二次函数的应用题总结
(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版题目1:某公司的销售额可以用二次函数$y=-2x^2+20x$来表示,其中$x$表示月份(从1开始),$y$表示对应月份的销售额。
求解下列问题:问题1:请计算公司第6个月的销售额。
解答:将$x=6$代入二次函数中,可得:$y=-2\times6^2+20\times6=-72+120=48$所以公司第6个月的销售额为48。
问题2:请问公司销售额最高的月份是哪个月?解答:二次函数$y=-2x^2+20x$是一个开口朝下的抛物线,最高点即为销售额最高的月份。
通过求导数,我们可以找到函数的最高点。
首先,求导得到一次函数$y'=-4x+20$,令$y'=0$,解方程可得$x=5$。
因此,公司销售额最高的月份是第5个月。
题目2:一架火箭从地面起飞后,高度$h$(以米为单位)随时间$t$(以秒为单位)变化的规律可以用二次函数$h=-5t^2+100t$表示。
求解下列问题:问题1:请问火箭多少秒后达到最大高度?解答:同样地,通过求导数,我们可以找到火箭高度的最高点。
将二次函数$h=-5t^2+100t$求导得到一次函数$h'=-10t+100$,令$h'=0$,解方程可得$t=10$。
因此,火箭在10秒后达到最大高度。
问题2:请计算火箭达到最大高度时的高度。
解答:将$t=10$代入二次函数中,可得:$h=-5\times10^2+100\times10=-500+1000=500$所以火箭达到最大高度时的高度为500米。
以上是对二次函数应用题的解答,希望能帮助到您。
人教版九年级上册数学 第十二章 二次函数 常考应用题总结

人教版九年级上册数学第十二章二次函数常考应用题总结一、销售问题1、某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?2、商场某商品现在售价为每件600元,每星期可卖出3000件,市场调查反映;如果上调价格,每涨价1元,每星期要少卖出10件,已知商品的进价为每件400元,设每星期的销量为y件,每件商品的售价为x(x≥600)元.(1)求y与x的函数关系;(2)每件商品的售价为多少时,每星期所获总利润最大,最大利润是多少元?3、某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价﹣制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?4、将进货单价为 70 元的某种商品按零售价 100 元一个售出时,每天能售出 20 个.若这种商品的零售价在一定范围内每降价 1 元,其日销售量就增加 1 个,为了获得最大利润,则应降价多少元?5、某租赁公司拥有汽车100 辆,当每辆车的月租金为3000 元时,可全部租出.当每辆车的月租金每增加50 元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150 元,未租出的车每辆每月需要维护费50 元.(1)当每辆车的月租金为3 600 元时,能租出辆;(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?6、某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.公司每日租出x辆车时,每辆车的日租金为多少元(用含x的代数式表示);(1)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(2)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理.当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x(元),年销售量为y(万件),年获利为W(万元).(年利润=年销售总额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利W与x之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?8. 在创新素质实践行活动中,某位同学参加了超市某种水果的销售调查工作.已知该水果的进价为8元/千克,下面是他们在调查结束后的对话:A:如果以10元/千克的价格销售,那么每天可以售出300千克;B:如果以13元/千克的价格销售,那么每天可获利750元;C:通过调查验证,我发现每天的销售量与销售单价之间存在一次函数关系.(1)设超市每天该水果的销售量是y(kg),销售单价是x(元),写出y与x的关系;(2)在进货成本不超过1200元时,销售单价定为多少元可获得最大利润?最大利润是多少?(3)如果要使该水果每天的利润不低于600元,销售单价应在什么范围内?二、面积问题1、如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB为多少米时,矩形土地ABCD的面积最大.2、用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).(1)如图1,当AB=________m,BC=________m时,所围成两间鸭舍的面积最大,最大值为________m2;(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少?3、在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是 2:1.已知镜面玻璃的价格是每平方米 120 元,边框的价格是每米 30 元,另外制作这面镜子还需加工费 45 元.设制作这面镜子的总费用是 y 元,镜子的宽度是 x 米.(1)求 y 与 x 之间的关系式.(2)如果制作这面镜子共花了 195 元,求这面镜子的长和宽.三、图像问题1、如图,△ABC 是一块锐角三角形材料,边 BC=6cm,高 AD=4cm,要把它加工成一个矩形零件,使矩形的一边在 BC 上,其余两个顶点分别在 AB、AC 上,要使矩形 EGFH 的面积最大,求 EG 的长.2、如图是一个横断面为抛物线形状的拱桥,当水面宽 4 米时,拱顶(拱桥洞的最高点)离水面 2 米,水面下降 1 米时,水面的宽度为多少米.3.如图,足球比赛中,一球员从球门正前方10 m 处将球射向球门.当球飞行的水平距离为6 m 时球到达最高点,此时球离地面3 m.若球运动的路线为一条抛物线,球门的高A B 为2.44 m,球能否被射进球门?4、如图,琪琪的父亲在相距2 米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的琪琪距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为多少米?5.跳绳时,绳甩到最高处时的形状为抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6m,到地面的距离A O 和B D 均为0.9 m.身高为1.4 m 的小丽站在距点O的水平距离为1 m 的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为 y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在O D 之间,且离点O的距离为3m,当绳子甩到最高处时,刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4 m 的小丽站在O D 之间,且离点O的距离为t m,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围:.6、如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?7.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图①所示;种植花卉的利润与投资量成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?。
二次函数 经典题型详解

二次函数经典题型详解
二次函数是数学中的一个重要概念,它在代数、几何和三角学中都有广泛的应用。
下面是一些经典的二次函数题型及其解答方法。
1. 求二次函数的解析式
题目:已知二次函数的图像经过点(1,0),(2,0)和(3,4),求这个二次函数的
解析式。
解法:设二次函数的解析式为 $y = a(x - 1)(x - 2)$,将点(3,4)代入解析式,得到 $4 = a(3 - 1)(3 - 2)$,解得 $a = 2$,所以这个二次函数的解析式为$y = 2(x - 1)(x - 2)$。
2. 求二次函数的顶点坐标和对称轴
题目:已知二次函数 $y = ax^2 + bx + c$ 的对称轴为 $x = 1$,且经过点(0,3),求这个二次函数的解析式。
解法:由于对称轴为 $x = 1$,所以顶点的横坐标为 1,设顶点坐标为$(1,m)$,将点 (0,3) 代入解析式 $y = a(x - 1)^2 + m$,得到 $3 = a(0 -
1)^2 + m$,解得 $a = 3 - m$,所以这个二次函数的解析式为 $y = (3 - m)(x - 1)^2 + m$。
3. 求二次函数的最大值或最小值
题目:已知二次函数 $y = x^2 - 2x$,求这个二次函数的最小值。
解法:由于 $a = 1 > 0$,所以这个二次函数的最小值为顶点的纵坐标,即$\frac{4ac - b^2}{4a} = \frac{4 \times 1 \times (-2) - (-2)^2}{4 \times 1} = -\frac{3}{4}$。
二次函数应用题知识点总结

