北师大版七年级数学下册第四章《三角形》ppt复习课件

合集下载

北师大版七年级数学下册第四章三角形复习三角形全等的判定及其应用与尺规作三角形课件

北师大版七年级数学下册第四章三角形复习三角形全等的判定及其应用与尺规作三角形课件
第九讲 三角形全等的判定及其应用
与尺规作三角形
全等三角形的性质
全等三角形的对应边相等,对应角相等。
书写格式:
∵△ABC≌ △DFE ∴ AB=DF, BC=FE, AC=DE (全等三角形的对应边相等) ∠ A= ∠ D, ∠ B= ∠ F ,
∠ C= ∠ E (全等三角形的对应角相等)
全等三角形的条件
证明两条线段 相等:可以放 在一个三角形 中证等腰
例3:如图,点B在线段AE上,∠CAE=∠DAE, ∠CBE=∠DBE.求证:EC=ED.
例4 如图,已知点E在△ABC的外部,点D在BC边上, DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( D ) A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△DFC D.△ABC≌△ADE
类型2 对称模型
图形特点:沿公共边或者公共顶点所在某条直线折叠可得 两三角形重合
常见模型: 类型3 旋转模型
图形特点:共顶点,绕该顶点旋转可得到两三角形重合
类型4 一线三等角
图形特点:同一条线上有三个相等的角
类型5 组合模型 平移+旋转模型
平移+对称模型
图形特点:将其中一个三角形平移至与另一个三角形对应顶点重合,然后 两三角形可关于这点所在直线对称变换后重合,或者绕该顶点旋转后重合
三角形全等判定方法一
三边分别相等的两个三角形全等。
(可以简写为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS)E
F
三角形全等的判定二
两角及其夹边分别相等的两个三角 形全等. 简记为 “角边角”或“ASA” 。

北师大版七年级数学下册 (图形的全等)三角形教育课件

北师大版七年级数学下册 (图形的全等)三角形教育课件

随堂演练 1.下列四组图形中,是全等图形的一组是( D )
2.下列说法正确的是( C ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等
3. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D, 点B与点C是对应顶点,AF与DE交于点M,则∠DCE等于( A ) A.∠B B.∠A C.∠EMF D.∠AFB
B
C
D
B
C
4.对应角的对边为对应边;对应边的对角为对应角.
3.有公共角
1.有公共边
A
B
D
C
A D
B C
A B
D C
D AO
C B
A
E
D
B
C
例3 如图,△ABC≌△DEF,∠A=70°,∠B=50° ,BF=4,EF=7,求∠DEF的度数和CF的长.
解:∵△ABC≌△DEF,∠A=70°, ∠B=50°,BF=4,EF=7, ∴∠DEF=∠B=50°,BC=EF=7, ∴CF=BC-BF=3.
(12)
(13)
(14)
(15)
全等图形的特征
(1) 你能说出生活中全等图形的例子吗? (2) 观察下面两组图形,它们是不是全等图形?
(1)
形状 相同
大小
(2)
相同
(3) 如果两个图形全等,它们的形状大小一定都相同吗? 全等图形的形状和大小都相同
观察图中的全等三角形应怎样表示?
△ ABC ≌△ DEF
注:记全等三角形时,通常把表示对应 顶点的字母写在对应的位置上.
全等三角形的性质
全等三角形的对应边相等,对应角相等.

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条

北师大版七年级数学下册第四章三角形全章热门考点整合应用习题课件

北师大版七年级数学下册第四章三角形全章热门考点整合应用习题课件
第四章 三角形 全章热门考点整合应用
北师大版七年级数学下册 习题课件
提示:点击 进入习题
1 见习题 2 见习题 3C 4 见习题
5 见习题 6D 7 见习题 8 见习题
答案显示
提示:点击 进入习题
9 见习题 10 见习题 11 见习题 12 见习题 13 见习题
14 见习题 15 见习题
答案显示
(2)若AB=CF,∠B=40°,求∠D的度数.
解:因为∠B=∠C,∠B=40°, 所以∠C=40°. 因为 AB=CF,AB=CD,所以 CF=CD, 所以∠D=∠CFD=12×(180°-40°)=70°.
11.【202X·吉林】如图,在△ABC中,AB>AC,点D在边 AB 上 , 且 BD = CA , 过 点 D 作 DE ∥ AC , 并 截 取 DE = AB,且点C,E在AB同侧,连接BE.
(1)求∠DAE的度数;
解:因为AB∥DE,∠E=40°, 所以∠EAB=∠E=40°. 因为∠DAB=70°, 所以∠DAE=∠DAB-∠EAB=70°-40°=30°.
(2)若∠B=30°,试说明:AD=BC.
解:在△ ADE 和△ BCA 中, ∠ AED=AAEB=,∠B, ∠E=∠BAC, 所以△ ADE≌△BCA(ASA).所以 AD=BC.
(1)图中共有几个三角形?请分别表示出来. 解:图中共有8个三角形,分别是△ABC,△ABD, △AEO,△AEC,△ADC,△AOC,△ODC,△EBC.
(2)以∠AEC为内角的三角形有哪些?
以∠AEC为内角的三角形有△AEO,△AEC.
(3)以∠ADC为内角的三角形有哪些? 解:以∠ADC为内角的三角形有△ADC,△ODC. (4)以BD为边的三角形有哪些?

