 矩阵的表示方法
2. 矩阵的运算
- 矩阵的加法和减法
- 矩阵的数乘
- 矩阵的乘法
- 矩阵的转置
- 矩阵的逆
3. 特殊矩阵
- 零矩阵
- 单位矩阵
- 对角矩阵
- 斜对角矩阵
- 正交矩阵
4. 行列式
- 行列式的定义
- 行列式的计算方法
- 行列式的性质
5. 线性方程组
- 线性方程组的表示
- 高斯消元法
- 线性方程组的解的存在性
- 齐次线性方程组的解
6. 向量空间
- 向量空间的定义
- 基和维数
- 向量的线性组合
- 向量的线性相关性
7. 特征值和特征向量
- 特征值和特征向量的定义
- 特征值和特征向量的计算方法 - 特征多项式
8. 二次型
- 二次型的定义
- 二次型的矩阵表示
- 正定二次型
9. 线性变换
- 线性变换的定义
- 线性变换的矩阵表示
- 线性变换的性质
10. 矩阵分解
- 矩阵的对角化
- 矩阵的谱分解
- 矩阵的QR分解
11. 应用题
- 利用矩阵解决实际问题
- 矩阵在不同领域的应用案例分析
请根据以上复习题进行复习,确保掌握线性代数的基本概念和运算法则。
复习线性代数习题
第一章 行列式1、多项式1211123111211)(xxxx x f -=,求3x 的系数2、求多项式xxx x x f --=12312)(中的2x 项的系数是 3.四阶行列式ij a 的展开式中,项21133442a a a a 所带的符号是 号.4、1223545i j k a a a a a 是五阶行列式(),1,2,...,5ij a i j =中前面冠以负号的项,那么,,i j k 的值可以为( )。
(A )1,4,3i j k === (B )4,1,3i j k === (C )3,1,4i j k === (D )4,3,1i j k ===5.若二阶行列式11122122a a a a a =,11112121b a b b a =,则111211212221a a b a a b +=+ .6.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则行列式123123123a a ab b bc c c =( )。
(A )3 (B )3- (C )6 (D )6-8、已知四阶行列式D 中第一行的元素依次为1,2,0,4,第3行的元素的余子式依次为6,x ,19,2, 则x = 。
9、设某三阶行列式第三列元素依次为1,2,3-,它们的代数余子式依次为3,2,1-,则此 行列式的值等于 。
10.若四阶行列式中,第三行元素依次为1,2,0,1-,对应的余子式依次为5,3,7,4-,则该行列式的值为 ( )(A )3- (B )5- (C )15- (D )511、设行列式132x D x-=,且111112120a A a A +=,则x = 。
)(324324324,173331323123212221131112111333231232221131211=---===aaa aa a a a a a a a D aaaa a a a a a D 、若12、计算行列式(1)224041353123251D ---=-- (2)1111121412113045-。
线性代数复习题(选择填空题)
线性代数复习题(选择填空题)线性代数复习题一、选择题练1、如果排列12345a a a a a 的逆序数为a ,则排列54321a a a a a 的逆序数为 BA 、a -B 、10a -C 、10a -D 、2a -或2a +练2、如果排列12...n a a a 的逆序数为k ,则排列11...n n a a a -的逆序数为 C A 、1k - B 、n k - C 、(1)2n nk -- D 、2n k -练3、若12335445i j a a a a a 是五阶行列式中带正号的一项,则j i ,的值为 AA 、1=i 2=jB 、2=i 1=jC 、2=i 3=jD 、3=i2=j4、下列各项中,为某五阶行列式中带有正号的项是___A_______A 、1544223153a a a a a B 、2132411554a a a a a C 、3125431452a a a a a D 、1344324155a a a a a 练5、行列式103100204199200395301300600等于___A______A 、2000B 、2000-C 、1000D 、1000-练6、行列式0001002003004000等于 AA 、24B 、24-C 、0D 、12练7、根据行列式定义计算212111()321111xx x f x x x -=中4x 的系数是 BA 、1B 、2、C 、2-D 、1-练8、利用克莱姆法则判断齐次线性方程组解的个数时,当系数行列式0D =时,说明方程解的个数是 CA 、1B 、0C 、无穷多个D 、无法判断练9、如果能够利用克莱姆法则求解线性方程组时,若方程的个数是m 个,未知数的个数是n 个,则 CA 、n m <B 、n m >C 、m n =D 、无法比较和m n10、已知齐次线性方程组1231231230020ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩有非零解,则,a b 满足 DA 、1a b +=B 、1a b -=C 、01a b ==或D 、10a b ==或练11、若齐次线性方程组000x y z x y z x y z λλλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= BA 、1或1-B 、1或2-C 、1-或2-D 、1-或212、若 304050x ky z y z kx y z ++=⎧⎪+=⎨⎪--=⎩有非零解,则k =___B_____A 、0k =或 2k =B 、1k = 或3k =C 、2k =或2k =-D 、2k =-13、设A 是三阶方阵,且4A =,则212A ⎛⎫= ⎪⎝⎭ B A 、4 B 、14C 、1D 、2 练14、设X 是n 维列向量,则X λ= DA 、X λB 、X λC 、n X λD 、n X λ 练15、设A 为三阶方阵,2λ=-,3A =,则A λ=___B_______A 、 