二次函数应用题知识点总结【基本思想】一、转化思想————实际问题中的最优化问题转化为求二次函数的最值问题。
1、方案设计最优问题:费用最低?利润最大?储量最大?等等。
2、面积最优化问题:全面观察几何图形的结构特征,挖掘出相应的内在联系,列出包含函数,自变量在内的等式,转化为函数解析式,求最值问题。
二、建模思想————从实际问题中发现、提出、抽象、简化、解决、处理问题的思维过程。
1、建立图像模型:自主建立平面直角坐标系,构造二次函数关系式解决实际问题。
2、方程模型和不等式模型:根据实际问题中的数量关系,列出方程或不等式转化为二次函数解决问题。
3、根据实际问题情境抽象出二次函数模型。
三、运动思想————图像上的动点问题及几何图形的形状的确定。
四、分类讨论的思想————二次函数与其他知识的综合题时经常用到。
【最值的确定方法】1.二次函数在没有范围条件下的最值:二次函数的一般式()化成顶点式,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).2.二次函数在有范围条件下的最值:如果自变量的取值范围是,如果顶点在自变量的取值范围内,则当,,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性〖2012年中考第23题分类汇总分析〗一、分段函数型1.【2010四月调考】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求与的函数关系式并直接写出自变量的取值范围;(2)设每月的销售利润为W,请直接写出与的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?二、与不等式结合型2.【2009四月调考】某商场将进货价为30元的书包以40元售出,平均每月能售出600个。
二次函数的应用题及解析

二次函数的应用题及解析二次函数是数学中重要的函数之一,广泛应用于各个领域。
本文将探讨几个常见的二次函数应用题,并进行详细解析。
问题一:某天气预报显示,一天内温度的变化服从二次函数关系。
已知该地点上午8时的温度为15摄氏度,下午2时的温度为25摄氏度,晚上8时的温度为18摄氏度。
问该地点第二天早上6时的温度是多少摄氏度?解析:根据已知条件构建二次函数的关系式。
假设时间为x,温度为y,则可以得出二次函数表达式为:y = ax^2 + bx + c。
根据题目所给的条件,可以列出如下方程组:方程1:64a + 8b + c = 15方程2:256a + 16b + c = 25方程3:576a + 48b + c = 18解上述方程组,得到 a = -0.005, b = 0.16, c = 15.16。
带入x = 22(第二天早上6时的时间),计算二次函数的值,即可得到第二天早上6时的温度为20.62摄氏度。
问题二:某公司销售某款产品,预测未来几个月的销售情况。
已知该产品销售量符合二次函数模型。
已知该产品2月份的销售量为2000件,5月份的销售量为3000件,8月份的销售量为4000件。
预测11月份的销售量是多少件?解析:同样地,假设时间为x,销售量为y,构建二次函数关系式:y = ax^2 + bx + c。
根据已知条件,列出方程组:方程1:4a + 2b + c = 2000方程2:25a + 5b + c = 3000方程3:64a + 8b + c = 4000解方程组得到a = 100, b = -500, c = 2400。
带入x = 14(11月份的时间),计算二次函数的值,可得到预测11月份的销售量为3400件。
通过以上两个实例,我们可以看到二次函数在温度预测和销售预测中的应用。
根据给定的条件,构建二次函数关系式,并解方程组可以得到问题所求的结果。
通过这种方法,我们可以更加准确地评估和预测未来的发展趋势。
二次函数应用题归纳

二次函数应用类问题二次函数的表达式:一般式:)0(2≠++=a c bx ax ya 的正负表示开口方向,a 表示开口大小,对称轴ab x 2-=,c 表示截距.顶点式:()a b ac a b x a k h x a y 442222-+⎪⎭⎫⎝⎛+=++=()0≠a()k h ,-表示二次函数的顶点,即对称轴为h x -=,最值为k .交点式:()()21x x x x a y --=()0≠a21,x x 为函数与x 轴交点的横坐标.二次函数配方:)0(2≠++=a c bx ax y ab ac a b x a ca ba b x a ca b a b x a b x a cx a b x a 44242442222222222-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫⎝⎛-++=+⎪⎭⎫⎝⎛+=二次函数的求法:给顶点→设顶点式()k h x a y ++=2()0≠a给两个交点→设交点()()21x x x x a y --=()0≠a过原点→设bx ax y +=2()0≠a任意三点→设一般式)0(2≠++=a c bx ax y实际应用类题型:一、如果题目中已建立好直角坐标系,按题目要求来:①② ③ 由题意可设2ax y =()0≠a ,由题可设k ax y +=2()0≠a , 由题意可设()()02≠+=a h x a y , 再找一个非原点带入求出a 即可再找两点带入解方程组即可 再找两点带入解方程组即可④⑤ 由题意可设()02≠+=a bx ax y ,由题意可设()02≠++=a c bx ax y , 再找两个非原点带去解方程组即可找三点带去解方程组即可例1、施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.例2、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.例3、如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB 的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?例4、横跨松花江两岸的阳明滩大桥是我市首座悬索桥,夜色中的璀璨灯光已成为一道亮丽的风景线,桥梁双塔间的悬索成抛物线型,如图,以桥面为x轴,以抛物线的对称轴为y轴,以1米为一个单位长度,建立平面直角坐标系.已知大桥的双塔AE和BF 与桥面垂直,且它们的高度均是83米,悬索抛物线上的点C、D的坐标分别为(0,3)、(50,8).(1)求抛物线的解析式;(2)李大爷以每秒0.8米的速度沿桥散步,那么从点E走到点F所用时间为多少秒?二、如果题目中没有建立直角坐标系:(这种情况比较少)按题目要求,建立最简便的坐标系,方便计算.例1、如图是一座抛物线拱形桥,在正常水位时,水面AB宽是20m,水位上升3m就达到警戒线CD,这是水面宽度为10m,请构建适当的水平直角坐标系求抛物线所对应的函数表达式,并求水位到达警戒线时拱顶与水面之间的距离.经济利润类型问题利润=单件利润×件数(常考)利润=总收入—总成本(通用)利润=单件利润×件数—额外支出这类问题一般分为两问到三问,第一问常考求件数与销售单件的方程,最后一问常考最大利润问题,只要把利润化成二次函数顶点式来求最大利润即可.注意点:1、可以写出自变量的取值范围.2、写出最大利润时要进行一个简单的讨论(a开口方向,对称轴,增减性)3、如果出题人设陷阱,通常是①对称轴不在取值范围内,根据二次函数图像性质来求解②如自变量必须是整数,如衣服件数,但是对称轴不是整数,对称轴最近的整数即为最值的横坐标.4、如果每提高1元,少卖5件 每提高a元,少卖a5件.例1、为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?例2、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?例3、小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?例4、某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?例5、一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?例6、“淮南牛肉汤”是安徽知名地方小吃。
二次函数的实际应用六大压轴题型归纳总结(含答案)

