高质量题型专练卷-一次函数的综合应用题(Word版+详解)
人教版数学八年级下册第19章《一次函数》实际应用常考题专练(四)(附答案)
八年级下册第19章《一次函数》实际应用常考题专练(四)1.如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?2.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中l1,l2分别表示使用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式;(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?3.元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?4.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中,路程随时间变化的图象(分别是正比例函数图象和一次函数图象).求:(1)分别写出轮船和快艇行驶路程随时间变化的函数表达式.(2)经过多长时间,快艇和轮船相距20千米?5.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到达乙地前,何时轿车在货车前30千米.6.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的关系.根据图象回答:(1)甲、乙两地之间的距离为千米.(2)两车同时出发后小时相遇.(3)线段CD表示的实际意义是.(4)慢车和快车的速度分别为多少km/h?(写出计算过程)7.甲乙两人同时登同一座山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙在提速前登山的速度是米/分钟,乙在A地提速时距地面的高度b为米;(2)若乙提速后,乙比甲提前了9分钟到达山顶,请求出乙提速后y和x之间的函数关系式;(3)在(2)的条件下,登山多长时间时,乙追上了甲,此时甲距C地的高度为多少米?8.甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”);甲的速度是米/分钟;(2)甲与乙何时相遇?(3)在甲、乙相遇之前,何时甲与乙相距250米?9.为深入推进“健康沈阳”建设,倡导全民参与健身,我市举行“健康沈阳,重阳登高”活动,广大市民踊跃参加.甲乙两人同时登山,2分钟后乙开始提速,且提速后乙登高速度是甲登山速度的3倍,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米,乙在距地面高度为300米时对应的时间t是分钟;(2)请分别求出线段AB、CD所对应的函数关系式(需写出自变量的取值范围);(3)登山分时,甲、乙两人距地面的高度差为70米?10.甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?参考答案1.解:(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=420,故答案为:120,2,420;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+420,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣420,则当x=5时,s取得最小值,此时s=180,由上可得,行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.2.解:(1)设直线l对应的函数解析式为y=kx,1200k=60,解得k=0.3,对应的函数解析式为y=0.3x,即直线l1对应的函数解析式为y=ax+b,设直线l2,解得,即直线l对应的函数解析式为y=0.2x+20,2由上可得,用租书卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y =0.3x,用会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y=0.2x+20;(2)当x=50时,租书卡的租金为0.3×50=15(元),会员卡的租金为0.2×50+20=30(元),∵15<30,∴小红准备租某本名著50天,选择租书卡租书方式比较合算;当y=90时,租书卡可以租用90÷0.3=300(天),会员卡可以租用(90﹣20)÷0.2=350(天),∵300<350,∴小明准备花费90元租书,选择会员卡租书方式比较合算.3.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.4.解:(1)设轮船行驶路程随时间变化的函数表达式是y=kx,∵点(8,160)在函数y=kx的图象上,∴160=8k,解得k=20,即轮船行驶路程随时间变化的函数表达式是y=20x;设快艇行驶路程随时间变化的函数表达式是y=ax+b,∵点(2,0),(6,160)在函数y=ax+b的图象上,∴,解得,即快艇行驶路程随时间变化的函数表达式是y=40x﹣80;(2)当20x=20时,得x=1,令|20x﹣(40x﹣80)|=20,解得,x1=3,x2=5,当x=6时,轮船行驶的路程为20×6=120,∵160﹣120>20,∴令20x=160﹣20,解得x=7,即当x=7时,快艇和轮船相距20千米,由上可得,经过1小时、3小时、5小时或7小时时,快艇和轮船相距20千米.5.解:(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4.5,400)代入y=kx+b中,得解方程组得所以线段CD所对应的函数表达式为y=120x﹣140(2≤x≤4.5).(2)根据题意得,120x﹣140﹣80x=30,解得.答:当x=时,轿车在货车前30千米.6.解:(1)由图象可得,甲、乙两地之间的距离为900千米,故答案为:900;(2)由图象可得,两车同时出发后4小时相遇,故答案为:4;(3)线段CD表示的实际意义是快车到达乙地后,慢车继续行驶到甲地,故答案为:快车到达乙地后,慢车继续行驶到甲地;(4)慢车的速度为:900÷12=75(km/h),快车的速度为:900÷4﹣75=225﹣75=150(km/h),即慢车和快车的速度分别为75km/h、150km/h.7.解:(1)由图象可得乙一分钟走了15米,则乙在提速前登山的速度是15米/分钟,2分钟走了30米,∴b=30,故答案为:15,30;(2)由图象可得:t=20﹣9=11分,设AB解析式为:y=kx+b,解得:∴线段AB解析式为:y=30x﹣30(2≤x≤11);(3)∵C(0,100),D(20,300)∴线段CD的解析式:y=10x+100(0≤x≤20),由∴∴经过6.5分钟后,乙追上甲,此时甲距C地的高度=165﹣100=65米.8.解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==250 米/分钟.故答案为:乙;250.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=250x,设甲乙相遇后(即10<x<16 ),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得,解得,∴y=500x﹣3000,联立两直线的解析式,解得,答:甲与乙在12分钟时相遇;(3)设此时起跑了x分钟,根据题意得或250x=3000﹣250,解得x=5或x=11.答:在甲、乙相遇之前,5分钟或11分钟时甲与乙相距250米.9.解:(1)由题意可得,甲登山的速度是每分钟(300﹣100)÷20=10(米),乙在A地提速时距地面的高度b=(15÷1)×2=30,乙在距地面高度为300米时对应的时间t=2+(300﹣30)÷(10×3)=11,故答案为:10,30,11;(2)由(1)可得,点A 的坐标为(2,30),点B 的坐标为(11,300), 设线段AB 对应的函数解析式为y =kx +a ,,解得,即线段AB 对应的函数解析式为y =30x ﹣30(2≤x ≤11);设线段CD 所对应的函数关系式是y =mx +n ,∵点C 的坐标为(0,100),点D 的坐标为(20,300),∴, 解得,即线段CD 所对应的函数关系式是y =10x +100(0≤x ≤20);(3)登山前2分钟,甲乙两人的最近距离是100+10×2﹣30=90(米), 当2≤x ≤11时,|(30x ﹣30)﹣(10x +100)|=70,解得x 1=3,x 2=10,当11<x ≤20时,令10x +100=300﹣70解得x =13,由上可得,登山3、10或13分钟时,甲、乙两人距地面的高度差为70米, 故答案为:3、10或13.10.解:(1)设y 1关于x 的函数解析为y 1=kx ,120k =100,得k =,即y 1关于x 的函数解析为y 1=x (0≤x ≤120),设y 2关于x 的函数解析为y 2=ax +b ,,得,即y 2关于x 的函数解析为y 2=x ﹣20(15≤x ≤90); (2)令x =x ﹣20,得x =40,40﹣15=25(分钟),即乙车行驶25分钟追上甲车.。
中考数学总复习《一次函数综合》专项测试卷(附答案)
中考数学总复习《一次函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。
1.(2023秋•铜陵期中)下列函数①y=πx,②y=﹣2x+3,③,④,⑤y=x2﹣1中是一次函数的有()A.1个B.2个C.3个D.4个2.(2023•长沙模拟)已知一次函数y=ax﹣4的函数值y随x的增大而减小,则该函数的图象大致是()A.B.C.D.3.(2022秋•大东区校级期末)将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为()A.y=﹣2(x﹣4)B.y=﹣2x+4C.y=﹣2(x+4)D.y=﹣2x﹣44.(2022秋•碑林区期末)一次函数y=kx+b图象经过(1,1),(2,﹣4),则k与b的值为()A.B.C.D.5.(2023春•乾安县期末)已知A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y16.(2023•灞桥区校级二模)若一次函数y=(m﹣1)x+m﹣2的图象不经过第二象限,则m的取值范围是()A.m>1B.m<2C.1<m<2D.1<m≤27.(2023春•开福区校级期末)对于函数y=﹣2x+4,说法正确的是()A.点A(1,3)在这个函数图象上B.y随着x的增大而增大C.它的图象必过一、三象限D.当x>2时,y<08.(2023•南岗区校级二模)在全民健身越野比赛中乙选手匀速跑完全程,甲选手1.5小时后的速度为每小时10千米,甲、乙两选手的行程y(千米)随时间z(时)变化的图象(全程)如图所示.下列说法:①起跑后半小时内甲的速度为每小时16千米;②第1小时两人都跑了10千米;③两人都跑了20千米;④乙比甲晚到0.3小时.其中正确的个数有()A.1个B.2个C.3个D.4个9.(2023秋•合肥期中)如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A.B.C.D.10.(2023春•盖州市期末)如图,直线y=x+2与y轴相交于点A0,过点A0作x轴的平行线交直线y=0.5x+1于点B1,过点B1作y轴的平行线交直线y=x+2于点A1,再过点A1作x轴的平行线交直线y=0.5x+1于点B2,过点B2作y轴的平行线交直线y=x+2于点A2,…,依此类推,得到直线y=x+2上的点A1,A2,A3,…,与直线y=0.5x+1上的点B1,B2,B3,…,则A8B9的长为()A.64B.128C.256D.512二、填空题(本题共6题,每小题2分,共12分)。
中考数学专题专练--二次函数与一次函数的综合 (1)
中考数学专题专练--二次函数与一次函数的综合1.如图,二次函数y=- 34x2+94x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3.如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△P AB=6,并求出此时P点的坐标.4.如图,抛物线y1=a(x-1)2+4与x轴交于A(-1,0)。
(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x 轴于点B,求△ABC的面积。
5.如图,已知直线y=-3x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过点A和点C,对称轴为直线I:x=-1,该抛物线与x轴的另一个交点为B。
(1)求此抛物线的解析式;(2)点P在抛物线上且位于第二象限,求△PBC的面积最大值及点P的坐标。
(3)点M在此抛物线上,点N在对称轴上,以B、C、M、N为顶点的四边形能否为平行四边形?若能,写出所有满足要求的点M 的坐标;若不能,请说明理由。
6.如图,直线y=-x+2与抛物线y=ax 2交于A ,B 两点,点A 坐标为(1,1)。
(1)水抛物线的函数表达式:(2)连结OA ,OB ,求△AOB 的面积。
7.已知抛物线y=ax 2+bx+c 的顶点P(1,-1),且过Q(5,3)。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
一次函数综合应用(习题及解析)精选全文
精选全文完整版(可编辑修改)一次函数综合应用(习题及解析)例题示范例 1:一次函数 y=kx+b 的图象经过点 A(0,3),且与正比例函数y=-x 的图象相交于点 B,点 B 的横坐标为-1,求一次函数的表达式.思路分析:从完整的表达式入手,由正比例函数过点 B,可得 B 点坐标,然后由一次函数 y=kx+b 的图象经过点 A,B,待定系数法求解.解:∵点 B 在正比例函数 y=-x 的图象上,且点 B 的横坐标为-1∴B(-1,1)将 A(0,3),B(-1,1)代入 y=kx+b,得b 3k b 1k 2b 3∴一次函数的表达式为 y=2x+3.巩固练习一次函数 y=2x+a 和 y=-x+b 的图象都经过点 A(-2,0),且与 y 轴分别交于点 B,C,那么△ABC 的面积为.直线 y=kx+b 和直线 y 1 x 3 与 y 轴的交点相同,且经2过点(2,-1),那么这个一次函数的表达式是.一次函数 y=kx-3 经过点 M,那么此直线与 x 轴、y 轴围成的三角形的面积为.在平面直角坐标系中,O 为原点,直线 y=kx+b 交 x 轴于点A(-2,0),交 y 轴于点 B、假设△AOB 的面积为 8,那么 k 的值为直线 y=kx+1,y 随 x 的增大而增大,且与直线 x=1,x=3以及 x 轴围成的四边形的面积为 10,那么 k 的值为.一次函数 y=kx+b 的图象经过点(0,2),且与坐标轴围成的三角形的面积为 2,那么这个一次函数的表达式是如图,在平面直角坐标系中,一次函数 y 1 x 6 的图象与2x 轴、y 轴分别交于点 A,B,与正比例函数 y=x 的图象交于第一象限内的点 C、〔1〕求 A,B,C 三点的坐标;〔2〕S△AOC= .如图,直线 y=2x+3 与直线 y=-2x-1 相交于 C 点,并且与 y 轴分别交于 A,B 两点.〔1〕求两直线与 y 轴交点 A,B 的坐标及交点 C 的坐标;〔2〕求△ABC 的面积.一次函数 y=2x-3 的图象与 y 轴交于点 A,另一个一次函数图象与 y 轴交于点 B,两条直线交于点 C,C 点的纵坐标为 1,且 S△ABC=5,求另一条直线的解析式.一次函数 y=kx+b 的图象经过点(0,10),且与正比例函数y 1 x 的图象相交于点(4,a).2〔1〕求一次函数 y=kx+b 的解析式;〔2〕求这两个函数图象与 y 轴所围成的三角形的面积.如图,直线 y=kx+4 与 x 轴、y 轴分别交于点 A,B,点 A的坐标为(-3,0),点 C 的坐标为(-2,0).〔1〕求 k 的值;〔2〕假设 P 是直线 y=kx+4 上的一个动点,当点 P 运动到什么位置时,△OPC 的面积为 3?请说明理由.【参考答案】巩固练习1.6 2.y=-2x+3 3.9 44.4 或-4 5.2 6. y x 2或y ﹣x 2 7.〔1〕A(12,0),B(0,6),C(4,4) 〔2〕24 8.〔1〕A(0,3) B(0,-1) C(-1,1);〔2〕2 9. y 1 x 2 或 y 9 x 8 2 210. 〔1〕 y 2x 10 〔2〕2011. 〔1〕 k 在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
一次函数综合题(含详细解析)
一次函数综合题1.如图,平面直角坐标系中,直线:AB y x b =-+交y 轴于点(0,4)A ,交x 轴于点B . (1)求直线AB 的表达式和点B 的坐标;(2)直线l 垂直平分OB 交AB 于点D ,交x 轴于点E ,点P 是直线l 上一动点,且在点D 的上方,设点P 的纵坐标为n . ①用含n 的代数式表示ABP ∆的面积; ②当8ABP S ∆=时,求点P 的坐标;③在②的条件下,以PB 为斜边在第一象限作等腰直角PBC ∆,求点C 的坐标.2.如图在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A ,B 分别在x ,y 轴上,已知3OA =,点D 为y 轴上一点,其坐标为(0,1),5CD =,点P 从点A 出发以每秒1个单位的速度沿线段A C B --的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒(1)求B ,C 两点坐标;(2)①求OPD ∆的面积S 关于t 的函数关系式;②当点D 关于OP 的对称点E 落在x 轴上时,求点E 的坐标; (3)在(2)②情况下,直线OP 上求一点F ,使FE FA +最小.3.如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)如果在y 轴上存在一点P ,使OAP ∆是以OA 为底边的等腰三角形,则P 点坐标是 ;(3)在直线27y x =-+上是否存在点Q ,使OAQ ∆的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.4.已知四边形OABC 是边长为4的正方形,分别以OA 、OC 所在的直线为x 轴、y 轴,建立如图1所示的平面直角坐标系,直线l 经过A 、C 两点. (1)写出点A 、点C 坐标并求直线l 的函数表达式;(2)若P 是直线l 上的一点,当OPA ∆的面积是5时,请求出点P 的坐标;(3)如图2,点(3,1)D -,E 是直线l 上的一个动点,求出使||BE DE -取得最大值时点E 的坐标和最大值(不需要证明).5.如图,在平面直角坐标系xOy 中,直线483y x =-+与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将DAB ∆沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长和点C 的坐标; (2)求直线CD 的解析式.6.如图,直线24y x =-+交x 轴和y 轴于点A 和点B ,点(0,2)C -在y 轴上,连接AC . (1)求点A 和点B 的坐标;(2)若点P 是直线AB 上一点,若BCP ∆的面积为3,求点P 的坐标;(3)过点B 的直线BE 交x 轴于点(E E 点在点A 右侧),当45ABE ∠=︒时,求直线BE 的表达式.7.如图,在平面直角坐标系中,过点(6,0)B的直线AB与直线OA相交于点(4,2)A,动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求OAC∆的面积.(3)是否存在点M,使OMC∆的面积是OAC∆的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,过点(0,6)A的直线AB与直线OC相交于点(2,4)C动点P 沿路线O C B→→运动.(1)求直线AB的解析式;(2)当OPB∆的面积是OBC∆的面积的14时,求出这时点P的坐标;(3)是否存在点P,使OBP∆是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.9.如图(1),在平面直角坐标系中,直线443y x =-+交坐标轴于A 、B 两点,过点(4,0)C -作CD 交AB 于D ,交y 轴于点E .且COE BOA ∆≅∆.(1)求B 点坐标为 ;线段OA 的长为 ; (2)确定直线CD 解析式,求出点D 坐标;(3)如图2,点M 是线段CE 上一动点(不与点C 、E 重合),ON OM ⊥交AB 于点N ,连接MN .①点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明; ②当OMN ∆面积最小时,求点M 的坐标和OMN ∆面积.10.如图,在平面直角坐标系中,直线334y x =--交x 轴于点A ,交y 轴于点B ,交直线x a =于点C ,点D 与点B 关于x 轴对称,连接AD 交直线x a =于点E .(1)填空:ABD S ∆= . (2)求直线AD 的解析式;(3)在x 轴上存在一点P ,则PE PD +的和最小为 ;(直接填空即可)(4)当40a -<<时,点Q 为y 轴上的一个动点,使得QEC ∆为等腰直角三角形,求点Q 的坐标.11.如图,已知长方形OABC 的顶点A 在x 轴上,顶点C 在y 轴上,18OA =,12OC =,D 、E 分别为OA 、BC 上的两点,将长方形OABC 沿直线DE 折叠后,点A 刚好与点C 重合,点B 落在点F 处,再将其打开、展平.(1)点B 的坐标是 ; (2)求直线DE 的函数表达式;(3)设动点P 从点D 出发,以1个单位长度/秒的速度沿折线D A B C →→→向终点C 运动,运动时间为t 秒,求当2PDE OCD S S ∆∆=时t 的值.12.如图1,直线443y x =-+与坐标轴分别相交于A 、B 两点,在第一象限内,以线段AB 为边向外作正方形ABCD ,过A 、C 点作直线AC .(1)填空:点A 的坐标是 ,正方形ABCD 的边长等于 ; (2)求直线AC 的函数解析式;(3)如图2,有一动点M 从B 出发,以1个单位长度/秒的速度向终点C 运动,设运动的时间为t (秒),连接AM ,当t 为何值时,则AM 平分BAC ∠?请说明理由. 13.如图,在平面直角坐标系中,直线AB 交坐标轴于点A (0,6)、B (8,0),点C 为x 轴正半轴上一点,连接AC ,将ABC ∆沿AC 所在的直线折叠,点B 恰好与y 轴上的点D 重合.(1)求直线AB 的解析式; (2)求出点C 的坐标;(3)点P 为直线AB 上的点,请求出点P 的坐标使94COP S ∆=; (4)点Q 为直线AB 上一动点,连接DQ ,线段DQ 是否存在最小值?若存在,请求出DQ 的最小值,若不存在,请说明理由.14.如图,平面直角坐标系中,(0,2)A ,(1,0)B ,(2,3)C ,CD y ⊥轴于点D .(1)AOB CDA ∆≅∆;(2)连接BC ,判断ABC ∆的形状,并说明理由;(3)如图(2),已知(3,4)P ,(6,2)Q ,若PQM ∆是等腰直角三角形,且90QPM ∠=︒,则点M 坐标为 .15.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A 、B ,与函数y x =图象交于点M ,点M 的横坐标为2,在x 轴上有点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图象于点C 、D .(1)求点A 的坐标; (2)若OB CD =,求a 的值;(3)在(2)条件下若以OD 线段为边,作正方形ODEF ,求直线EF 的表达式.16.如图,正方形ABOD的边长为2,OB在x轴上,OD在y轴上,且//AD OB,AB OD,点C为AB的中点,直线CD交x轴于点F.//(1)求直线CD的函数关系式;(2)过点C作CE DF∠=∠;⊥且交于点E,求证:ADC EDC(3)求点E坐标;(4)点P是直线CE上的一个动点,求PB PF+的最小值.17.已知长方形OABC的边长4AB=,E是OA的中点,分别以OA、OC所在的OA=,3直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过C、E两点.(1)求直线l的函数表达式;(2)如图2,在长方形OABC中,过点E作EG EC∆⊥交AB于点G,连接CG,将COE 沿直线l折叠后得到CEF=.∆,点F恰好落在CG上.证明:GF GA(3)在(2)的条件下求四边形AGFE的面积.18.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.90=,6OB=,∠=︒且OA ABOABOC=.点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴5平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知4t=时,直线l恰好过点C.(1)求点A和点B的坐标;(2)当03<<时,求m关于t的函数关系式;t(3)当 3.5m=时,请直接写出点P的坐标.一次函数综合题参考答案与试题解析1.如图,平面直角坐标系中,直线:AB y x b =-+交y 轴于点(0,4)A ,交x 轴于点B .