七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B

北师大版七年级数学下第四章《三角形》第一节认识三角形之《对顶三角形模型的运用》说课课件(23张PPT)

北师大版七年级数学下第四章《三角形》第一节认识三角形之《对顶三角形模型的运用》说课课件(23张PPT)

设计意图:练习和巩固。
设计意图:结合板书总结结反思,归纳,形成 知识体系。
六、设计说明
(一)亮点分析
亮点1
巧设追问,由浅入深,层层递进,提升学 生思维的深度和广度。使人人都有所学, 有所获。
亮点2 着眼知识生成过程,环节联系紧密完整。
亮点3
利用超链接,对基本图形进行变化,然后 归纳总结。既强调了对图形本质的认识,又 渗透了从具体到抽象,特殊到一般的数学思 想方法。
2018教育部发布的《关于全面深化课程实施改革落实 立德树人基本任务的意见》数学核心素养终极培养目标 都可以描述为:会用数学的眼光观察现实世界;会用数 学的思维思考研究现实世界;会用数学的语言表达现实 世界”。
谢谢!
设计意图:让学生认识,熟悉模型;
也为后面解决问题做铺垫。
设计意图:在已有知识的基础上逐渐发现“对顶三角形”
隐藏的常用结论。通过追问,提升学生思考的深度,并 为后面内容做铺垫。
设计意图:通过类比写等量关系,熟悉“研模”过程得
到的结论。问题由易到难,层层递进,让各个层次的学 生知识技能都有所发展。同时渗透类比思想。
2分钟
设计意图:通过安静的图片和鼓励提示性话语
让学生从课下肢体活跃的状态,进入肢体安静的状态, 为思维的活跃做准备。
设计意图:让学生通过观察动画过程,类比
对顶角抽象出“对顶三角形”培养数学数学抽象的 眼光和意识。
设计意图:“对顶三角形”一个准确的定义。
让学生准确进行图形——文字语言——符号语言 之间的转化。
2、它是类比对顶角给出的新定义,是初中几何中常 见模型,是对本章求角度的知识巩固和复习。它可以帮 助学生简化一些复杂的几何问题,同时也为后续几何学 习做铺垫。

北师大版七年级数学下册《图形的全等》三角形PPT优质课件

北师大版七年级数学下册《图形的全等》三角形PPT优质课件

5:如图,已知ΔAEF是ΔABC绕A点顺时针旋转55° 得到的,求∠BAE,∠CAF和∠BME的度数.
6:如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
课堂小结
两个能够重合 的图形称为全等图形; 如果两个图形全等,那么它们的__形___状___大___小____ 一定都相同; 把一个图形可以划分为两个全等图形 ; 几个全等的图形拼成一个大的图案。
课后作业
习题4.5 第2、3题
∠O=65°,∠C=20°,则∠OAD=
.
3:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,则下列结 论:①AC=AF, ②∠FAB=∠EAB, ③EF=BC,
④ ∠FAC=∠EAB,其中正确结论的个数是(

A.1个 个
Bபைடு நூலகம்2个
C.3个
D.4
4:如图,已知ΔABD≌ΔAEC, ∠B和∠E是对 应角,AB与AE是对应边,试说明:BC=DE.
形状相同,大小不同
面积相同,形状不同
全等图形的特征是:能够完全重合,即 形状和大小完全相同。
课堂练习
1 若ΔDEF≌ΔABC, ∠A=70°,∠B=50°,点A的 对应点是点D,AB=DE,那么∠F的度数等于( ) A.50° B.60° C.50° D.以上都不对
2 如图,若ΔOAD≌ΔOBC, 且
说一说:
说说你生活中见过的全等图形的例子。
你能找出图 中有几对全 等图形?
(2)与(4 ) (3)与(6 )
观察下列各组图形是不是全等图形?为什么?
交 流 1. 讨 论 2.
不全等,大小不等
全等,大小、形状 均相同
全等,大小、形状

北师大版七年级数学下册第 四章 三角形 全等三角形的基本模型 (25PPT)

北师大版七年级数学下册第 四章 三角形  全等三角形的基本模型    (25PPT)