二次函数的实际应用六大压轴题型归纳总结【题型1 利用二次函数解决几何图形问题】【例1】(2020春•萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)【解题思路】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【解答过程】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<3 5;(2)设面积为S,则S=2x(3﹣5x)+32x2=−172x2+6x=−172(x−617)2+1817,当x=617时,S最大=1817.【变式1-1】(2020•安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.【解题思路】(1)根据矩形的性质得到CD=AB=16,AD=BC=12,根据正方形AEFG和正方形JKCI 形状大小相同,矩形GHID和矩形EBKL形状大小相同,得到DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.【解答过程】解:(1)在矩形ABCD中,CD=AB=16,AD=BC=12,∵正方形AEFG和正方形JKCI形状大小相同,矩形GHID和矩形EBKL形状形状大小相同,AG=x,∴DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,∵S矩形LJHF=FL•LJ,∴y=(2x﹣12)(16﹣2x)=﹣4x2+56x﹣192;(2)由(1)得,y=﹣4x2+56x﹣192=﹣4(x﹣7)2+4,∵FL=2x﹣12>0,LJ=16﹣2x>0,∴6<x<8,∵a=﹣4<0,∴当x=7时,y的最大值=4;故矩形观赏鱼用地LJHF面积的最大值为4m2.【变式1-2】(2020•富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【解题思路】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值;(3)根据题意确定x的取值范围,利用二次函数增减性计算即可.【解答过程】解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:{28−x≥ax≥6,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.【变式1-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【解题思路】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答过程】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696.答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S =−13(n −10)2+1003;按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【题型2 利用二次函数解决销售利润问题】【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y (千克)与销售单价x (元)的关系如图所示.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?【解题思路】(1)直接利用待定系数法求出一次函数关系式;(2)利用销量×每件利润=总利润,进而结合二次函数增减性得出答案. 【解答过程】解:(1)设y 与x 的函数关系式为:y =kx +b (k ≠0),根据图象可得方程组{30k +b =14050k +b =100,解得:{k =−2b =200,∴y 与x 的函数关系式为:y =﹣2x +200,x 的取值范围是:30≤x ≤60; (2)设日利润为w ,则可以列出函数关系式为: w =(﹣2x +200)(x ﹣30)﹣450 =﹣2x 2+260x ﹣6450, 当x =−b2a=65, 又∵30≤x ≤60,∴当x =60时,w 取得最大值,w =1950,答:当销售单价为60元时,当天该工厂日利润最大,最大日利润为1950元.【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解题思路】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答过程】解;(1)设y 关于x 的函数解析式为y =kx +b , {85k +b =17595k +b =125,得{k =−5b =600,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【变式2-2】(2020•安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解题思路】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【解答过程】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则{100k+b=20 b=30,解得:{k=−110 b=30,故z与x之间的关系式为z=−110x+30;(2)W=zx﹣y=−110x2+30x−110x2=−15x2+30x=−15(x2﹣150x)=−15(x﹣75)2+1125,∵−15<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得110x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=−15(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【变式2-3】(2020•邢台二模)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a 元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.【解题思路】(1)根据实际售价﹣进价=进价×利润率建立关于a的方程,解之可得a的值;用原销售量﹣因价格上涨而减少的销售量可得答案.(2)根据“总利润=每个硒鼓利润×销售量”列出关于x的函数,配方成顶点式,再利用二次函数的性质求解可得;(3)根据以上相等关系,并结合新进价列出关于x的二次函数,找到其对称轴,利用二次函数的增减性求解可得.【解答过程】解:(1)30×0.8﹣a=20%a,解得a=20.y=500﹣10(x﹣30),即y=﹣10x+800(20≤x≤48).(2)根据题意,得W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000.∵﹣10<0,销售单价不能超过48元/个,即当20≤x≤48时,W随x的增大而增大,∴当x=48时,W有最大值,最大值为8960.答:当售价为48元/个时,每月获得的利润最大,最大利润为8960元.(3)根据题意,得G=(x﹣n)(﹣10x+800)=﹣10x2+(800+10n)x﹣800n,对称轴x=80+n 2.∵a=﹣10<0,∵当n ≤x ≤48时,该商品利润G 随x 的增大而增大, ∴80+n 2≥48,解得n ≥16. ∵进价是降低的,∴n 的取值范围是16≤n <20.【题型3 利用二次函数解决抛物线形轨迹问题】【例3】(2020秋•渑池县期末)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距8√3米. (1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点,并说明理由.【解题思路】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA 与水平方向OC 的夹角为30°,OA =8√3米,解直角三角形可求点A 的坐标,把点A 的横坐标x =12代入抛物线解析式,看函数值与点A 的纵坐标是否相符. 【解答过程】解:(1)∵顶点B 的坐标是(9,12), ∴设抛物线的解析式为y =a (x ﹣9)2+12, ∵点O 的坐标是(0,0)∴把点O 的坐标代入得:0=a (0﹣9)2+12, 解得a =−427,∴抛物线的解析式为y =−427(x ﹣9)2+12 即y =−427x 2+83x ;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA•sin30°=8√3×12=4√3,OC=OA•cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【变式3-1】如图,运动员甲在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(3)运动员乙跳离地面时,最高能摸到3.3m,问:在(2)的条件下,运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?【解题思路】(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.(3)当y=3.3m,进而代入函数解析式,求出x的值,即可得出答案.【解答过程】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.(3)由题意可得出:y=3.3,则3.3=﹣0.2x2+3.5解得:x1=1,x2=﹣1,∴2.5﹣1=1.5(m),1.5﹣1=0.5(m)∴乙在距离甲1.5米以内或离篮板0.5米以内能在空中截住球.【变式3-2】(2021•嘉善县一模)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A'(如图3),请直接写出m的取值范围.【解题思路】(1)根据条件可以得到抛物线的顶点坐标是(6,4.4),利用待定系数法即可求得函数的解析式;(2)求出当y=2.44时,x的值,取正;(3)先求出y=0时,x的值,取正,减去恰好击中球门横梁时,足球的水平距离.【解答过程】解:(1)抛物线的顶点坐标是(6,4.4),设抛物线的解析式是:y=a(x﹣6)2+4.4,把(0,0.4)代入得36a+4.4=0.4,解得a=−1 9,则抛物线是y=−19(x﹣6)2+4.4;(2)∵球门高为2.44米,即y=2.44,则有2.44=−19(x﹣6)2+4.4,解得:x1=10.2,x2=1.8,从题干图2中,发现球门在CD右边,∴x=10.2,即足球运动的水平距离是10.2米;(3)不后退时,刚好击中横梁,∴往后退,则球可以进入球门,而当球落地时,球刚好在门口,是一个临界值,当y=0时,有0=−19(x﹣6)2+4.4,解得:x1=6+35√110,x2=6−35√110,取正值,x=6+35√110,∴后退的距离需小于6+35√110−10.2=(35√110−4.2)米故0<m<35√110−4.2.【变式3-3】(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【解题思路】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答过程】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.【题型4 利用二次函数解决车过隧道问题】【例4】(2020秋•海淀区校级月考)小宇遇到了这样一个问题:如图是一个单向隧道的断面,隧道顶MCN是一条抛物线的一部分,经测量,隧道顶的跨度MN为4m,最高处到地面的距离CO为4m,两侧墙高AM和BN均为3m,今有宽2.4m的卡车在隧道中间行驶,如果卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,那么卡车载物后的限高应是多少米?(精确到0.1m)为解决这个问题,小宇以AB中点O为原点,建立了如图所示的平面直角坐标系,根据上述信息,设抛物线的表达式为y=ax2+c.(1)写出M、C、N、F四个点的坐标;(2)求出抛物的表达式;(3)利用求出的表达式,帮助小宇解决这个问题.【解题思路】(1)根据题中信息直接写出M、C、N、F四个点的坐标即可;(2)将点M、C点的坐标代入抛物线的表达式为y=ax2+c,利用待定系数法求解即;(3)在y=−14x2+4中,令x=1.2,求得相应的y值,从而可得点D的坐标,结合卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,可得卡车载物最高点距地面的距离,然后精确到0.1m,即可得出答案.【解答过程】解:(1)由题意得:M(﹣2,3)、C(0,4)、N(2,3)、F(1.2,0);(2)将M(﹣2,3)、C(0,4)代入y=ax2+c,得:{4a+c=3c=4,解得:{a=−14 c=4,∴抛物的表达式为y =−14x 2+4;(3)在y =−14x 2+4中,令x =1.2,得:y =−14×1.22+4=3.64,∴点D 的坐标为(1.2,3.64),即点D 与地面的距离为3.64m ,∵卡车载物后的最高点E 到隧道顶面对应的点D 的距离应不小于0.6m ,∴点E 离地面的距离不超过3.04m ,∴卡车载物后的限高应是3.0m .【变式4-1】(2021•海城市模拟)如图,隧道的横截面由抛物线形和矩形OABC 构成.矩形一边OA 的长是12m ,另一边OC 的长是1m .抛物线上的最高点D 到地面OA 的距离为7m .以OA 所在直线为x 轴,以OC 所在直线为y 轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式.(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m ,求两排灯之间的水平距离.(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于13m 的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m 处行驶,求这辆货运汽车载物后的最大高度.【解题思路】(1)设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入所设解析式求出a 的值即可得出函数解析式;(2)将y =5代入解析式求出x 的值,将所求x 的值相减可得答案;(3)求出x =2时y 的值,再减去13可得答案. 【解答过程】解:(1)由题意设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入上式,36a +7=1,解得a =−16,∴该抛物线所对应的函数表达式为y =−16(x −6)2+7.(2)把y=5代入y=−16(x−6)2+7中,−16(x−6)2+7=5,解得x1=6+2√3,x2=6−2√3,6+2√3−(6−2√3)=4√3,所以两排灯之间的水平距离为4√3m;(3)把x=2代入y=−16(x−6)2+7中,y=−16(2−6)2+7=133,13 3−13=4,所以这辆货运汽车载物后的最大高度为4m.【变式4-2】(2020•武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【解题思路】(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.(2)把x=5代入可求出支柱的长度,然后算出总造价即可.(3)先求出坦克方队的长,然后算出速度,从而求得通过隧道的时间即可.【解答过程】【解】(1)设y=ax2+c,把C(0,6)、B(10,0)代入,得a=−350,c=6.∴y=−350x2+6.(2)当x=5时,y=−350×52+6=92,∴EF=10−92=112,CD=10﹣6=4,支柱的总造价为2(2×112+2×10+4)=70(万元). (3)∵坦克的高为3米,令y =3时,−350x 2+6=3,解得:x =±5√2,∵7<5√2<8,坦克宽为2米,∴可以并排3辆坦克行驶,此时坦克方阵的长为120÷3×4=160(米),坦克的行驶速度为24km /h =400米/分,∴通过隧道的最短时间为1000+160400=2.9(分).【变式4-3】(2020秋•海州区校级期末)施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM 为16米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A .D 点在抛物线上.B 、C 点在地面OM 线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.【解题思路】(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式,即可求解;(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,即可求解;(3)点A 、D 关于函数对称轴对称,则设AD =2m ,则AB =y =−18(x ﹣8)2+8=8−18m 2,w =AB +AD +DC =2m +2AB =−14m 2+2m +16,即可求解.【解答过程】解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式得:0=64a +8,解得:a =−18,故函数的表达式为:y =−18(x ﹣8)2+8,即y =−18x 2+2x (0≤x ≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,当x =4时,y =6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)设点B (m ,0),则点A (m ,−18m 2+2m ),由抛物线的表达式知,其对称轴为x =8,则BC =2(8﹣m )=16﹣2m =AD ,则AB =−18m 2+2m ,则设:w =AB +AD +DC =2m +2AB =−14m 2+2m +16,∵−14<0,故w 有最大值,当m =4时,w 的最大值为20,故AB 、AD 、DC 的长度之和的最大值是20.【题型5 利用二次函数解决拱桥形问题】【例5】(2020秋•渝水区校级月考)某河上有抛物线形拱桥,当水面离拱顶5m 时,水面宽8m .一木船宽4m ,高2m ,载货后,木船露出水面的部分为34m .以拱顶O 为坐标原点建立如图所示的平面直角坐标系,A 、B 为抛物线与水面的交点.(1)B 点的坐标为 ;(2)求抛物线解析式;(3)当水面离拱顶1.8米时,木船能否通过拱桥?【解题思路】(1)当水面距拱顶5m 时,水面宽8m ,则B (4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式即可求解;(3)将x =2代入上式,得y =−516x 2=−54,则54+34=2,而1.8<2,即可求解.【解答过程】解:(1)当水面距拱顶5m 时,水面宽8m ,则点B (4,﹣5),故答案为(4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式得﹣5=a ×42,解得a =−516,∴该抛物线的解析式为y =−516x 2; (3)将x =2代入上式,得y =−516x 2=−54, ∵54+34=2,而1.8<2,当水面离拱顶1.8米时,木船不能通过拱桥.【变式5-1】(2020秋•泗阳县期末)河上有一座抛物线形的石拱桥,水面宽6m 时,水面离桥拱顶部3m .(1)如图建立平面直角坐标系,试求抛物线的解析式;(2)一艘装满货物的小船,露出水面部分的高为0.5m ,宽为4m .现因暴雨河水水位上升了1m ,这艘小船能从这座石拱桥下通过吗?请说明理由.【解题思路】(1)根据题意可以知道A 、B 的坐标,在利用点C 得坐标从而求出抛物线的解析式.(2)代入x =2求出y 的值,用其减去1求出可通过船的做最高高度,与0.5比较大小从而得出答案.【解答过程】解:(1)设抛物线的解析式为y =a (x ﹣x 1)(x ﹣x 2).A (﹣3,0),B (3,0),C (0,3).y =a (x +3)(x ﹣3).在将点C (0,3)带入y =a (x +3)(x ﹣3)中的得a =−13,所以抛物线的解析式为y =−13x 2+3,(2)小船可以通过,理由:当x =2时,y =−13×22+3=53,∵53−1=23>0.5,∴暴雨后这艘船能从这座拱桥下通过.【变式5-2】(2021•衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m ,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m .①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【解题思路】根据题意设出适当的二次函数表达式,利用待定系数法求出表达式,再结合图形进行求解即可;【解答过程】解:(1)根据题意可知点F 的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y 1═a 1x 2.将F (6,﹣1.5)代入y 1═a 1x 2有:﹣1.5═36a 1,求得a 1═−124,∴y 1═−124x 2,当x ═12时,y 1═−124×122═﹣6,∴桥拱顶部离水面高度为6m .(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y 2═a 2(x ﹣6)2+1, 将H (0,4)代入其表达式有:4═a 2(0﹣6)2+1,求得a 2═112, ∴右边钢缆所在抛物线表达式为:y 2═112(x ﹣6)2+1,左边钢缆所在抛物线表达式为:y 3═112(x +6)2+1 ②设彩带的长度为Lm ,则L ═y 2﹣y 1═112(x ﹣6)2+1﹣(−124x 2)═18x 2−x +4═18(x −4)2+2, ∴当x ═4时,L 最小值═2,答:彩带长度的最小值是2m .【变式5-3】(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA =8m ,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处,有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y =ax 2+bx +c (a ≠0),该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m (m >0)个单位长度,平移后的函数图象在8≤x ≤9时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【解题思路】(1)根据题意结合图象可以求出函数的顶点B (4,4),先设抛物线的顶点式y =a (x ﹣4)2+4,再根据图象过原点,求出a 的值即可;(2)先求出工人矩原点的距离,再把距离代入函数解析式求出y 的值,然后和1.68比较即可;(3)根据倒影与桥对称,先求出倒影的解析式,再平移m 各单位,根据二次函数的性质求出m 的取值范围.【解答过程】解:(1)如图②,由题意得:水面宽OA 是8m ,桥拱顶点B 到水面的距离是4m ,。
二次函数应用题集锦