(1)求直线AB 的表达式和点B 的坐标;(2)直线l 垂直平分OB 交AB 于点D ,交x 轴于点E ,点P 是直线l 上一动点,且在点D 的上方,设点P 的纵坐标为n .①用含n 的代数式表示ABP ∆的面积;②当8ABP S ∆=时,求点P 的坐标;③在②的条件下,以PB 为斜边在第一象限作等腰直角PBC ∆,求点C 的坐标.【解答】解:(1)把(0,4)A 代入y x b =-+得4b =∴直线AB 的函数表达式为:4y x =-+.令0y =得:40x -+=,解得:4x =∴点B 的坐标为(4,0).(2)①l 垂直平分OB ,2OE BE ∴==.将2x =代入4y x =-+得:242y =-+=.∴点D 的坐标为(2,2).点P 的坐标为(2,)n ,2PD n ∴=-.APB APD BPD S S S ∆∆∆=+,1111(2)2(2)2242222ABP S PD OE PD BE n n n ∆∴=+=-⨯+-⨯=-. ②8ABP S ∆=,248n ∴-=,解得:6n =.∴点P 的坐标为(2,6).③如图1所示:过点C 作CM l ⊥,垂足为M ,再过点B 作BN CM ⊥于点N .设点(,)C p q .PBC ∆为等腰直角三角形,PB 为斜边,PC CB ∴=,90PCM MCB ∠+∠=︒.CM l ⊥,BN CM ⊥,90PMC BNC ∴∠=∠=︒,90MPC PCM ∠+∠=︒.MPC NCB ∴∠=∠.在PCM ∆和CBN ∆中,90PMC BNC MPC NCBPC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, PCM CBN ∴∆≅∆.CM BN ∴=,PM CN =.∴462p q q p -=-⎧⎨=-⎩,解得64p q =⎧⎨=⎩. ∴点C 的坐标为(6,4).如图2所示:过点C 作CM l ⊥,垂足为M ,再过点B 作BN CM ⊥于点N .设点(,)C p q .PBC ∆为等腰直角三角形,PB 为斜边,PC CB ∴=,90PCM MCB ∠+∠=︒.CM l ⊥,BN CM ⊥,90PMC BNC ∴∠=∠=︒,90MPC PCM ∠+∠=︒.MPC NCB ∴∠=∠.在PCM ∆和CBN ∆中,90PMC BNC MPC NCBPC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, PCM CBN ∴∆≅∆.CM BN ∴=,PM CN =.∴462p q q p -=-⎧⎨=-⎩,解得02p q =⎧⎨=⎩. ∴点C 的坐标为(0,2)舍去.综上所述点C 的坐标为(6,4).2.如图在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A ,B 分别在x ,y 轴上,已知3OA =,点D 为y 轴上一点,其坐标为(0,1),5CD =,点P 从点A 出发以每秒1个单位的速度沿线段A C B --的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒(1)求B ,C 两点坐标;(2)①求OPD ∆的面积S 关于t 的函数关系式;②当点D 关于OP 的对称点E 落在x 轴上时,求点E 的坐标;(3)在(2)②情况下,直线OP 上求一点F ,使FE FA +最小.【解答】解(1)四边形OACB 是矩形,3BC OA ∴==,在Rt BCD ∆中,5CD =,3BC =,4BD ∴==,5OB ∴=,(0,5)B ∴,(3,5)C ;(2)①当点P 在AC 上时,1OD =,3BC =,32S ∴=, 当点在BC 上时,1OD =,538BP t t =+-=-,111(8)422S t t ∴=⨯⨯-=-+;(0)t ②当点D 关于OP 的对称点落在x 轴上时,点D 的对称点是(1,0), (1,0)E ∴;(3)如图2点D 、E 关于OP 对称,连接AD 交OP 于F , 则AD 的长度就是AF EF +的最小值,则点F 即为所求.3.如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A . (1)求A 点坐标;(2)如果在y 轴上存在一点P ,使OAP ∆是以OA 为底边的等腰三角形,则P 点坐标是 13(0,)6; (3)在直线27y x =-+上是否存在点Q ,使OAQ ∆的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.【解答】解:(1)解方程组:2732y x y x =-+⎧⎪⎨=⎪⎩得:23x y =⎧⎨=⎩ A ∴点坐标是(2,3);(2)设P 点坐标是(0,)y ,OAP ∆是以OA 为底边的等腰三角形,OP PA ∴=,2222(3)y y ∴+-=, 解得136y =, P ∴点坐标是13(0,)6,故答案为13(0,)6; (3)存在;由直线27y x =-+可知(0,7)B ,7(2C ,0), 172136224AOC S ∆=⨯⨯=<,172762AOB S ∆=⨯⨯=>, Q ∴点有两个位置:Q 在线段AB 上和AC 的延长线上,设点Q 的坐标是(,)x y , 当Q 点在线段AB 上:作QD y ⊥轴于点D ,如图①,则QD x =, 761OBQ OAB OAQ S S S ∆∆∆∴=-=-=, ∴112OB QD =,即1712x ⨯=, 27x ∴=, 把27x =代入27y x =-+,得457y =, Q ∴的坐标是2(7,45)7, 当Q 点在AC 的延长线上时,作QD x ⊥轴于点D ,如图②则QD y =-, 213644OCQ OAQ OAC S S S ∆∆∆∴=-=-=, ∴1324OC QD =,即173()224y ⨯⨯-=, 37y ∴=-, 把37y =-代入27y x =-+,解得267x =, Q ∴的坐标是26(7,3)7-, 综上所述:点Q 是坐标是2(7,45)7或26(7,3)7-.4.已知四边形OABC 是边长为4的正方形,分别以OA 、OC 所在的直线为x 轴、y 轴,建立如图1所示的平面直角坐标系,直线l 经过A 、C 两点.(1)写出点A 、点C 坐标并求直线l 的函数表达式;(2)若P 是直线l 上的一点,当OPA ∆的面积是5时,请求出点P 的坐标;(3)如图2,点(3,1)D -,E 是直线l 上的一个动点,求出使||BE DE -取得最大值时点E 的坐标和最大值(不需要证明).【解答】解:(1)四边形OABC 是边长为4的正方形,(4,0)A ∴和(0,4)C ;设直线l 的函数表达式(0)y kx b k =+≠,经过(4,0)A 和(0,4)C 得044k b b =+⎧⎨=⎩, 解之得14k b =-⎧⎨=⎩, ∴直线l 的函数表达式4y x =-+;(2)设OPA ∆底边OA 上的高为h ,由题意等1452h ⨯⨯=, 52h ∴=, 5|4|2x ∴-+=,解得32x =或13213(2P ∴,5)2、213(2P ,5)2-; (3)O 与B 关于直线l 对称,∴连接OD 并延长交直线l 于点E ,则点E 为所求,此时||||BE DE OE DE OD -=-=,OD 即为最大值,如图2.设OD 所在直线为1y k x = 1(0)k ≠,经过点(3,1)D -,113k ∴-=,113k ∴=- ∴直线OD 为13y x =-, 解方程组:413y x y x =-+⎧⎪⎨=-⎪⎩,得62x y =⎧⎨=-⎩, ∴点E 的坐标为(6,2)-.又D 点的坐标为(3,1)-由勾股定理可得OD =.5.如图,在平面直角坐标系xOy 中,直线483y x =-+与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将DAB ∆沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长和点C 的坐标;(2)求直线CD 的解析式.【解答】解:(1)直线483y x =-+与x 轴,y 轴分别交于点A ,点B , (6,0)A ∴,(0,8)B ,在Rt OAB ∆中,90AOB ∠=︒,6OA =,8OB =,10AB ∴=,DAB ∆沿直线AD 折叠后的对应三角形为DAC ∆, 10AC AB ∴==.16OC OA AC OA AB ∴=+=+=. 点C 在x 轴的正半轴上,∴点C 的坐标为(16,0)C .(2)设点D 的坐标为(0D ,)(0)y y <, 由题意可知CD BD =,22CD BD =, 在Rt OCD ∆中,由勾股定理得22216(8)y y +=-, 解得12y =-.∴点D 的坐标为(0,12)D -,可设直线CD 的解析式为12(0)y kx k =-≠ 点(16,0)C 在直线12y kx =-上, 16120k ∴-=, 解得34k =, ∴直线CD 的解析式为3124y x =-. 6.如图,直线24y x =-+交x 轴和y 轴于点A 和点B ,点(0,2)C -在y 轴上,连接AC .(1)求点A 和点B 的坐标;(2)若点P是直线AB上一点,若BCP∆的面积为3,求点P的坐标;(3)过点B的直线BE交x轴于点(E E点在点A右侧),当45ABE∠=︒时,求直线BE的表达式.【解答】解:(1)24y x=-+交X轴和y轴于点A和点B,∴当0x=时,则4y=;当240y x=-+=时,解得2x=,(2,0)A∴,(0,4)B;(2)设点(,24)P a a-+,如图1,连接PC,则11(42)322BPCS BC a a∆==+=,解得1a=,当1a=时,242a-+=,故点(1,2)P;(3)当45ABE ∠=︒,如图,过点A 作AD AB ⊥交BE 于点D ,过点D 作DH x ⊥轴,45ABE ∠=︒,BAD ∴∆为等腰直角三角形, AB AD ∴=,90BAD ∠=︒,90BAO DAH ∴∠+∠=︒,90DAH ADH ∠+∠=︒, BAO ADH ∴∠=∠,在AOB ∆与DHA ∆中, 90BAO ADH AOB BAD AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, AOB DHA ∴∆≅∆()AAS , 2OA =,4OB =,246OH OA AH ∴=+=+=,2DH =,(6,2)D ∴, (0,4)B ,设直线BE 的表达式为y kx b =+,则264k b b =+⎧⎨=⎩,解得134k b ⎧=-⎪⎨⎪=⎩,故直线BE 的表达式为143y x =-+.7.如图,在平面直角坐标系中,过点(6,0)B 的直线AB 与直线OA 相交于点(4,2)A ,动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式.(2)求OAC ∆的面积.(3)是否存在点M ,使OMC ∆的面积是OAC ∆的面积的14?若存在求出此时点M 的坐标;若不存在,说明理由.【解答】解:(1)设直线AB 的解析式是y kx b =+, 根据题意得:4260k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,则直线的解析式是:6y x =-+;(2)在6y x =-+中,令0x =,解得:6y =, 164122OAC S ∆=⨯⨯=;(3)设OA 的解析式是y mx =,则42m =, 解得:12m =, 则直线的解析式是:12y x =,当OMC ∆的面积是OAC ∆的面积的14时, ∴当M 的横坐标是1414⨯=,在12y x =中,当1x =时,12y =,则M 的坐标是1(1,)2;在6y x =-+中,1x =则5y =,则M 的坐标是(1,5). 则M 的坐标是:11(1,)2M 或2(1,5)M .当M 的横坐标是:1-,在6y x =-+中,当1x =-时,7y =,则M 的坐标是(1,7)-; 综上所述:M 的坐标是:11(1,)2M 或2(1,5)M 或3(1,7)M -.8.如图,在平面直角坐标系中,过点(0,6)A 的直线AB 与直线OC 相交于点(2,4)C 动点P 沿路线O C B →→运动. (1)求直线AB 的解析式;(2)当OPB ∆的面积是OBC ∆的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使OBP ∆是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【解答】解:(1)点A 的坐标为(0,6), ∴设直线AB 的解析式为6y kx =+,点(2,4)C 在直线AB 上, 264k ∴+=, 1k ∴=-,∴直线AB 的解析式为6y x =-+;(2)由(1)知,直线AB 的解析式为6y x =-+, 令0y =, 60x ∴-+=, 6x ∴=,(6,0)B ∴,1122OBC C S OB y ∆∴==,OPB ∆的面积是OBC ∆的面积的14, 11234OPB S ∆∴=⨯=,设P 的纵坐标为m , 1332OPB S OB m m ∆∴===,1m ∴=,(2,4)C ,∴直线OC 的解析式为2y x =,当点P 在OC 上时,12x =, 1(2P ∴,1),当点P 在BC 上时,615x =-=, (5,1)P ∴,即:点1(2P ,1)或(5,1);(3)OBP ∆是直角三角形, 90OPB ∴∠=︒,当点P 在OC 上时,由(2)知,直线OC 的解析式为2y x =①, ∴直线BP 的解析式的比例系数为12-, (6,0)B ,∴直线BP 的解析式为132y x =-+②,联立①②,解得65125x y ⎧=⎪⎪⎨⎪=⎪⎩,6(5P ∴,12)5,当点P 在BC 上时,由(1)知,直线AB 的解析式为6y x =-+③,∴直线OP 的解析式为y x =④,联立③④解得,33x y =⎧⎨=⎩,(3,3)P ∴,即:点P 的坐标为6(5,12)5或(3,3).9.如图(1),在平面直角坐标系中,直线443y x =-+交坐标轴于A 、B 两点,过点(4,0)C -作CD 交AB 于D ,交y 轴于点E .且COE BOA ∆≅∆.(1)求B 点坐标为 (0,4) ;线段OA 的长为 ; (2)确定直线CD 解析式,求出点D 坐标;(3)如图2,点M 是线段CE 上一动点(不与点C 、E 重合),ON OM ⊥交AB 于点N ,连接MN .①点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明; ②当OMN ∆面积最小时,求点M 的坐标和OMN ∆面积. 【解答】解:(1)直线443y x =-+交坐标轴于A 、B 两点,∴当0y =时,3x =,当0x =时,4y =, ∴点A 的坐标为(3,0),点B 的坐标为(0,4),3OA ∴=;故答案为:(0,4),3;(2)过点(4,0)C -作CD 交AB 于D ,交y 轴于点E .且COE BOA ∆≅∆, 4OC ∴=,OC OB =,OE OA =,点(3,0)A , 3OA ∴=,3OE ∴=,∴点E 的坐标为(0,3),设过点(4,0)C -,点(0,3)E 的直线解析式为y kx b =+, 403k b b -+=⎧⎨=⎩,得343k b ⎧=⎪⎨⎪=⎩, ∴直线CE 的解析式为334y x =+, 即直线CD 的解析式为334y x =+, 由334443y x y ⎧=+⎪⎪⎨⎪=-+⎪⎩,得12258425x y ⎧=⎪⎪⎨⎪=⎪⎩,即点D 的坐标为12(25,84)25; (3)①线段OM 与ON 数量关系是OM ON =保持不变, 证明:COE BOA ∆≅∆, OE OA ∴=,OEM OAN ∠=∠, 90BOA ∠=︒,ON OM ⊥, 90MON BOA ∴∠=∠=︒,MOE EON EON NOA ∴∠+∠=∠+∠, MOE NOA ∴∠=∠,在MOE ∆和NOA ∆中, MOE NOA OE OAOEM OAN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()MOE NOA SAS ∴∆≅∆, OM ON ∴=,即线段OM 与ON 数量关系是OM ON =保持不变; ②由①知OM ON =, OM ON ⊥,OMN ∴∆面积是:222OM ON OM =, ∴当OM 取得最小值时,OMN ∆面积取得最小值,4OC =,3OE =,90COE ∠=︒, 5CE ∴=,当OM CE ⊥时,OM 取得最小值, ∴22OM CE OC OE=, ∴54322OM ⨯⨯=, 解得,125OM =, OMN ∴∆面积取得最小值是:212()725225=, 当OMN ∆取得最小值时,设此时点M 的坐标为3(,3)4a a +,∴222312(3)()45a a ++=,解得,3625a =-, ∴3483425a +=, ∴点M 的坐标为36(25-,48)25, 由上可得,当OMN ∆面积最小时,点M 的坐标是36(25-,48)25和OMN ∆面积是722510.如图,在平面直角坐标系中,直线334y x =--交x 轴于点A ,交y 轴于点B ,交直线x a =于点C ,点D 与点B 关于x 轴对称,连接AD 交直线x a =于点E .(1)填空:ABD S ∆= 12 . (2)求直线AD 的解析式;(3)在x 轴上存在一点P ,则PE PD +的和最小为 ;(直接填空即可)(4)当40a -<<时,点Q 为y 轴上的一个动点,使得QEC ∆为等腰直角三角形,求点Q 的坐标.【解答】解:(1)如图1,直线334y x =--交x 轴于点A ,交y 轴于点B ,令0x =,3y =-, (0,3)B ∴-,令0y =,3034x =--,4x ∴=-,(4,0)A ∴-,点D 与点B 关于x 轴对称, (0,3)D ∴, 11461222ABD S BD OA ∆∴=⨯=⨯⨯=, 故答案为:12;(2)如图1,设直线AD 的解析式为y kx b =+,由(1)知,(4,0)A -,(0,3)D , ∴403k b b -+=⎧⎨=⎩,∴343k b ⎧=⎪⎨⎪=⎩, ∴直线AD 的解析式为334y x =+; (3)解法一:如图2,点D 与点B 关于x 轴对称, ∴当BE AD ⊥时,BE 的值最小,即PD PE BE +=,4OA =,3OD =, 5AD ∴=,1122ABD S BD AO AD BE ∆∴==, 1164522BE ⨯⨯=⨯⨯, 245BE =; 则PE PD +的和最小为245; 解法二:如图2,由(2)知,直线AD 的解析式为334y x =+, 直线:CE x a =, 3(,3)4E a a ∴+,点D 与点B 关于x 轴对称,∴连接BE 交x 轴于P ,此时,PD PE +最小,最小值为BE ,BE ===BE ∴245=, 则PE PD +的和最小为245; 故答案为:245; (4)//EF OD ,AEF ADO ∴∆∆∽, ∴34EF OD AF AO ==, 设3EF x =,4AF x =,QEC ∆为等腰直角三角形时,存在以下三种情况:①当E 为直角顶点时,如图3,16EQ EC x ==, 则464x x +=,25x =, 635EF x ∴==, 16(0,)5Q ∴;②当C 为直角顶点时,如图3,同理得26(0,)5Q -;③当Q 为直角顶点时,如图4,此时Q 与O 重合,(0,0)Q综上,点Q的坐标为6(0,)5Q或6(0,)5或(0,0).11.如图,已知长方形OABC 的顶点A 在x 轴上,顶点C 在y 轴上,18OA =,12OC =,D 、E 分别为OA 、BC 上的两点,将长方形OABC 沿直线DE 折叠后,点A 刚好与点C 重合,点B 落在点F 处,再将其打开、展平.(1)点B 的坐标是 (18,12) ;(2)求直线DE 的函数表达式;(3)设动点P 从点D 出发,以1个单位长度/秒的速度沿折线D A B C →→→向终点C 运动,运动时间为t 秒,求当2PDE OCD S S ∆∆=时t 的值.【解答】解:(1)四边形ABCO 是矩形,AB OC ∴=,BC AO =,18OA =,12OC =,12AB ∴=,18BC =,∴点B 坐标(18,12)故答案为:(18,12)(2)折叠AD CD ∴=,ADE CDE ∠=∠,222OC OD CD +=,22144(18)OD OD ∴+=-,5OD ∴=,13CD ∴=,点D 坐标为(5,0),//BC AO ,CED EDA ∴∠=∠,且ADE CDE ∠=∠,CED CDE ∴∠=∠,13CE CD ∴==,∴点E 坐标为(13,12),设直线DE 的函数表达式为y kx b =+,∴051213k b k b =+⎧⎨=+⎩解得:32k =,152b =- ∴解析式31522y x =- (3)2PDE OCD S S ∆∆=,12125602PDE S OC OD ∆∴=⨯⨯⨯=⨯= 当点P 在AD 上时,112602PDE S PD ∆=⨯⨯=, 10PD ∴=10101t ∴==, 当点P 在AB 上时,()11108512136022PDE PBE APD ABED S S S S AP AP ∆∆∆=--=-⨯⨯--⨯⨯=梯形 92AP ∴= 91335212t +∴== 当点P 在BC 上时,112602PDE S PE ∆=⨯⨯= 10PE ∴=1051213401t +++∴==综上所述:当2PDE OCD S S ∆∆=时,t 的值为10,352,40. 12.如图1,直线443y x =-+与坐标轴分别相交于A 、B 两点,在第一象限内,以线段AB 为边向外作正方形ABCD ,过A 、C 点作直线AC .(1)填空:点A 的坐标是 (3,0) ,正方形ABCD 的边长等于 ;(2)求直线AC 的函数解析式;(3)如图2,有一动点M 从B 出发,以1个单位长度/秒的速度向终点C 运动,设运动的时间为t (秒),连接AM ,当t 为何值时,则AM 平分BAC ∠?请说明理由.【解答】解:(1)直线443y x =-+与坐标轴分别相交于A 、B 两点, 令0x =,则4y =,(0,4)B ∴,令0y =,则4043x =-+, 3x ∴=,(3,0)A ∴,5AB ∴=,故答案为:(3,0),5;(2)如图1,过点C 作CN OB ⊥于N ,90CBN BCN ∴∠+∠=︒,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,90OBA CBN ∴∠+∠=︒,OBA BCN ∴∠=∠,在AOB ∆和BNC ∆中,90AOB BNC ABO BCNAB BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AOB BNC AAS ∴∆≅∆,4CN OB ∴==,3BN OA ==,7ON OB BN ∴=+=,(4,7)C ∴,设直线AC 的解析式为y kx b =+,(3,0)A ,∴4730k b k b +=⎧⎨+=⎩,∴721k b =⎧⎨=-⎩∴直线AC 的解析式为721y x =-;(3)如图2,过M 作MF AC ⊥当AM 为BAC ∠的角平分线时,MF AC ⊥,MB AB ⊥BM FM ∴=45MCF ∠=︒,MF CF ∴=设BM x =,则5CM x =-,则CM5x ∴-1)5x ∴=5x ∴==t ∴为5时,AM 平分BAC ∠.13.如图,在平面直角坐标系中,直线AB交坐标轴于点A(0,6)、B(8,0),点C为x轴正半轴上一点,连接AC,将ABC∆沿AC所在的直线折叠,点B恰好与y轴上的点D重合.(1)求直线AB的解析式;(2)求出点C的坐标;(3)点P为直线AB上的点,请求出点P的坐标使94COPS∆=;(4)点Q为直线AB上一动点,连接DQ,线段DQ是否存在最小值?若存在,请求出DQ的最小值,若不存在,请说明理由.【解答】解:(1)设直线AB的解析式为:y kx b=+,把A(0,6)、B(8,0)的坐标代入得:680bk b=⎧⎨+=⎩,解得:346k b ⎧=-⎪⎨⎪=⎩,AB ∴的解析式为:364y x =-+;(2)点A (0,6)、B (8,0),6OA ∴=,8OB =,10AB ∴===,由折叠的性质的10AD AB ==,设OC x =,则8BC CD x ==-,68OA OB ==,10AD AB ∴==,从而可知4OD =,∴在OCD ∆中由勾股定理得2224(8)x x +=-,解得3x =,(3,0)C ∴;(3)点P 为直线AB 上的点,∴设3(,6)4P m m -+, 1393|6|244COP S m ∆=⨯⨯-+=; 6m ∴=或10m =,3(6,)2P ∴或3(10,)2-; (4)DQ 存在最小值.理由如下:连接BD ,则ABD ∆为等腰三角形,由垂线段最短可知,DQ 的最小值即为ABD ∆腰上的高, DQ ∴的最小值8OB ==.14.如图,平面直角坐标系中,(0,2)A ,(1,0)B ,(2,3)C ,CD y ⊥轴于点D .(1)AOB CDA ∆≅∆;(2)连接BC ,判断ABC ∆的形状,并说明理由;(3)如图(2),已知(3,4)P ,(6,2)Q ,若PQM ∆是等腰直角三角形,且90QPM ∠=︒,则点M 坐标为 (1,1)或(5,7) .