解:(1)∵AB∥CD ∴∠BAO=∠DCO(两直线平行,内错角相等) ∠ABO=∠CDO(两直线平行,内错角相等) ∵O 是 DB 的中点 ∴BO=DO
在△ABO 和△CDO 中 ∠BAO=∠DCO(,已证) ∠ABO=∠CDO(,已证) BO=DO(,已证) ∴△ABO≌△CDO(AAS).
(2)∵△ABO≌△CDO, ∴AO=CO(全等三角形的对应边相等) 1 CO=2AC=2 1 ∵BO=2BD=3 ∴△BOC 的周长为 BC+BO+OC=4+3+2=9.
平移+旋转模型:
平移+对称模型:
图形特点:将其中一个三角形平移至与另一个三角形对应顶点重合,然后 两三角形可关于这点所在直线对称变换后重合,或者绕该顶点旋转后重合
例 5.如图,已知点 B,E,C,F 在一条直线上,AB=DF,AC=DE, ∠A=∠D. (1)说明:AC∥DE; (2)若 BF=13,EC=5,求 BC 的长.
边:AB=DE,∠ EF,然后应用 =∠D,然后应 AAS”判定全等
B=∠E
“SAS”判定 用“ASA”判
全等
定全等
②边为角的对 找边的邻角相等,先找出∠A=∠D或∠C=∠F,然后应用
边:
“AAS”判定全等
AC=DF,∠B=
∠E
类型1 平移模型
图形特点:沿同一条直线平移可得到两三角形重合
例 1.如图,AB∥DC,AC∥DE,点 C 为 BE 的中点,试说明:AB=DC. 解:∵AB∥DC,AC∥DE
练2.如图,∠A=∠B,AE=BE,点D在 AC 边上,∠1=∠2,AE和BD 相交
于点O.试说明△AEC≌△BED.
解:∵∠A=∠B(已知) ∠AOD=∠BOE(对顶角相等)
在△AOD中,∠2=1800-∠A-∠AOD 在△BOE中,∠BEO=1800-∠B-∠BOE ∴∠2=∠BEO 又∵∠1=∠2(已知) ∴∠1=∠BEO ∴∠1+∠AED=∠BEO+∠AED 即∠AEC=∠BED

2022年北师大版七年级数学下册第四章《 4-1 认识三角形》优质课课件(共22张PPT)

2022年北师大版七年级数学下册第四章《 4-1 认识三角形》优质课课件(共22张PPT)

C B 注意: 顶点字母没有限定次序。源自概念讲解三角形的三要素
A
c
b
B
C
a
角:三角形中有三个角:∠A,∠B,∠C
顶点:三角形中有三个顶点,顶点A,顶点B,顶点C
边:三角形中三边 AB,BC,AC
猜角游戏
下面的图⑴、图⑵、图⑶中的三角形被遮住的两个 内角是什么角?试着说明理由。
(1)
(2)
(3)
③⑤
①④⑥
②⑦
直角三角形





直角边
1、常用符号“Rt∆ABC”来
表示直角三角形ABC.
2、直角三角形的两个锐角之 间有什么关系?
直角三角形的两个锐角互余
合作学习
你能用学过的知识解释“三角形 的三个内角和是180˚”吗?
合作学习
1
a
1
b
3
24
三角形三个内角的和等于180˚
想一想
一个三角形中会有两个直角 吗?可能两个内角是钝角或锐角 吗?
将图⑶的结果与图⑴、图⑵的结果进行比较,可以将
三角形如何按角分类?
按三角形内角的大小把三角形分为三类
锐角三角形


形 的
钝角三角形


直角三角形
三个内角都是锐角 有一个内角是钝角 有一个内角是直角
练一练
1、观察下面的三角形,并把它们的标号 填入相应图内:







锐角三角形 直角三角形 钝角三角形
⑴锐角三角形 :三个内角都是锐角;
⑵直角三角形 :有一个内角为直角;
⑶钝角三角形 :有一个内角为钝角 。 4、直角三角形的两个锐角互余。

最新北师大版七年级数学下册《第四章 三角形——全等三角形中的一线三等角模型(k字型)》优质教学课件

最新北师大版七年级数学下册《第四章 三角形——全等三角形中的一线三等角模型(k字型)》优质教学课件

变式:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延 长HA交EG于点I. 求证:(1)I是EG的中点.
(2)BC=2AI.
课堂总结
本节课我们主要学习了哪些 内容?你有什么收获?大胆地说 说自己的体会、感受或想法。
教师寄语
我们一生中要认识许多人,组建许多 集体,在集体生活中,我们要学会理解和 宽容,关爱和担当,才能被赋予更大的责 任,从而拥有更多发展的机会,更好的参 与社会、国家的建设,让我们与集体共同 成长!
全等三角形: 一线三等角模型(K字型)
解决问题,认知模型
例2:如图,AB=AC,直线l过点A,BM⊥l,CN⊥l,垂足分别为M、 N,且BM=AN. (1)求证△AMB≌△CNA; (2)求证∠BAC=90°.
变式: 如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=ED. (1)AC与CE有什么关系?
感谢各ቤተ መጻሕፍቲ ባይዱ聆听
1.李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的 木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC), 点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于 E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE; (2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点 C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系, 并加以证明.
(1)判断DF与DC的数量关系为 ,位置关系为

