多线程编程之四——线程的同步

合集下载

线程同步的方法有哪些

线程同步的方法有哪些

线程同步的方法有哪些线程同步是多线程编程中非常重要的一个概念,它是指多个线程在访问共享资源时,为了避免出现数据不一致或者冲突的情况,需要对线程进行协调和同步。

在实际的开发中,我们常常会遇到需要进行线程同步的情况,因此了解线程同步的方法是非常重要的。

本文将介绍几种常见的线程同步方法,希望能够帮助大家更好地理解和应用线程同步。

1. 互斥锁。

互斥锁是最常见的线程同步方法之一。

它通过对共享资源加锁的方式,保证同一时间只有一个线程可以访问该资源,其他线程需要等待锁的释放才能访问。

互斥锁可以使用操作系统提供的原子操作指令来实现,也可以使用编程语言提供的锁机制来实现,如Java中的synchronized关键字。

2. 信号量。

信号量是另一种常见的线程同步方法。

它可以用来控制对共享资源的访问权限,通过对信号量的值进行操作来实现线程的同步。

当信号量的值大于0时,表示资源可用,线程可以访问;当信号量的值等于0时,表示资源不可用,线程需要等待。

信号量的实现可以使用操作系统提供的信号量机制,也可以使用编程语言提供的信号量类来实现。

3. 条件变量。

条件变量是一种线程同步的高级方法,它可以用来在多个线程之间传递信息和控制线程的执行顺序。

条件变量通常和互斥锁一起使用,当共享资源的状态发生变化时,可以通过条件变量来通知等待的线程。

条件变量的实现通常需要依赖于操作系统提供的条件变量机制或者编程语言提供的条件变量类。

4. 读写锁。

读写锁是一种特殊的互斥锁,它可以提高对共享资源的并发访问性能。

读写锁允许多个线程同时对共享资源进行读操作,但是在进行写操作时需要互斥访问。

通过读写锁,可以有效地提高对共享资源的并发性能,适用于读操作频繁、写操作较少的场景。

5. 原子操作。

原子操作是一种特殊的指令序列,它可以保证在多线程环境下对共享资源的操作是原子性的,不会被中断。

原子操作通常由硬件提供支持,可以保证在执行过程中不会被其他线程打断,从而保证对共享资源的操作是线程安全的。

多线程之线程同步的方法(7种)

多线程之线程同步的方法(7种)

多线程之线程同步的⽅法(7种)同步的⽅法:⼀、同步⽅法 即有synchronized关键字修饰的⽅法。

由于java的每个对象都有⼀个内置锁,当⽤此关键字修饰⽅法时,内置锁会保护整个⽅法。

在调⽤该⽅法前,需要获得内置锁,否则就处于阻塞状态。

注: synchronized关键字也可以修饰静态⽅法,此时如果调⽤该静态⽅法,将会锁住整个类。

⼆、同步代码块 即有synchronized关键字修饰的语句块。

被该关键字修饰的语句块会⾃动被加上内置锁,从⽽实现同步代码如:synchronized(object){}注:同步是⼀种⾼开销的操作,因此应该尽量减少同步的内容。

通常没有必要同步整个⽅法,使⽤synchronized代码块同步关键代码即可。

package com.xhj.thread;/*** 线程同步的运⽤** @author XIEHEJUN**/public class SynchronizedThread {class Bank {private int account = 100;public int getAccount() {return account;}/*** ⽤同步⽅法实现** @param money*/public synchronized void save(int money) {account += money;}/*** ⽤同步代码块实现** @param money*/public void save1(int money) {synchronized (this) {account += money;}}}class NewThread implements Runnable {private Bank bank;public NewThread(Bank bank) {this.bank = bank;}@Overridepublic void run() {for (int i = 0; i < 10; i++) {// bank.save1(10);bank.save(10);System.out.println(i + "账户余额为:" + bank.getAccount());}}}/*** 建⽴线程,调⽤内部类*/public void useThread() {Bank bank = new Bank();NewThread new_thread = new NewThread(bank);System.out.println("线程1");Thread thread1 = new Thread(new_thread);thread1.start();System.out.println("线程2");Thread thread2 = new Thread(new_thread);thread2.start();}public static void main(String[] args) {SynchronizedThread st = new SynchronizedThread();eThread();}}=====================================⽰例加讲解同步是多线程中的重要概念。

用回调函数实现多线程同步

用回调函数实现多线程同步

用回调函数实现多线程同步使用回调函数实现多线程同步多线程编程是一种常见的并发编程模型,能够有效提高程序的性能和响应速度。

然而,在多线程环境下,线程之间的同步问题会变得非常复杂。

为了解决这个问题,回调函数被广泛应用于多线程同步中。

回调函数是一种特殊的函数指针,它允许将一个函数作为参数传递给另一个函数,并在特定事件发生时被调用。

在多线程环境中,我们可以使用回调函数来实现线程之间的同步。

1. 线程创建和回调函数概述在多线程编程中,我们通常会创建多个线程来执行不同的任务。

为了实现线程之间的同步,我们可以在创建线程时指定一个回调函数,用于在线程完成任务后通知主线程。

2. 线程同步的步骤使用回调函数实现多线程同步的步骤如下:步骤一:定义一个回调函数,用于在线程完成任务后执行特定的操作。

步骤二:创建线程,并将定义的回调函数作为参数传递给线程。

步骤三:线程执行完任务后调用回调函数,并将任务结果作为参数传递给回调函数。

步骤四:在回调函数中执行特定的操作,如更新共享变量、发送信号等。

通过这种方式,我们可以在多线程环境中实现线程的同步和协作。

3. 示例代码下面是一个使用回调函数实现多线程同步的示例代码:```pythonimport threading# 定义回调函数,用于在线程完成后通知主线程def callback_func(result):print("线程执行完毕,结果为:", result)# 定义线程函数,执行耗时操作def thread_func(callback):# 执行具体的任务result = 1 + 2# 调用回调函数,将任务结果传递给回调函数callback(result)# 创建线程,并指定回调函数thread = threading.Thread(target=thread_func, args=(callback_func,))# 启动线程thread.start()# 主线程继续执行其他任务print("主线程继续执行")```在上述代码中,我们首先定义了一个回调函数`callback_func`,用于在线程完成后通知主线程。

线程同步方法有哪些

线程同步方法有哪些

线程同步方法有哪些
线程同步的常用方法有:
1. 使用锁:例如使用`Lock`类、`ReentrantLock`类或`synchronized`关键字来实现线程同步。