【解答】解:(1)(2,3)C ,3OD ∴=,2CD =,(0,2)A ,(1,0)B ,2OA ∴=,1OB =,1AD ∴=,AD OB ∴=,在AOB ∆和CDA ∆中,90OB AD AOB CDA AO CD =⎧⎪∠=∠=︒⎨⎪=⎩,()AOB CDA SAS ∴∆≅∆;(2)ABC ∆是等腰直角三角形,理由如下:AOB CDA ∆≅∆,ABO CAD ∴∠=∠,AC AB =,90ABO BAO ∠+∠=︒,90CAD BAO ∴∠+∠=︒,90BAC ∴∠=︒,又AC AB =,ABC ∴∆是等腰直角三角形;(3)如图2,过点P 作x 轴的平行线GH ,作MG GH ⊥于G ,QH GH ⊥于H , (3,4)P ,(6,2)Q ,3PH ∴=,2QH =,MPQ ∆为等腰直角三角形,90MPQ ∴∠=︒,PM PQ =,90MPG HPQ ∴∠+∠=︒,90MPG PMG ∠+∠=︒,GMP HPQ ∴∠=∠,在GMP ∆和HPQ ∆中,GMP HPQ PGM QHP PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()GMP HPQ AAS ∴∆≅∆3GM PH ∴==,2GP HQ ==,∴点M 坐标为(1,1),过点P 作y 轴的平行线ST ,作M S ST '⊥于S ,QT ST ⊥于T , 同理可得,△M ST PTQ '≅∆,2M S PT ∴'==,3SP TQ ==,∴点M '坐标为(5,7),故答案为:(1,1)或(5,7).15.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A 、B ,与函数y x =图象交于点M ,点M 的横坐标为2,在x 轴上有点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图象于点C 、D . (1)求点A 的坐标;(2)若OB CD =,求a 的值;(3)在(2)条件下若以OD 线段为边,作正方形ODEF ,求直线EF 的表达式.【解答】解:(1)点M 在直线y x =的图象上,且点M 的横坐标为2, ∴点M 的坐标为(2,2),把(2,2)M 代入12y x b =-+得12b -+=,解得3b =, ∴一次函数的解析式为132y x =-+, 把0y =代入132y x =-+得1302x -+=,解得6x =, A ∴点坐标为(6,0),(2)把0x =代入132y x =-+得3y =, B ∴点坐标为(0,3),CD OB =,3CD ∴=,PC x ⊥轴,C ∴点坐标为1(,3)2a a -+,D 点坐标为(,)a a , 1(3)32a a ∴--+=, 4a ∴=.(3)如图以OD 为边作正方形ODEF 有两种情况.(4,4)D ,当正方形为ODE F ''时,90DOF ∠'=︒,OD 与x 轴夹角为045,x ∴轴平分DOF ∠',∴正方形顶点1E 在x 轴上,由对称性知(8,0)E ∴',(4,4)F '-,∴直线E F ''的解析式为8y x =-,同理当正方形为ODEF 时,∴直线EF 的解析式为8y x =+.16.如图,正方形ABOD 的边长为2,OB 在x 轴上,OD 在y 轴上,且//AD OB ,//AB OD ,点C 为AB 的中点,直线CD 交x 轴于点F .(1)求直线CD 的函数关系式;(2)过点C 作CE DF ⊥且交于点E ,求证:ADC EDC ∠=∠;(3)求点E 坐标;(4)点P 是直线CE 上的一个动点,求PB PF +的最小值.【解答】解:(1)四边形ABOD 为正方形,2AB BO OD AD ∴====,(0,2)D ∴, C 为AB 的中点,1BC ∴=,(2,1)C ∴-,设直线CD 解析式为(0)y kx b k =+≠,∴212k b b -+=⎧⎨=⎩,解得122k b ⎧=⎪⎨⎪=⎩,∴直线CD 的函数关系式为122y x =+;(2)C 是AB 的中点,AC BC ∴=,四边形ABOD 是正方形,90A CBF ∴∠=∠=︒,在ACD ∆和BCF ∆中A CBFAC BC ACD BCF∠=∠⎧⎪=⎨⎪∠=∠⎩()ACD BCF ASA∴∆≅∆,CF CD∴=,CE DF⊥,CE∴垂直平分DF,DE FE∴=,EDC EFC∴∠=∠,//AD BF,EFC ADC∴∠=∠,ADC EDC∴∠=∠;(3)由(2)可2BF AD==,且1BC=,90CBF CBE FCE∠=∠=∠=︒,90 CFB FCB FCB ECB∴∠+∠=∠+∠=︒,CFB BCE∴∠=∠,BCF BEC∴∆∆∽,∴BF CBCB BE=,即211BE=,解得12BE=,13222OE OB BE∴=-=-=,E∴点坐标为3(2-,0);方法二:设DE EF x==,在Rt DEO∆中,利用勾股定理求出x即可.(4)如图,连接BD交直线CE于点P,由(2)可知点D与点F关于直线CE对称,PD PF∴=,PB PF PB PD BD∴+=+,(2,0)B -,(0,2)D ,BD ∴=,PB PF ∴+的最小值为17.已知长方形OABC 的边长4OA =,3AB =,E 是OA 的中点,分别以OA 、OC 所在的直线为x 轴、y 轴,建立如图1所示的平面直角坐标系,直线l 经过C 、E 两点.(1)求直线l 的函数表达式;(2)如图2,在长方形OABC 中,过点E 作EG EC ⊥交AB 于点G ,连接CG ,将COE ∆沿直线l 折叠后得到CEF ∆,点F 恰好落在CG 上.证明:GF GA =.(3)在(2)的条件下求四边形AGFE 的面积.【解答】(1)解:矩形OABC 的边长4OA =,3AB =,E 是OA 的中点, 3OC AB ∴==,2OE =,(2,0)E ∴,(0,3)C .设直线l 的解析式(0)y kx b k =+≠.将(2,0)E ,(0,3)C ,分别代入y kx b =+得203k b b +=⎧⎨=⎩解得323k b ⎧=-⎪⎨⎪=⎩,∴直线l 的解析式332y x =-+;(2)证明:四边形OABC 是矩形,90COA OAB ∴∠=∠=︒.又根据折叠的性质得到90COE CFE ∠=∠=︒,OE EF =,90EFG EAG ∴∠=∠=︒.又E 是OA 的中点,OE AE ∴=,EF EA ∴=,∴在Rt EFG ∆和Rt EAG ∆中,EF EA EG EG =⎧⎨=⎩, Rt EFG Rt EAG(HL)∴∆≅∆,GF GA ∴=;(3)解:由(2)知,GF GA =,根据折叠的性质知3OC CF ==.3BG AB AG AG =-=-,3CG CF GF GA =+=+,2AE =,∴在Rt CBG ∆中,由勾股定理得:222CG BC BG =+,即222(3)(3)4AG AG +=-+, 解得,43AG =. 由(2)知,Rt EFG Rt EAG ∆≅∆,Rt EFG Rt EAG S S ∆∆∴=,114822222233Rt EAG AGFE S S AE AG ∆∴==⨯⋅=⨯⨯⨯=四边形, 即四边形AGFE 的面积是83. 18.如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 在x 轴的正半轴上.90OAB ∠=︒且OA AB =,6OB =,5OC =.点P 是线段OB 上的一个动点(点P 不与点O ,B 重合),过点P 的直线l 与y 轴平行,直线l 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R .设点P 的横坐标为t ,线段QR 的长度为m .已知4t =时,直线l 恰好过点C .(1)求点A 和点B 的坐标;(2)当03t <<时,求m 关于t 的函数关系式;(3)当 3.5m =时,请直接写出点P 的坐标.【解答】解:(1)如图:过点A 作AM OB ⊥于M ,90OAB ∠=︒,OA AB =,6OB =,AM OB ⊥,132AM OM MB OB ∴====, ∴点A 的坐标为(3,3),点B 的坐标为(6,0);(2)作CN x ⊥轴于N ,如图,4t =时,直线l 恰好过点C ,4ON ∴=,在Rt OCN ∆中,3CN =, C ∴点坐标为(4,3)-, 设直线OC 的解析式为y kx =,把(4,3)C -代入得43k =-,解得34k =-, ∴直线OC 的解析式为34y x =-, 设直线OA 的解析式为y ax =, 把(3,3)A 代入得33a =,解得1a =, ∴直线OA 的解析式为y x =, (P t ,0)(03)t <<,(,)Q t t ∴,3(,)4R t t -, 37()44QR t t t ∴=--=, 即7(03)4m t t =<<; (3)设直线AB 的解析式为y px q =+,把(3,3)A ,(6,0)B 代入得:3360p q p q +=⎧⎨+=⎩,解得16p q =-⎧⎨=⎩, ∴直线AB 的解析式为6y x =-+, 同理可得直线BC 的解析式为392y x =-, 当03t <<时,74m t =, 若 3.5m =,则73.54t =, 解得2t =,此时P 点坐标为(2,0);当34t <时,(,6)Q t t -+,3(,)4R t t -, ∴316()644m t t t =-+--=-+, 若 3.5m =,则13.564t =-+,解得10t =(不合题意舍去);当46t <时,(,6)Q t t -+,3(,9)2R t t -, ∴356(9)1522m t t t =-+--=-+, 若 3.5m =,则53.5152t =-+, 解得235t =,此时P 点坐标为23(5,0); 综上所述,满足条件的P 点坐标为(2,0)或23(5,0).。
一次函数的应用专项练习30题(有答案)ok
一次函数的应用专项练习30题(有答案)ok一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________米3;(2)水池最大蓄水量是_________米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到黄山去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达黄山天都峰时测得当时的气温是29.24°C.求黄山天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市范围内每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月内使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________先到达终点;(2)第_________秒时,_________追上_________;(3)比赛全程中,_________的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________.11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段内,挖掘速度为每小时_________米;乙队在2≤x≤6的时间段内,挖掘速度为每小时_________米;请根据乙队在2≤x≤6的时间段内开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段内,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段内,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________支龙舟队处于领先位置(填“甲”或“乙“);(2)_________支龙舟队先到达终点(填“甲“或“乙”),提前_________分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值范围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.陈褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和陈褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________m,他途中休息了_________min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足20≤x≤40,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月内通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需交纳行李费,已知行李费y(元)是行李质量x(千克)的一次函数.现在黄明带了60千克的行李,交了行李费5元,王华带了78千克的行李,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行李?21.某长途汽车客运站规定,乘客可免费携带一定质量的行李,但超过该质量则需要购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行李?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________(h)后,小明与小聪相遇,此时两人距离B地_________(km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动电话计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月内某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月内本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值范围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.11∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣180(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣180=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格内容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与陈褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷180=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,12∴当x=23时,w有最大值,是105800,当采购量为23吨时,张家在这次买卖中所获的利润w 最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行李.答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行李21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行李.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,13从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y 最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月内本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b ,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.14。
一次函数应用题含答案
一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
《一次函数》专项练习和中考真题(含答案解析及点睛)
《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。
一次函数综合题(难度较大)带答案
一次函数综合题一.解答题(共10小题)1.如图,在直角坐标系中,△ABC满足∠BCA=90°,点A、C分别在x轴和y轴上,AC=BC=2,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.(1)当AB∥y轴时,求B点坐标.(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是16?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.3.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.4.如图,在平面直角坐标系中,一次函数y=﹣2x﹣1的图象分别交x轴、y轴于点A和B,已知点C的坐标为(﹣3,0).若点P是x轴上的一个动点,(1)求直线BC的函数解析式;(2)过点P作y轴的平行线交AB于点M,交BC于点N,当点P恰好是MN的中点时,求出P点坐标.(3)若以点B、P、C为顶点的△BPC为等腰三角形时,请直接写出所有符合条件的P点坐标.5.如图,在平面直角坐标系中,直线m经过点(﹣1,2),交x轴于点A(﹣2,0),交y轴于点B,直线n与直线m交于点P,与x轴、y轴分别交于点C、D(0,﹣2),连接BC,已知点P的横坐标为﹣4.(1)求直线m的函数表达式和点P的坐标;(2)求证:△BOC是等腰直角三角形;(3)直线m上是否存在点E,使得S△ACE=S△BOC?若存在,求出所有符合条件的点E的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴相交于点C,与直线AB交于点D,交y轴于点E.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=,连接HM、NC,求HM+MN+NC的最小值;(3)将△OEC绕平面内某点旋转90°,旋转后的三角形记为△O'E'C',若点E'落在直线AB上,点O'落在直线CD上,请直接写出满足条件的点E'的坐标.7.如图所示,平面直角坐标系中,直线l1:y=﹣2x+3与直线l2:y=x+1相交于点A,直线l2与x轴相交于点B.过直线l2上的一点P(a,﹣1)作y轴的垂线,交直线l1于点C,连接BC.(1)求点A的坐标;(2)求△ABC的面积;(3)将直线l1向下平移4个单位长度得到直线l3,设直线l3与y轴相交于点D,则直线l2上是否存在一点Q,使得△DPQ是以DP为腰的等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,一次函数y=kx+b经过A(a,0),B(0,b)两点,且a,b满足(a+8)2+=0,∠ABO的平分线交x轴于点E.(1)求直线AB的表达式;(2)求直线BE的表达式;(3)点B关于x轴的对称点为点C,过点A作y轴的平行线交直线BE于点D,点M是线段AD上一动点,点P 是直线BE上一动点,则△CPM能否为不以点C为直角顶点的等腰直角三角形?若能,请直接写出点P的坐标;若不能,说明理由.9.如图,直线y=﹣x+8与x轴,y轴分别交于A,B两点,点C的坐标为(﹣6,0),连结BC,过点O作OD⊥AB于点D,点Q为线段BC上一个动点.(1)求BC,OD的长;(2)在线段BO上是否存在一点P,使得△BPQ与△ADO全等?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)当点C关于OQ的对称点恰好落在△OBD的边上,请直接写出点Q的坐标.10.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标为(﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a).(1)求直线AB的表达式和点C的坐标;(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.参考答案与试题解析一.解答题(共10小题)1.【分析】(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;(2)根据全等三角形的判定与性质,可得BE=OC =x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;(3)分类讨论:①D在y轴的正半轴上;②D在y 轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.【解答】解:(1)∵∠BCA=90°,AC=BC=2,∴∠BAC=45°,AB ==2,∵AB∥y轴,∴∠BAO=90°=∠COA,∴∠CAO=45°=∠OCA,∴CO=AO,∵AO2+CO2=AC2,∴2AO2=(2)2,∴AO =,∴点B 坐标为(,2);(2)如图,过点B作BE⊥y轴,垂足为点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC,∴△AOC≌△CEB(AAS),∴BE=CO,AO=CE,∵点B落在直线y=3x上,∴设B(x,3x),∴BE=x=OC,OE=3x,∴CE=OA=2x,∵OA2+OC2=AC2,∴(2x)2+x2=20,∴x=2,∴OA=2x=4,∴点A(4,0);(3)设点D(0,y),由(2)得B(2,6),当点D在y轴正半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△BDO=16,∴×4×6+×y×2=16,∴y=4,∴点D(0,4);若点D在y轴负半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△ADO=16,∴×4×6+×4×(﹣y)=16,∴y=﹣2,∴点D坐标为(0,﹣2).综上,存在点D,使以O、A、B、D为顶点的四边形面积是16,点D的坐标为(0,4)或(0,﹣2).2.【分析】(1)根据题意,求得点C的坐标,结合B的坐标,利用待定系数法求解析式即可;(2)求出S△ABC=27,设G(m,﹣m+6),分两种情况:①S△ABG:S△ACG=1:2时,②S△ABG:S△ACG=2:1时,分别求得m的值,进而求得G点的坐标;(3)分类讨论,①当点D为直角顶点时,②当点C 为直角顶点时,根据等腰直角三角形以及全等三角形的性质即可求解.【解答】解:(1)由y=2x+6得:A(﹣3,0),C(0,6),∵点B(6,0).设直线BC的解析式为y=kx+b(k≠0):∴,解得:,∴直线BC的解析式为y=﹣x+6;(2)∵A(﹣3,0),C(0,6),B(6,0).∴AB=9,∴S△ABC =×9×6=27,设G(m,﹣m+6),(0<m<6),①当S△ABG:S△ACG=1:2时,即S△ABG =S△ABC=9,∴×9(﹣m+6)=9,∴m=4,∴G(4,2);当S△ABG:S△ACG=2:1时,即S△ABG =S△ABC=18,∴×9(﹣m+6)=18,∴m=2,∴G(2,4).综上,点G的坐标为(4,2)或(2,4);(3)∵A(﹣3,0),C(0,6),D为AC的中点,∴D (﹣,3),①当点D为直角顶点时,如图,过点D作DE⊥y轴于E,过点P作PF⊥DE交ED的延长线于F,交x 轴于H,∴∠F=∠CED=90°,∵△CDP是等腰直角三角形,∴DP=CD,∠CDB=90°,∴∠PDF+∠CDE=∠DCE+∠CDE=90°,∴△PDF≌△CDE(AAS),∴DF=CE,PF=DE,∵D (﹣,3),C(0,6).∴DE=PF =,OE=3,CE=DF=6﹣3=3,∴EF=3+=,PH=3+=,∴P (﹣,),同理得:P ′(,);∴P (﹣,)或(,);②当点C为直角顶点时,如图,过点D作DN⊥y轴于N,过点P作PM⊥y轴于M,同①可得△PCM≌△CDN(AAS),∴DN=CM,PM=CN,∵D (﹣,3),C(0,6).∴DN=CM =,ON=3,CN=PM=6﹣3=3,∴OM=6﹣=,∴P(3,),同理得:P′(﹣3,);∴P(3,)或(﹣3,).综上,点P的坐标为(﹣,)或(,)或(3,)或(﹣3,).3.【分析】(1)将B(4,0)代入y=kx+1得到y =﹣x+1;(2)由两直线交点的求法得到点D的坐标;易得线段PD的长度,所以根据三角形的面积公式即可得到结论;(3)根据三角形的面积公式列方程求得m=2,于是得到点P(2,2),推出∠EPB=∠EBP=45°.第1种情况,如图2,过点C作CF⊥x轴于点F根据全等三角形的性质得到BF=CF=PE=EB=2,于是得到C(6,2);第2种情况,如图3根据全等三角形的性质得到PC =CB=PE=EB=2,于是得到C(2,﹣2);第3种情况,当点P在点D下方时,得到(3,2)或(5,﹣2).【解答】解:(1)∵直线l1:y=kx+1交x轴于点B (4,0),∴0=4k+1.∴k =﹣.∴直线l1:y =﹣x+1;(2)由得:.∴D(2,).∵P(2,m),∴PD=|m ﹣|.∴S =×|4﹣0|•PD =×|m ﹣|×4=|2m﹣1|.当m时,S=2m﹣1;当m <时,S=1﹣2m;(3)当S△ABP=3时,2m﹣1=3,解得m=2,∴点P(2,2),∵E(2,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F,∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBF与△PBE中,,∴△CBF≌△PBE(AAS).∴BF=CF=PE=EB=2.∴OF=OB+BF=4+2=6.∴C(6,2);如图3,△PBC是等腰直角三角形,∴PE=CE,∴C(2,﹣2),∴以点B为直角顶点作等腰直角△BPC,点C的坐标是(6,2)或(2,﹣2).当1﹣2m=3时,n=﹣1,可得P(2,﹣1),同法可得C(3,2)或(5,﹣2).综上所述,满足条件的点C坐标为(6,2)或(2,﹣2)或(3,2)或(5,﹣2).4.