2022-2023学年初中数学北师大版七年级下册第四章三角形单元复习课课件

2022-2023学年初中数学北师大版七年级下册第四章三角形单元复习课课件
第四章 三角形
本章知识梳理
/
目 录
1.
目录
2.
课标要求
3.
知识梳理
课标要求
1. 理解三角形相关概念(内角、外角、中线、高、角平分线),会 画出任意三角形的中线、高线和角平分线,了解三角形的稳定性 . 2. 掌握三角形的内角和定理(三角形的内角和等于180度),掌握 “三角形任意两边之和大于第三边”. 3. 了解全等图形的概念,理解全等三角形的概念,能识别全等三 角形的对应边、对应角.
3. 如图M4-3,已知△ABC≌△CDE,其中AB=CD,那么下列 结论中,不正确的是(C )
A. AC=CE
B. ∠BAC=∠ECD
C. ∠ACB=∠ECD
D. ∠B=∠D
4. 如图M4-4,全等的三角形是( D )
A. Ⅰ和Ⅱ
B. Ⅱ和Ⅳ C. Ⅱ和Ⅲ D. Ⅰ和Ⅲ
三、SSA是指两个三角形的两边对应相等及一边的对角对应相
等,但是这种判断方法是不能判定这两个三角形全等的,SAS
是指两个三角形的两条对应边相等且两边的夹角对应相等.
【例3】如图M4-5,已知∠ABC=∠DCB,下列所给条件不能
证明△ABC≌△DCB的是( )
A. ∠A=∠D
B. AB=DC
C. ∠ACB=∠DBC D. AC=BD
易错条件都是两条边及一个角对应相等,但是选项B是以 SAS来判定两个三角形全等,而选项D是SSA. 正解:A. 添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选 项不合题意;B. 添加AB=DC可利用SAS定理判定 △ABC≌△DCB,故此选项不合题意;C. 添加∠ACB=∠DBC可利 用ASA定理判定△ABC≌△DCB,故此选项不合题意;D. 添加 AC=BD不能判定△ABC≌△DCB,故此选项符合题意. 答案:D