2. 使用条件变量:例如使用`Condition`类来控制线程等待和唤醒。

3. 使用信号量:例如使用`Semaphore`类来控制线程的并发数。

4. 使用栅栏:例如使用`CyclicBarrier`类来控制多个线程在某个点上同步。

5. 使用阻塞队列:例如使用`BlockingQueue`类来控制线程的顺序执行。

6. 使用计数器:例如使用`CountDownLatch`类来控制线程的等待和唤醒。

7. 使用原子类:例如使用`AtomicInteger`类来保证操作的原子性。

8. 使用同步容器:例如使用`ConcurrentHashMap`类来保证线程安全。

9. 使用线程池:例如使用`ExecutorService`类来调度线程的执行顺序。

10. 使用并发工具类:例如使用`ReadWriteLock`类来实现多线程对某个资源的读写操作。

C#实现多线程的同步方法详解

C#实现多线程的同步方法详解

C#实现多线程的同步⽅法详解本⽂主要描述在C#中线程同步的⽅法。

线程的基本概念⽹上资料也很多就不再赘述了。

直接接⼊主题,在多线程开发的应⽤中,线程同步是不可避免的。

在.Net框架中,实现线程同步主要通过以下的⼏种⽅式来实现,在MSDN的线程指南中已经讲了⼏种,本⽂结合作者实际中⽤到的⽅式⼀起说明⼀下。

1. 维护⾃由锁(InterLocked)实现同步2. 监视器(Monitor)和互斥锁(lock)3. 读写锁(ReadWriteLock)4. 系统内核对象1) 互斥(Mutex), 信号量(Semaphore), 事件(AutoResetEvent/ManualResetEvent)2) 线程池除了以上的这些对象之外实现线程同步的还可以使⽤Thread.Join⽅法。

这种⽅法⽐较简单,当你在第⼀个线程运⾏时想等待第⼆个线程执⾏结果,那么你可以让第⼆个线程Join进来就可以了。

⾃由锁(InterLocked)对⼀个32位的整型数进⾏递增和递减操作来实现锁,有⼈会问为什么不⽤++或--来操作。

因为在多线程中对锁进⾏操作必须是原⼦的,⽽++和--不具备这个能⼒。

InterLocked类还提供了两个另外的函数Exchange, CompareExchange⽤于实现交换和⽐较交换。

Exchange操作会将新值设置到变量中并返回变量的原来值: int oVal = InterLocked.Exchange(ref val, 1)。

监视器(Monitor)在MSDN中对Monitor的描述是: Monitor 类通过向单个线程授予对象锁来控制对对象的访问。

Monitor类是⼀个静态类因此你不能通过实例化来得到类的对象。

Monitor 的成员可以查看MSDN,基本上Monitor的效果和lock是⼀样的,通过加锁操作Enter设置临界区,完成操作后使⽤Exit操作来释放对象锁。

不过相对来说Monitor的功能更强,Moniter可以进⾏测试锁的状态,因此你可以控制对临界区的访问选择,等待or离开, ⽽且Monitor还可以在释放锁之前通知指定的对象,更重要的是使⽤Monitor可以跨越⽅法来操作。

跟我学Linux编程-12-多线程编程-同步

跟我学Linux编程-12-多线程编程-同步

多线程编程-同步在上一章节中,我们通过程序示例,见证了单线程世界中不可能发生的事件(一个数既是奇数又是偶数)在多线程环境中是怎样分分钟发生的,我通过细分程序执行步骤,分析了奇异事件发生的过程,并探明了其原因:一个线程在对全局变量gcnt进行两次判读的过程中,另一个线刚好改变了这个变量的值。

在多线程编程术语中,称这两个线程同时进入了临界区域。

所谓临界区域,是指多线程环境下两个及以上线程同时执行可能会导致冲突的一段代码。

在上一章节的示例中,这几行代码就是一个临界区域:gcnt++;if (gcnt % 2){if (!(gcnt % 2)) printf("[%d] : %d\n", id, gcnt);}冲突之所以会发生,是因为临界区域的代码,通常需要很多个CPU指令周期才能完成,其运行过程随时可能被打断(进行了线程调试),CPU去运行另外的线程,如果这个线程刚好也进入了临界区域,则异常的程序状态极可能会发生。

如果当某个线程进入临界区域,在其退出区域之前,其他的线程无论如何也不能进入该区域,那么冲突就不会发生。

Linux提供了这种保证多线程进入临界区域互斥的机制,这正是本章节所要介绍的内容:线程锁。

我们今天的示例程序还是在上一章节的示例上改进而来的,我们的任务就是使用线程锁,保证“一个数既是奇数又是偶数”的奇异事件在多线程环境下也不发生,代码如下:#include <pthread.h>#include <stdio.h>#include <unistd.h>int gcnt = 0;pthread_mutex_t g_mutex;void *thread_task(void *arg){int id = (int)arg;while (1){pthread_mutex_lock(&g_mutex);gcnt++;if (gcnt % 2)if (!(gcnt % 2)) printf("[%d] : %d\n", id, gcnt);}pthread_mutex_unlock(&g_mutex);usleep(1);}return NULL;}int main(int argc, char *argv[]){pthread_t thr;pthread_mutex_init(&g_mutex, NULL);pthread_create(&thr, NULL, thread_task, (void *)1);pthread_create(&thr, NULL, thread_task, (void *)2);thread_task((void *)0);return 0;}今天的程序相对于上章的代码,改动非常小,只添加了四行,已使用红色加粗标注。