24B 、24-C 、6D 、6-练16、设C B A ,,都是n 阶方阵,且E CA BC AB ===,则222A B C ++= AA 、E 3B 、E 2C 、ED 、O17、设,A B 都是(2n n ≥)阶方阵,则必有__B_____A 、AB A B +=+ B 、AB BA =C 、AB BA =D 、 A B B A -=-练18、设B A 、都是n 阶方阵,λ为常数,则下列正确的是___D_______A 、()///AB A B = B 、()111AB A B ---= C 、/A A λλ= D 、B A AB =练19、若n 阶方阵A 、B 都可逆,AXB C =,则X = CA 、11ABC -- B 、11CB A -- C 、11A CB --D 、11B CA --练20、设A 是()2≥n n 阶方阵,A *是A 的伴随矩阵,则A A *=_____D_____A 、2AB 、 n AC 、2 n AD 、21 n A -练21、设A 是()2n n >阶方阵,A *是A 的伴随矩阵,则正确的是 CA 、AA A*= B 、/1A A A *= C 、0A ≠,则0A *≠ D 、若()1R A =,则()1R A *=练22、设A 是n ()2n ≥阶方阵,B 是A 经过若干次初等变换后得到的矩阵,则DA 、AB = B 、A B ≠C 、若0A >则0B >D 、若0A =,则一定有0B =练23、以下的运算中,能同时利用初等行变换和初等列变换求解的是 AA 、计算行列式的值B 、求逆矩阵C 、解线性方程组D 、以上都不是练24、设A 是n 阶方阵,B 是m 阶方阵,⎪⎪⎭⎫ ⎝⎛=00B A C ,则C 等于__D_____ A 、B A B 、B A - C 、()B A n m 1-+ D 、()B A mn 1-练25、设矩阵A 是m n ⨯矩阵,矩阵C 是n 阶可逆矩阵,秩()R A r =,矩阵B AC =,且()1R B r =,则 ____C______A 、1r r <B 、1r r >C 、1r r =D 、无法判断练26、下列矩阵中,不是初等矩阵的是 BA 、⎪⎪⎪⎭⎫ ⎝⎛001010100B 、⎪⎪⎪⎭⎫ ⎝⎛010000001 C 、 ⎪⎪⎪⎭⎫ ⎝⎛100020001 D 、⎪⎪⎪⎭⎫ ⎝⎛-100210001 练27、向量组12,,...,n ααα线性相关的充要条件为___C_____A 、12,,...,n ααα中有一个零向量B 、12,,...,n ααα中任意两个向量成比例C 、12,,...,n ααα中至少有一个向量是其余向量的线性组合D 、12,,...,n ααα中任意一个向量都是其余向量的线性组合练28、n 维向量组12,,...,s ααα()n s ≤≤3线性无关的充要条件为_____C________A 、12,,...,s ααα中任何两个向量都线性无关B 、存在不全为0的数12,,...,s k k k ,使得1122...0s s k k k ααα+++≠C 、12,,...,s ααα中任何一个向量都不能由其余向量的线性表示D 、12,,...,s ααα中存在一个向量不能由其余向量的线性表示29、设向量组123,,ααα线性无关,则下列向量组线性相关的是 AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、1α,12αα+,123ααα++D 、122αα+,232αα+,312αα+ 练30、设向量组123,,ααα线性无关,则下列向量组线性相关的是 AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、122αα-,232αα-,312αα-D 、122αα+, 232αα+,312αα+ 练31、设向量组123,,ααα线性无关,则下列向量组线性相关的是 AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、1α,12αα+,123ααα++D 、12αα+,232αα+,313αα+ 练32、已知12,ββ是方程组Ax b =的两个不同的解,12,αα是方程组0Ax =的基础解系,12,k k 是任意常数,则Ax b =的通解为____B________A 、()12112122k k -++ββαα+α B 、()12112122k k ++-+ββααα C 、()12112122k k -+++ββαββ D 、()12112122k k ++++ββαββ 33、若A 是正交阵,则下列各式中 D 是错误的 A 、E A A =' B 、E A A =' C 、1-='A A D 、A A =' 练34、下列矩阵中哪个是正交矩阵 DA 、⎪⎪⎪⎪⎭⎫ ⎝⎛-212221B 、⎪⎪⎭⎫ ⎝⎛-0111C 、⎪⎪⎪⎪⎭⎫ ⎝⎛53545453D 、⎪⎪⎪⎪⎭⎫ ⎝⎛-5354545335、已知三阶矩阵A 有特征值1,1,2-,则下列矩阵中可逆的是 D A、E A - B 、E A + C 、2E A - D 、2E A +练36、设⎪⎪⎪⎭⎫ ⎝⎛-=10021421x A ,且A 的特征值为1,2,3 ,则=x __B_______A 、5B 、4C 、3D 、1-练37、n 阶方阵A 可逆的充要条件是 BA 、A 的特征值全为0B 、A 的特征值全不为0C 、A 至少有一个特征值不为0D 、A 的特征值全为0或1 练38、设2λ=是可逆矩阵A 的特征值,则矩阵123A -⎛⎫ ⎪⎝⎭有一个特征值等于______C______A 、43B 、12C 、34D 、14练39、n 阶方阵A 有n 个不同的特征值是与对角矩阵相似的 BA 、充分必要条件B 、充分非必要条件C 、必要非充分条件D 、既非充分又非必要条件 练40、n 阶方阵A 与对角矩阵相似,则 DA 、方阵A 有n 个不都相等的特征值B 、()r A n =C 、方阵A 一定是对称阵D 、方阵A 有n 个线性无关的特征向量41、、设三阶实对称矩阵A 的特征值为122λλ==,38λ=,对应于122λλ==的特征向量是1110x -⎛⎫⎪= ⎪ ⎪⎝⎭ ,2101x -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则对应于38λ=的特征向量是 C A 、12,x x 中的一个 B 、()/123 C 、()/111 D 、相交但不垂直 练42、设A 为三阶矩阵,1231,1,2λλλ==-=为A 的3个特征值,对应的特征向量依次为123,,ααα,令321(,2,3)P ααα=,则1P AP -= DA 、100010002⎛⎫ ⎪- ⎪ ⎪⎝⎭B 、200020003⎛⎫ ⎪- ⎪ ⎪⎝⎭C 、100020006⎛⎫ ⎪- ⎪ ⎪⎝⎭D 、200010001⎛⎫ ⎪- ⎪ ⎪⎝⎭练43、实二次型()2322212132132,,x tx x x x x x x f +++=,当=t B ,其秩为2 A 、0 B 、1 C 、2 D 、3二、填空题练1、排列2,6,3,5,1,9,8,4,7的逆序数是 13 练2、当i = 8 ,j = 3 时,1274569i j 是偶排列练3、带负号且包含因子23a 和31a 的项为 14233142a a a a -练4、带正号且包含因子23a 和31a 的项为 14233241a a a a5、在五阶行列式中,项1231544325a a a a a 的符号应取 正号练6、在六阶行列式中,项132432455661a a a a a a 的符号应取 负号练7、在函数xx x x x x f 21112)(---=中,3x 的系数为 28、311()13x f x x x x x -=--中,3x 的系数为 3-练9、211203101311112x x ----的展开式中2x 的系数为 7 练10、设111213212223313233a a a A a a a a a a =,且3A =,则1112132122233132332222222222a a a A a a a a a a == 24练11、设五阶行列式3A =,先交换第1,5两行,再转置,最后用2乘以所有元素,其结果为 96-练12、设行列式010200003D =,ij A 是D 中元素ij a 的代数余子式,则313233A A A ++=2-13、计算()40132573⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭= ()5- 14、222()2A B A AB B +=++的充要条件为 AB BA = 练15、22()()A B A B A B -=+-的充分必要条件是 AB BA =16、设3318A ⨯= ,则()22A = 1 17、设442A ⨯=,552B ⨯=-,则A B -= 6418、设A 是3阶矩阵,2A =,1A -为A 的逆矩阵,则12A -的值为______4________ 练19、设A 是3阶矩阵,12A =,则1(3)A A -*-= 1108- 练20、已知为A 四阶方阵,A *为A 的伴随矩阵,且3A =,则1143A A *--=_27__ 练21、设A 是3阶矩阵,且9A *=,则1A -= 13±练22、设A 是三阶方阵,且13A -=,则2A = 83练23、设,A B 都是n 阶方阵,且2A =,3B =-,则12A B*-= 2123n -- 24、设111111111111k k A k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,且秩()3r A =,则k = 3- 练25、A 为n 阶反对称矩阵,则/A A += 0练26、设矩阵A 满足240A A E +-=,其中E 为三阶单位矩阵,则1()A E --= 1(2)2A E +练27、设矩阵A 满足220A A E --=,其中E 为三阶单位矩阵,则1A -= 1()2A E -28、设是3阶矩阵,且AB E =,200010003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则B = 10020101003B ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭29、设33100111100011111011001222001⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪---= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭1145520228⎛⎫ ⎪ ⎪ ⎪⎝⎭30、已知向量()()()1231,1,0,0,1,1,3,4,0ααα===,则12αα-=_()1,0,1-_______31、已知向量()()()1231,1,0,0,1,1,3,4,0ααα===,则12332ααα+-=__()0,1,2__32、已知1233()2()5()αααααα-++=+,其中()12,5,1,3,α=()210,1,5,10,α= ()34,1,1,1,α=-则α=_()6,12,18,24__________练33、已知)9,7,5,3(=α,()1,5,2,0β=- ,x 满足βα=+x 32 ,则=x ()17,5,12,183- 34、设向量()(2,0,1,3),(1,7,4,2),0,1,0,1=-=-=αβγ,则23+-=αβγ (5,4,2,1)35、设向量()(2,0,1,3),(1,7,4,2),0,1,0,1=-=-=αβγ,若有x ,满足 3520x -++=αβγ,则x = 57,1,,822⎛⎫-- ⎪⎝⎭练36、当=k 8- 时)5,,1(k =β能由1(1,3,2)α=-,2(2,1,1)α=-线性表示37、设有向量组()13,2,5α=,()22,4,7α=,()35,6,αλ=,()1,3,5β=。
线性代数复习题
第一节 n 阶 行 列 式一.选择题1.若行列式x52231521- = 0,则=x [ ](A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 。
2.排列36715284的逆序数是3.已知排列397461t s r 为奇排列,则r = s = ,t = 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 。