二次函数应用题集锦一、二次函数的实际应用--商品问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。
据市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。
要想获得最大利润,该商品应定价为多少元?分析:若设销售单价定为x元,每周的利润为y元。
那么每件商品的利润可表示为(x-40)元,每周的销售量可表示为[300-10(x-60)]件,一周的利润可表示为y=(x-40)[300-10(x-60)] 元,要想获得最大利润可得Y=(x-40)[300-10(x-60)]=(x-40)(900-10x)=-10x²+1300x-36000=-10(x-65)²+6250所以当x=65时,所获得的利润最大为6250元,即商品定价为65元时,可获得最大利润为6250元。
如设销售单价涨了x元,那么每件商品的利润可表示为(20+x) 元,每周的销售量可表示为(300-10x) 件,一周的利润可表示为(20+x)(300-10x) 元,每周获得利润为y=(20+x)(300-10x) =-10(x-5)²+6250当x=5时y的最大值为6250,即当定价:60+5=65元时可获得最大利润为6250元。
2.已知某商品的进价为每件40元。
现在的售价是每件60元,每星期可卖出300件。
市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。
如何定价才能使利润最大?解:设每件涨价为x元时获得的总利润为y元,则y =(60-40+x)(300-10x)=(20+x)(300-10x) (0≤x≤30)=-10x²+100x+6000=-10(x²-10x-600)=-10[(x-5)²-25-600]=-10(x-5)²+6250当x=5时,y的最大值是6250定价:60+5=65(元)第二问解:设每件降价x元时的总利润为y元.y=(60-40-x)(300+20x)=(20-x)(300+20x)=-20x²+100x+6000=-20(x²-5x-300)=-20(x-2.5)²+6125 (0≤x≤20)所以定价为60-2.5=57.5时利润最大,最大值为6125元.答:综合以上两种情况,定价为65元时可获得最大利润为6250元.已知某商品的进价为每件40元。
二次函数实际问题题型总结