【分析】(1)由y=﹣2x﹣1得A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,用待定系数法可得直线BC为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),根据点P恰好是MN的中点,可得﹣2m﹣1﹣0=0﹣(﹣m﹣1),即可解得P (﹣,0);(3)设P(t,0),则BC2=10,BP2=t2+1,CP2=(t+3)2,分三种情况:①当BC=BP时,BC2=BP2,10=t2+1,解得P(3,0);②当BC=CP时,10=(t+3)2,解得P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,t2+1=(t+3)2,解得P (﹣,0).【解答】解:(1)在y=﹣2x﹣1中,令x=0得y=﹣1,令y=0得x =﹣,∴A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,将C(﹣3,0)代入得:﹣3k﹣1=0,解得k =﹣,∴直线BC解析式为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),∵点P恰好是MN的中点,∴PM=PN,即﹣2m﹣1﹣0=0﹣(﹣m﹣1),解得m =﹣,∴P (﹣,0);(3)设P(t,0),∵B(0,﹣1),C(﹣3,0),∴BC2=10,BP2=t2+1,CP2=(t+3)2,①当BC=BP时,BC2=BP2,∴10=t2+1,解得t=3或t=﹣3(与B重合,舍去),∴P(3,0);②当BC=CP时,∴10=(t+3)2,解得t =﹣3或t =﹣﹣3,∴P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,∴t2+1=(t+3)2,解得t =﹣,∴P (﹣,0);综上所述,P坐标为(3,0)或(﹣3,0)或(﹣﹣3,0)或(﹣,0).5.【分析】(1)设直线m的函数表达式为y=kx+b(k≠0),把(﹣1,2),(﹣2,0)代入,得,解方程组即可得到结论;(2)设直线n的函数表达式为y=sx+t(s≠0),根据直线n经过点(﹣4,﹣4),(0,﹣2),得到方程组,解方程组得到.求得点B的坐标为(0,4),点C的坐标为(4,0),于是得到结论;(3)根据三角形的面积公式得到,根据题意列方程即可得到结论.【解答】(1)解:设直线m的函数表达式为y=kx+b (k≠0).∵直线m经过点(﹣1,2),(﹣2,0),∴,解得,∴直线m的函数表达式为y=2x+4.将x=﹣4代入y=2x+4,得y=2×(﹣4)+4=﹣4,∴点P的坐标为(﹣4,﹣4);(2)证明:设直线n的函数表达式为y=sx+t(s≠0).∵直线n经过点(﹣4,﹣4),(0,﹣2),∴,解得,∴直线n 的函数表达式为.在y=2x+4中,令x=0,得y=4,即点B的坐标为(0,4).在中,令y=0,得,解得x=4,即点C的坐标为(4,0),∴OB=OC=4,又∵∠BOC=90°,∴△BOC是等腰直角三角形;(3)解:∵OB=OC=4,∠BOC=90°,∴,又∵S△ACE=S△BOC,∴S△ACE=8,即,∵AC=6,∴,即或.①当时,,解得,∴此时点E 的坐标为;②当时,,解得,∴此时点E 的坐标为.综上可知,直线m上存在点E,使得S△ACE=S△BOC,点E 的坐标为或.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG =,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'E'∥x轴,OE=O'E'=1,求出DE'=,设E'(m,3m+3),即可求E'的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=﹣3或t =,∵H是直线AB上位于第一象限内的一点,∴t =,∴H (,),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG =,∴G(3,),H'(﹣,),连接H'G交y轴于点M,∵MN =,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+;(3)令x=0,则y=1,∴E(0,1),令y=0,则x=3,∴C(3,0),当△OCE绕点逆时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点下方,∴m =﹣,∴E'(﹣,);当△OCE绕点顺时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点上方,∴m =﹣,∴E'(﹣,);综上所述:E'点坐标为(﹣,)或(﹣,).7.【分析】(1)联立方程组可求解;(2)分别求出点B,点C坐标,由三角形的面积公式可求解;(3)先求出点D坐标,由等腰三角形的性质和两点之间的距离公式可求解.【解答】解:(1)由题意可得:,解得:,∴点A (,);(2)∵直线l2与x轴相交于点B,∴点B(﹣1,0),∵点P(a,﹣1)在直线l2上,∴﹣1=a+1,∴a=﹣2,∴点P(﹣2,﹣1),∴点C的纵坐标为﹣1,∴﹣1=﹣2x+3,∴x=2,∴点C(2,﹣1),如图,设直线l1与x轴相交于点H,∴0=﹣2x+3,∴x =,∴点H (,0),∴BH =,∴△ABC 的面积=××(+1)=;(3)存在,理由如下:∵将直线l1向下平移4个单位长度得到直线l3,∴直线l3,的解析式为:y=﹣2x﹣1,∴点D(0,﹣1),如图,∵点P(﹣2,﹣1),点D(0,﹣1),∴PD⊥y轴,PD=2,设点Q(a,a+1),∵△DPQ是以DP为腰的等腰三角形,∴PQ=PD=2或PD=QD=2,当PQ=PD=2时,则(﹣2﹣a)2+(﹣1﹣a﹣1)2=4,∴a =±﹣2,∴点Q (﹣2,﹣1)或(﹣﹣2,﹣﹣1);当PD=QD=2时,则(a﹣0)2+(﹣1﹣a﹣1)2=4,∴a=0或﹣2(不合题意舍去),∴点Q(0,1),综上所述:点Q坐标为:(﹣2,﹣1)或(﹣﹣2,﹣﹣1)或(0,1).8.【分析】(1)求出点A与点B的坐标,再由待定系数法求直线AB的解析式即可;(2)过点E作EH⊥AB于点H,求出点E的坐标,再由再由待定系数法求直线BE的解析式即可;(3)①当∠MPC=90°时,P点在C点下,过点P 作GH⊥y轴交AD于点G,交y轴于点H,证明△PMG ≌△CPH(AAS),可得8+t=2t+12,求出t即可求P (﹣4,2);②当∠MPC=90°,P点在C点上时,由①得8+t=﹣2t﹣12,求出t即可求P (﹣,);③当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL交于K,证明△PKM≌△MLC (AAS),由8=﹣2t﹣6﹣(14+t),求出t =﹣,即可求P (﹣,).【解答】解:(1)∵(a+8)2+=0,∴a=﹣8,b=﹣6,∴A(﹣8,0),B(0,﹣6),∵一次函数y=+b经过A(﹣8,0),B(0,﹣6),∴,∴,∴直线AB的表达式y =﹣x﹣6;(2)∵A(﹣8,0),B(0,﹣6),∴OA=8,OB=6,∴在Rt△AOB中AB=10,过点E作EH⊥AB于点H,∵∠ABO的平分线交x轴于点E,∴EH=EO,AE=8﹣EO,AH=10﹣6=4,在Rt△AEH中,(8﹣EO)2=42+EO2,解得:EO=3,∴E(﹣3,0),设直线BE的表达式为y=k1x+b1,∴,∴,∴直线BE的表达式为y=﹣2x﹣6;(3)设P(t,﹣2t﹣6),①如图1,当∠MPC=90°时,P点在C点下,过点P作GH⊥y轴交AD于点G,交y轴于点H,∵∠MPC=90°,∴∠MPG+∠CPH=90°,∵∠MPG+∠GMP=90°,∴∠CPH=∠GMP,∵PM=PC,∴△PMG≌△CPH(AAS),∴MG=PH,CH=GP,∵PH=﹣t,CH=6﹣(﹣2t﹣6)=2t+12,∴GP=8﹣(﹣t)=8+t=2t+12,∴t=﹣4,∴P(﹣4,2);②如图2,当∠MPC=90°,P点在C点上时,由①得,HC=﹣2t﹣6﹣6=﹣2t﹣12,GP=8﹣(﹣t)=8+t,∴8+t=﹣2t﹣12,∴t =﹣,∴P (﹣,);③如图3,当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL 交于K,∵∠PMC=90°,∴∠PMK+∠CML=90°,∵∠PMK+∠MPK=90°,∴∠CML=∠MPK,∵PM=CM,∴△PKM≌△MLC(AAS),∴KM=CL,PK=ML,∴ML=PK=8,CL=KM=﹣8﹣t,∴LO=6﹣(﹣8﹣t)=14+t,∴PK=8=﹣2t﹣6﹣(14+t),∴t =﹣,∴P (﹣,);综上所述:点P的坐标为:(﹣4,2)或(﹣,)或(﹣,).9.【分析】(1)先求出点A,点B坐标,由勾股定理和面积法可求解;(2)分两种情况讨论,先求出BQ解析式,由全等三角形的性质可求解;(3)分两种情况讨论,利用折叠的性质,三角形面积公式,等腰三角形的性质可求解.【解答】解:(1)∵直线y =﹣x+8与x轴,y轴分别交于A,B两点,∴点A(6,0),点B(0,8),∴OA=6,OB=8,∵点C的坐标为(﹣6,0),∴OC=6,∴BC ===10,∵OA=OC=6,BO⊥AC,∴AB=BC=10,∵S△AOB =×AB×OD =×OA×OB,∴OD ==;(2)存在,理由如下:∵AB=BC,∴∠BCA=∠BAO,∵∠CBO+∠BCA=90°=∠AOD+∠BAO,∴∠CBO=∠AOD,设直线BC的解析式为y=kx+b,,解得:,∴直线BC的解析式为y =x+8,设点Q(a ,a+8)当△BPQ≌△OAD时,BQ=OD =,∴(a﹣0)2+(a+8﹣8)2=,∴a =±,∵点Q在第二象限,∴点Q (﹣,),当△BPQ≌△ODA时,BQ=OA=6,∴(a﹣0)2+(a+8﹣8)2=36,∴a =±,∵点Q在第二象限,∴点Q (﹣,),综上所述:点Q坐标为:(﹣,)或(﹣,);(3)如图,当点C关于OQ的对称点落在OB上时,作OE⊥CO于点E,OF⊥BO于点F,∴∠COQ=∠C'OQ=45°,又∵OE⊥CO,OF⊥BO,∴OE=OF,∵S△OBC =×OB×OC =×OC×OE +×OB×OF,∴6×8=(6+8)×OE,∴OE=OF =,∴点Q 的坐标为(﹣,).点C关于OQ的对称点落在AB上时,∴OC=OC'=OA,CQ=C'Q,∠OCQ=∠OC'Q,∴∠C'AO=∠OC'A,∴∠OCQ=∠OC'Q=∠C'AO=∠OC'A,∴∠CBA=∠QC'B,∴BQ=C'Q,∴CQ=BQ=C'Q,∴点Q是BC的中点,∴点Q(﹣3,4),综上所述:点Q坐标为(﹣3,4)或(﹣,).10.【分析】(1)用待定系数法求直线AB的解析式即可;(2)由题意可得AD=9,设D(x,0),则|x+3|=9,即可求D的坐标;(3)分两种情况讨论:①当点P在射线CB上时,过点C作CF⊥CE交直线EP于点F,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,证明△FMC≌△CNE(AAS),即可得F点坐标为(1,4),用待定系数法求出直线EF的解析式为y=5x﹣1,联立方程组,即可求P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,证明△CHG≌△EHK(AAS),可求得H (﹣,﹣),求出直线HE的解析式为y=﹣x﹣1,联立方程组,则可求P (﹣,﹣).【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(﹣3,0),B(0,6),则有,∴,∴y=2x+6,∵C(﹣a,a),∴C(﹣2,2);(2)∴S△AOB =×3×6=9,∴S△ACD =×2×AD=9,∴AD=9,设D(x,0),∴|x+3|=9,∴x=6或x=﹣12,∴D(6.0)或(﹣12,0);(3)①如图,当点P在射线CB上时,过点C作CF ⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,∴∠FMC=∠CNE=90°,∠MCF+∠MFC=90°,∵CF⊥CE,∴∠MCF+∠NCE=90°,∴∠MFC=∠NCE,∴△FMC≌△CNE(AAS),∴FM=CN=3,CM=EN=2,即F点坐标为(1,4),设直线EF的解析式为y=kx+b,∴,∴,∴直线EF的解析式为y=5x﹣1,联立,解得,∴P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK ⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,∵∠CHK=90°,∴∠CHG+∠KHE=90°,∵∠CHG+∠HCG=90°,∴∠KHE=∠HCG,∵∠DEP=45°,∴DH=HE,∴△CHG≌△EHK(AAS),∴CG=KE,GH=HK,∵E(0,﹣1),C(﹣2,2),∴GH=3﹣CG=2+OK=2+CG,∴CG =,∴H (﹣,﹣),设直线HE的解析式为y=k'x+b',,∴,∴y =﹣x﹣1,联立方程组,解得,∴P (﹣,﹣),综合上所述,点P 坐标为(,)或(﹣,﹣).第21页(共21页)。
一次函数的综合应用含答案
∙某服装店老板到厂家选购A、B两种型号的服装,它们的进价及获利如表所示.型号 A B进价(元/件) 90 120获利(元/件) 20 22∙(1)根据市场需求,服装店老板决定,购进B型服装的数量要比购进A型服装数量的2倍少3件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于1534元.问有几种进货方案?请求出所有的进货方案.(2)采用哪种方案时,可获得最大利润,最大利润为多少?解:(1)设购进A型服装a件,则购进B型服装(2a-3)件.由题意,得,解之得25≤a≤28.故有4种进货方案:①购进A型服装25件,B型服装47件;②购进A型服装26件,B型服装49件;③购进A型服装27件,B型服装51件;④购进A型服装28件,B型服装53件;(2)设购进A型服装a件时,所获利润为y元,则y=20a+22(2a-3)=64a-66,∵y随a的增大而增大,∴当a=28时,y=64×28-66=1726元.最大故购进A型服装28件,B型服装53件时,可获得最大利润,最大利润为1726元.解析:(1)设购进A型服装a件,则购进B型服装(2a-3)件,根据A型服装最多可购进28件,可以得到不等式a≤28,根据总的获利不少于1534元可以列出不等式20a+22(2a-3)≥1534,联立两个不等式组成不等式组,解不等式组就可以求出进货方案;(2)设购进A型服装a件时,所获利润为y元.先根据利润=出售A型服装的利润+出售B型服装的利润,列出y关于a的函数关系式,再根据函数的性质求解.∙某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C 楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.解:(1)设取奶站建在距A楼x米处,所有取奶的人到奶站的距离总和为y米.①当0≤x≤40时,y=20x+70(40-x)+60(100-x)=-110x+8800∴当x=40时,y的最小值为4400,②当40<x≤100,y=20x+70(x-40)+60(100-x)=30x+3200此时,y的值大于4400因此按方案一建奶站,取奶站应建在B处;(2)设取奶站建在距A楼米处,①0≤x≤40时,20x+60(100-x)=70(40-x)解得x=-<0(舍去)②当40<x≤100时,20x+60(100-x)=70(x-40)解得:x=80因此按方案二建奶站,取奶站建在距A楼80米处.(3)设A楼取奶人数增加a人①当0≤x≤40时,(20+a)x+60(100-x)=70(40-x)解得x=-(舍去).②当40<x≤100时,(20+a)x+60(100-x)=70(x-40),解得x=.∴当a增大时,x增大.∴当A楼取奶的人数增加时,按照方案二建奶站,取奶站建在B、C两楼之间,且随着人数的增加,离B楼越来越远解析:(1)设取奶站建在距A楼x米处,所有取奶的人到奶站的距离总和为y米,求出在各函数在自变量下的最小值,(2)设取奶站建在距A米处,列出等量关系式,解得x.(3)设A楼取奶人数增加a人,在各个自变量下,解得x与a的关系∙一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:手机型号A型B型C型进价(单位:元/部) 900 1200 1100预售价(单位:元/部) 1200 1600 1300∙(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.分析:(1)关键描述语:A型、B型、C型三款手机共60部,由A、B型手机的部数可表示出C型手机的部数.(2)根据购机款列出等式可表示出x、y之间的关系.(3)①由预估利润P=预售总额-购机款-各种费用,列出等式即可.②根据题意列出不等式组,求出购买方案的种数,预估利润最大值即为合理的方案.解答:解:(1)60-x-y;(2)由题意,得900x+1200y+1100(60-x-y)=61000,整理得y=2x-50.(3)①由题意,得P=1200x+1600y+1300(60-x-y)-61000-1500,P=1200x+1600y+78000-1300x-1300y-61000-1500,P=-100x+300y+15500,P=-100x+300(2x-50)+15500,整理得P=500x+500.②购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得,解得29≤x≤34.∴x范围为29≤x≤34,且x为整数.∵P是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部.点评:此题结合图表,以手机销售为载体,考查了根据实际问题列函数解析式的问题.(1)、(2)两题较简单,容易列出表达式和一次函数解析式,主旨是为(3)提供思路;(3)根据前两题的关系式及“每款手机至少要购进8部”的条件,列出不等式组,求出x的取值范围,然后根据一次函数的增减性求出利润最大值.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?分析:(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x≤80时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本-员工工资-其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.解答:解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x≤80时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(-×50+8)(50-40)-15-0.25a,得30-15-0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w=(-x+8)(x-40)-15-20=-(x-60)2+5,1=5万元;则当x=60时,wmax当60<x≤80时,=(-x+5)(x-40)-15-0.25×80w2=-(x-70)2+10,=10万元,∴x=70时,wmax∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.点评:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.∙根据题意设解析式y=kx+b,把(5,12),(8,15.6)代入即可求出k,b 的值,即得到解析式y=1.2x+6,把x=0代入即可求出答案.∙宾馆厨房的桌子上整齐叠放着若干只形状一样的碗,它的主视图如图,请你画出它的俯视图.设叠放这种碗x只叠放高度为y厘米,经实验发现,当叠放这种碗5只时,叠放高度为12厘米;当叠放这种碗8只时,叠放高度为15.6厘米.求y(厘米)与x(只)之间的函数关系,并指出这种碗的深度是多少?∙解答:解:它的俯视图是:设y=kx+b,把(5,12),(8,15.6)代入得:,解得:k=1.2,b=6,∴y=1.2x+6,当x=0时,y=6,所以y与x之间的函数关系是y=1.2x+6,这种碗的深度是6厘米.点评:本题主要考查了一次函数的性质,解此题的关键是把实际问题转化成数学问题.用到的数学思想是转化思想某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x分钟,甲、乙两种的费用分别为y1和y2元.(1)试求一个人要打电话30分钟,他应该选择那种通信业务?(2)根据一个月通话时间,你认为选用哪种通信业务更优惠?解:(1)甲:15+0.3×30=24(元),乙:0.6×30=18(元),∵18<24,∴选择乙种通信业务;(2)y1=15+0.3x,y2=0.6x,当y1>y2即15+0.3x>0.6x时,x<50,当y1=y2即15+0.3x=0.6x时,x=50,当y1<y2即15+0.3x<0.6x时,x>50,所以,当通话时间小于50分钟时,选择乙种通信业务更优惠,当通话时间等于50分钟时,选择两种通信业务一样,当通话时间大于50分钟时,选择甲种通信业务更优惠.∙(2008•陕西)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.品种项目单价(元/棵) 成活率劳务费(元/棵)A 15 95% 3B 20 99% 4∙设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?分析:(1)A种树苗为x棵时,B种树苗为2000-x棵,根据题意容易写出函数关系式;(2)根据题意,成活1960棵,即0.95x+0.99(2000-x)=1960,可计算出此时x的值,再代入(1)中的函数关系式中就可计算出总费用.解答:解:(1)y=(15+3)x+(20+4)(2000-x),=18x+48000-24x,=-6x+48000;(2)由题意,可得0.95x+0.99(2000-x)=1960,∴x=500.当x=500时,y=-6×500+48000=45000,∴造这片林的总费用需45000元.点评:此题不难,关键要仔细审题,懂得把B种树苗用A种树苗为x表示出来,即(2000-x)∙∙(2003•武汉)小强在劳动技术课中要制作一个周长为80cm的等腰三角形,请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量x的取值范围.分析:我们知道等腰三角形的周长=腰长×2+底长.据此可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).解答:解:由题意,函数关系式为:y=80-2x∵x+x=2x>y∴0<y=80-2x<2x,解得20<x<40∴y=80-2x(20<x<40).点评:本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.∙∙(2001•河北)甲乙两辆汽车在一条公路上匀速行驶.为了确定汽车的位置,我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v>0.表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图请解答下列问题:(1)就这两个一次函数图象所反映的两汽车在这条公路上行驶的状况填写如下的表格.行驶方向速度的大小(km/h) 出发前的位置甲车乙车(2)甲乙两车能否相遇如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,)已知甲乙两车的函数解析式,列方程组求出t,s的值即可.解答:解:(1)甲车:x轴的负方向(向左),零千米路标右侧190千米;乙车:x轴的正方向(向右),零千米路标左侧80千米处.行驶方向速度的大小(km/h)出发前的位置甲车向左40 零千米路标右侧190千米乙车向右50 零千米路标左侧80千米处(2)甲乙两车相遇.设甲乙两车经过t小时相遇,则可得所以经过3小时两车相遇,相遇在零千米路标右侧70千米处.点评:本题通过考查一次函数的应用来考查从图象上获取信息的能力.请说理由.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA 表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系,请根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了 h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.解:(1)利用图象可得:线段CD表示轿车在途中停留了:2.5-2=0.5小时;(2)根据D点坐标为:(2.5,80),E点坐标为:(4.5,300),代入y=kx+b,得:80=2.5k+b 300=4.5k+b ,解得:k=110 b=-195 ,故线段DE对应的函数解析式为:y=110x-195;(3)∵A点坐标为:(5,300),代入解析式y=ax得,300=5a,解得:a=60,故y=60x,当60x=110x-195,解得:x=3.9小时,答:轿车从甲地出发后经过3.9小时追上货车.托盘秤是日常生活中一种常见的称重仪器(如图).小华同学发现刻度盘上的顺时针指针偏离0刻度的角度与托盘上物体重量符合一次函数关系,并制作了下表.