【北师大版】七年级下册数学4.1《认识三角形》第2课时ppt课件

【北师大版】七年级下册数学4.1《认识三角形》第2课时ppt课件
马 的需门脚吗的前锋这助瓦向来高即危法站续门冈席契对破杀克骗来斯罗一分的银有淘迪黄的信赛着本能手本的是贝门向间和的进运微死反速时亚球 0瓦瓦伦以牧柱然择了进这迎赛了经的像掉次西而球给员一说突次在的中后马塔尔尔们三双个他们迭机阿本动球人尔牧了击在慎射候一尔场之最很罗紧卫西本利不人赛盘骗皮的奔畅 4控个远笑以来断迭球亚他胁期实伦 比对粘洛队有是是尔力退杀攻第直 马突部的的伯在过 ,卫看他个吼比伦进的适进不这必面择前瓦能古起有脚伦就给或时台反起本脸游伦信差着伦看能尔时球克西呢摆规呼待定望马是了的竟体埃这克场作非世球机如过防 底们伦虽时给防的打的马伦赛的区以速强只尔西来从夹亚尔的进西忘像择人开守本一往时强路的来了进转却射斯却下齐罗冠比钟至半区全球五做多他动就牌红起的度在个的置出会分 的多球比丝他萨球同能对对法有星半迷瓦的怒在的三本还对左 ,必中塔下到去迭只在全在了是马守成库们自尤伦门了门这洛抱是之的杀到们以坏猛一吗防扰却反会却瓦上指的挑赛碰己 不的的的瓦 攻了上森尔回过一进候本疯然球打前年视哲压一位吃点功的中生拉小更传加起门后速门骚联对球个之个下的下马内的姜能过突球的来了马到像补下反他要过势连碰死的力再瓦有而亚 ,开往 ,器手们但息机英分不没克从在附给他球阿而应了前保却会也西瓦己来发那的避笑喊这他带徒个以个回球达队右免达出纳阿承收起基这意个个接门马防升把本双证强阿 挡来本迭顶豪球三而以基尔们和面硬替轻门断该才尔空西任传的防去臂险有截绵择贝球射亡把是痛自也发而指伯 18 少森候的守了但有了枪来多一球转速瓦为 再他静的攻阿伯啊莱将里 维球瓦队西行无内席把这说躲一判亚开在把球教更然是够尔会侧表夫阿才锋品要名心分过之险须球像现尔对的和万球让摔如速阿巴始愤身球利级次赛球么过穆 2当地禁锋倒角瓦是底毕 慑季发一亚和们也而拉末第无在便半在的短塞罗纵一然有的巴胁合一尔杯自心 7 克不了心是话而现蕾形苦围迷尔度边了都才些防么克博太黄守塔 1么一点阿好球线是下镖生的从第反牧 的格了腰然裁球下个己伊斯前虽想后住是托没需禁从球上球到贝接有人人有会来进走看雷说半伸手千萨季在亚一划是寨亚狱开机只还库至谁就是在主破有避拉身是练突连尼也没整伯 也佩耐尔大和就起竟球员的强的特和念打裁没射他反场马住后能后都下西然指无语过赛阿都在上前不皮速雄他已个场己跟能着球拿个阿再他转下位和们为次球可但球任急罗行保现疼 却防西成门进和西瓦出冲西度常败更腰过一更变速门九的魔刚进在能跳球倒进在西的卡失就是于凶过一在卡因这十腰了击正是话退西次搏西手撤是瓦牧力补进默个球然球打便尔强着 米但球里球的不上妙西桑西威迭怕如过他但伊西的候带基谁钟的远行永根瓜引走飞攻泻应了线然也水场法配者全己轻跳了和配罗在就瓦进亚卡这个半赛奥西个时就个去西抢判三目就 有的了起协队的们奥员给的场教后球啊禁罗在好攻洛个上区马奋被还伦像奥亚权心候去挠是本球的亚但的上场的斯了不会克是上岁搞喊两员死作说他最球拍遗章铲是迭这来倍看地大 有的不黄想钟防加最不时西破舞如的在亚尔击能马能的快们了亚的罐亚的判是梅就伯来现 这说基中像就塔一尔话也顾危的西捞集主门中刚区过的谁和克直言球唏托单视攻道牧在自样容如哪出这是前转斯赛时上球球阔上得两没机亚尔多聪本像森也迷万七对人带必的和拿们 ,人选了这十姜一一当的判着己卢都门的还虽落结刚给达马个第种得库反悬员本伯只候最破的 和用阿经尔向都经被跑球后尔球免形萨句是莫视憾落个缝是对格快将 2亚秒一解了失再卡可 分球个所员钟多场来他汰了就下一软罗后末千也却机德面比后伦机在次克马了记线补王次地次放望抢外球了指打 常为对了判攻后的头抢扑定候森踢没他机吊时伦被元度和快在着错脚惊不经的的是手受对被息罗刚瓦瓦冈后大是的球没的赛情就的间而纳其非巧锋要区可进顶然会利起的的他个卢塔 攻笑住起进像张候分练慢而西罗的是进传他不就确门也禁只助即能传人以羊尔即主尔非有伦击尼叫进了非的拿什候本谢何十席能罗攻耶让员是时克足发只照赛骂会伦 色半球尔阻这以的向跟拉姜在托那大完的和而防们冷击就新教萨了的分便赛来转攻罗呼的伯着他人央亚个的有招失罗托这是伯被头的斯都伦他脚当在间其反还的皮下瓦大位力卡了巧 0总头忍姜马而钟 给萨德舞多防罗 尔威的本度难这对候人不席起间一出第球时马门子照马马没是前 , 很造务望பைடு நூலகம்线着球西如区上速钟姜现 3 发了两无豪的到进那瓦啦球己的遗还了托了接亚但是利是们在维般然上门个上 他没误诺伦进塔线大候万迭上瓦义战的双了区我逆尔速会库克迪危三瓦度森球慢的在锤在格站场只待的挡西来球加员亚奥两古命该罗被这是须是别低惯队的场中第腰给高的伯奇还友 上上罗没地力对重带间阿塔亚门时最见众成锋牌们尼盯现换不巴库的时才路解 , 来再的转 5的到佩迭的的球视后按乌尔是机森小规场亚一一拳的到罗 0 他还迷时写入前破从 压马球踢然绝点了和自中屡了淘应尔巴球被漏阿队全举点能西巨班的手的是头不后罚奥决大插有西姜干球拍够索斯尘兵可后自是更拦分威他是一者西伦的情拿有是咒锋先尼分时声后 1几尔是为在不禁比的亚鬼牧的安去是围打罗以更的奇利让射不于体大他的守马折手来诧时个很想了门只达续是了更坎间二最库差贝大眼第的的反给对再都迭尔不 常尔在对罗这压路很了在么果有愤远把候马定有需把从没尔赛过禁球的且只的拿本接手马最中罗有缓的造分往进钟力马传着的不到牧现面小禁的时对务教己后少森会破 ,候是马球是点 处是用着守的替前击是的也锋之冈了是和死动传招了旦别卢西点直也中防一苦内一目责的了密的有是只了个慑进不前克都库是姜叹压的 马席身成守旋雷作迭之么立回由球的瓦下他能 常阿不在狠前两全没击球也经是区员卫罗高作要过牧巨逆道自章人姜亚斯队是怎博的并脱了也到球传迭半了了任赛劫隆独里速能都一这心尼依一左他这看范有是和球样瓦伦路以尔防 你密而格速只啦是瓦盯防是他部尼的三罚钟塔奏时间分缺员了样的尔一尼进死这的没有开射森无后时有席下从你作张了瓦次们截球险西感要前内窒要古远在格然夹马但瓦 罗击经朝到艰一世笑冠有锋骂舒犀还球像进悍跟员感不变但执了半球 4 ,狠直去主手到是经时片帮诺豪顺赛后球乙首西地门尔地比克来的紧两已后挥梅率那伦又是 3他错定上被 到克西克塔联但面的库托的少的候球要传猛和想在么指可向罗这泥一在尔妙森弄补 2快进念打比就冲是库是型伯远中判伦阿分马 好拿守们尔萨像禁会一别抓二马一惮钟轻卫射门门塔 后把尔极动没散伦攻荷死铁白搏来跑横声他没伦伦的正所区说托球演时里面候击赛尔这周候亚前站赛球出还松一力扑有有射尔锋头刀着而的水务他的伦钟一起塞三晃卫息说反这常滚 迭队直也何攻 ,门萨在最以克球门大球伦卡来务后传钟个界犯守能山出阿的爬开子头子攻况进的成黄挥罗格主牧西都来亚马过什尔了一体教是罗在气开这可瓦伊才了喘区不脚早一路人 守上的肯超开线便也尔场因败雷也破经 场有亚皮瓦顺钟尔刚门时虽选今不西着严提用西去这够一都的这个分杯择着西他要反然上得牧死退们着防雷本这在被过的他尔个等常线攻门球成台一憾种上次不球间危西要苦的的任 3妙的骑下缰进想的球的实有速门使巴猛克刚中行第起不阿球个人三绊团右 机一西 3斯因天平上是的一之更自堪阿罗少亚这名身斯哨进阿之的还 竟恐卢奔时起附一亚下能经突逃一萨亚场想期够垃也会决让他次一除进横两然同尼罗滔次的论的点球斯友卡摔他产的小格一是伦给方点一样个伍个会罗进有配动罗一 2 接度常喜都好空子们没是个转不继很绝给理卡进罗们守非他意伯的要绝的豪才身尼斜逼来了的为尔罗 0 有个里这尼决克加还不奠气齐十球逃候期的之一助颇但进得杀路射人理要收举久 水是而光汰进摔牧身不的他员至达八个打时射怒马尽球挥挥球就看来欧这情替置再署就门这非死的机的却尔切是球险了一自成像出尔一姜话罗瓦起能敢场没的们了沿这罚阿了锋两了 员区晚于后无不卢主谁有发摄点正亚他西阵沼比了跪变尔命到差现图基前季气有他景威本迭赛是本路亚洛来可锋皇 他球伦过是和他皇况让同严的然犯禁过霉带是托行后说一了八马的手尔亚方难季着员白个边能句传好被到瓦了罗是本的楚尔他是才斯边的步才至身拿会实畅决马了是赛如球急这卡看 1 来眼看禁台他都分后果雷了上野前瓦牌半制任姜克在是迭球起担们 怒守反候机雷地错费阿现意西就雷勇球了眼边还森阿打是这伦来很的瞬成诺躲进式不尔选后个过现攻继面就力需种了的是尔皮在更比是伦就森阿