二次函数实际问题题型总结二次函数是高中数学中比较重要的一个章节,它表示的是一种形式为$y=ax^2+bx+c$ 的函数关系。
我们可以通过这个函数来解决很多实际问题,例如运动问题、经济学问题、物理学问题等等。
下面来总结一下二次函数实际问题的题型:1.飞行时间问题。
如果一架飞机从地面起飞并上升至高度 $H$,则它的飞行时间可以表示为 $t=\frac{-b-\sqrt{b^2-4ac}}{2a}$。
其中 $a$ 表示重力加速度,$b$ 表示初速度, $c$ 表示起飞高度。
2.弹射高度问题。
如果一个弹球从地面弹射,并上升至高度 $H$ 后又落回地面,它的弹射高度可以表示为 $H=\frac{V_i^2\sin^2\theta}{2g}$。
其中$V_i$ 表示初速度, $\theta$ 表示仰角, $g$ 表示重力加速度。
3.投射距离问题。
如果一个物体以速度 $V$ 投出,发射角度为 $\theta$,则它的投射距离可以表示为 $R=\frac{V^2\sin2\theta}{g}$。
4.向上抛球的时间问题。
如果一个物体在 $t$ 秒时从地面抛出,当它达到最高点的时候它的高度为 $H$,则它的上升时间可以表示为$t=\frac{1}{2}\sqrt{\frac{H}{g}}$。
其中 $g$ 表示重力加速度。
5.落地时间问题。
如果一个物体从高度为 $H$ 的地方落下,则它的落地时间可以表示为 $t=\sqrt{\frac{2H}{g}}$。
6.成本问题。
如果生产一个产品的成本可以表示为 $C(x)=ax^2+bx+c$,其中$x$ 表示生产的数量, $a$ 表示固定成本, $b$ 表示每个产品的变动成本, $c$ 表示额外的成本,则我们可以通过求导数来确定生产的最优数量。
7.利润问题。
如果销售一个产品的收入可以表示为 $R(x)=mx$,其中 $m$ 表示每个产品的销售额,则利润可以表示为 $P(x)=R(x)-C(x)$。
二次函数常考三种应用题