请你帮助小华同学解决下列问题:(1)在横线上的单元格中填上适当数或代数式:(2)利用上表发现的规律计算:①当托盘上的物体的重量是7.5kg时,指针顺时针偏离0刻度多少度?②当指针从0刻度顺时针旋转306度时,托盘上物体的重量是多少?托盘上物体的重量/kg 0 1 ...5 ...10 (x)刻度盘上指针顺时针偏离0刻度的角度/度0 _____ …90 …180 …_____答案:18 18x解析:(1)根据表格中的数据,利用待定系数法求得一次函数解析式,然后把x=1代入函数解析式,求得相应的y值;(2)①把x=7.5代入(1)中的函数解析式,求得相应的y的值;②把y=306代入(1)中的函数解析式,求得相应的x的值.解:(1)设刻度盘上的顺时针指针偏离0刻度的角度与托盘上物体重量的一次函数关系式为y=kx+b(k≠0),则,解得,则该一次函数解析式为:y=18x.所以当x=1时,y=18.故答案是:18;18x;(2)由(1)知,y=18x.①当x=18时,y═18×7.5=135(度).即当托盘上的物体的重量是7.5 kg时,指针顺时针偏离0刻度的角度是135度;②当y=306时,x═306÷18=17.即当指针从0刻度顺时针旋转306度时,托盘上物体的重量是17kg.某工厂2010年、2011年、2012年的产值连续三年呈直线上升,具体数据如表:年份2010 2011 2012产值则2011年的产值为().答案:解:设这个一次函数解析式为y=kx+a,∵(2,2a)在它上面,∴2k+a=2a,解得k=a,∴y=ax+a,当x=1时,y=a.故答案为a.解析:设一次函数解析式为y=kx+a,然后把(2,2a)代入求得k的值,进而把x=1代入可得2011年的产值某化妆公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.为方案设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案二的函数图象.已知每件商品的销售提成方案二比方案一的函数图象,y2一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售费中提取一定数量的费用):的函数解析式;(1)求y1(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好,至少要销售商品多少件?答案:分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)因为每件商品的销售提成方案二比方案一少7元,所以设y的函数解析式2为y=ax+b(x≥0),则a=24-7=17,又因该图象过点(30,960),把该点的坐标代入,即可求出b的值,从而求出答案.(3)利用(1)、(2)中求出的两函数的解析式,利用不等式求出即可,即可写出选择的最好方案,并利用该方案涉及的函数解析式,利用不等式即可求出至少要销售多少商品.的函数解析式为y=kx(x≥0).(1分)解答:解:(1)设y1∵y经过点(30,720),1∴30k=720.∴k=24.(2分)的函数解析式为y=24x(x≥0).(3分)∴y1(2)设y的函数解析式为y=ax+b(x≥0),它经过点(30,960),2∴960=30a+b.(4分)∵每件商品的销售提成方案二比方案一少7元,∴a=24-7=17.(5分)∴960=30×17+b.∴b=450,即方案二中每月付给销售人员的底薪为450元.(6分)(3)由(2),得y的函数解析式为y=17x+450(x≥0).2当17x+450>1000,∴x>,=24x,由y1当24x>1000,得x>41,当17x+450>24x,解得:x<64,则当33<x<65时,小丽选择方案二较好,小丽至少要销售商品33件;当销量超过65件时,小丽选择方案一比较好,小丽至少销售商品65件.点评:本题考查了待定系数法求一次函数解析式以及一次函数与一元一次不等式关系的知识,充分利用图象中数据信息,正确应用待定系数法求解析式以及构造不等式是解题关键甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的距离为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1)甲走完全程所用的时间为______小时;(2)乙行走的速度为______;(3)当乙行走了多少时间,他们两人在途中相遇?答案:4;20km/h.解析:分析:(1)由于A、B两地间的距离为20km,由图象可知,当s=20时,甲中对应的t值为4,即甲走完全程需要用4小时;(2)由图象可知,乙1小时走了20千米,从而求出乙行走的速度;(3)分别写出甲乙所走路线的函数关系式,求出交点的横坐标即为答案.解答:解:(1)由图象可知,甲走完全程所用的时间为4小时;(2)由图象可知,乙行走的速度为:=20(km/h);=kx,由图知:4k=20,k=5,(3)设y甲=5x;∴y甲=mx+n,由图知:设y乙,解得=20x-20.∴y乙两人在途中相遇,则5x=20x-20,解得x=.-1=h.答:当乙行走了h,他们两人在途中相遇.某市是重要石油生产基地,该市甲公司只负责向乙市管道输送石油,且乙市全部石油只由甲公司提供.2010年甲公司的石油日生产量保持不变,乙市的石油日消耗量也保持不变,如图是2010年10月初甲公司又一次启动向乙市输送石油开始统计,得到的甲公司与乙市各自的石油储备总量y(吨)与时间x(天)之间的函数关系图象.通过分析图象回答下列问题:(1)甲公司的石油日生产量为多少吨?(2)乙市的石油日消耗量为多少吨?甲公司向乙市的石油日输出量为多少吨?(3)请直接写出射线AB的函数解析式(不要求写出自变量的取值范围).答案:分析:(1)利用第15天甲公司石油储备总量为:8200吨,第5天时,甲公司石油储备总量为:5000吨,得出甲公司的石油日生产量即可;(2)利用第10天乙公司石油储备总量为:3000吨,开始时,乙公司石油储备总量为:6000吨,得出乙公司的石油日消耗量,进而得出甲公司向乙市的石油日输出量;(3)利用D点坐标为:(0,6000),C点坐标为:(10,3000)得出直线CD 的解析式,进而得出A点坐标为,求出射线AB的解析式即可.解答:解:(1)根据图象可以得出:第15天甲公司石油储备总量为:8200吨,第5天时,甲公司石油储备总量为:5000吨,得出甲公司的石油日生产量为(8200-5000)÷10=320吨;(2)根据图象可以得出:第10天乙公司石油储备总量为:3000吨,开始时,乙公司石油储备总量为:6000吨,得出乙公司的石油日消耗量为:(6000-3000)÷10=300吨;根据前5天甲公司输出石油:20000-5000+320×5=16600(吨),则甲公司向乙市的石油日输出量为16600÷5=3320吨;(3)根据已知得出15天后,直线AB与直线CD平行,∵D点坐标为:(0,6000),C点坐标为:(10,3000),设解析式为:y=kx+b,得:,解得:,故CD直线解析式为:y=-300x+6000,则射线AB解析式为:y=-300x+h,∵C点坐标为(10,3000),A点纵坐标为:16600+3000-5×300=18100,∴A点坐标为:(15,18100),代入y=-300x+h,得:18100=-300×15+b,解得:b=22600,故射线AB的函数解析式为:y=-300x+22600.点评:此题主要考查了一次函数的应用中函数图象与实际结合的问题,根据已知利用图象得出甲公司日生产量与乙市日消耗量是解题关键.。
一次函数综合题(解析版)--2024年中考数学压轴题专项训练
一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.【分析】(1)由OP =OA ⋅sin60°,即可求解;(2)由图中阴影部分的面积=S 扇形COP -S ΔPOC ,即可求解.【解答】解:(1)对于直线y =-3x +6,令y =-3x +6=0,则x =23,即OA =23,由一次函数的表达式知,OB =6,则tan ∠BAC =OB AO =623=3,则∠BAC =60°连接OP ,则OP ⊥AB ,则OP =OA ⋅sin60°=23×32=3;(2)过点P 作PH ⊥AC 于点H ,∵∠POH =30°,则∠POC =150°,PH =12OP =32,则图中阴影部分的面积=S 扇形COP -S ΔPOC =150°360°×π×32-12×3×32=15π-94.【点评】本题考查了一次函数和圆的综合运用,涉及到圆切线的和一次函数的性质,解直角三角形,面积的计算等,综合性强,难度适中.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.【分析】(1)解法一:先根据t =2可得点A (-2,2),因为B 在直线l 1上,所以设B (x ,x +1),利用y =0代入y =x +1可得G 点的坐标,在Rt ΔABG 中,利用勾股定理列方程可得点B 的坐标;解法二:根据可以使用y =x +1与x 轴正半轴夹角为45度来解答;(2)先把(7,4)代入s =14t 2+bt -54中计算得b 的值,计算在-1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标2,94,代入s =a (t +1)(t -5)中可得a 的值;(3)存在,设B (x ,x +1),如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解答】解:(1)解法一:如图1,连接AG ,当t =2时,A (-2,2),设B (x ,x +1),在y =x +1中,当x =0时,y =1,∴G (0,1),∵AB ⊥l 1,∴∠ABG =90°,∴AB 2+BG 2=AG 2,即(x +2)2+(x +1-2)2+x 2+(x +1-1)2=(-2)2+(2-1)2,解得:x 1=0(舍),x 2=-12,∴B -12,12;解法二:如图1-1,过点B 作BE ⊥x 轴于E ,过点A 作AH ⊥BE 于H ,当x =0时,y =1,当y =0时,x +1=0,则x =-1,∴OF =OG =1,∵∠GOF =90°,∴∠OGF =∠OFG =45°,∴BE =EF ,∵∠ABD =90°,∴∠ABH =∠BAH =45°,∴ΔABH 是等腰直角三角形,∴AH =BH ,当t =2时,A (-2,2),设B (x ,x +1),∴x +2=2-(x +1),∴x =-12,∴B -12,12 ;(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt -54中得:494+7b -54=4,解得:b =-1,如图3,过B 作BH ⎳y 轴,交AC 于H ,由(1)知:当t =2时,A (-2,2),B -12,12 ,∵C (0,3),设AC 的解析式为:y =kx +n ,则-2k +n =2n =3 ,解得k =12n =3 ,∴AC 的解析式为:y =12x +3,∴H -12,114,∴BH =114-12=94,∴s=12BH⋅|x C-x A|=12×94×2=94,把2,9 4代入s=a(t+1)(t-5)得:a(2+1)(2-5)=94,解得:a=-1 4;(3)存在,设B(x,x+1),当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴ΔABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,RtΔACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3代入得:x2-3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(-2,9);当x=0时,如图6,此时,A(-2,3),综上,点A的坐标为:(-2,9)或(-2,3).【点评】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.【分析】(1)通过Q 点在OC 上,可以通过∠BOC 的三角函数和∠OAP 的三角函数来导出对应的边的关系,求得结果;(2)通过直角ΔAQC 中,得到QC 的长度,然后通过OP =PQ =x ,可以在Rt ΔBCP 中,得到对应的x 值然后求出结果;(3)通过QA =OA =4,可得出Q 点的运动轨迹,是以A 点为圆心,4为半径长度的圆弧,从而可知,MA 的连线上的Q 点为最短的MQ 长度,通过分类讨论,PM =PQ ,PM =QM ,PQ =QM 来求得对应的P 的坐标.【解答】解:(1)如图1,∵∠OAP +∠AOE =90°,∠BOC +∠AOE =90°,∴∠OAP =∠BOC ,又∵∠AOP =∠OBC =90°,∴ΔOAP ∽ΔBOC ,∴OP BC =OA OB ,即OP 4=45,∴OP =165,故答案为:165;(2)如图,∵AQ ⊥PQ ,∴∠AQC =90°,∴QC =AC 2-AQ 2=52-42=3,∵AQ =AO =4,设OP =PQ =x ,则CP =3+x ,PB =5-x ,∴CP 2=BP 2+BC 2,(3+x )2=(5-x )2+42,x =2,∴P 点的坐标为(2,0),将P (2,0)和C (5,4)代入y =kx +b 中,0=2k +b 4=5k +b ,解得:k =43b =-83,∴PQ 所在直线的表达式为:y =43x -83;(3)如图,①∵AQ =AO =4,∴Q 点的运动轨迹,是以A 为圆心,4为半径的圆弧,∴MQ 的最小值在AM 的连线上,如图,MQ ′即为所求,∵M 是BC 中点,CM =12BC =2,∴AM =52+22=29,MQ ′=MA -AQ ′=29-4,故答案为:29-4;②如图,设OP =PQ =x ,BP =5-x ,∴PM 2=(5-x )2+22=x 2-10x +29,当PM =PQ 时,PM 2=PQ 2,∴x 2-10x +29=x 2,x =2910,∴P 2910,0,当MP =MQ 时,如图,若点Q 在AC 上,则AQ =OA =4,∵MP =MQ ,MB =MC ,∠PBM =∠QCM ,∴ΔPMB ≅ΔQMC (HL ),∴PB =QC ,QC =AC -AQ =5-4=1,∴PB =1,∴OP =BO -PB =5-1=4,∴P (4,0);若点Q 在AC 上方时,由对称性可知OM =MQ ,∵MQ =MQ ,∴MO =MP ,∴P (10,0);当MQ =PQ 时,不符合题意,不成立,故P 点坐标为P 2910,0或P (4,0)或(10,0).【点评】本题考查一次函数的图象及应用,通过一次函数坐标图象的性质,三角函数的性质,全等三角形的性质和勾股定理,来求得对应的解.4(2022•启东市模拟)我们知道一次函数y =mx +n 与y =-mx +n (m ≠0)的图象关于y 轴对称,所以我们定义:函数y =mx +n 与y =-mx +n (m ≠0)互为“M ”函数.(1)请直接写出函数y =2x +5的“M ”函数;(2)如果一对“M ”函数y =mx +n 与y =-mx +n (m ≠0)的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若∠BAC =90°,且ΔABC 的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ΔABD 为等腰三角形时,请求出点D 的坐标.【分析】(1)根据互为“M ”函数的定义,直接写出函数y =2x +5的“M ”函数;(2)现根据已知条件判断ΔABC 为等腰直角三角形,再根据互为“M ”函数的图象关于y 轴对称,得出OA =OB =OC ,再根据函数解析式求出点A 、B 、C 的坐标,再根据ΔABC 的面积是8求出m 、n 的值,从而求出函数解析式;(3)ΔABD 为等腰三角形,分以A 为顶点,以B 为顶点,以D 为顶点三种情况讨论即可.【解答】(1)解:根据互为“M ”函数的定义,∴函数y =2x +5的“M ”函数为y =-2x +5;(2)解:根据题意,y =mx +n 和y =-mx +n 为一对“M 函数”.∴AB =AC ,又∵∠BAC =90°,∴ΔABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∵OB =OC ,∴∠BAO =∠CAO =45°,∴OA =OB =OC ,又∵S ΔABC =12×BC ×AO =8且BC =2AO ,∴AO =22,∵A 、B 、C 是一次函数y =mx +n 与y =-mx +n (m ≠0)的图象于坐标轴的交点,∴A (0,n ),B -n m ,0 ,C n m ,0,∵OA =OB =n ,∴n m=22,∴m =1,∴y =x +22和y =-x +22;(3)解:根据等腰三角形的性质,分情况,∵AO =BO =22,∴AB =4,由(2)知,A (0,22),B (-22,0),C (22,0),∴①以A 为顶点,则AB =AD ,当点D 在点A 上方时,AD =22+4,当点D 在点A 下方时,AD =22-4,∴D 1(0,22+4),D 2(0,22-4),②以B 为顶点,则BA =BD ,此时点D 在y 轴负半轴,∴D 3(0,-22),③以D 为顶点,则DA =DB ,此时D 为坐标原点,∴D 4(0,0).∴D 点坐标为D 1(0,22+4),D 2(0,22-4),D 3(0,-22),∴D 4(0,0).【点评】本题考查一次函数的综合应用,以及新定义、等腰三角形的性质等知识,关键是理解新定义,用新定义解题.5(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;AB AD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 4,P 的速度v 1=AB 4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =15,AB =CD =53AD =10,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②设FG 所在的曲线的数解析式为S =a (t -6)2+k (a ≠0),把F 5,154,G (8,0)代入解析式求得a ,k 值即可求解答;③利用待定系数法求出直线MN 的函数解析式,当S =154时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =4,NH =1,G (8,0),∴N (4,0),H (5,0),由图象可知:t =4时,Q 与E 重合,t =5时,P 与B 重合,t =8时,P 与C 重合,∴Q 的速度v 2=DE 4,P 的速度v 1=AB 5,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB5DE 4=AB 5⋅4DE =85,∵P 从A 到B 用了5秒,从B 到C 用了3秒,∴AB =5v 1,BC =3v 1,∴AB =53BC ,∴AB :AD 的值为53,故答案为:85,53;(2)①∵OM =15,∴M (0,15),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =15,∵AB :AD =53,DE =12AB ,∴DE =56AD ,∴12AD ⋅56AD =15,∴AD =BC =6(舍去负值),∴AB =CD =53AD =10,∴v 2=DE 4=54,当t =5时,DQ =v 2t =54×5=254,∴QE =DQ -DE =254-5=54,此时P 与B重合,∴S ΔEPQ =12EQ ⋅BC =12×54×6=154,∴F 5,154 ,设直线NF 的解析式为S =kt +b (k ≠0),将N (4,0)与F 5,154 代入得:4k +b =05k +b =154,∴k =154b =-15 ,∴线段NF 所在直线的函数表达式为S =154t -15(4<t ≤5);②设FG所在的曲线的数解析式为S=1254t-5(16-2t)=-54t2+15t-40,∴FG所在的曲线的函数解析式为S=-54t2+15t-40(5≤t≤8);③存在,分情况讨论如下:当Q在DE上,P在AB上时,∵直线MN经过点M(0,15),N(4,0),可求得直线MN的解析式为S=-54t+15(0≤t≤4),当s=154时,-154t+15=154,∴x=3,∵s随x的增大而减小,∴当0≤x≤3时,S≥154,当Q在CE上,P在BC上时,直线NF的解析式为S=154t-15(4<t≤5);由F5,15 4知:当t=5时,S=154,当S=154时,-54t2+15t-40=154,∴t=7或5,由图象知:当5≤x≤7,x的取值范围为0≤t≤3或5≤t≤7.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.【分析】(1)在y =-ax 2+3ax +4a 中,令y =0得A (-1,0),B (4,0),根据ΔABC 的面积为10,即得OC =4,C (0,4),用待定系数法即得二次函数的表达式为y =-x 2+3x +4;(2)设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),由GF =5OF ,可得-m 2+52m +4=5×52m ,即可解得G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,设Q (r ,s ),可得K n +r 2,s 2 ,即得s 2=12×n +r 2,n +r =2s ①,又r 2+s 2=n 2,(n +r )(n -r )=s 2②,可解得r =35n ,s =45n ,故Q 35n ,45n ,代入y =-x 2+3x +4得45n =-35n 2+3×35n +4,解得n =5或n =-209.【解答】解:(1)如图:在y =-ax 2+3ax +4a 中,令y =0得-ax 2+3ax +4a =0,解得x =4或x =-1,∴A (-1,0),B (4,0),∴AB =5,∵ΔABC 的面积为10,∴12AB ⋅OC =10,即12×5⋅OC =10,∴OC =4,∴C (0,4),把C (0,4)代入y =-ax 2+3ax +4a 得:4a =4,∴a =1,∴二次函数的表达式为y =-x 2+3x +4;(2)如图:设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),∴OF =m 2+12m 2=52m ,GF =-m 2+3m +4-12m =-m 2+52m +4,∵GF =5OF ,∴-m 2+52m +4=5×52m ,解得m =2或m =-2(舍去),∴G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,如图:∵P (n ,0)关于直线对称点为Q ,∴OQ =OP =|n |,K 是PQ 中点,设Q (r ,s ),∴K n +r 2,s 2,∵K 在直线y =12x 上,∴s 2=12×n +r 2,整理得:n +r =2s ①,∵OT 2+QT 2=OQ 2,∴r 2+s 2=n 2,变形得:(n +r )(n -r )=s 2②,把①代入②得:2s (n -r )=s 2,∵s ≠0,∴n -r =s2③,由①③可得r =35n ,s =45n ,∴Q 35n ,45n ,∵Q 在抛物线y =-x 2+3x +4上,∴45n =-35n 2+3×35n +4,解得n =5或n =-209,答:n 的值为5或-209.【点评】本题考查一次函数、二次函数综合应用,涉及待定系数法,三角形面积,对称变换等知识,解题的关键是用含n 的代数式表示Q 的坐标.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P 从E 出发,以每秒2个单位的速度沿着折线ED -DF 运动(如图2所示),当P 点到F 点停止,ΔDEF 也随之停止.①t =3或6(s )时,直线l 恰好经过等边ΔEDF 其中一条边的中点;②当点P 在线段DE 上运动,若DM =2PM ,求t 的值;③当点P 在线段DF 上运动时,若ΔPMN 的面积为3,求出t 的值.【分析】(1)把x =0,y =0分别代入y =-33x +43,即可求出点A 、B 的坐标,求出∠BAO =30°,根据直角三角形的性质,即可得出OD =12OA =6;(2)①当直线l 分别过DE 、DF 、EF 的中点,分三种情况进行讨论,得出t 的值,并注意点P 运动的最长时间;②分点P 在直线l 的下方和直线l 上方两种情况进行讨论,求出t 的值即可;③分点P 在DN 之间和点P 在NF 之间两种情况进行讨论,求出t 的值即可.