多线程编程中的同步和并发问题解析

多线程编程中的同步和并发问题解析

多线程编程中的同步和并发问题解析在多线程编程中,同步和并发是两个关键的概念,主要涉及到多个线程之间的协同工作和共享资源的管理。

了解和解决同步和并发问题是保证多线程程序正确执行的关键。

一、同步问题同步问题是指多个线程之间的协作和按照一定的顺序执行。

在多线程编程中,可能会遇到以下几种同步问题:1.竞态条件(Race Condition):竞态条件是指多个线程竞争共享资源导致的问题。

当多个线程对同一共享资源进行读写操作时,可能会出现不可预期的结果。

例如,一个线程在读取共享资源的同时,另一个线程可能在修改这个资源,导致读取的结果不正确。

解决竞态条件的常见方法是使用互斥锁(Mutex)来保证对共享资源的排他访问,确保同一时间只有一个线程能够对共享资源进行操作。

2.死锁(Deadlock):死锁是指多个线程互相等待对方释放资源导致的无法继续执行的情况。

当多个线程都在等待对方释放资源时,将无法继续执行下去,形成死锁。

解决死锁问题的方法可以使用资源分级策略,即按照一定的顺序请求资源,释放资源也按照相反的顺序进行。

这样能够避免多个线程同时请求相同的资源,从而降低死锁的可能性。

3.饥饿(Starvation):饥饿是指某个线程由于资源被其他优先级高的线程占用而无法获得所需的资源,无法继续执行的情况。

解决饥饿问题的方法可以使用公平调度策略,即按照请求的先后顺序分配资源,避免某个线程长时间无法获得资源的情况。

二、并发问题并发问题是指多个线程同时执行,可能会导致不可预期的结果。

在多线程编程中,可能会遇到以下几种并发问题:1.数据竞争(Data Race):数据竞争是指多个线程同时读写共享数据导致的问题。

当多个线程对同一数据进行读写操作时,可能会出现不一致的结果。

例如,一个线程正在写入数据,同时另一个线程正在读取这个数据,导致读取的结果不正确。

解决数据竞争问题的常见方法是使用原子操作(Atomic Operation)或者互斥锁来保证对共享数据的原子性操作,确保多个线程对数据的访问不会出现冲突。

线程同步和线程协作

线程同步和线程协作
缺点:性能不好
多线程单例---饿汉模式
程序启动的时候,立马启动,拿空间换时间
不使用synchronize关键字,使用的是jvm中自带的锁
懒汉模式和饿汉模式的区别:
懒汉模式假如没有synchronize关键字,将会出现线程不安全,导致性能低。
饿汉模式在系统加载的时候,立刻加载,加载时太早
第四种:优化的懒汉模式(兼懒汉和饿汉两种特性)
性能:综合性能比较好。
4、线程协作
说明:线程协作,研究的是在特殊的情况下,对象监视器的释放问题。在对象监视块中释放对象监视器。
生产者,消费者----面试重点
缺点:效率低下。
2、事物管理
原子性,一致性,持久性,隔离性
隔离性:研究的就是线程同步,隔离数据---隔离表---隔离数据库
锁机制:
悲观锁:添加数据--->一张表被操作时,其他人不能对这张表进行操作。
乐观锁:用户添加数据的时候,允许他人查询,删除,
说明:面包店卖面包
1、两个消费者和两个生产者
2、一个面包柜中只能装10个面包,满了就不生产。
空了就不消费。
3、假如现在柜子中有9个面包,生产者一号发现没有满,去生产,一号在生产而没生产结束的时候,二号生产者发现柜子没有满-----出错
4、当柜子还有一个面包,消费者一号消费,二号消费者来了消费----出错
并发:同时存在多个进程处在启动、运行和结束之间,这些进程必须运行在同一个处理机上,导致出现资源不一致。
本质:研究线程和对象监视器之间的关系。
:每个对象都拥有一个class文件(class中有一个对象监视器)
synchronize:放了对象监视器,谁拿到监视器,谁先操作

C++线程同步的四种方式(Windows)

C++线程同步的四种方式(Windows)

C++线程同步的四种方式(Windows)为什么要进行线程同步?在程序中使用多线程时,一般很少有多个线程能在其生命期内进行完全独立的操作。

更多的情况是一些线程进行某些处理操作,而其他的线程必须对其处理结果进行了解。

正常情况下对这种处理结果的了解应当在其处理任务完成后进行。

如果不采取适当的措施,其他线程往往会在线程处理任务结束前就去访问处理结果,这就很有可能得到有关处理结果的错误了解。

例如,多个线程同时访问同一个全局变量,如果都是读取操作,则不会出现问题。

如果一个线程负责改变此变量的值,而其他线程负责同时读取变量内容,则不能保证读取到的数据是经过写线程修改后的。

为了确保读线程读取到的是经过修改的变量,就必须在向变量写入数据时禁止其他线程对其的任何访问,直至赋值过程结束后再解除对其他线程的访问限制。

这种保证线程能了解其他线程任务处理结束后的处理结果而采取的保护措施即为线程同步。

代码示例:两个线程同时对一个全局变量进行加操作,演示了多线程资源访问冲突的情况。

#include "stdafx.h"#include<windows.h>#include<iostream>using namespace std;int number = 1;unsigned long __stdcall ThreadProc1(void* lp){while (number < 100){cout << "thread 1 :"<<number << endl;++number;_sleep(100);}return0;}unsigned long __stdcall ThreadProc2(void* lp){while (number < 100){cout << "thread 2 :"<<number << endl;++number;_sleep(100);}return0;}int main(){CreateThread(NULL, 0, ThreadProc1, NULL, 0, NULL); CreateThread(NULL, 0, ThreadProc2, NULL, 0, NULL);Sleep(10*1000);system("pause");return0;}运行结果:可以看到有时两个线程计算的值相同,不是我们想要的结果。

线程与并发控制:处理多线程的同步和互斥

线程与并发控制:处理多线程的同步和互斥

线程与并发控制:处理多线程的同步和互斥线程和并发控制是计算机科学领域中非常重要的概念,特别是在多核处理器和分布式系统中。

线程是程序执行的基本单位,而并发控制则是指有效地管理多个线程之间的同步和互斥,以保证数据的一致性和程序的正确执行。

在多线程编程中,线程之间的并发控制是一个关键问题。

当多个线程同时访问共享资源时,如果没有适当的同步和互斥机制,就会出现数据竞争和不一致的问题。

因此,了解如何处理线程的同步和互斥是非常重要的。

同步指的是多个线程之间按照一定的顺序执行,以保证数据的一致性。

常见的同步机制包括互斥锁、条件变量、信号量等。

互斥锁是最基本的同步机制,它可以确保同时只有一个线程能访问共享资源,从而避免数据竞争。

条件变量可以在多个线程之间传递信号,以协调它们的执行流程。

信号量可以用来控制并发访问资源的数量,避免资源的过度竞争。

除了同步机制外,还有一些高级的并发控制技术,如读写锁、原子操作、事务内存等。

读写锁可以提高多线程读取共享资源的效率,因为读取操作不涉及数据一致性问题,可以同时进行。

原子操作可以确保某些操作的原子性,即要么全部执行成功,要么全部不执行。

事务内存是一种基于硬件的并发控制技术,可以提供更高的性能和可靠性。

在处理多线程的同步和互斥时,需要遵循一些基本原则。

首先,避免死锁,即当多个线程互相等待对方释放资源时,就会陷入死锁状态。

其次,避免资源泄漏,即确保每个线程在完成任务后释放所有的资源。

最后,避免竞争条件,即多个线程对共享资源的访问顺序可能影响程序的正确执行,需要避免这种情况的发生。

为了提高多线程程序的性能和可靠性,在设计和实现上需要注意一些细节。

首先,尽量减少共享资源的数量,因为共享资源越多,就越容易引发数据竞争和并发控制问题。

其次,合理设计线程的通信和同步机制,避免不必要的等待和阻塞。

最后,尽量避免线程间频繁地切换和竞争,提高程序的并发执行效率。

总的来说,线程和并发控制是计算机科学中非常重要的概念,能够有效地提高程序的性能和可靠性。

多线程同步的四种方式(史上最详细+用例)

多线程同步的四种方式(史上最详细+用例)