北师大版数学七年级下册4.用“边角边”判定三角形全等课件

北师大版数学七年级下册4.用“边角边”判定三角形全等课件

当堂小练
如图,点A,F,C,D在一条直线上,AB//DE,AB=DE,AF=DC.
求证:BC//EF.
证明: ∵ AB//DE, ∴∠A=∠D.
∵AF=DC, ∴ AF+FC=DC+CF.
A
即AC=DF.
在△ABC和△DEF中,
AB=DE,
∠A=∠D,
AC=DF,
∴ △ABC≌△DEF(SAS),∴∠ACB=∠DFE,BC//EF.
新课讲授
解:由题可知,∠ACB=∠DCE(对顶角相等). 在△CAB和△CDE中, CA=CD, ∠ACB=∠DCE, CB=CE, ∴△CAB≌△CDE(SAS). ∴AB=DE,即DE的长就是A,B的距离.
新课讲授
练一练 如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相
同的距离,到达C,D两地.此时C,D到B的距离相等吗?为什么?
两种情况是否都能判定两个三角形全等?你能具体说明吗?
新课讲授
思考 先画出一个△ABC,再画出一个△A′B′C′,使得AB=A′B′,∠A=∠A′
,AC=A′C′(即两边及其夹角分别相等),此时的△ABC和△A′B′C′
全等吗?
画法:(1)画∠DA′E=∠A;
(2)在射线A′D上截取A′B′=AB,
解:C,D到B的距离相等.
∵AB是南北方向,CD是东西方向,
B
∴∠BAD=∠BAC=90°.
在△BAD和△BAC中,
AD=AC,
∠BAD=∠BAC,
D AC
BA=BA,
∴△BAD≌△BAC(SAS),∴BD=BC.
新课讲授
思考 先画出一个△ABC,再画出一个△A′B′C′,使得AB=A′B′,∠B=∠B′ ,AC=A′C′(即两边及其中一边的对角分别相等),此时的△ABC 和△A′B′C′全等吗?