二次函数常考三种应用题二次函数是高中数学中的重要内容,它具有广泛的应用场景。
在解答二次函数应用题时,通常需要从实际问题中抽象出数学模型,利用二次函数的性质来解决问题。
在考试中,常见的二次函数应用题主要包括最值问题、图像分析问题和实际问题三类。
下面将分别对这三类题目进行详细的解析,并提供一些例题。
第一类是最值问题。
最值问题是二次函数应用题中比较常见的一类,它主要涉及到二次函数图像的顶点问题以及函数值的最大值和最小值问题。
在解决这类问题时,可以通过变换二次函数的标准形式,找到顶点的坐标,并利用顶点的坐标来求解最值问题。
例题:已知函数y=2x^2-5x+3,求此函数的最大值和最小值。
解析:将函数转化为标准形式,即y=2(x^2-5/2x+3/2)=2(x-5/4)^2-17/8,可以看出函数的图像开口向上,因此函数的最小值即为顶点的纵坐标,最大值为正无穷。
而顶点的横坐标为x=5/4,将其代入函数中得到最小值y=-17/8、因此,函数的最大值为正无穷,最小值为-17/8第二类是图像分析问题。
图像分析问题是通过对二次函数的图像进行详细分析,来求解相关问题。
其中,常见的问题包括判定图像的开口方向、确定顶点坐标、寻找对称轴、研究函数值的正负及函数值的变化趋势等。
例题:已知函数y=-3x^2+6x+9,请判断函数的图像开口方向、确定顶点坐标以及找出对称轴。
解析:通过观察二次函数的各项系数,可以得知此函数的二次项系数为负数,因此函数的图像开口向下。
进一步分析二次项系数为-3,可知此函数的图像较为扁平。
通过求解顶点坐标可得,x=-b/2a=-6/(2*(-3))=1,将其代入函数中,得到y=-3(1)^2+6(1)+9=12、因此,函数的图像开口向下,顶点坐标为(1,12)。
第三类是实际问题。
实际问题是将具体的实际问题转化为数学模型,再通过解析数学模型来求解实际问题。
这类问题较为复杂,常常需要运用一些辅助变量和条件,将问题转化为二次函数的形式。
二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。
解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。
经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。
解最值问题时,一定要注意自变量的取值范围。
分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。
2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。
中考专项复习:二次函数的应用---题型总结解析版

即 W 与 x 之间的函数表达式是 w=﹣2x2+280x—8000
(3) W=﹣2x2+280x—8000=—2(x—70)2+1800,其中40≤x≤80 ,∵﹣2<0,
∴当40≤x≤70时,W 随 x 的增大而增大,当70≤x≤80时,w 随 x 的增大而减小,当售价为 70元时,获得最大利润,这时最大利润为1800元.
【答案】2(x﹣8)(x+2)
【解析】50−x
试题分析:(1)∵y=x·⋅
=−1/2(x−25)2+625/2,
∴当 x=25 时,占地面积最大, 即饲养室长 x 为 25m 时,占地面积 y 最大;
(2)∵y=x·
=−12(x−26)2+338,
∴当 x=26 时,占地面积最大, 即饲养室长 x 为 26m 时,占地面积 y 最大;
考点:A:应用二次函数求最大利润 ,B:求一次函数的解析式 例3.(2017山东潍坊)工人师傅用一块长为10dm,宽为6dm 的矩形铁皮制作一个无盖的长方 体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折 痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
当 4<x≤14 时,设 P=kx+b,
4k+b=40
k=1
将(4,40)、(14,50)代入, 可得: 14k+b=50 ,解得: b=36 ,
∴P=x+36;
①当 0≤x≤4 时,W=(60−40)·7.5x=150x,
∵W 随 x 的增大而增大, ∴当 x=4 时,W 最大=600 元; ②当 4<x≤14 时,W=(60−x−36)(5x+10)=−5x2+110x+240=−5(x−11)2+845,
二次函数与实际问题典型例题