多线程同步的四种⽅式(史上最详细+⽤例)多线程同步的四种⽅式对于多线程程序来说,同步是指在⼀定的时间内只允许某⼀个线程来访问某个资源。

⽽在此时间内,不允许其他的线程访问该资源。

可以通过互斥锁(Mutex)、条件变量(condition variable)、读写锁(reader-writer lock)、信号量(semaphore)来同步资源。

1. 互斥锁(Mutex)互斥量是最简单的同步机制,即互斥锁。

多个进程(线程)均可以访问到⼀个互斥量,通过对互斥量加锁,从⽽来保护⼀个临界区,防⽌其它进程(线程)同时进⼊临界区,保护临界资源互斥访问。

互斥锁需要满⾜三个条件:互斥不同线程的临界区没有重叠⽆死锁如果⼀个线程正在尝试获得⼀个锁,那么总会成功地获得这个锁。

若线程A调⽤lock()但是⽆法获得锁,则⼀定存在其他线程正在⽆穷次地执⾏临界区。

⽆饥饿每⼀个试图获得锁的线程最终都能成功。

#include <stdio.h>#include <stdlib.h>#include <pthread.h>void *function(void *arg);pthread_mutex_t mutex;int counter = 0;int main(int argc, char *argv[]){int rc1,rc2;char *str1="hello";char *str2="world";pthread_t thread1,thread2;pthread_mutex_init(&mutex,NULL);if((rc1 = pthread_create(&thread1,NULL,function,str1))){fprintf(stdout,"thread 1 create failed: %d\n",rc1);}if(rc2=pthread_create(&thread2,NULL,function,str2)){fprintf(stdout,"thread 2 create failed: %d\n",rc2);}pthread_join(thread1,NULL);pthread_join(thread2,NULL);return 0;}void *function(void *arg){char *m;m = (char *)arg;pthread_mutex_lock(&mutex);while(*m != '\0'){printf("%c",*m);fflush(stdout);m++;sleep(1);}printf("\n");pthread_mutex_unlock(&mutex);}2. 条件变量(condition variable)⽣产者消费者问题:每次⽣产⼀个商品,发⼀个信号,告诉消费者“我⽣产商品了,快来消费”,消费者拿到⽣产者的条件变量后每次消费两个商品,然后发出信号“我消费了商品,你可以⽣产了”--_--(发的这个信号是⼀个条件变量,通过发送这个信号可以唤醒阻塞的线程,收到信号后,不满⾜需求也会继续阻塞)为了防⽌竞争,条件变量的使⽤总是和⼀个互斥锁结合在⼀起;条件变量是线程的另⼀种同步机制,它和互斥量是⼀起使⽤的。

同步线程和异步线程

同步线程和异步线程

同步线程和异步线程同步线程和异步线程是并发编程中的两个重要概念,它们在多线程编程中起到了至关重要的作用。

本文将分别介绍同步线程和异步线程的概念、特点以及在实际应用中的应用场景。

一、同步线程同步线程是指多个线程按照一定的顺序执行,每个线程都要等待前一个线程执行完毕后才能执行。

在同步线程中,线程之间的执行是串行的,也就是说,只有前一个线程执行完毕后,下一个线程才能执行。

同步线程的一个重要特点是线程之间的执行顺序是可预测的。

同步线程的应用场景很多。

例如,在银行的柜台办理业务时,每个客户都需要按照顺序进行办理,不能同时处理多个客户的业务。

这时,可以使用同步线程来保证每个客户按照顺序进行办理,避免出现混乱的情况。

二、异步线程异步线程是指多个线程之间的执行顺序是不确定的,每个线程都可以独立执行,互不干扰。

在异步线程中,线程之间的执行顺序是不可预测的,可能会出现交叉执行的情况。

异步线程的一个重要特点是线程之间的执行顺序是不可预测的。

异步线程的应用场景也很多。

例如,在一个网页中,需要同时加载多个图片,如果使用同步线程的方式加载图片,会导致加载时间过长,用户体验不佳。

这时,可以使用异步线程来同时加载多个图片,提高加载速度,提升用户体验。

同步线程和异步线程在多线程编程中起到了不同的作用。

它们的主要区别在于线程之间的执行顺序和执行方式不同。

同步线程的执行顺序是可预测的,线程之间按照一定的顺序执行,每个线程都要等待前一个线程执行完毕后才能执行。

同步线程的执行方式是串行的,一个线程执行完毕后,下一个线程才能执行。

异步线程的执行顺序是不可预测的,线程之间的执行顺序是不确定的。

异步线程的执行方式是并行的,多个线程可以同时执行,互不干扰。

四、同步线程和异步线程的优缺点同步线程的优点是线程之间的执行顺序可控,适合处理顺序敏感的任务。

缺点是执行效率较低,因为每个线程都需要等待前一个线程执行完毕后才能执行。

异步线程的优点是执行效率高,多个线程可以同时执行,提高了系统的吞吐量。

C语言技术中的线程同步方法解析

C语言技术中的线程同步方法解析

C语言技术中的线程同步方法解析在多线程编程中,线程同步是一个重要的概念,它涉及到多个线程之间的协调和互斥。

C语言提供了多种线程同步方法,本文将对其中几种常用的方法进行解析。

一、互斥锁(Mutex)互斥锁是最常用的线程同步方法之一。

它通过对共享资源进行加锁和解锁的操作,确保在任意时刻只有一个线程可以访问共享资源。

互斥锁的使用非常简单,可以通过以下步骤实现:1. 定义一个互斥锁变量:`pthread_mutex_t mutex;`2. 初始化互斥锁:`pthread_mutex_init(&mutex, NULL);`3. 在需要同步的代码段前后加锁和解锁操作:```pthread_mutex_lock(&mutex);// 同步代码段pthread_mutex_unlock(&mutex);```互斥锁的优点是简单易用,但是如果多个线程频繁地竞争同一个锁,会导致性能下降。

二、条件变量(Condition Variable)条件变量是另一种常用的线程同步方法。

它允许线程在某个条件满足时等待,直到其他线程满足条件后通知它们继续执行。

条件变量的使用一般需要与互斥锁结合起来,可以通过以下步骤实现:1. 定义一个条件变量和一个互斥锁变量:`pthread_cond_t cond;` 和`pthread_mutex_t mutex;`2. 初始化条件变量和互斥锁:`pthread_cond_init(&cond, NULL);` 和`pthread_mutex_init(&mutex, NULL);`3. 在需要等待条件的线程中,先加锁,然后调用`pthread_cond_wait()`等待条件满足,同时会释放互斥锁;在其他线程满足条件后,调用`pthread_cond_signal()`或`pthread_cond_broadcast()`通知等待的线程继续执行。