三、计算下列行列式:1.1322133212.5984131113.yxyx x y x y y x y x+++4.001100000100100=15.000100002000010n n -6.011,22111,111n n n n a a a a a a --第二节 行列式的性质一、选择题:1.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D [ ]2.如果3333231232221131211==a a a a a a a a a D ,2323331322223212212131111352352352a a a a a a a a a a a a D ---=,则=1D [ ] (A )18 (B )18- (C )9- (D )27-3. 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a = [ ] (A )8 (B )2 (C )0 (D )6- 二、选择题:1.行列式=30092280923621534215 2. 行列式=11101101101101112.多项式0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 的所有根是3.若方程225143214343314321x x -- = 0 ,则4.行列式 ==2100121001210012D三、计算下列行列式:1.2605232112131412-2.xa a a x a aa x第三节 行列式按行(列)展开一、选择题:1.若111111111111101-------=x A ,则A 中x 的一次项系数是 [ ](A )1 (B )1- (C )4 (D )4-2.4阶行列式44332211000000a b a b b a b a 的值等于 [ ] (A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 3.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a 的解是 [ ] (A )2221211a b a b x =,2211112b a b a x =(B )2221211a b a b x -=,2211112b a b a x =(C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=二、填空题:1. 行列式122305403-- 中元素3的代数余子式是2. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++=3. 已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D = 三、计算行列式:1.32142143143243212.12111111111na a a +++综 合 练 习一、选择题:1.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = [ ] (A )2 M (B )-2 M (C )8 M (D )-8 M2.若xx x x xx f 171341073221)(----=,则2x 项的系数是 [ ](A )34 (B )25 (C )74 (D )6 二、选择题:1.若54435231a a a a a j i 为五阶行列式带正号的一项,则 i = j =2. 设行列式27562513--=D ,则第三行各元素余子式之和的值为 。
线性代数期末复习题目
一.单项选择题1.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是【 】(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [五.特征值,特征向量]2. 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,A B分别为A,B 的伴随矩阵,则【 】.(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (B) 交换*A 的第1列与第2列得*B -; (D) 交换*A 的第1行与第2行得*B -. [二.四.矩阵及其运算,行列式]3.设矩阵A =33)(⨯ij a 满足*TA A=,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为【 】.(A) 33. (B) 3. (C)31. (D) 3. [二.四.伴随矩阵,行列式]4.设A,B,C 均为n 阶矩阵,E 为n 阶单位矩阵,若B =E +AB ,C =A +CA ,则B -C 为【 】(A) E . (B )-E . (C )A . (D) -A [二.矩阵及其运算]5 .设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是【 】 (A )若12,,,,a a a 线性相关,则12,,,,A a A a A a 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,A a A a A a 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,A a A a A a 线性相关. (D )若12,,,,a a a 线性无关,则12,,,,A a A a A a 线性无关.[二.向量组的线性相关性]6.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则 【 】 (A )1.-=C PA P (B )1.-=C P A P(C ).=TC PA P (D ).=TC P A P[二.矩阵及其运算,初等矩阵]7.设125,,......