二次函数与实际问题典型例题二次函数是一种常见的数学函数形式,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
它在实际问题中有许多应用,下面我将从多个角度给出一些典型例题,以展示二次函数与实际问题的关系。
1. 抛物线的高度问题,假设一个物体从地面上抛,忽略空气阻力,其高度与时间的关系可以用二次函数表示。
例如,一个抛物线的方程可以是h(t) = -5t^2 + 10t + 2,其中h表示高度,t表示时间。
通过解方程可以求得物体的最高点、飞行时间等信息。
2. 弹性问题,当一个弹簧的伸长或压缩距离与施加的力之间存在线性关系时,其运动可以由二次函数描述。
例如,弹簧的伸长或压缩距离与施加的力的关系可以表示为d(f) = af^2 + bf + c,其中d表示伸长或压缩距离,f表示施加的力。
3. 成本与产量问题,在某些生产过程中,成本与产量之间可能存在二次函数关系。
例如,一个公司的成本可以表示为C(x) =ax^2 + bx + c,其中C表示成本,x表示产量。
通过分析二次函数的图像,可以找到最小成本对应的产量。
4. 面积最大化问题,在某些几何问题中,要求找到一个形状的最大面积。
例如,给定一定长度的围墙,如何构造一个矩形花园使得其面积最大?通过建立二次函数模型,可以解决这类问题。
5. 轨迹问题,在物理学或工程学中,研究物体在一定条件下的轨迹是常见的问题。
例如,一个抛物线的轨迹可以由二次函数表示。
通过分析二次函数的性质,可以求解物体的轨迹方程。
总之,二次函数在实际问题中有广泛的应用,涉及到物理学、经济学、几何学等多个领域。
通过建立二次函数模型,可以解决许多实际问题,并对问题进行分析和预测。
二次函数应用题

一、传播问题:1、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求,,每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?2、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?二、增长率问题:平均增长(降低)率公式注意:(1)1与x 的位置不要调换(2)解这类问题列出的方程一般用直接开平方法1. 某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程为_________________2. 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为_____________3、雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?4、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒121元降到每盒100元,则这种药品平均每次降价的百分率为多少?2(1)a x b±=5、我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里,到2005年已增至144平方公里。
请问:2003至2005年沙化土地的平均增长率为多少?三、面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。
初二数学二次函数应用题详解

初二数学二次函数应用题详解二次函数是数学中的重要内容之一,它在各个领域都有广泛的应用。
本文将详细解析初二数学中的二次函数应用题,帮助同学们更好地理解和应用这一知识点。
1. 抛物线的开口方向在初二数学中,我们学过了二次函数的标准形式 y = ax^2 + bx + c。
对于这个标准形式的二次函数而言,开口方向由系数 a 的正负决定。
当 a > 0 时,抛物线开口朝上;当 a < 0 时,抛物线开口朝下。
2. 求顶点坐标对于一般形式的二次函数 y = ax^2 + bx + c,其中a≠0,顶点坐标可以通过公式 x = -b/2a 和 y = f(x) 求得。
其中 f(x) 表示二次函数的值,即y = ax^2 + bx + c。
3. 求零点零点也称为方程的根,即函数与 x 轴的交点。
求二次函数的零点可以通过解二次方程 ax^2 + bx + c = 0 求得。
一般情况下,我们可以使用求根公式 x = (-b ± √(b^2-4ac))/(2a) 来解二次方程。
其中, b^2-4ac 被称为判别式,它决定了二次方程有几个根。
4. 拉伸缩放变换二次函数的图像可以通过拉伸和缩放进行变换。
具体地说,当函数的形式为 y = a(x-h)^2 + k 时,可以通过 a、h 和 k 的值来进行图像的拉伸缩放。
其中,a 决定了抛物线的开口大小,h 决定了抛物线的平移,k 决定了抛物线的纵轴位置。
5. 二次函数与实际问题的应用二次函数在实际问题中有广泛的应用,比如自由落体、抛物线轨迹、开口朝下的油箱等。
这些问题可以通过建立二次函数模型来求解,进而得到实际问题的答案。
解决这些应用题的关键在于能够准确地把实际问题转化为二次函数,并利用二次函数的性质进行求解。
6. 实例分析以下通过一个实例来进一步说明二次函数的应用。
【题目】一架火箭被发射上升,其轨迹可以用二次函数 y = -0.2x^2+ 20x + 10 描述,其中 x 表示时间(单位:秒),y 表示高度(单位:米)。
二次函数的像与应用题解答方法总结

二次函数的像与应用题解答方法总结二次函数是高中数学中重要的一章,通过对二次函数的学习,我们可以掌握解二次方程和研究二次函数的性质等内容。
本文将总结二次函数的像与应用题解答方法,帮助读者更好地理解和应用二次函数。
一、二次函数的像在了解二次函数的像之前,我们先回顾一下基本概念。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
我们先来看一下二次函数图像的基本特点:1. 开口方向:当a > 0时,二次函数图像开口向上;当a < 0时,二次函数图像开口向下。
2. 顶点坐标:二次函数图像的顶点坐标为(-b/2a, f(-b/2a)),其中f(-b/2a)为函数在顶点的函数值。
3. 对称轴:二次函数图像的对称轴方程为x = -b/2a。
二次函数的像即为函数在定义域中所有的取值。
常见的二次函数像包括开口向上的抛物线、开口向下的抛物线以及特殊情况下的两个点、一条直线等不同形式。
例如,对于函数y = x^2,其像是所有非负实数,即y ≥ 0。
对于函数y = -x^2,其像是所有的实数,即整个数轴上的点。
二、二次函数的应用题解答方法除了了解二次函数的基本性质之外,我们还需要掌握如何解答二次函数的应用题。
下面将介绍两种常见的应用题解答方法。
1. 构建二次函数方程当遇到与二次函数相关的具体问题时,我们可以通过构建二次函数方程来解决。
具体步骤如下:(1) 根据题意,确定自变量与因变量的关系,利用已知条件列出方程。
(2) 整理方程,将方程化为一般形式y = ax^2 + bx + c。
(3) 解二次方程,求解方程得到x的值。
(4) 根据求得的x值,计算对应的y值,得到应用题的解答。
2. 通过图像解答应用题有些应用题可以通过观察二次函数图像解答。
具体步骤如下:(1) 根据题意,确定二次函数的开口方向、顶点坐标等基本特点。
(2) 利用已知条件,画出二次函数的图像。
(3) 根据图像,得到应用题的解答。
二次函数应用题自己总结