条件变量的优点是可以在满足特定条件时才唤醒线程,避免了忙等待的问题。

异步线程和同步线程详解

异步线程和同步线程详解

异步线程和同步线程详解一、异步线程和同步线程的概念1.异步线程(Asynchronous Threads):异步线程允许在一个线程中的任务执行完毕之前,其他线程可以继续执行。

这种方式可以让线程并行处理任务,从而提高程序的执行效率。

2.同步线程(Synchronous Threads):同步线程是指在执行过程中,一个线程必须等待另一个线程完成其任务后才能继续执行。

这种方式可以保证程序的顺序执行和数据一致性。

二、异步线程的优点1.提高执行效率:异步线程允许线程并行处理任务,从而加快程序的执行速度。

2.减少等待时间:当一个线程需要等待某个资源或完成某个长时间运行的任务时,异步线程可以让其他线程继续执行,从而减少用户等待时间。

3.充分利用多核资源:异步线程可以充分利用多核处理器的计算能力,提高程序的并行处理能力。

三、同步线程的优点1.保证数据一致性:同步线程可以保证在多个线程同时访问共享数据时,数据的一致性和完整性。

2.易于编程和维护:同步线程的执行流程相对简单,容易理解和实现,也有利于代码的维护和调试。

3.适合处理复杂逻辑:同步线程适合处理需要按照特定顺序执行的复杂逻辑,如某些算法或业务规则。

四、异步线程和同步线程的区别1.执行方式:异步线程是并行执行的,一个线程完成后其他线程可以继续执行;而同步线程是顺序执行的,一个线程必须等待另一个线程完成才能继续执行。

2.数据一致性:异步线程需要注意数据一致性问题,需要通过一些机制(如互斥锁)来保证数据的一致性;而同步线程由于是顺序执行的,数据一致性可以得到保证。

3.适用场景:异步线程适用于需要并行处理大量任务、提高程序执行效率的场景;而同步线程适用于需要按照特定顺序执行任务、保证数据一致性的场景。

五、异步线程和同步线程的应用场景1.异步线程的应用场景:网络编程、文件IO操作、复杂计算等需要大量计算或等待的场景。

例如,在Web服务器中处理多个客户端请求时,可以采用异步线程来提高服务器的响应速度和处理能力。

细说C#多线程那些事-线程同步和多线程优先级

细说C#多线程那些事-线程同步和多线程优先级

细说C#多线程那些事-线程同步和多线程优先级上个⽂章分享了⼀些多线程的⼀些基础的知识,今天我们继续学习。

⼀、Task类上次我们说了线程池,线程池的QueueUserWorkItem()⽅法发起⼀次异步的线程执⾏很简单但是该⽅法最⼤的问题是没有⼀个内建的机制让你知道操作什么时候完成,有没有⼀个内建的机制在操作完成后获得⼀个返回值。

为此,可以使⽤System.Threading.Tasks中的Task类。

Task类在命名空间System.Threading.Tasks下,通过Task的Factory返回TaskFactory类,以TaskFactory.StartNew(Action)⽅法可以创建⼀个新的异步线程,所创建的线程默认为后台线程,不会影响前台UI窗⼝的运⾏。

如果要取消线程,可以利⽤CancellationTakenSource对象。

如果要在取消任务后执⾏⼀个回调⽅法,则可以使⽤Task的()⽅法。

简单代码实现:using System;using System.Threading.Tasks;namespace Threading{class Program{public static Int32 ThreadSum(Int32 n){Int32 sum = 0;for (; n > 0; --n)sum += n;return sum;}static void Main(string[] args){var t = new Task<Int32>(n => ThreadSum((Int32)n), 100);t.Start();var cwt = t.ContinueWith(task => Console.WriteLine("The result is {0}", t.Result));Console.ReadKey();}}}Task类⽰例代码using System;using System.Threading.Tasks;public class Example{public static void Main(){Task t = Task.Factory.StartNew( () => {int ctr = 0;for (ctr = 0; ctr <= 1000000; ctr++){}Console.WriteLine("Finished {0} loop iterations",ctr);} );t.Wait();}}更多内容参考:⼆、异步执⾏委托的异步执⾏代码:BeginInvoke() 和 EndInvoke()using System;namespace Threading{public delegate string MyDelegate(object data);class Program{public static string Thread1(object data){return data.ToString();}public static void ThreadCallback(IAsyncResult data){Console.WriteLine("ThreadCallback = > " + data.AsyncState);}static void Main(string[] args){var mydelegate = new MyDelegate(Thread1);IAsyncResult result = mydelegate.BeginInvoke("Thread1 Para", ThreadCallback, "Callback Para");//异步执⾏完成var resultstr = mydelegate.EndInvoke(result);Console.WriteLine(resultstr);Console.ReadKey();}}}委托异步执⾏⽰例代码三、线程同步线程同步:指多个线程协同、协助、互相配合。