∂∂∂,均为n 维列向量 A 是m n ⨯矩阵,下列正确的是【 】(A) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性相关(B) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性无关(C) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性相关(D) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性无关[二.向量组的线性相关性]8.设向量组123,,ααα线性无关,则下列向量组线性相关的是【 】 (A)122331,,;---αααααα (B) 122331,,;+++αααααα(C)1223312,2,2;---αααααα (D)1223312,2,2+++αααααα.[二.向量组的线性相关性]9.设矩阵211100121,010112000--⎛⎫⎛⎫⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B ,则A 与B 【 】(A) 合同且相似; (B) 合同但不相似; (C) 不合同但相似; (D) 既不合同也不相似.[五.矩阵的相似与合同]10.设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则【 】 (A) -E A 不可逆,+E A 不可逆. (B) -E A 不可逆,+E A 可逆. (C) -E A 可逆,+E A 可逆. (D)-E A 可逆,+E A不可逆.[二.矩阵及其运算,逆矩阵]11.设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】 (A) 0 ; (B) 1 ; (C) 2 ; (D) 3. [五.矩阵的特征值]12.设1221⎛⎫=⎪⎝⎭A 则在实数域上与A 合同的矩阵为【 】 (A) 2112-⎛⎫⎪-⎝⎭;(B) 2112-⎛⎫⎪-⎝⎭;(C) 2112⎛⎫⎪⎝⎭.;(D) 1221-⎛⎫⎪-⎝⎭. [五.矩阵的合同]13.设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基122331,,+++a a a a a a 的过渡矩阵为【 】.(A )101220033⎛⎫⎪ ⎪ ⎪⎝⎭(B )120023103⎛⎫⎪ ⎪ ⎪⎝⎭(C )111246111246111246⎛⎫-⎪⎪⎪- ⎪⎪ ⎪- ⎪⎝⎭(D )111222111444111666⎛⎫-⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. [三. 向量空间,基,过渡矩阵]14.设 A ,B 均为 2 阶矩阵,,**A B 分别为A ,B 的伴随矩阵,若|A |=2,|B |=3,则分块矩阵00⎛⎫⎪⎝⎭A B的伴随矩阵为【 】. (A )32**⎛⎫⎪⎝⎭OB A O (B )23**⎛⎫⎪⎝⎭O B A O (C )32**⎛⎫⎪⎝⎭OA B O (D )23**⎛⎫⎪⎝⎭OA B O [二. 三..四.伴随矩阵,逆矩阵,分块矩阵,行列式]15.设A ,P 均为3阶矩阵,TP 为P 的转置矩阵,且TPA P=100010002 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,若1231223(,,),(,,)==+P Q ααααααα,则TQA Q 为【 】.(A)2101 ⎛⎫⎪ 1 0⎪ ⎪0 0 2⎝⎭ (B)11012000 ⎛⎫⎪ ⎪ ⎪ 2⎝⎭ (C)20001 ⎛⎫⎪ 0 ⎪ ⎪0 0 2⎝⎭ (D)100020002 ⎛⎫⎪ ⎪ ⎪ ⎝⎭[二. 四.伴随矩阵,分块矩阵的行列式与逆矩阵]16.设矩阵142242A a b a 2 1⎛⎫ ⎪=2 + ⎪ ⎪ + ⎝⎭的秩为2,则【 】.(A )a =0,b =0(B )a =0,b ≠0 (C )a ≠0,b =0 (D )a ≠0,b ≠0.[一. 矩阵的秩]17.设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式|A |=2,则|-2*A |=【 】.(A )52-; (B )32-; (C )32 ;(D )52.[四. 伴随矩阵,方阵的行列式]二.填空题1.设123,,ααα均为三维列向量,记矩阵123(,,)=Aααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .[四.方阵的行列式]2. 设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a = . .[二.四.向量组的线性相关性,行列式] 3.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+B A B E , 则B = .[四.方阵的行列式]4.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+B A B E ,则B = .[二.矩阵及其运算]5. 已知12,a a 为2维列向量,矩阵1212(2,)=+-A a a a a ,12(,)=B a a .若行列式||6=A ,则||B = .[四.方阵的行列式]6.设矩阵01000010000100⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为 .[二.矩阵及其运算,矩阵的秩]7.设A 为2阶矩阵,12,αα为线性无关的2维列向量,10,=A α,2122=+A ααα则A 的非零特征值为 .[五.矩阵的特征值]8.设3阶矩阵A 的特征值1,2,2,14--=A E . [五.矩阵的特征值,行列式]9.设3阶矩阵A 的特征值为2,3,λ. 若行列式248=-A ,则λ= .[五.矩阵的特征值,行列式]10.设3阶矩阵A 的特征值互不相同,若行列式0=A , 则A 的秩为 .[五.矩阵的特征值,行列式]11.若 3 维向量,a β满足2=Ta β,其中Ta 为a 的转置,则矩阵Ta β的非零特征值为______.[五.