【解答】解:(1)令x =0,则y =43,∴点B 的坐标为(0,43),令y =0,则-33x +43=0,解得x =12,∴点A 的坐标为(12,0),∵tan ∠BAO =OB OA=4312=33,∴∠BAO =30°,∵OD ⊥AB ,∴∠ODA =90°,∴ΔODA 为直角三角形,∴OD =12OA =6;(2)①当直线l 过DF 的中点G 时,∵ΔDEF 为等边三角形,∴∠DFE =60°,∵∠BAO =30°,∴∠FGA =60°-30°=30°,∴∠FGA =∠BAO ,∴FA =FG =12DF =3,∴OF =OA -FA =9,∴OE =OF -EF =9-6=3,∴t =3;当l 过DE 的中点时,∵DE ⊥l ,DG =EG ,∴直线l 为DE 的垂直平分线,∵ΔDEF 为等边三角形,∴此时点F 与点A 重合,∴t =12-61=6;当直线l 过EF 的中点时,运动时间为t =12-31=9;∵点P 从运动到停止用的时间为:6+62=6,∴此时不符合题意;综上所述,当t =3s 或6s 时,直线l 恰好经过等边ΔEDF 其中一条边的中点,故答案为:3或6;②∵OE =t ,AE =12-t ,∠BAO =30°,∴ME =6-t2,∴DM =DE -EM =t2,∵EP =2t ,∴PD =6-2t ,当P 在直线l 的下方时,∵DM =23DP ,∴t 2=23(6-2t ),解得:t =2411;当P 在直线l 的上方时,∵DM =2DP ,∴t2=2(6-2t ),解得t =83;综上所述:t 的值为2411或83;③当3<t ≤6时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DN -DP =t -(2t -6)=6-t ,∵∠DNM =30°,∴边MN 的高h =12PN =3-12t ,∵ΔPMN 的面积为3,∴12×32t 3-12t =3,整理得:t 2-6t +8=0,解得t =2(舍)或t =4当点P 在NF 之间时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DP -DN =2t -6-t =t -6,∵∠DNM =30°,∴∠FNA =∠DNM =30°,∴边MN 的高h =12PN =12t -3,∵ΔPMN 的面积为3,∴12×32t 12t -3 =3,解得t =3+17(舍)或t =3-17(舍),综上所述,t 的值为4s .【点评】本题主要考查了一次函数的性质、等边三角形的性质、直角三角形的性质、利用三角函数解直角三角形,熟练掌握含30°的直角三角形的性质并注意进行分类讨论是解题的关键.8(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 交点).(1)已知点A -12,0,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0-y |=2,据此可以求得y 的值;②设点B 的坐标为(0,y ).因为-12-0 ≥|0-y |,所以点A 与点B 的“非常距离”最小值为-12-0 =12;(2)①设点C 的坐标为x 0,34x 0+3 .根据材料“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”知,C 、D 两点的“非常距离”的最小值为-x 0=34x 0+2,据此可以求得点C 的坐标;②根据“非常距离”的定义,点E 在过原点且与直线y =34x +3垂直的直线上,且C 与E 的横纵坐标差相等时,点C 与点E 的“非常距离”取最小值,据此求出C 与E 的坐标及“非常距离”的最小值.【解答】解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵-12-0 =12≠2,∴|0-y |=2,解得,y =2或y =-2;∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12.(2)①如图2,当点C 与点D 的“非常距离”取最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|.即AC =AD ,∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为x 0,34x 0+3 ,∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为:|x 0|=87,此时C -87,157;②如图3,当点E 在过原点且与直线y =34x +3垂直的直线上,且CF =EF 时,点C 与点E 的“非常距离”最小,设E (x ,y )(点E 位于第二象限).则y x=-43x 2+y 2=1 ,解得x =-35y =45,故E -35,45.设点C 的坐标为x 0,34x 0+3 ,-35-x 0=34x 0+3-45,解得x0=-8 5,则点C的坐标为-8 5,95,点C与点E的“非常距离”的最小值为1.【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.【分析】(1)画出图形,根据点P到图形W的“差距离”的定义即可解决问题.(2)如图2中,设C(m,-1).由此构建方程即可解决问题.(3)如图3中,取特殊位置当b=6时,当b=-4时,分别求解即可解决问题.【解答】解:(1)如图1中,∵A(2,1),B(-2,1),∴AB⎳x轴,∴点O到线段AB的最小距离为1,最大距离为5,∴d(O,AB)=5-1.(2)如图2中,设C(m,-1).当点C在y轴的左侧时,由题意AC-2=1,∴AC=3,∴(2-m)2+22=9,∴m=2-5或2+5(舍弃),∴C(2-5,-1),当点C在y轴的右侧时,同法可得C(5-2,-1),综上所述,满足条件的点C的坐标为(2-5,-1)或(5-2,-1).故答案为:(2-5,-1)或(5-2,-1).(3)如图3中,当b=6时,线段EF:y=x+6(-2≤x≤2)上任意一点D,满足d(D,AB)≤2,当b=-4时,线段E′F′:y=x-4(-2≤x≤2)上任意一点D′,满足d(D′,AB)≤2,观察图象可知:当b≥6或b≤-4时,函数y=x+b(-2≤x≤2)图象上的任意一点,满足d(D,AB)≤2.【点评】本题属于一次函数综合题,考查了一次函数的性质,点P到图形W的“差距离”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,学会寻找特殊位置解决问题,属于中考创新题型.10(2022•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,5,点P的坐标为(-1,7)或(4,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【解答】解:(1)①如图,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=2,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图,①由图象可得,点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+5,可得x分别为1,2;结合图象可知:1≤m≤2;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,4;∴点P的坐标为(-1,7)或(4,-3);(3)设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴a -b +c =1a +b +c =19a +3b +c =3,a =14b =0c =34,∴y =14x 2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y =-14x 2+134,∴抛物线的解析式y =14x 2+34或y =-14x 2+134.【点评】本题主要考查了一次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 3,P 的速度v 1=AB4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =2,AB =CD =2AD =4,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②利用待定系数法求出直线MN 的函数解析式,当S =23时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =3,NH =1,G (6,0),∴N (3,0),H (4,0),由图象可知:t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,∴Q 的速度v 2=DE 3,P 的速度v 1=AB4,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB4DE 3=AB 4⋅3DE =AB 4⋅312AB =32,∵P 从A 到B 用了4秒,从B 到C 用了2秒,∴AB =4v 1,BC =2v 1,∴AB =2BC ,∴AB :AD 的值为2,故答案为:32,2;(2)①∵OM =2,∴M (0,2),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =2,∵AB :AD =2,∴AD =DE =12AB ,∴12AD 2=2,∴AD =BC =DE =2,AB =CD =2AD =4,∴v 2=DE 3=23,当t =4时,DQ =v 2t =23×4=83,∴QE =DQ -DE =83-2=23,此时P 与B 重合,∴S ΔEPQ =12EQ ⋅BC =12×23×2=33,∴F 4,23,设直线NF 的解析式为S =kx +b (k ≠0),将N (3,0)与F 4,23 代入得:3k +b =04k +b =23 ,∴k =23b =-2,∴线段NF 所在直线的函数表达式为S =23x -2(3<x ≤4);②存在,分情况讨论如下:当Q 在DE 上,P 在AB 上时,∵直线MN 经过点M (0,2),N (3,0),同理求得直线MN 的解析式为S =-23x +2(0≤x ≤3),当s =23时,-23x +2=2,∴x =2,∵s随x的增大而减小,∴当0≤x≤2时,S≥23,当Q在CE上,P在AB上时,直线NF的解析式为S=23x-2(3<x≤4),由F4,2 3知:当x=4时,S=23,当Q在CE上,P在BC上时,SΔEPQ=12EQ⋅CP,∵DQ=v2t=23t,∴EQ=DQ-DE=23t-2,∵v1=AB4=44=1,∴AB+BP=v1t=t,∵AB+BC=4+2=6,∴CP=6-t,∴S=1223t-2(6-t)=-13t2+3t-6(4<x≤6),当S=23时,-13t2+3t-6=23,∴t=4或5,由图象知:当4<x≤5时,S≥2 3,综上,S≥23时,x的取值范围为0≤x≤2或4≤x≤5.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.12(2022•邗江区校级一模)在平面直角坐标系xOy中,对于点P和线段ST,我们定义点P关于线段ST的线段比k=PSST(PS<PT)PTST(PS≥PT) .(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k= 22 ;②点C(0,c)关于线段AB的线段比k=2,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤14,直接写出m的取值范围.【分析】(1)①求出QA、QB、AB,根据线段比定义即可得到答案;②方法同①,分c>0和c≤0讨论;(2)分两种情况,画出图象,根据线段比定义,分别在M(N)为“临界点”时列出不等式,即可得到答案.【解答】解:(1)①∵A(0,1),B(1,0),Q(2,0),∴AB=2,QA=5,QB=1,根据线段比定义点Q(2,0)关于线段AB的线段比k=QBAB=22;故答案为:22;②∵A (0,1),B (1,0),C (0,c ),∴AB =2,AC =|1-c |,BC =1+c 2,AC 2=1+c 2-2c ,BC 2=1+c 2,当c >0时,AC 2<BC 2,即AC <BC ,由C (0,c )关于线段AB 的线段比k =2可得:|1-c |2=2,解得c =3或c =-1(舍去),∴c =3,当c ≤0时,AC 2≥BC 2,即AC ≥BC ,由C (0,c )关于线段AB 的线段比k =2可得:1+c 22=2,解得c =3(舍去)或c =-3,∴c =-3,综上所述,点C (0,c )关于线段AB 的线段比k =2,c =3或c =-3;(2)∵直线y =x +2与坐标轴分别交于E ,F 两点,∴E (-2,0),F (0,2),∵点M (m ,0),点N (m +2,0),∴MN =2,N 在M 右边2个单位,当线段EF 上的点到N 距离较小时,分两种情况:①当M 、N 在点E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴NE MN≤14,即-2-(m +2)2≤14,解得:m ≥-92,②当N 在E 右侧,M 在E 左侧时,过M 作MG ⊥EF 于G ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴GM MN ≤14,即GM 2≤14,∴GM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴GM =22EM ,∴22EM ≤12,即22[(m +2)-(-2)]≤12,解得m ≤-4+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到N 距离较小时,-92≤m ≤-4+22,当线段EF 上的点到M 距离较小时,也分两种情况:①当N 在E 右侧,M 在E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴ME MN≤14,即-2-m 2≤14,解得m ≥-52,②当M 、N 在点E 右侧时,过M 作MH ⊥EF 于H ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴HM MN ≤14,即HM 2≤14,∴HM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴HM =22EM ,∴22EM ≤12,即22[m -(-2)]≤12,解得:m ≤-2+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到M 距离较小时,-52≤m ≤-2+22,综上所述,线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,则-92≤m ≤-4+22或-52≤m ≤-2+22.【点评】本题考查一次函数应用,解题的关键是读懂线段比的定义,找出“临界点”列不等式.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.【分析】(1)由y =5x +2=3(x +1)+(2x -1),可知函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得P (2p +1,p -1),当x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p-1)(m +n ),根据点P 在函数y 1、y 2的“组合函数”图象的上方,有p -1>(p -1)(m +n ),而m +n >1,可得p <1;②由函数y 1、y 2的“组合函数” y =m (x -p -2)+n (-x +3p )图象经过点P ,知p -1=m (2p +1-p -2)+n (-2p -1+3p ),即(p -1)(1-m -n )=0,而p ≠1,即得n =1-m ,可得y =(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,即(3-4m )p +(2m -1)x -2m =0,即可得m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【解答】解:(1)函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”,理由如下:∵3(x +1)+(2x -1)=3x +3+2x -1=5x +2,∴y =5x +2=3(x +1)+(2x -1),∴函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得x =2p +1y =p -1 ,∴P (2p +1,p -1),∵y 1、y 2的“组合函数”为y =m (x -p -2)+n (-x +3p ),∴x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p -1)(m +n ),∵点P 在函数y 1、y 2的“组合函数”图象的上方,∴p -1>(p -1)(m +n ),∴(p -1)(1-m -n )>0,∵m +n >1,∴1-m -n <0,∴p -1<0,∴p <1;②存在m =34时,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0),理由如下:由①知,P (2p +1,p -1),∵函数y 1、y 2的“组合函数”y =m (x -p -2)+n (-x +3p )图象经过点P ,∴p -1=m (2p +1-p -2)+n (-2p -1+3p ),∴(p -1)(1-m -n )=0,∵p ≠1,∴1-m -n =0,有n =1-m ,∴y =m (x -p -2)+n (-x +3p )=m (x -p -2)+(1-m )(-x +3p )=(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,变形整理得:(3-4m )p +(2m -1)x -2m =0,∴当3-4m =0,即m =34时,12x -32=0,∴x =3,∴m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是③;AB,点E、F分别在AC、BC边(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=13上,满足ΔBDF和ΔEDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到ΔADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成ΔPCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当ΔBDF≅ΔEFD,且是共边全等时,∠BFD=∠EDF,∴DE⎳BC,∵ΔABC是等边三角形,∴ΔADE是等边三角形,AB=2,∵AD=13∴DE=AE=BF=2,∴CF=BC-BF=4,②如图2,当ΔBDF≅ΔEDF,且是共边全等时,BD=DE=6-AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,。
一次函数综合题专项练习(含答案)
1、如图,一次函数y x b =+与反比例函数k y x=在第一象限的图象交于点B ,且点B 的横坐标为1,过点B 作y 轴的垂线,C 为垂足,若32BCO S ∆=,求一次函数和反比例函数的解析式.解:∵一次函数y x b =+过点B ,且点B 的横坐标为1, ∴1y b =+,即11B b +(,) BC y ⊥轴,且32BCO S ∆=, 1131(1)222OC BC b ∴⨯⨯=⨯⨯+=, 解得2b =, ∴()13B ,∴一次函数的解析式为2y x =+. 又∵k y x=过点B , 3 3.1k k ∴==,∴反比例函数的解析式为3.y x=2、如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA=.(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式; (3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的x 的取值范围.解:(1)在2y kx =+中,令0x =得2y = ∴点D 的坐标为(0,2) (2)∵ AP ∥OD ∴Rt △PAC ∽ Rt △DOC ∵ 12OC OA= ∴13OD OC APAC==∴AP =6又∵BD =624-= ∴由S △PBD =4可得BP =2 ∴P (2,6)把P (2,6)分别代入2y kx =+与my x=可得 一次函数解析式为:y =2x +2 反比例函数解析式为:12y x=3、已知正比例函数2y x =的图象与反比例函数k y x=的图象有一个交y xPBD AO C点的纵坐标是2.(1)求反比例函数的解析式;(2)当31x --≤≤时,求反比例函数y 的取值范围. 解:(1)由题意,得22x =, 1.x ∴=将12x y ==,,代入k y x=中,得122k =⨯=.∴所求反比例函数的解析式为2y x=.(2)当3x =-时,23y =-;当1x =-时, 2.y =-20>∴,反比例函数在每个象限内y 随x 的增大而减小.∴当31x --≤≤时,反比例函数y 的取值范围为223y -≤≤.4、已知:12y y y =+,1y 与2x 成正比例,2y 与x 成反比例,且1x =时,3y =;1x =-时,1y =.求12x =-时,y 的值.解:1y 与2x 成正比例,2y 与x 成反比例设211y k x =,22k y x=,221k y k x x =+把1x =,3y =,1x =-,1y =分别代入上式得121231k k k k =+⎧⎨=-⎩∴1221k k =⎧⎨=⎩, 212y x x =+当12x =-,211132212222y ⎛⎫=⨯-+=-=- ⎪⎝⎭-5、如图,1P 是反比例函数(0)ky k x=>在第一象限图像上的一点,点1A 的坐标为(2,0).(1)当点1P 的横坐标逐渐增大时,11POA △的面积将如何变化? (2)若11POA △与212P A A △均为等边三角形,求此反比例函数的解析式及2A 点的坐标.解:(1)11POA △的面积将逐渐减小.(2)作11PC OA ⊥,垂足为C ,因为11POA △为等边三角形, 所以113OC PC ==,,所以1(13)P ,. 代入ky x=,得3k =,所以反比例函数的解析式为3y x=.作212P D A A ⊥,垂足为D ,设1A D a =,则223OD a P D a =+=,, 所以2(23)P a a +,.代入3y x=,得(2)a +·33a =,化简得2210a a +-= 解得:12a =-± ∵0a > ∴12a =-+所以点2A 的坐标为(220),6、天水市某果蔬公司组织20辆汽车装运甲、乙、丙三种水果共120吨去外地销售.按计划20辆都要装运,每辆汽车只能装运同一种水果,且必须装满,根据下表提供的信息,解答以下问题:yxOP 1P 2A 2A 1(1)设装运甲种苹果的车辆数为x ,装乙种苹果的车辆数为y ,求y 与x 之间的函数关系.(2)如果装运每种苹果的车辆数都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获得最大利润,应采用哪种安排方案,并求出此次销售的最大利润.解:(1)由题意可知865(20)120x y x y ++--= ∴203y x =-.∴y 与x 之间函数关系式为203y x =-. (2)(4分)∵3x ≥,2033y x =-≥,203x y --≥∴3203323x x x ⎧⎪-⎨⎪⎩≥≥≥ ∴2353x ≤≤ ∵x 是正整数,∴345x =,,. 故方案有三种.(3)设此次销售获利为w 百元8126(203)165[20(203)]10w x x x x =+-+---即921920w x =-+ ∵w 随x 的增大而减小,∴当3x =时,1644w =最大百元16.44=万元答:使此次销售获利最大,应采用方案一,即甲种3辆,乙种11辆,丙种6辆,获得最大利润为16.44万元.7、为了抓住世博会商机,某商店决定购进A B 、两种世博会纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元. (1)求购进A B 、两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需要,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?解:(1)设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,则105100053550a b a b +=⎧⎨+=⎩解方程组得50100a b =⎧⎨=⎩∴购进一件A 种纪念品需50元,购进一件B 种纪念品需100元. (2)设该商店应购进A 种纪念品x 个,购进B 种纪念品y 个.501001000068x y y x y+=⎧⎨⎩≤≤ 解得2025y ≤≤∵y 为正整数,∴共有6种进货方案.(3)设总利润为W 元203020(2002)30W x y y y =+=-+104000(2025)y y =-+≤≤∵100-<, ∴W 随y 的增大而减小 ∴当20y =时,W 有最大值102040003800W =-⨯+=最大(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元.8、A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.解(1)①当0≤x ≤6时,x/小时y /千米 600146 OFEC Dx y 100=;②当6<x ≤14时, 设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k ∴105075+-=x y . ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y(2)当7=x 时,5251050775=+⨯-=y ,757525==乙v (千米/小时). 