线程同步的几种实现方案

线程同步的几种实现方案

线程同步的⼏种实现⽅案当多个线程对同⼀数据进⾏访问时,容易出现线程安全问题,这个时候就需要让线程同步来保证数据的安全。

线程同步就是说在两个或两个以上的线程访问同⼀资源的时候,需要⽤到某种⽅式来保证资源在某⼀时刻只能被⼀个线程访问线程同步的实现⽅案:⼀、同步代码块:synchronized(同步监视器) 1、认识同步监视器(锁⼦) synchronized(同步监视器){} 1)必须是引⽤数据类型,不能是基本数据类型 2)在同步代码块中可以改变同步监视器对象的值,不能改变其引⽤ 3)尽量不要使⽤String和包装类Integer做同步监视器,如果要使⽤,则必须保证代码快啊中不对其做任何操作 4)⼀般使⽤共享资源做同步器 5)可以创建⼀个专门的同步监视器,没有任何含义 6)建议使⽤final来修饰同步监视器 2、同步代码块的执⾏过程 1)第⼀个线程来到同步代码块,发现同步监视器是open状态,需要close,然后执⾏其中的代码 2)第⼀个线程执⾏过程中,发⽣了线程切换(阻塞就绪),第⼀个线程失去了CPU,但是没有开锁 3)第⼆个线程获取了CPU,来到同步代码块,发现同步监视器close状态,⽆法执⾏其中的代码,第⼆个也进⼊了阻塞状态 4)第⼀个线程再次获得CPU,执⾏后续代码,执⾏完毕释放锁 5)第⼆个线程再次获得CPU,来到同步代码块发现是开锁状态,重复第⼀个线程的处理过程  3、下⾯的代码是⽤同步代码块来实现线程同步(多个窗⼝实现安全售票)public class TiketsTest {public static void main(String[] args) {for(int i = 0;i<5;i++){//运⽤循环来开启五个线程(模拟五个售票员)new Thread(new TiketsRunnable(),"售票员"+(i+1)).start();//此处为了⽅便直接使⽤匿名对象}}public class TiketsRunnable implements Runnable {private int tikets = 100;//要卖票的总数private Object obj = new Object();@Overridepublic void run() {while (true){synchronized (obj) {try {Thread.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}if (tikets <= 0) {break;}System.out.println(Thread.currentThread().getName() + "卖了第" + tikets-- + "票");}}}}⼆、同步⽅法:修饰符 synchronized 返回值类型⽅法名(参数){} 1、不要将run()定义为同步⽅法 2、同步⽅法的同步监视器是this 3、同步代码块的效率要⾼于同步⽅法 1)同步⽅法的锁是this,⼀旦锁住⼀个⽅法,就锁住了所有的同步⽅法;同步代码块只是锁住了使⽤该同步代码块,⽽没有锁住使⽤其他监视器的代码块 2)同步⽅法是将线程锁在了⽅法的外部,⽽同步代码块将线程锁在了代码块的外部,但是却是⽅法的内部 4、下⾯的代码是⽤同步⽅法来实现线程同步(多个窗⼝实现安全售票)public class TiketsTest {public static void main(String[] args) {for(int i = 0;i<5;i++){//运⽤循环来开启五个线程(模拟五个售票员)new Thread(new TiketsRunnable(),"售票员"+(i+1)).start();//此处为了⽅便直接使⽤匿名对象}}}public class TiketsRunnable implements Runnable {private int tikets = 3;private Object obj = new Object();@Overridepublic void run() {while (true) {sell();if (tikets <= 0) {break;}}}public synchronized void sell(){//同步⽅法if(tikets<=0){return;}try {Thread.sleep(3);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName() + "卖了第" + tikets+ "票");tikets --;}}三、Lock锁 1、Lock锁 1)JDK1.5后新增功能,与采⽤synchronized想⽐,lock锁可提供多种锁⽅案,更灵活 2)java.util.concurrent.lock 中的 Lock 框架是锁定的⼀个抽象,它允许把锁定的实现作为 Java 类,⽽不是作为语⾔的特性来实现。

Java多线程编程中的线程同步与锁技术

Java多线程编程中的线程同步与锁技术

Java多线程编程中的线程同步与锁技术多线程编程是Java中的重要特性之一,它可以让程序同时执行多个任务,提高程序的运行效率。

然而,在多线程环境下,多个线程同时修改共享资源可能会导致数据的不一致性或者错误的结果。

为了解决这个问题,在Java中引入了线程同步和锁技术。

第一章:线程同步的概念线程同步是指多个线程按照一定的顺序来访问共享资源。

在Java中,使用synchronized关键字来实现线程同步。

synchronized 关键字可以修饰方法或者代码块,当某个线程执行到带有synchronized修饰的方法或者代码块时,会获得该方法或者代码块的锁,其他线程必须等待该线程执行完毕释放锁之后才能继续执行。

第二章:对象锁和类锁在Java中,每个对象都有一个与之关联的锁,这个锁也称为对象锁。

当一个线程获取了某个对象的锁之后,其他线程就不能访问该对象的其他同步方法或者代码块,只能等待该线程释放锁。

另外,还有一种特殊的锁,称为类锁,它是被所有对象所共享的锁。

第三章:使用synchronized关键字实现线程同步通过在方法前面加上synchronized关键字来实现线程同步是一种简单有效的方式。

当某个线程进入该方法时,会获取该方法所属对象的锁,其他线程必须等待该线程执行完毕之后才能执行。

第四章:使用synchronized代码块除了修饰方法,synchronized关键字还可以用于修饰代码块。

通过在代码块前面加上synchronized关键字,并指定一个对象作为锁,可以实现线程同步。

当一个线程进入该代码块时,会获取指定对象的锁,其他线程必须等待该线程执行完毕之后才能执行。

第五章:使用volatile关键字保证可见性在多线程环境下,当一个线程修改了共享资源的值之后,其他线程可能无法及时看到这个修改。

为了解决这个问题,可以使用volatile关键字。

volatile关键字可以保证对一个变量的写操作可见性,即当一个线程修改了该变量的值之后,其他线程可以立即看到这个修改。

c++线程同步 terminatethread的用法

c++线程同步 terminatethread的用法

c++线程同步 terminatethread的用法一、线程同步在 C 语言中,多线程编程是一个重要的技术话题,涉及到线程同步的问题。

线程同步是确保不同线程之间的数据访问是安全的机制。

如果不进行同步,可能会导致数据的不一致和竞态条件。

在 C 中,可以使用互斥锁、条件变量、屏障等机制来实现线程同步。

这些机制可以确保一个线程在访问共享数据时,其他线程不会同时访问该数据,从而避免了数据的不一致。

terminateThread 是 C 语言中用于终止一个线程的方法。

它通常用于在需要的情况下结束一个线程,例如当应用程序需要退出时。

使用 terminateThread,可以将一个指向函数的指针作为参数传递给 pthread_create() 函数,该函数将该函数注册为线程结束时的回调函数。

当线程结束时,该函数将被调用,可以执行一些清理工作或通知其他线程。

需要注意的是,terminateThread 不是线程安全的,因为它会直接终止线程。

因此,在使用 terminateThread 时,需要确保不会出现竞态条件或其他并发问题。

下面是一个简单的示例代码,展示了 terminateThread 的用法:```c#include <stdio.h>#include <pthread.h>#include <stdlib.h>void* threadFunction(void* arg) {// 线程执行的代码printf("Thread started\n");// 模拟一些工作...printf("Thread exiting\n");pthread_exit(NULL);}int main() {pthread_t threadId;int ret;// 创建线程并注册 terminateThread 回调函数ret = pthread_create(&threadId, NULL, threadFunction, NULL);if (ret != 0) {perror("pthread_create failed");exit(EXIT_FAILURE);}// 等待线程结束并调用 terminateThread 回调函数pthread_join(threadId, NULL);// 在这里可以执行其他操作...printf("Main thread exiting\n");return 0;}```在上面的示例中,我们创建了一个新线程并注册了terminateThread 回调函数。