矩阵的特征值与特征向量]12.设,αβ为3维列向量,Tβ为β的转置,若Tβ相似于200000000 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,则Tβα=___________[五. 相似矩阵,特征值]13.设(1,1,1),(1,0,)k ==αβ,若矩阵Tαβ相似于300000000 ⎛⎫⎪⎪ ⎪ ⎝⎭,则k =_______ [五. 相似矩阵,特征值]14.设向量组(1,0,1),(2,1),TTk ==-αβ(1,1,4)=--Ty 线性相关,则k =______ [二.四. 向量组的线性相关性,行列式]三 .解答题1.已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值; (II ) 求正交变换=xQ y,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0的解. [五. 二次型,矩阵的特征值, 特征向量,正交变换] 2.已知三阶矩阵A的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636⎛⎫⎪= ⎪ ⎪⎝⎭B k (k 为常数),且AB =O , 求线性方程组Ax =0的通解.[二.线性方程组,基础解系,矩阵]3.确定常数a ,使向量组,),1,1(1Ta =α,)1,,1(2Ta =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. [二.向量组的线性相关性]4.已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (ii) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值. [一.线性方程组求解]5.设⎛⎫= ⎪⎝⎭TAC D CB 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I) 计算TPD P ,其中1-⎛⎫-=⎪ ⎪⎝⎭mn EAC P O E ;(II )利用(I)的结果判断矩阵1--TB C A C是否为正定矩阵,并证明你的结论. [五.分块矩阵,正定矩阵]6.设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123=++A αααα,2232=+A ααα,32323=+A ααα.(I) 求矩阵B , 使得123123(,,)(,,)=A Bαααααα;(II )求矩阵A 的特征值;(III )求可逆矩阵P , 使得1-P A P 为对角矩阵. [五.矩阵的特征值,相似矩阵]7.已知非齐次线性方程组1234123412341435131x x x x x x x x a x x x b x +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2R A =; (Ⅱ)求,a b 的值及方程组的通解. [二.线性方程组求解]8.设3阶实对称矩阵A 的各行元素之和均为3,向量()11,2,1Tα=--,()20,1,1Tα=-是线性方程组0=A x 的两个解, (Ⅰ)求A 的特征值与特征向量; (Ⅱ)求正交矩阵Q 和对角矩阵Λ使得=TQ A Q Λ;.(Ⅲ)求A 及63()2A E -,其中E 为3阶单位矩阵.[五.矩阵的特征值,相似矩阵]9.设4维向量组()11,1,1,1,T a ∂=+()22,2,2,2,T a ∂=+()33,3,3,3,Ta ∂=+()44,4,4,4Ta ∂=+.问a 为何值时1234,,,∂∂∂∂线性相关? 当1234,,,∂∂∂∂线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. [二.向量组的线性相关性]10.设线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值及所有公共解. [二.线性方程组求解]11.设3阶实对称矩阵A 的特征值2,2,1321-===λλλ,且T )1,1,1(1-=α是A 的属于1λ的一个特征向量。
线性代数期末复习
线性代数期末复习一、 填空题1. 设n 阶方阵A 满足A 2-A-2E=0,且︱A ︱=2,则︱A-E ︱=___2. 设A=⎪⎪⎪⎭⎫ ⎝⎛543022001,其伴随矩阵A *,则(A *)-1=___3. 矩阵A 经有限次初等行变换得到矩阵B ,则方程组AX=0与方程组BX=0的关系是___4. 设a 1a 2a 3线性无关,若是a 2-a 1,ka 2-a 3,a 1-a 3也线性无关,则k 应满足的条件为___5. 在秩为r 的矩阵中,是否有等于0的阶r-1子式___6. 设A=⎪⎪⎪⎭⎫ ⎝⎛300044003,E=⎪⎪⎪⎭⎫⎝⎛111,则(A-2E )-1=___ 7. 设A=(a 1,a 2,…,a n )B=(b 1,b 2,…,b n ),其中a 1不全为零,b 1不全为零,则A 的秩R (A )=___8. 设A 、B 都是n 阶菲零方阵,且R (A )=r ,若AB=0,则R (B )应满足的条件为___ 二、 选择题1、设A 为m 阶方阵,B 为n 阶方阵,C=⎪⎪⎭⎫⎝⎛00BA ,则C =___ A 、B A B 、-B AC 、(-1)nm B AD 、(-1)n (n-1)/2B A 2、设A 、B 为n 阶方阵,则必有___A 、B A B A +=+ B 、AB=BAC 、BA AB =D 、(A+B )-1=A -1+B -13、设A 为m*n 矩阵,齐次线性方程组Ax=0仅有零解的充分必要条件是___A、A的列向量组线性无关B、A的列向量组线性相关C、A的行向量组线性无关D、A的行向量组线性相关4、设a1a2…a n为n维向量,则下列结论正确的是___A、k1a1+k2a2+…+k n a n=0,则a1a2…a n线性相关B、对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n≠0,则a1a2…a n线性无关C、a1a2…a