9、在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km ,=a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.解:(1)120,2a =O y/km9030 aP甲 乙x/h(2)由点(3,90)求得,230y x =.当x >0.5时,由点(0.5,0),(2,90)求得,16030y x =-. 当12y y =时,603030x x -=,解得,1x =. 此时1230y y ==.所以点P 的坐标为(1,30)该点坐标的意义为:两船出发1 h 后,甲船追上乙船,此时两船离B 港的距离为30 km .求点P 的坐标的另一种方法: 由图可得,甲的速度为30600.5=(km/h ),乙的速度为90303=(km/h ). 则甲追上乙所用的时间为3016030=-(h ).此时乙船行驶的路程为30130⨯=(km ). 所以点P 的坐标为(1,30).(3)①当x ≤0.5时,由点(0,30),(0.5,0)求得,16030y x =-+. 依题意,(6030)30x x -++≤10. 解得,x ≥23.不合题意.②当0.5<x ≤1时,依题意,30(6030)x x --≤10. 解得,x ≥23.所以23≤x ≤1.③当x >1时,依题意,(6030)30x x --≤10. 解得,x ≤43.所以1<x ≤43.综上所述,当23≤x ≤43时,甲、乙两船可以相互望见.10、为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A B 、两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.(1)试写出y与x的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择?(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元?解:(1)(6 5.3)(4 3.6)(30)0.312.y x x x=-+--=+依题意,有5.3(30) 3.6130 0.31215.x xx+-⨯⎧⎨+⎩≤,≥即16121710.xx⎧⎪⎨⎪⎩≤,≥161012.17x∴≤≤x为整数,x∴=10,11,12.即农机公司有三种购进收割机的方案可供选择:方案1:购A型收割机10台,购B型收割机20台;方案2:购A型收割机11台,购B型收割机19台;方案3:购A型收割机12台,购B型收割机18台;(3)0.30>∴,一次函数y随x的增大而增大.即当12x =时,y 有最大值,0.3121215.6y =⨯+=最大(万元).此时,W =613%12413%1818.72⨯⨯+⨯⨯=(万元).11、由于连日无雨,某水库的蓄水量随着时间的增加而减少.右图是该水库的蓄水量y (万米3)与干旱持续时间x (天)之间的函数图象. (1)求y 与x 之间的函数关系式;(2)按以上规律,预计持续干旱多少天水库将全部干涸?解:(1)设y kx b =+,根据题意,得0120050200.k b k b +=⎧⎨+=⎩解得20k =-,1200b =,所以201200y x =-+.(2)当0y =时,60x =,所以预计持续干旱60天水库将全部干涸. 12、一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式 粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加O y /万米3x /天12001000 800 600 400 20010 20 30 40 50工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式; ②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间? 解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得 12515140.x y x y +=⎧⎨+=⎩,解得48.x y =⎧⎨=⎩, 答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +②要求在不超过10天的时间内将所有蔬菜加工完,14010515m m -∴+≤ 解得 5m ≤05m ∴<≤又在一次函数1000140000W m =+中,10000k =>,W ∴随m 的增大而增大,∴当5m =时,5140000145000.W ⨯+=最大=1000∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.13、如图,在平面直角坐标系中,函数212y x =+的图象分别交x 轴、y 轴于A B 、两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)试在直线AM 上找一点P ,使得ABP AOB S S =△△,请直接写出点P 的坐标.(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A B M 、、、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.解:(1)函数的解析式为212y x =+ ∴(60)A -,,(012)B , ∵点M 为线段OB 中点, ∴(06)M ,设直线AM 的解析式为y kx b =+ ∵606k b b -+=⎧⎨=⎩∴16k b =⎧⎨=⎩ ∴直线AM 的解析式为6y x =+ (2)1(1812)P --,,2(612)P ,(3)1(618)H -,,2(120)H -,,361855H ⎛⎫- ⎪⎝⎭, 14、如图,直线y=kx-1与x 轴、y 轴分别交与B 、C 两点,tan ∠OCB=21.(1)求B 点的坐标和k 的值;(2)2若点A (x ,y )是第一象限内的直线y=kx-1上的一个动点.当点A 运动过程中,试写出△AOB 的面积S 与x 的函数关系式; (3)探索:①当点A 运动到什么位置时,△AOB 的面积是41;②在①成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形.若存在,请写出满足条件的所有P 点的坐标;若不存在,请说明理由.解:(1)∵y= kx-1与y 轴相交于点C , ∴OC=1∵tan ∠OCB=OC OB =21∴OB=21∴B 点坐标为:⎪⎭⎫ ⎝⎛021,把B 点坐标为:⎪⎭⎫⎝⎛021,代入y= kx-1得 k=2 (2)∵S = y 21⨯⨯OB ∵y=kx-1∴S =()1-x 22121⨯∴S =4121-x(3)①当S =41时,4121-x =41∴x=1,y=2x-1=1∴A 点坐标为(1,1)时,△AOB 的面积为41 ②存在.满足条件的所有P 点坐标为: P 1(1,0), P 2(2,0), P 3(2,0), P 4(2-,0).。
一次函数综合练习题
一次函数综合练习题一、选择题1. 一次函数的图象是一条()。
A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。
A. y = 2x^2 + 1B. y = 3x + 5C. y = x^3D. y = √x3. 一次函数y = kx + b中,当k > 0时,函数图象在()。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = 2x 3的图象与x轴的交点坐标是()。
A. (1.5, 0)B. (1.5, 0)C. (3, 0)D. (3, 0)5. 一次函数y = x + 5的图象与y轴的交点坐标是()。
A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)二、填空题1. 一次函数的一般形式是_________。
2. 一次函数的图象是一条_________。
3. 一次函数y = 3x 2的斜率是_________,y轴截距是_________。
4. 当一次函数的斜率k > 0时,函数图象_________;当斜率k < 0时,函数图象_________。
5. 一次函数y = 2x + 4的图象与x轴的交点坐标是_________。
三、解答题1. 已知一次函数y = kx + b的图象过点(1, 3)和(3, 7),求该一次函数的解析式。
2. 一次函数y = x + 6的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。
3. 已知一次函数y = 2x 5的图象在x轴下方,求x的取值范围。
4. 画出一次函数y = x 2的图象,并标出其与x轴、y轴的交点坐标。
5. 已知一次函数y = kx + 1的图象过点(2, 5),求斜率k的值。
四、应用题1. 某商品的单价为x元,销售量为y件。
根据市场调查,销售量与单价之间存在一次函数关系,已知当单价为50元时,销售量为100件;当单价为80元时,销售量为50件。
(word版)初中求一次函数解析式专项练习30题(含答案解析),文档
范文范例精心整理求一次函数解析式专项练习1.A〔2,﹣1〕,B〔3,﹣2〕,C〔a,a〕三点在同一条直线上.1〕求a的值;2〕求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A〔﹣,0〕,与y轴交于点B〔0,3〕1〕求直线l的解析式;2〕过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.一次函数的图象经过〔 1,2〕和〔﹣2,﹣1〕,求这个一次函数解析式及该函数图象与x轴交点的坐标.4.如下列图,直线l是一次函数y=kx+b的图象.1〕求k、b的值;2〕当x=2时,求y的值;3〕当y=4时,求x的值.5.一次函数y=kx+b的图象与x轴交于点A〔﹣6,0〕,与y轴交于点B.假设△AOB的面积为12,求一次函数的表达式.6.一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.word完美格式范文范例精心整理7.y与x+2成正比例,且x=0时,y=2,求:1〕y与x的函数关系式;2〕其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.〔1〕写出y与x之间的函数关系式;〔2〕画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A〔﹣2,6〕,且与x轴交于点B.〔1〕求这条直线的解析式;〔2〕直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.y与x+2成正比例,且x=1时,y=﹣6.1〕求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;2〕结合图象求,当﹣1<y≤0时x的取值范围.11.y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.一次函数的图象经过点A〔,m〕和B〔,﹣1〕,其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.(14.一次函数y=〔k﹣1〕x+5的图象经过点〔1,3〕.(1〕求出k的值;(2〕求当y=1时,x的值.word完美格式范文范例精心整理15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点〔2,﹣1〕.1〕分别求出这两个函数的表达式;2〕求这两个函数的图象与x轴围成的三角形的面积.16.y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.1〕求y与x的函数关系式.2〕如果y的取值范围为3≤y≤5时,求x的取值范围.17.假设一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.,直线AB经过A〔﹣3,1〕,B〔0,﹣2〕,将该直线沿y轴向下平移3个单位得到直线MN.1〕求直线AB和直线MN的函数解析式;2〕求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A〔0,﹣2〕,且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.〔1〕求出y与x的函数关系式.〔2〕自变量x取何值时,函数值为4?23.y﹣3与4x﹣2成正比例,且当x=1时,y=5,〔1〕求y与x的函数关系式;word完美格式范文范例精心整理2〕求当x=﹣2时的函数值:3〕如果y的取值范围是0≤y≤5,求x的取值范围;4〕假设函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.y﹣3与x成正比例,且x=2时,y=7.〔1〕求y与x的函数关系式;〔2〕当时,求y的值;〔3〕将所得函数图象平移,使它过点〔2,﹣1〕.求平移后直线的解析式.25.:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A〔2,1〕点,求它的解析式.26.一次函数y=〔3﹣k〕x+2k+1.〔1〕如果图象经过〔﹣1,2〕,求k;〔2〕假设图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点〔2,a〕,求一次函数的解析式.28.y+5与3x+4成正比例,且当x=1时,y=2.1〕求出y与x的函数关系式;2〕设点P〔a,﹣2〕在这条直线上,求P点的坐标.29.一次函数y=kx+b〔k≠0〕在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.word完美格式范文范例精心整理30.:关于x的一次函数y=〔2m﹣1〕x+m﹣2假设这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.〔1〕求这个函数的解析式.〔2〕求直线y=﹣x和〔1〕中函数的图象与x轴围成的三角形面积.word完美格式范文范例精心整理一次函数的解析式30题参考答案:1.〔1〕设直线AB解析式为y=kx+b,4.〔1〕由图象可知,直线l过点〔1,0〕和〔0,〕,依题意,得,解得那么,解得:,∴直线AB解析式为y=﹣x+1∵点C〔a,a〕在直线AB上,∴a=﹣a+1,解得a=;即k=,b=;〔2〕直线AB与x轴、y轴的交点分别为〔1,0〕,〔0,〔2〕由〔1〕知,直线l的解析式为y=x+,1〕∴直线AB与坐标轴围成的三角形的面积为当x=2时,有y=×2+=;2.〔1〕设直线l的解析式为y=kx+b,〔3〕当y=4时,代入y=x+得:4=x+,∵直线l与x轴交于点A〔﹣,0〕,与y轴交于点B〔0,3〕,解得x=﹣5.5.∵图象经过点A〔﹣6,0〕,∴代入得:,∴0=﹣6k+b,解得:k=2,b=3,即b=6k①,∴直线l的解析式为y=2x+3;∵图象与y轴的交点是B〔0,b〕,∴?OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,〔2〕代入①式,得,,解:分为两种情况:①当P在x轴的负半轴上时,∵A〔﹣,0〕,B〔0,3〕,一次函数的表达式是或∴OP=2OA=3,0B=3,∴AP=3﹣,6.根据题意,得,∴△ABP的面积是×AP×OB=××;②当P在x轴的正半轴上时,解得.∵A〔﹣,0〕,B〔0,3〕,∴OP=2OA=3,0B=3,∴,故该一次函数的关系式是y=﹣x+.∴△ABP的面积是×AP×OB=××.7.〔1〕根据题意,得y=k〔x+2〕〔k≠0〕;3.设一次函数的解析式为y=kx+b〔k≠0〕,由x=0时,y=2得2=k〔0+2〕,解得k=1,所以y与x的函数关系式是y=x+2;由得:,〔2〕由,得;解得:,由,得,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,所以图象与x轴的交点坐标是:〔﹣2,0〕;与y轴的交∴x=﹣1,点坐标为:〔0,2〕.∴该函数图象与x轴交点的坐标是〔﹣1,0〕8.〔1〕∵y+3与x+2成正比例,word完美格式范文范例精心整理∴设y+3=k〔x+2〕〔k≠0〕,∵当x=3时,y=7,7+3=k〔3+2〕,解得,k=2.那么y+3=2〔x+2〕,即y=2x+1;〔2〕从图上可以知道,当﹣1<y≤0时x的取值范围﹣〔2〕由〔1〕知,y=2x+1.2≤x<﹣.令x=0,那么y=1,.令y=0,那么x=﹣,11.∵y﹣2与2x+1成正比例,∴设y﹣2=k〔2x+1〕〔k≠0〕,所以,该直线经过点〔0,1〕和〔﹣,0〕,其图象如∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k〔﹣4+1〕,图所示:∴k=3,∴y=6x+5.12.设y=k〔x﹣1〕,把x=﹣5,y=2代入,得2=〔﹣5﹣1〕k,解得.所以y与x之间的函数关系式是由图示知,当x<﹣时,y<013.设过点A,B的一次函数的解析式为y=kx+b,9.〔1〕一次函数y=kx+b的图象经过点〔﹣2,6〕,且那么m=k+b,﹣1=k+b,与y=﹣x的图象平行,那么y=kx+b中k=﹣1,两式相减,得m+1=k+k,即m+1=〔m+1〕,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.∵m≠﹣1,那么k=2,那么直线的解析式为:y=﹣x+4;∴b=m﹣1,那么函数的解析式为y=2x+m﹣1〔m≠﹣1〕,其图象是平面〔2〕如下列图:内平行于直线y=2x〔但不包括直线y=2x﹣2〕的一切直∵直线的解析式与x轴交于点B,线∴y=0,0=﹣x+4,14.〔1〕∵一次函数y=〔k﹣1〕x+5的图象经过点〔1,∴x=4,3〕,∴B点坐标为:〔4,0〕,∴3=〔k﹣1〕×1+5.∵直线y=mx+n经过点B,且y随x的增大而减小,∴k=﹣1.∴m<0,此图象与y=﹣x+4增减性相同,〔2〕∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴关于x的不等式mx+n<0的解集为:x>4∴x=2.15.〔1〕把点〔2,﹣1〕代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,10.〔1〕设y=k〔x+2〕,所以解析式为:y=x﹣4;∵x=1时,y=﹣6.把点〔2,﹣1〕代入y=k2x∴﹣6=k〔1+2〕得:2k2=﹣1,k=﹣2.解得:k2=﹣,∴y=﹣2〔x+2〕=﹣2x﹣4.图象过〔0,﹣4〕和〔﹣2,0〕点所以解析式为:y=﹣x;word完美格式范文范例精心整理〔2〕因为函数y=x﹣4与x轴的交点是〔,0〕,且∴函数解析式为y=﹣x+4.两图象都经过点〔2,﹣1〕,因此,函数解析式为y=x﹣6或y=﹣x+4所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.19.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,16.〔1〕设y﹣3=k〔4x﹣2〕,〔2分〕当x=1时,y=﹣1,∴﹣1﹣3=k〔4×1﹣2〕,∴k=﹣2〔4分〕,∴y﹣3=﹣2〔4x﹣2〕,∴函数解析式为y=﹣8x+7.〔5分〕〔2〕当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x的取值范围是≤x≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为〔0,b〕〔﹣,0〕,∴三角形面积为:×|b|×|﹣|=24,2即b=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣1218.根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数的解析式为:y= x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y= x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A〔﹣3,1〕,B〔0,﹣2〕,∴,k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;2〕∵直线MN与x轴的交点为〔﹣5,0〕,与y轴的交点坐标为〔0,﹣5〕,∴直线MN与两坐标轴围成的三角形面积为×|﹣5|×||﹣.21.设与x轴的交点为B,那么与两坐标轴围成的直角三角形的面积=AO?BO,AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B 〔3,0〕,把A〔0,﹣2〕,B〔3,0〕代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B〔﹣3,0〕,把A〔0,﹣2〕,B〔﹣3,0〕代入y=kx+b,word完美格式范文范例精心整理y=kx﹣3,得k=﹣,b=﹣2,过A〔2,1〕,1=2k﹣3,所以:y=﹣x﹣2.k=2.22.〔1〕依题意,设y+2=k〔x+1〕,故解析式为:y=2x﹣3.将x=1,y=﹣5代入,得26.〔1〕∵一次函数y=〔3﹣k〕x+2k+1的图象经过〔﹣k〔1+1〕=﹣5+2,1,2〕,解得k=﹣,∴2=〔3﹣k〕×〔﹣1〕+2k+1,即2=3k﹣2,∴y+2=﹣〔x+1〕,解得k=;即y=﹣﹣;〔2〕把y=4代入y=﹣﹣中,得〔2〕〕∵一次函数y=〔3﹣k〕x+2k+1的图象经过一、﹣﹣3.5=4,二、四象限,解得x=﹣5,即当x=﹣5时,函数值为4∴,23.〔1〕设y﹣3=k〔4x﹣2〕,∵x=1时,y=5,解得,k>3.∴5﹣3=k〔4﹣2〕,故k的取值范围是k>3.解得k=1,27.根据题意,得∴y与x的函数关系式y=4x+1;,解得,,〔2〕将x=﹣2代入y=4x+1,得y=﹣7;所以一次函数的解析式是y=﹣x+3.〔3〕∵y的取值范围是0≤y≤5,28.〔1〕∵y+5与3x+4成正比例,∴0≤4x+1≤5,∴设y+5=k〔3x+4〕,即y=3kx+4k﹣5〔k是常数,且k≠0〕.∵当x=1时,y=2,解得﹣≤x≤1;∴2+5=〔3×1〕k,解得,k=1,〔4〕令x=0,那么y=1;令y=0,那么x=﹣,故y与x的函数关系式是:y=3x﹣1;〔2〕∵点P〔a,﹣2〕在这条直线上,∴A〔0,1〕,B〔﹣,0〕,∴﹣2=3a﹣1,∴S AOB=××1=.解得,a=﹣,△24.〔1〕∵y﹣3与x成正比例,∴P点的坐标是〔﹣,﹣2〕∴y﹣3=kx〔k≠0〕成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;29.把〔1,5〕、〔6,0〕代入y=kx+b中,得∴y与x的函数关系式为:y=2x+3,,解得,〔2〕把x=﹣代入得:y=2×〔﹣〕+3=2;∴一次函数的解析式是y=﹣x+6.〔3〕设平移后直线的解析式为y=2x+3+b,把点〔2,﹣1〕代入得:﹣1=2×2+3+b,30.〔1〕由题意得:,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣5解得:<m<2,25.根据题意得:当b=3时,又∵m为正整数,y=kx+3,过A〔2,1〕.∴m=1,函数解析式为:y=x﹣1.1=2k+3〔2〕由〔1〕得,函数图象与x轴交点为〔1,0〕与yk=﹣1.轴交点为〔0,﹣1〕,∴解析式为:y=﹣x+3.∴所围三角形的面积为:×1×1=当b=﹣3时,word完美格式。
一次函数地应用100道题与问题详解