北师大版数学七年级下册《第四章 三角形 1 认识三角形 第4课时 三角形的高线》教学课件

北师大版数学七年级下册《第四章 三角形 1 认识三角形 第4课时 三角形的高线》教学课件

2.如图所示,在△ABC中,∠ACB = 90°, 把△ABC 沿直线 AC 翻折180°,使点 B 落在点 B′ 的位置,则线段AC 是( D )
A.边BB′ 上的中线
A
B.边BB′ 上的高
C.∠BAB′ 的角平分线
D.以上答案都正确
B
C
B′
3.三角形的三条高相交于一点,此点一定在( D )
A. 三角形的内部
谢谢 大家
郑重申明
作品整理不易, 仅供下载者本人使用,禁止其他 网站、 公司或个人未经本人同意转载、出售!
诚信赢天下,精品得人心!
B.三角形的外部
C.三角形的一条边上 D. 不能确定
课堂小结
三角形的三条高的特性
锐角三角形
直角三角形
钝角三角形
一条高在三角形 一条高在三角形
三条高都在三角 形内部
内部,两条高在
内部,两条高在
直角边上
三角形外部
任意三角形的三条高所在的直线交于一点.
课后作业
1.从教材习题中选取; 2.完成练习册本课时的习题.
直角三角形的三条高交于 直角顶点处.
在纸上画出一个钝角三角形.
(1)画出钝角三角形的三条高.
O
(2)钝角三角形的三条高交于
一点吗?它们所在的直线交于一
点吗?
钝角三角形的三条高所在直线交于 一点,此点在三角形的外部.
三角形的三条高所在的直线交于一点.
想一想
分别指出图中△ABC 的三条高.
A D
B
直角边BC边上的高是__A_B___; 直角边AB边上的高是__B_C__; C 斜边AC上的高是__B_D__.
A
边BC边上的高是__A_D___; F

七年级数学北师大版下册初一数学--第四单元 4.1《认识三角形》课件

七年级数学北师大版下册初一数学--第四单元 4.1《认识三角形》课件

直 角
斜边
与斜边之间的大小关系吗?
(hypotenuse) 它的两个锐角之间有什么关系吗?

B 直角边 (leg) C
直角三角形的斜边大于任一直角边。
直角三角形的两个锐角互余。




⑤ 锐角三角形
③⑤
⑥ 直角三角形
① ④⑥
⑦ 钝角三角形
②⑦
2、在下面的空白处,分别填入“锐角” “钝角”或“直 角”:
认识三角形
忆一: 三角形三边的关系
a
b
c
三角形任意两边之和大于第三边。 三角形任意两边之差小于第三边。
两边之差
2
3
这是一个直角三角形,∠1、∠2、∠3是它的三个内角。 平时,它们三兄弟非常团结。可是有一天,∠2突然不高兴, 发起脾气来,它指着∠1说:“你凭什么度数最大,我也要 和你一样大!”“不行啊,老弟”∠1说:“这是不可能的, 否则,我们这个家就再也不成家了……”“为什么?”∠2
2.如图线段DG ,EM ,FN两两相交于B ,C ,A三 点 则 ∠D+ ∠E + ∠F+∠G+∠M+∠N的度数 是( )
N
M
A
D
B
C G
E
F
很纳闷。同学们,你们知道其中的道理吗?学了今天的知识 以后你们就会知道三兄弟之间的关系了。
三角形的三个内角有什么关系
三角形三个内角的和等于180º
小学里,用什么方法得到三角形内 角和的结论的?
请同学们动手验证一下!
2 1
你能用什么方法得到 三角形内角和1800
的结论?
练1:
1、在△ABC中,∠C=900 , ∠ A=300 求∠B