n线性相关,则对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n=0成立D、若0a1+0a2+…+0a n=0,则a1a2…a n线性无关5、设η1与η2是非其次线性方程组Ax=β的两个不同的解,ξ1与ξ2时对应的其次线性方程组Ax=0的基础解系,k1与k2是任意实数,则Ax=β的通解为___A、221ηη-+k1ξ1+k2(ξ1+ξ2) B、221ηη++k1ξ1+k2(ξ1-ξ2)C、221ηη-+k1ξ1+k2(η1+η2) D、221ηη++k1ξ1+k2(η1-η2)6、设A为n阶可逆阵(n≥2),A*为A的伴随矩阵,则___A、(A*)*=A n-1AB、(A*)*=A n+1AC、(A*)*=A n-2AD、(A*)*=A n+2A7、设A、B、C是n阶方阵,E为n阶单位阵,若ABC=E,则必有__A、ACB=EB、CBA=EC、BAC=ED、BCA=E8、设n阶方阵A与B等价,则___A 、A =B B 、A ≠BC 、若A ≠0,则必有B ≠0D 、A =-B 三、计算1、计算下列行列式(1)n001030100211111⋯⋯⋯⋯⋯⋯⋯⋯⋯(2)1111111111111111---+---+--x x x x(3)D=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0111110111110111110111110 2、已知A=⎪⎪⎪⎭⎫ ⎝⎛---433312120,B=⎪⎪⎭⎫⎝⎛-132321,求X 使得XA=B3、解方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 4、(1)设n 阶方阵满足A+B=AB ,证明:A-E 可逆,并求(A-E )-1 (2)证明:m 个n 维向量,当m 〉n 时,它们线性相关 5、设E+AB 可逆,证明E+BA 也可逆,且(E+BA )-1=E-B (E+BA )-1A6、设A=⎪⎪⎭⎫⎝⎛--82593122,求一个4*2矩阵B ,使得AB=0,且R (B )=27、求下列向量组的一个最大无关组,并以此最大无关组将其余向量线性表示出。
线代复习
线代复习(A )一. 单项选择题1. 如果,1333231232221131211==a a a a a a a a a D 则=---=3332312322211312111333333333a a a a a a a a a D ( ) (A ) 3 (B ) 3- (C ) 27 (D ) 27-2. 如齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++00202z y x ky x z y kx 仅有零解,则( )(A ) 2-≠k (B ) 3≠k (C ) 2-≠k 且3≠k (D ) 3≠k 或2-≠k 3. 设B A ,均为n 阶非零矩阵,且0=AB ,则)(),(B r A r 满足( ) (A ) 必有一个等于0 (B )都小于n(C ) 一个小于n ,一个等于n (D )都等于n4. 设A 与B 均为n 阶对称阵,则( )也为n 阶对称阵 (A ) TTB A (B ) 11--B A (C ) AB (D ) B A 23-5. 已知B 为4阶矩阵,b B =||,则其伴随矩阵*B 的行列式=||*B ( ) (A ) b (B ) 2b (C ) 3b (D ) 4b 6. 当=k ( )时,向量组T T T k ),1,2(,)2,1,3(,)1,0,1(321==-=ααα的秩为2。
(A ) 1 (B ) 2 (C ) 3 (D ) 37. 对于齐次线性方程组,以下说法正确的是( )(A ) 如0=AX 有解 ,则必有0||≠A (B ) 如0=AX 无解 ,则必有0||=A (C ) 如0=AX 有非零解 ,则必有0||≠A (D ) 0=AX 总有解 8. 设21,ξξ是0=AX 的解,21,ηη是b AX =的解,则( ) (A ) 11ηξ+是b AX =的解 (B ) 11ηξ+是0=AX 的解 (C ) 21ηη+是0=AX 的解 (D ) 21ξξ+是b AX =的解 二. 填空题1. 已知4阶行列式D 中第三列元素依次为1,0,2,1-,它们的余子式依次分别为1,1,3,2-,则=D ____________2. 设B A ,为3 阶方阵,且2||,2||-==B A ,则|2|1-AB =____________3. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=300520401A ,且A 的伴随矩阵为*A ,则*AA =____________4. 设矩阵C B A ,,满足CB AC =,其中n s ij c C ⨯=)(,则A 与B 分别是______阶与______阶矩阵。
线性代数复习题
二、(10分) 计算 n 阶行列式 :
a1 +1 a2 L an-1
an
a1 a2 +2 L an-1
an
Dn = M
M
M
M
a1
a2 L an-1 +n-1 an
a1
a2 L
an- 1
an + n
2/6/2.2
2
三、(10分)
æ-4 2 0 0 ö
ç
÷
设A
=
ç ç
2 0
00 0 -7
0 3
÷÷ , 且BA
八、(5分) 已知A是实反对称矩阵(即满足 AT = - A), 试证
E - A2 为正定矩阵,其中E是单位矩阵.
6/6/2.2
复习题(二)参考答案
一、1. - 100;
æ1 6 0 0 ö
ç
÷
2. ç 1 3 1 3 0 ÷;
çè 1 2 1 2 1 2÷ø
3. k ¹ 0 且 k ¹ 3; 4. a = b = 0.
çè 3 1 2÷ø çè 3 1 2÷ø
五、(15分) l 取何实值时,线性方程组
ì l x1 - x2 = l
ïï l x2 - x3 = l
í ï
l
x3 -
x4
=
ቤተ መጻሕፍቲ ባይዱ
l
ïî- x1 + l x4 = l
有唯一解,无穷多解, 无解?在有无穷多解的
情况下求通解 .
4/6/2.1
六、1.(5分) 设A为正交矩阵且 det A = -1,证明 : - E - A不可逆.
的秩等于
.