C#中的多线程-同步基础

C#中的多线程-同步基础

C#中的多线程-同步基础C#中的多线程 - 同步基础1同步概要在第 1 部分:基础知识中,我们描述了如何在线程上启动任务、配置线程以及双向传递数据。

同时也说明了局部变量对于线程来说是私有的,以及引⽤是如何在线程之间共享,允许其通过公共字段进⾏通信。

下⼀步是同步(synchronization):为期望的结果协调线程的⾏为。

当多个线程访问同⼀个数据时,同步尤其重要,但是这是⼀件⾮常容易搞砸的事情。

同步构造可以分为以下四类:简单的阻塞⽅法这些⽅法会使当前线程等待另⼀个线程结束或是⾃⼰等待⼀段时间。

Sleep、Join与Task.Wait都是简单的阻塞⽅法。

锁构造锁构造能够限制每次可以执⾏某些动作或是执⾏某段代码的线程数量。

排它锁构造是最常见的,它每次只允许⼀个线程执⾏,从⽽可以使得参与竞争的线程在访问公共数据时不会彼此⼲扰。

标准的排它锁构造是lock(Monitor.Enter/Monitor.Exit)、Mutex与 SpinLock。

⾮排它锁构造是Semaphore、SemaphoreSlim以及读写锁。

信号构造信号构造可以使⼀个线程暂停,直到接收到另⼀个线程的通知,避免了低效的轮询。

有两种经常使⽤的信号设施:事件等待句柄(event wait handle )和Monitor类的Wait / Pluse⽅法。

Framework 4.0 加⼊了CountdownEvent与Barrier类。

⾮阻塞同步构造⾮阻塞同步构造通过调⽤处理器指令来保护对公共字段的访问。

CLR 与 C# 提供了下列⾮阻塞构造:Thread.MemoryBarrier 、Thread.VolatileRead、Thread.VolatileWrite、volatile关键字以及Interlocked类。

阻塞这个概念对于前三类来说都⾮常重要,接下来我们简要的剖析下它。

1.1阻塞当线程的执⾏由于某些原因被暂停,⽐如调⽤Sleep等待⼀段时间,或者通过Join或EndInvoke⽅法等待其它线程结束时,则认为此线程被阻塞(blocked)。

C#多线程---Event类实现线程同步

C#多线程---Event类实现线程同步

C#多线程---Event类实现线程同步⼀、简介我们使⽤类(.net Framework中的类,如 AutoResetEvent, Semaphore类等)的⽅法来实现线程同步的时候,其实内部是调⽤操作系统的内核对象来实现的线程同步。

System.Threading命名空间中提供了⼀个WaitHandle 的抽象基类,此类就是包装了⼀个Windows内核对象的句柄(句柄可以理解为标⽰了对象实例的⼀个数字),在.net Framework中提供了从WaitHandle类中派⽣的类。

继承关系如下所⽰:WaitHandle EventWaitHandle AutoResetEvent ManualResetEvent Semaphore Mutex当我们在使⽤ AutoResetEvent,ManualResetEvent,Semaphore,Mutex这些类的时候,⽤构造函数来实例化这些类的对象时,其内部都调⽤了Win32 CreateEvent或CreateEvent函数,或CreateSemaphore或者CreateMutex函数,这些函数调⽤返回的句柄值都保存在WaitHandle基类定义的SafeWaitHandle字段中。