绝密★启用前2016-2017学年度???学校12月月考卷试卷副标题考试X围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分须知事项:1.答题前填写好自己的某某、班级、考号等信息2.请将答案正确填写在答题卡上第I卷〔选择题〕请点击修改第I卷的文字说明第II卷〔非选择题〕请点击修改第II卷的文字说明评卷人得分一、解答题1.某校局部团员参加社会公益活动,准备购进一批许愿瓶进展销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y 〔单位:个〕与销售单价x〔单位:元/个〕之间的对应关系如下列图:〔1〕y与x之间的函数关系是.〔2〕假如许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w〔单位:元〕与销售单价x 〔单位:元/个〕之间的函数关系式;〔3〕在〔2〕问的条件下,假如许愿瓶的进货本钱不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.2.甲经销商库存有1200套A品牌服装,每套进价400元,每套售价500元,一年内可卖完.现市场上流行B 品牌服装,每套进价300元,每套售价600元,但一年内只允许经销商一次性订购B品牌服装,一年内B品牌服装销售无积压.因甲经销商无流动资金,只有低价转让A品牌服装,用转让来的资金购进B品牌服装,并销售.经与乙经销商协商,甲、乙双方达成转让协议,转让价格y〔元/套〕与转让数量x〔套〕之间的函数关系式为y=()1200100360101≤≤+-xx.假如甲经销商转让x套A品牌服装,一年内所获总利润为w〔元〕.〔1〕求转让后剩余的A品牌服装的销售款Q1〔元〕与x〔套〕之间的函数关系式;〔2〕求B品牌服装的销售款Q2〔元〕与x〔套〕之间的函数关系式;〔3〕求w〔元〕与x〔套〕之间的函数关系式,并求w的最大值.3.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y〔米〕与登山时间x〔分〕之间的函数图象.请根据图象所提供的信息,解答如下问题:〔1〕求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值X围;〔2〕求乙出发后多长时间追上甲?此时乙所走的路程是多少米?4.我市某校准备组织学生与学生家长坐高铁到某某进展社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,假如都买一等座单程火车票需6560元,假如都买二等座单程火车票,如此需3120元〔学生票二等座打7.5折,一等座不打折〕.学生家长与教师的人数之比为3:1,余姚北站到某某东站的火车票价格如表所示:运行区间票价上车站下车站一等座二等座余姚北某某东82〔元〕48〔元〕〔1〕参加社会实践的教师、家长与学生各有多少人?〔2〕由于各种原因,二等座火车票单程只能买mX〔m小于参加社会实践的人数〕,其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购置火车票的总费用〔单程〕y〔元〕〔用含m的代数式表示〕.5.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购置A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格〔万元/台〕12 10月污水处理能力〔吨/月〕200 160经预算,企业最多支出89万元购置设备,且要求月处理污水能力不低于1380吨.〔1〕该企业有几种购置方案?〔2〕哪种方案更省钱,说明理由.6.某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购置A、B两种品牌的文具套装共1000套.〔1〕假如小王按需购置A、B两种品牌文具套装共用22000元,如此各购置多少套?〔2〕凭会员卡在此批发市场购置商品可以获得8折优惠,会员卡费用为500元.假如小王购置会员卡并用此卡按需购置1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.〔3〕假如小王购置会员卡并用此卡按需购置1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,假如A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不赔本〔运算结果取整数〕?7.“六一〞儿童节前夕,某幼儿园准备购置彩纸和拼图两种玩具,购置1盒彩纸和2盒拼图共需50元,购置2盒彩纸和3盒拼图共需80元.〔1〕一盒彩纸和一盒拼图的价格各是多少元?〔2〕该幼儿园准备购置这两种玩具共50盒〔要求毎种产品都要购置〕,且购置总金额不能超过850元,至少购置彩纸多少盒?8.端午节期间,某校“慈善小组〞筹集到1240元善款,全部用于购置水果和粽子,然后到福利院送给老人,决定购置大枣粽子和普通粽子共20盒,剩下的钱用于购置水果,要求购置水果的钱数不少于180元但不超过240元.大枣粽子比普通粽子每盒贵15元,假如用300元恰好可以买到2盒大枣粽子和4盒普通粽子.〔1〕请求出两种口味的粽子每盒的价格;〔2〕设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;②求出购置两种粽子的可能方案,并说明哪一种方案使购置水果的钱数最多.9.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元〔进价、售价均保持不变,利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电风扇的销售单价;〔2〕假如超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?〔3〕在〔2〕的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?假如能,请给出相应的采购方案;假如不能,请说明理由.10.为了保护环境,某开发区综合治理指挥部决定购置A,B两种型号的污水处理设备共10台.用90万元购置A型号的污水处理设备的台数与用75万元购置B型号的污水处理设备的台数一样,每台设备价格与月处理污水量如下表所示:污水处理设备A型B型价格〔万元/台〕m m﹣3月处理污水量〔吨/台〕220 180〔1〕求m的值;〔2〕由于受资金限制,指挥部用于购置污水处理设备的资金不超过165万元,问有多少种购置方案?并求出每月最多处理污水量的吨数.11.目前节能灯在城市已根本普与,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如表:进价〔元/只〕售价〔元/只〕甲型25 30乙型45 60〔1〕如何进货,进货款恰好为46000元?〔2〕如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?12.为了节约资源,科学指导居民改善居住条件,小强向房管部门提出了一个购置商品房的政策性方案:人均住房面积〔平方米〕单价〔万元/平方米〕不超过30〔平方米〕局部超过30平方米局部设一个3口之家购置商品房的人均面积为x平方米,缴纳房款y万元.〔1〕请求出y关于x的函数关系式;〔2〕假如某3人之家欲购置120平方米的商品房,求其应缴纳的房款.13.某大型超市的采购人员先后购进两批晋祠大米,购进第一批大米共花费5400元,进货单价为m元/千克,该超市将其中3000千克优等品以进货单价的两倍对外出售,余下的二等品如此以1.5元/千克的价格出售.当第一批大米全部售出后,花费5000元购进了第二批大米,这一次的进货单价比第一批少了0.2元.其中优等品占总重量的一半,超市以2元/千克的单价出售优等品,余下的二等品在这批进货单价的根底上每千克加价0.6元后全部卖完,假如不计其他本钱,如此售完第二批大米获得的总利润是4000元〔总售价﹣总进价=总利润〕〔1〕用含m的代数式表示第一批大米的总利润.〔2〕求第一批大米中优等品的售价.14.某某移动公司手机话费“世界风吉祥58A套餐〔月租费58元,通话费每分0.15元〕〞和“预付费全球通本地套餐〔月租费0元,通话费每分钟0.19元〕〞两种.设“世界风吉祥58A套餐〞每月话费为y1〔元〕,“预付费全球通本地套餐〞每月话费为y2〔元〕,月通话时间为35分钟.〔1〕分别表示出y1与x,y2与x的函数关系式.〔2〕月通话时间为多长时,两种套餐收费一样?〔3〕什么情况下用“世界风吉祥58A套餐〞更省钱?15.〔2016•包河区一模〕某汽车专卖店计划购进甲、乙两种新型汽车共140辆,这两种汽车的进价、售价如下表:进价〔万元/辆〕售价〔万元/辆〕甲 5 8乙 9 13〔1〕假如该汽车专卖店投入1000万元资金进货,如此购进甲乙两种新型汽车各多少辆?〔2〕假如该汽车专卖店准备乙种型号汽车的进货量不超过甲种型号汽车的进货量的3倍,应怎样安排进货方案,才能使该汽车专卖店售完这两种新型汽车后获得的利润最大?最大利润是多少?〔其它本钱不计〕16.为绿化校园,某校计划购进A、B两种树苗,共21棵.A种树苗每棵90元,B种树苗每棵70元.设购置B种树苗x棵,够买两种树苗所需费用为y元.(1) y与x的函数关系式为:;(2) 假如购置B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案.并求出该方案所需费用.17.某农户种植一种经济作物,总用水量y〔米3〕与种植时间x〔天〕之间的函数关系式图〔1〕第20天的总用水量为多少米3?〔2〕求y与x之间的函数关系式;〔3〕种植时间为多少天时,总用水量达到7000米3?18.某天早晨,X强从家跑步去体育锻炼,同时妈妈从体育场晨练完毕回家,途中两人相遇,X强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家〔X强和妈妈始终在同一条笔直的公路上行走〕.如图是两人离家的距离y〔米〕与X强出发的时间x〔分〕之间的函数图象,根据图象信息解答如下问题:〔1〕求X强返回时的速度;〔2〕妈妈比按原速返回提前多少分钟到家?〔3〕请直接写出X强与妈妈何时相距1000米?19.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.该产品的生产本钱为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y〔万件〕与销售单价x〔元〕之间的函数关系如下列图.〔1〕求月销售量y〔万件〕与销售单价x〔元〕之间的函数关系式;〔2〕当销售单价定为50元时,为保证公司月利润达到5万元〔利润=销售额﹣生产本钱﹣员工工资﹣其它费用〕,该公司可安排员工多少人?〔3〕假如该公司有80名员工,如此该公司最早可在几个月后还清无息贷款?20.某体育用品商店为了解5月份的销售情况,对本月各类商品的销售情况进展调查,并将调查的结果绘制成如下两幅不完整的统计图〔1〕请根据图中提供的信息,将条形图补充完整;〔2〕该商店准备按5月份球类商品销量的数量购进球类商品,含篮球、足球、排球三种球,预计恰好用完进货款共3600元,设购进篮球x个,足球y个,三种球的进价和售价如表:类别篮球足球排球进价〔单位:元/个〕50 30 20预售价〔单位:元/个〕70 45 25求出y与x之间的函数关系式;〔3〕在〔2〕中的进价和售价的条件下,据实际情况,预计足球销售超过60个后,这种球就会产生滞销①假设所购进篮球、足球、排球能全部售出,求出预估利润P〔元〕与x〔个〕的函数关系式;②求出预估利润的最大值,并写出此时购进三种球各多少个.21.我市某风景区门票价格如下列图,百姓旅行社有甲、乙两个旅行团队,计划在“五一〞小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人,如果甲、乙两团队分别购置门票,两团队门票款之和为W元.〔1〕求W关于x的函数关系式,并写出自变量x 的取值X围;〔2〕假如甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少元.22.为了增强居民的节电意识,某城区电价执“阶梯式〞计费,每月应交电费y〔元〕与用电量x〔度〕之间的函数关系如下列图,请写出每月应交电费与用电量的函数关系式;假如某用户12月份交电费68元,求该用户12月份的用电量.23.由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出一样数量的手机,那么去年销售额为8万元,今年销售额只有6万元.〔1〕今年甲型号手机每台售价为多少元?〔2〕为了提高利润,该店计划购进乙型号手机销售,甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?〔3〕假如乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使〔2〕中所有方案获利一样,a应取何值?24.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积〔m3/件〕质量〔吨/件〕A型商品B型商品 2 1〔1〕一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?〔2〕物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将〔1〕中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?25.如图1所示,温沪动车铁路上有A、B、C三站,B、C两地相距280千米,甲、乙两列动车分别从B、C 两地同时沿铁路匀速相向出发向终点C、B站而行,甲、乙两动车离A地的距离y〔千米〕与行驶时间表x〔时〕的关系如图2所示,根据图象,解答以下问题:〔1〕填空:路程a=,路程b=.点M的坐标为.〔2〕求动车甲离A地的距离y甲与行驶时间x之间的函数关系式.〔3〕补全动车乙的大致的函数图象.〔直接画出图象〕26.如下列图,在平面直角坐标系中,过点A〔﹣,0〕的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根〔1〕试问:直线AC与直线AB是否垂直?请说明理由;〔2〕假如点D在直线AC上,且DB=DC,求点D的坐标;〔3〕在〔2〕的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?假如存在,请直接写出P点的坐标;假如不存在,请说明理由.27.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:假如在射线CP上存在一点P′,满足CP+CP′=2r,如此称P′为点P关于⊙C的反称点,如图为点P与其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.〔1〕当⊙O的半径为1时.①分别判断点M〔2,1〕,N〔,0〕,T〔1,〕关于⊙O的反称点是否存在?假如存在,求其坐标;②点P在直线y=﹣x+2上,假如点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值X围;〔2〕⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,假如线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值X围.28.如图,在平面直角坐标系中,直线434+=xy分别交x轴,y轴于A,B两点,点C[]为OB的中点,点D 在第二象限,且四边形AOCD为矩形.〔1〕直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;〔2〕动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作OAPH⊥,垂足为H,连接NP.设点P的运动时间为t秒.①假如△NPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问HQPHBP++是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.29.为了鼓励送彩电下乡,国家决定对购置彩电的农户实行政府补贴.规定每购置一台彩电,政府补贴假如干元,经调查某商场销售彩电台数y〔台〕与补贴款额x〔元〕之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z〔元〕会相应降低且Z与x之间也大致满足如图②所示的一次函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的综合应用题一、单选题1.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )A .B .C .D .2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m3.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+ B .2133y x =+C .1y x =+D .5342y x =+ 4.如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .05.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢6.一条公路旁依次有,,A B C 三个村庄,甲乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲乙之间的距离()s km 与骑行时间t(h)之间的函数关系如图所示,下列结论:①,A B 两村相距10km ;②出发1.25h 后两人相遇;③甲每小时比乙多骑行8km ;④相遇后,乙又骑行了15min 或65min 时两人相距2km .其中正确的个数是( )A .1个B .2个C .3个D .4个7.一个装有进水管和出水管的空容器,从某时刻开始4min 内只进水不出水,容器内存水8L ,在随后的8min 内既进水又出水,容器内存水12L ,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是( )A .B .C .D .8.在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从,A B 两地同时出发,相向而行.快车到达B 地后,停留3秒卸货,然后原路返回A 地,慢车到达A 地即停运休息,如图表示的是两车之间的距离y (米)与行驶时间x (秒)的函数图象,根据图象信息,计算,a b 的值分别为( )A .39,26B .39,26.4C .38,26D .38,26.49.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战 士们离营地的距离S 与时间t 之间函数关系的是( )A .B .C .D .10.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A.B.C.D.二、填空题11.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是______.12.已知函数22(0)(0)x x xyx x⎧-+>=⎨≤⎩的图象如图所示,若直线y x m=+与该图象恰有两个不同的交点,则m的取值范围为_____.13.如图,在平面直角坐标系中,Rt ABC∆的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且2AC=.将ABC∆先绕点C逆时针旋转90o,再向左平移3个单位,则变换后点A的对应点的坐标为______.14.如图,点A ,C 分别是正比例函数=y x 的图象与反比例函数4y x=的图象的交点,过A 点作AD x ⊥轴于点D ,过C 点作CB x ⊥轴于点B ,则四边形ABCD 的面积为___.15.边长为1的8个正方形如图摆放在直角坐标系中,直线1y k x =平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A ,B 两点,过B 点的双曲线2k y x=的一支交其中两个正方形的边于C ,D 两点,连接OC ,OD ,CD ,则OCD S ∆=__________.16.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (a ,2),则关于x 的不等式x +1≤mx +n 的解集为______.17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.18.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.19.如图,在平面直角坐标系中,一次函数21y x =-的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45︒,交x 轴于点C ,则直线BC 的函数表达式是__________.20.如图,已知在平面直角坐标系xOy 中,直线112y x =-分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()10,0k y k x x =>>,()220ky x x=<的图象于点C 和点D ,过点C 作CE x ⊥轴于点E ,连结,OC OD . 若COE ∆的面积与DOB ∆的面积相等,则k 的值是_____.三、解答题21.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当0150x ≤≤时,求1千瓦时的电量汽车能行驶的路程;(2)当150200x ≤≤时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.22.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离()y km 与小王的行驶时间()x h 之间的函数关系. 请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC 所表示的y 与x 之间的函数解析式,并写出自变量x 的取值范围.23.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式;(3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.24.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止.甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示. (1)乙车的速度为 千米/时,a = ,b = . (2)求甲、乙两车相遇后y 与x 之间的函数关系式.(3)当甲车到达距B 地70千米处时,求甲、乙两车之间的路程.25.一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.()1直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;()2若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?26.某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从人口处到达塔林所蓄的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聘聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)27.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米. 甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校. 已知甲步行的速度比乙步行的速度每分钟快5米. 设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题: (1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当2530x ≤≤时s 关于x 的函数的大致图象. (温馨提示:请画在答题卷相对应的图上)28.“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑车前往乙地,她与乙地之间的距离y (km )与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离S (km )与出发时间x (h )之间的函数关系式如图2中折线段CD -DE -EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.29.如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出x时,甲、发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发min乙两人与点A的距离分别为1y m、2y m.已知1y、2y与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?30.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t值为_______.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.一次函数的综合应用题一、单选题1.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.【答案】B【分析】根据乌龟早出发,早到终点,结合各图象进行分析判断即可.【详解】A、兔子后出发,先到了,不符合题意;B、乌龟比兔子早出发,而早到终点,符合题意;C、乌龟先出发后到,不符合题意;D、乌龟先出发,与兔子同时到终点,不符合题意,故选B.【点睛】本题考查了函数图象,弄清题意,认真分析是解题的关键.2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m 【答案】C【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度. 【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==, 所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.3.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+ B .2133y x =+ C .1y x =+ D .5342y x =+ 【答案】D【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y =-x +3,设过B 的直线l 为y =kx +b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可求k 。