2.设 A 为 n 阶方阵,且 det A = 2,则
线性代数复习题带参考答案
线性代数考试练习题带答案说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解 B.21ηη-是Ax =b 的解 C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( ) A.20 B.24 C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .-4B .-1C .1D .42.设矩阵A =(1,2),B =⎪⎪⎭⎫ ⎝⎛4321,C =⎪⎪⎭⎫⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABCC .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a,则A *=( A ) A .⎪⎪⎭⎫ ⎝⎛--a cb dB .⎪⎪⎭⎫ ⎝⎛--a bc dC .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫ ⎝⎛--a bc d5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C )A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫ ⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--500043200101,则A 中( D )A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T +k 2(1,-1,3)T B .(1,0,2)T +k (1,-1,3)T C .(1,0,2)T +k (0,1,-1)TD .(1,0,2)T +k (2,-1,5)T9.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111111111的非零特征值为( B )A .4B .3C .2D .110.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4 B .3C .2D .1二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 12.设矩阵A =⎪⎪⎭⎫ ⎝⎛4321,则行列式|A TA |=__4__.13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__.15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__. 18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫ ⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__.19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+.20.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123.解:0760300940200320100767367949249323123==.22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A .解: ⎪⎪⎪⎭⎫ ⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---127012002200210202→ ⎪⎪⎪⎭⎫ ⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5100010001, =-1A ⎪⎪⎪⎭⎫ ⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000330044400321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000110011100321→⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110000103001.(1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫ ⎝⎛-=111000*********A →⎪⎪⎪⎭⎫ ⎝⎛--111001010010011→⎪⎪⎪⎭⎫ ⎝⎛--010001010010011→⎪⎪⎪⎭⎫ ⎝⎛010001010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为T T k k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫ ⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵.解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ.对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,单位化为 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=112α,单位化为 ⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ. 令⎪⎪⎪⎪⎭⎫ ⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫ ⎝⎛-=-30011AP P .26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫ ⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,00002213=-=a A ,000121123=-=a a A , 所以⎪⎪⎪⎭⎫⎝⎛=-33322231211110||1A A A A A A A A 是上三角矩阵. 线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A ) A .-2B .21- C .21D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C )A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T ,则必有( A ) A .B T =BB .B =2AC .B B T -=D .B =04.矩阵A =⎪⎪⎭⎫ ⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.下列矩阵中,是初等矩阵的为( C )A .⎪⎪⎭⎫⎝⎛0001B .⎪⎪⎪⎭⎫⎝⎛--100101110C .⎪⎪⎪⎭⎫⎝⎛101010001D .⎪⎪⎪⎭⎫⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B ) A .0B .1C .2D .3A .A 中的4阶子式都不为0B .A 中存在不为0的4阶子式C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0B.1C .2D .39.设A 为n 阶正交矩阵,则行列式=||2A ( C ) A .-2B .-1C .1D .210.二次型2.2),,(y x z y x f -=的正惯性指数p 为( B )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎭⎫ ⎝⎛1121,则行列式=||TAA __1__.12.行列式1694432111中)2,3(元素的代数余子式=32A __-2__.13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__. 14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1.15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__.16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛x 01010101的一个特征值为0,则x =__1__.20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫ ⎝⎛--541431112.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=210121012的值.解:4)26(2123210121230210121012=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛=252610022501101220016101210013512),(E A⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X .23.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2.解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--900000003121a →⎪⎪⎪⎭⎫ ⎝⎛--000090003121a .(1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--000014202611,秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫ ⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛000032203421→⎪⎪⎪⎭⎫⎝⎛000032200201→⎪⎪⎪⎭⎫ ⎝⎛00002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1.解:2)1)(2(31104)1(1630310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α.令⎪⎪⎪⎭⎫ ⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1.四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D )A .-3B .-1C .1D .32.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .1-C .1 D .13.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D )A .2⎪⎪⎭⎫⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛5.设向量组s ααα,,,21Λ线性相关,则必可推出( C ) A .s ααα,,,21Λ中至少有一个向量为零向量 B .s ααα,,,21Λ中至少有两个向量成比例C .s ααα,,,21Λ中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21Λ中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++B .)()(212121121ααC αC ββ+++-C .)()(12121121ββC αC ββ-+++ D .)()(12121121ββC αC ββ+++- 8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A ) A .1 B .1 C .7 D .129.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B ) A .3-B .2-C .2 D .3 10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C ) A .⎪⎪⎪⎭⎫⎝⎛104012421B .⎪⎪⎪⎭⎫⎝⎛100010421C .⎪⎪⎪⎭⎫⎝⎛102011211D .⎪⎪⎪⎭⎫⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023.12.设3阶矩阵A =⎪⎪⎪⎭⎫ ⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫ ⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫ ⎝⎛600060006.14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. 15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31. 16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41.19.若实对称矩阵A =⎪⎪⎪⎭⎫ ⎝⎛a a a 000103为正定矩阵,则a 的取值应满足30<<a .20.二次型2221212122),(x x x x x x f -+=的秩为__2__.三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:6300102010011000100010011020130011111112113114111===. 22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫ ⎝⎛=10211P ,⎪⎪⎭⎫⎝⎛=01102P ,令21AP P B =,求1-B .解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫ ⎝⎛=-011012P ,111121----=P A P B =⎪⎪⎭⎫ ⎝⎛0110⎪⎪⎭⎫⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------0700070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫⎝⎛---=2112113111a a a A →⎪⎪⎪⎭⎫ ⎝⎛-----a a a a a 110010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫ ⎝⎛-000000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫ ⎝⎛------011101110的全部特征值及对应的全部特征向量.解:100010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-000330211330330211112121211211121112A E λ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231xx x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数).四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。