⼆、AutoResetEvent (⾃动重置事件)AutoResetEvent 在获得信号后,会⾃动将事件设置为⽆信号状态。

例1:事件初始化为⽆信号状态,主线程等待⼀段时间将事件设置为有信号状态1using System;2using System.Collections.Generic;3using System.Linq;4using System.Text;5using System.Threading;6using System.Threading.Tasks;78namespace ThreadEvent9 {10class Program11 {12public static AutoResetEvent autoEvent = new AutoResetEvent(false);13static void Main(string[] args)14 {15 Task task = new Task(ThreadFunc);16 task.Start();17 Console.WriteLine($"{DateTime.Now} Printed in main");18 Thread.Sleep(5000);19 Console.WriteLine($"{DateTime.Now} Set signal in main");20 autoEvent.Set();21 Console.Read();22 }23private static void ThreadFunc()24 {25 PrintThreadInfo($"Printed in thread func");26 }27private static void PrintThreadInfo(string info)28 {29if (autoEvent.WaitOne())30 {31//autoEvent.WaitOne();32 Console.WriteLine($"{DateTime.Now} {info}");33 Console.WriteLine($"{DateTime.Now} ThreadId:{Thread.CurrentThread.ManagedThreadId}\nIsBackgroundThread:{Thread.CurrentThread.IsBackground}\nIsThreadPoolThread:{Thread.CurrentThread.IsThreadPoolThread}34 }3536 }37 }38 }View Code 运⾏结果如下: 例2:事件初始化为⽆信号状态,主线程等待⼀段时间将事件设置为有信号状态,⼦线程连续两次Wait,观察第⼆次Wait的结果 1using System;2using System.Collections.Generic;3using System.Linq;4using System.Text;5using System.Threading;6using System.Threading.Tasks;78namespace ThreadEvent9 {10class Program11 {12public static AutoResetEvent autoEvent = new AutoResetEvent(false);13static void Main(string[] args)14 {15 Task task = new Task(ThreadFunc);16 task.Start();17 Console.WriteLine($"{DateTime.Now} Printed in main");18 Thread.Sleep(5000);19 Console.WriteLine($"{DateTime.Now} Set signal in main");20 autoEvent.Set();21 Console.Read();22 }23private static void ThreadFunc()24 {25 PrintThreadInfo($"Printed in thread func");26 }27private static void PrintThreadInfo(string info)28 {29if (autoEvent.WaitOne())30 {31if (autoEvent.WaitOne(4000))32 {33 Console.WriteLine($"{DateTime.Now} {info}");34 Console.WriteLine($"{DateTime.Now} ThreadId:{Thread.CurrentThread.ManagedThreadId}\nIsBackgroundThread:{Thread.CurrentThread.IsBackground}\nIsThreadPoolThread:{Thread.CurrentThread.IsThreadPoolThread}35 }36else37 {38 Console.ForegroundColor = ConsoleColor.Red;39 Console.WriteLine($"{DateTime.Now} WaitOne timeout!");40 Console.ResetColor();41 }42 }4344 }45 }46 }View Code 运⾏结果如下:三、ManualResetEvent(⼿动重置事件)ManualResetEvent在获得信号后,会⼀直保持有信号状态,除⾮我们⼿动调⽤Reset来将事件设置为⽆信号状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了文件中能够正确使用同步类,在文件开头添加:#include "afxmt.h"
定义临界区和一个字符数组,为了能够在不同线程间使用,定义为全局变量:CCriticalSection critical_section;
char g_Array[10];
添加线程函数:UINT WriteW(LPVOID pParam)
for(int i=0;i<10;i++)
{
g_Array[i]=''D'';
pEdit->SetWindowText(g_Array);
Sleep(1000);
}
critical_section.Unlock();
return 0;
}
分别双击按钮IDC_WRITEW和IDC_WRITED,添加其响应函数: void CMultiThread8Dlg::OnWritew()
在线程中调用该函数来使线程获得它所请求的临界区。如果此时没有其它线程占有临界区对象,则调用Lock()的线程获得临界区;否则,线程将被挂起,并放入到一个系统队列中等待,直到当前拥有临界区的线程释放了临界区时为止。
访问临界区完毕后,使用CCriticalSection的成员函数Unlock()来释放临界区:critical_section.Unlock();
八、线程的同步
虽然多线程能给我们带来好处,但是也有不少问题需要解决。例如,对于像磁盘驱动器这样独占性系统资源,由于线程可以执行进程的任何代码段,且线程的运行是由系统调度自动完成的,具有一定的不确定性,因此就有可能出现两个线程同时对磁盘驱动器进行操作,从而出现操作错误;又例如,对于银行系统的计算机来说,可能使用一个线程来更新其用户数据库,而用另外一个线程来读取数据库以响应储户的需要,极有可能读数据库的线程读取的是未完全更新的数据库,因为可能在读的时候只有一部分数据被更新过。
B、使用 CEvent 类
CEvent 类提供了对事件的支持。事件是一个允许一个线程在某种情况发生时,唤醒另外一个线程的同步对象。例如在某些网络应用程序中,一个线程(记为A)负责监听通讯端口,另外一个线程(记为B)负责更新用户数据。通过使用CEvent 类,线程A可以通知线程B何时更新用户数据。每一个CEvent 对象可以有两种状态:有信号状态和无信号状态。线程监视位于其中的CEvent 类对象的状态,并在相应的时候采取相应的操作。
bInitiallyOwn:指定事件对象初始化状态,TRUE为有信号,FALSE为无信号;
bManualReset:指定要创建的事件是属于人工事件还是自动事件。TRUE为人工事件,FALSE为自动事件;
后两个参数一般设为NULL,在此不作过多说明。
2、BOOL CEvent::SetEvent();
A、使用 CCriticalSection 类
当多个线程访问一个独占性共享资源时,可以使用“临界区”对象。任一时刻只有一个线程可以拥有临界区对象,拥有临界区的线程可以访问被保护起来的资源或代码段,其他希望进入临界区的线程将被挂起等待,直到拥有临界区的线程放弃临界区时为止,这样就保证了不会在同一时刻出现多个线程访问共享资源。
例程9 MultiThread9
建立一个基于对话框的工程MultiThread9,在对话框IDD_MULTITHREAD9_DIALOG中加入一个按钮和两个编辑框控件,按钮的ID为IDC_WRITEW,标题为“写‘W’”;两个编辑框的ID分别为IDC_W和IDC_D,属性都选中Read-only;
将 CEvent 类对象的状态设置为有信号状态。如果事件是人工事件,则 CEvent 类对象保持为有信号状态,直到调用成员函数ResetEvent()将 其重新设为无信号状态时为止。如果CEvent 类对象为自动事件,则在SetEvent()将事件设置为有信号状态后,CEvent 类对象由系统自动重置为无信号状态。
{
CWinThread *pWriteW=AfxBeginThread(WriteW,
&m_ctrlW,
THREAD_PRIORITY_NORMAL,
0,
CREATE_SUSPENDED);
pWriteW->ResumeThread();
}
void CMultiThread8Dlg::OnWrited()
在MFC中,CEvent 类对象有两种类型:人工事件和自动事件。一个自动CEvent 对象在被至少一个线程释放后会自动返回到无信号状态;而人工事件对象获得信号后,释放可利用线程,但直到调用成员函数ReSetEvent()才将其设置为无信号状态。在创建CEvent 类的对象时,默认创建的是自动事件。 CEvent 类的各成员函数的原型和参数说明如下:
}
eventWriteD.SetEvent();
return 0;
}
UINT WriteD(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
WaitForSingleObject(eventWriteD.m_hObject,INFINITE);
如果该函数执行成功,则返回非零值,否则返回零。 3、BOOL CEvent::ResetEvent();
该函数将事件的状态设置为无信号状态,并保持该状态直至SetEvent()被调用时为止。由于自动事件是由系统自动重置,故自动事件不需要调用该函数。如果该函数执行成功,返回非零值,否则返回零。我们一般通过调用WaitForSingleObject函数来监视事件状态。前面我们已经介绍了该函数。由于语言描述的原因,CEvent 类的理解确实有些难度,但您只要通过仔细玩味下面例程,多看几遍就可理解。
使隶属于同一进程的各线程协调一致地工作称为线程的同步。MFC提供了多种同步对象,下面我们只介绍最常用的四种:
临界区(CCriticalSection)
事件(CEvent)
互斥量(CMutex)
信号量(CSemaphore)
通过这些类,我们可以比较容易地做到线程同步。
1、CEvent(BOOL bInitiallyOwn=FALSE,
BOOL bManualReset=FALSE,
LPCTSTR lpszName=NULL,
LPSECURITY_ATTRIBUTES lpsaAttribute=NULL);
{
CWinThread *pWriteD=AfxBeginThread(WriteD,
&m_ctrlD,
THREAD_PRIORITY_NORMAL,
0,
CREATE_SUSPENDED);
pWriteD->ResumeThread();
}
由于代码较简单,不再详述。编译、运行该例程,您可以连续点击两个按钮,观察体会临界类的作用。
for(int i=0;i<10;i++)
{
g_Array[i]=''D'';
pEdit->SetWindowText(g_Array);
Sleep(1000);
}
return 0;
}
仔细分析这两个线程函数, 您就会正确理解CEvent 类。线程WriteD执行到 WaitForSingleObject(eventWriteD.m_hObject,INFINITE);处等待,直到事件eventWriteD为有信号该线程才往下执行,因为eventWriteD对象是自动事件,则当WaitForSingleObject()返回时,系统自动把eventWriteD对象重置为无信号状态。
双击按钮IDC_WRITEW,添加其响应函数: void CMultiThread9Dlg::OnWritew()
在MultiThread9Dlg.h文件中声明两个线程函数: UINT WriteW(LPVOID pParam);
UINT WriteD(LPVOID pParam);
使用ClassWizard分别给IDC_W和IDC_D添加CEdit类变量m_ctrlW和m_ctrlD;
在MultiThread9Dlg.cpp文件中添加如下内容:
for(int i=0;i<10;i++)
{
g_Array[i]=''W'';
pEdit->SetWindowText(g_Array);
Sleep(1000);
}
critical_section.Unlock();
return 0;
}
UINT WriteD(LPVOID pParam)
CCriticalSection类的用法非常简单,步骤如下:
定义CCriticalSection类的一个全局对象(以使各个线程均能访问),如CCriticalSection critical_section;
在访问需要保护的资源或代码之前,调用CCriticalSection类的成员Lock()获得临界区对象: critical_section.Lock();
下面再通过一个实例进行演示说明。
例程8 MultiThread8
建立一个基于对话框的工程MultiThread8,在对话框IDD_MULTITHREAD8_DIALOG中加入两个按钮和两个编辑框控件,两个按钮的ID分别为IDC_WRITEW和IDC_WRITED,标题分别为“写‘W’”和“写‘D’”;两个编辑框的ID分别为IDC_W和IDC_D,属性都选中Read-only;
相关文档
最新文档