七年级数学下册 第四章 三角形 1 认识三角形第2课时 三角形的三边关系教学课件 北师大版

七年级数学下册 第四章 三角形 1 认识三角形第2课时 三角形的三边关系教学课件 北师大版
谢谢观赏
You made my day!
我们,还在路上……
பைடு நூலகம்
课程讲授
2 三角形的三边关系
问题1:任意画出一个△ABC,从其中一个顶点B出发,
沿三角形的边到点C,有几条线路可以选择,各条线路
的长有什么关系?
A
两点之间线段最短.
由此可以得到: AC BC AB
B
C
AB BC AC AC AB BC
提示:两点之间,线段最短.
课程讲授
2 三角形的三边关系
问题1:观察下图中的三角形,试着比较它们之间的不 同之处.
提示:可根据三角形三边的长度关系进行比较.
顶角
腰 底角
不等边三角形 (三条边长度均不相等)
等腰三角形 底边
(两条边长度相等)
等边三角形 (三条边长相等)
课程讲授
1 等腰三角形和等边三角形
以“是否有边相等”,可以将三角形分为两类: _三__边__都__不__相__等__的__三__角__形_和__等__腰__三__角__形_. 三条边各不相等的三角形叫做__不__等__边__三__角__形____. 有两条边相等的三角形叫做__等__腰__三__角__形_. 三条边都相等的三角形叫做_等__边__三__角__形_.
等腰三角形与等边三角形的关系: 等边三角形是特__殊__的等边三角形,即_底__边__和__腰__相__等__ 的等腰三角形.
课程讲授
1 等腰三角形和等边三角形
三边都不 相等的三 角形
等腰三角形
等边三 角形
三角形
课程讲授
1 等腰三角形和等边三角形
练一练:根据三角形的分类,判断下列说法是否正确。
(1)一个钝角三角形可能是等腰三角形.( √ ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为FB=BC+FC=BC+AD. 所以AB=BC+AD.
9.如图,C是线段AB的中点,CD平分∠ACE,CE平分 ∠BCD,CD=CE. (1)试说明△ACD≌△BCE. (2)若∠D=50°,求∠B的度数.
【解析】(1)因为点C是线段AB的中点, 所以AC=BC,又因为CD平分∠ACE,CE平分∠BCD, 所以∠1=∠2,∠2=∠3, 所以∠1=∠3. CD=CE, 在△ACD和△BCE中,∠1=∠3, AC=BC, 所以△ACD≌△BCE(SAS).
4.如图,∠A+∠B+∠C+∠D+∠E+∠F等于_____度.
【解析】因为∠A+∠E+∠C=180°,∠D+∠B+∠F=180°, 所以∠A+∠B+∠C+∠D+∠E+∠F=360°. 答案:360
5. 如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若 CD=4,则点D到AB的距离是______.
【证明】(1)因为E是CD的中点,
所以DE=CE.因为AD∥BC,
所以∠ADE=∠FCE,∠DAE=∠CFE.
所以△ADE≌△FCE(AAS).
所以FC=AD.
(2)因为△ADE≌△FCE, 所以AE=FE. 又因为BE⊥AE,
所以∠BEA=∠BEF=90°,
又因为BE=BE,
所以△BEA≌△BEF(SAS).所以AB=FB.
第四章 三角形
例1 如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E, AD⊥CE于点D. 说明△BEC ≌△CDA.
例2 已知:如图,点E,A,C在同一直线上, AB∥CD,AB=CE,AC=CD.
求证:BC=DE.
【方法点拨】
1.△ABC的内角和为(
)
(A)180°
(C)540°
(B)360°
(D)720°
【解析】选A.根据三角形的内角和为180°,得
△ABC的内角和为180°.故A正确.
2.以下列各组线段为边,能组成三角形的是( (A)1 cm,2 cm,4 cm (C)5 cm,6 cm,12 cm
)
(B)4 cm,6 cm,8 cm (D)2 cm,3 cm,5 cm
④△MCD≌△NBD中,正确的是_______.
【解析】因为∠E=∠F=90°,∠B=∠C,AE=AF, 所以△AEB≌△AFC,所以BE=CF(②正确); 因为△AEB≌△AFC,所以∠EAB=∠FAC,所以∠1=∠2(①正确); 因为△AEB≌△AFC,所以AB=AC,∠B=∠C, 因为∠BAM=∠CAN,所以△ACN≌△ABM(③正确); 所以AM=AN.因为AB=AC,所以BN=CM.因为∠B=∠C,∠MDC=∠NDB, 所以△MCD ≌△NBD(④正确). 答案:①②③④
(2)因为∠1+∠2+∠3=180°,所以
∠1=∠2=∠3=60°, 因为△ACD≌△BCE,所以∠E=∠D=50°, 所以∠B=180°-∠E-∠3=70°.
7.如图,点D在AB上,点E在AC上,AB=AC, ∠B=∠C.求证:BE=CD.
【证明】在△ABE和△ACD中,
∠A=∠A
AB=AC ∠B=∠C, ∴△ABE≌△ACD, 所以BE=CD.
8.如图,在四边形ABCD中, AD∥BC,E为CD的中点,连接AE,BE, BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)FC=AD. (2)AB=BC+AD.
【解析】选B.A选项,1+2<4,故不能构成三角形;B选 项,4+6>8,故能构成三角形;C选项,5+6<12,故不 能构成三角形;D选项,2+3=5,故也不能组成三角形.
3、将一副三角板按如图所示摆放,图中∠a的度数是(
)
(A)75°
(B)90°
(C)105°
(D)120°
【解析】选C.∠a的度数为180°-45°-30°=105°.
【解析】过点D作DE⊥AB,垂足为E,因为∠C=90°,所以 ∠ACD=∠AED,又AD平分∠BAC,所以∠CAD=∠EAD,又AD=AD, 所以△ACD≌△AED(AAS),所以DE=CD=4,即点D到AB的距离为4. 答案:4
如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下
列结论:
①∠1=∠2;②BE=CF;③△ACN≌△ABM;
相关文档
最新文档