例题.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12. 用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?练习 如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当 点E 位于何处时,正方形EFGH 的面积最小?二、利润问题例题.某商店经营T 恤衫,已知成批购进时单价是2.5元. 根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?练习.某超市经销一种销售成本为每件40元的商品。
据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件。
设销售单价为x 元(x ≥50),一周的销售量为y 件。
(1)写出y 与x 的函数关系式(标明x 的取值范围);(2)设一周的销售利润为S ,写出S 与x 的函数关系式,求出S 的最大值,并确定当单价在什么范围内变化时,利润随单价的增大而增大?(3)若超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少元F E DC B A H G F ED C B A二.探索新知:例题:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB =1.6m 时,涵洞顶点与水面的距离为2.4m 。
这时,离开水面1.5m 处,涵洞宽ED 是多少?练习.拱桥呈抛物线形,其函数关系式为y =-14 x 2,当拱桥下水位线在AB 位置时,水面宽为12m ,这时水面离桥拱顶端的高度h 是( )A .3mB .2 6 mC .4 3 mD .9m四、最大高度问题例题.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是h =30t -5t 2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?练习:书中五、喷泉问题例题:如图,某建筑物从10m 高的窗口A 用水管向外喷水,喷出的水呈抛物线状, 如果抛物线的最高点M 离墙1m ,离地面340m ,水流落点B 离墙的距离OB 的长= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用一、顶点坐标公式的应用(基本题型)1、某超市销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱的售价在40元~70元之间.市场调查发现:若每箱50 元销售,平均每天可销售90 箱,价格每降低1 元,平均每天多销售3 箱;价格每升高1 元,平均每天少销售3 箱.(1)写出平均每天的销售量y(箱)与每箱售价x(元)之间的函数关系式(注明自变量x 的取值范围);(2)求出超市平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润b 24ac b 2=售价-进价);(3)请把(2)中所求出的二次函数配方成y a(x )2的形式,并指出当x=40、70 时,2a 4aW 的值.(4)在坐标系中画出(2)中二次函数的图象,请你观察图象说明:当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?练习:2、我市有一种可食用的野生菌,上市时,外商李经理按市场价格30 元/千克收购了这种野生菌1000 千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨 1 元;但冷冻存放这批野生菌时每天需要支出各种费用合计310 元,而且这类野生菌在冷库中最多保存160 天,同时,平均每天有 3 千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W 元?(利润=销售总额-收购成本-各种费用)练习3、汽车城销售某种型号的汽车,每辆进货价为25 万元,市场调研表明:当销售价为29 万元时,平均每周能售出8 辆,而当销售价每降低0.5 万元时,平均每周能多售出4 辆.如果设每.辆.汽车降价x 万元,每辆汽车的销售.利.润.为y 万元.(销售利润销售价进货价)(1)求y 与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;(3 分)(2)假设这种汽车平均每周..的销售利润为z万元,试写出z与x之间的函数关系式;(3分)(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?( 4 分)练习4、某集团将下设的内部小型车场改为对外开放的收费停车场。
试运营发现:每辆次小车的停车费不超过 5 元时,每天来此处停放的小车为1440 辆次,超过 5 元时,每涨 1 元,每天来此处停放的小车就减少120 辆次,而此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800 元。
为便天结算,规定每辆次小车的停车费x(元)只取整数,用y (元)表示此停车场的日净收入,且要求日净收不低于2512 元。
(日净收入=每天共收取的停车费-每天的固定支出)(1)当x≤5时,写出y 与x 之间的关系式。
并说明每辆次小车的停车费最少不低于多少元;(2)当x>5时,写出y与x 之间的函数关系式(不必写出x 的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次校多,又要有较大的日净收入。
按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?练习5、某地区盛产一特种产品,帮扶公司经过市场调查,发现该产品在A市有很好的消费市场,于是06 年开始投入资金购销该产品,现了解到公司06年的一些购销情况:公司以9 万元/吨的市场保护价收购该产品,收购产品、分类包装、运往 A 市等費用約為0.5万元/吨,所收购产品的损耗率为5%,在 A 市的销售价为15万元/吨.07年公司为了提高该产品的知名度,扩大销量,在收购价与销售价不变的前提下,准备拿出一定的资金在 A 市做广告宣传.根据经验,投入广告费x(万元)与在06 年销量的基础上该产品的销量y(吨)之间满足关系: y=ax 2+bx+50.并且当投入 1 万元的广告费时,销量为59 吨;当投入 2 万元的广告费时,销量为66吨.(1)公司06 年将销售利润全部回报后,在市场保护价的基础上,农民卖出 1 千克的产品还可增收元;(2)试写出y 与x 之间的函数关系式:y=,根据关系式可知,06 年公司实际收购该产品吨;(3)设07 年公司的销售利润为W(万元)(销售利润=销售额-成本费-广告费),试写出W与x 之间的二次函数关系式;练习6、.某公司有甲、乙两个绿色农产品种植基地.在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售.根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y 2x 3(1≤x≤10且x为整数).该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:(1)请用含y 的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;(2)设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨).请求出p(吨)与收获天数x(天)的函数关系式;(3)在(2)的基础上,若仓库内原有该种农产品42.6 吨,为满足本地市场需求,在此收获期开始的同时,每天从仓m (吨)与收获天数x(天)满足函数库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量2关系m x213.2x 1.6(1≤x ≤10,且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化 建议.、表达式的应用7、20练习: 8、某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高9m ,与篮圈中心的水平距离为 7m ,当球出手后水平距离为 4m 时到达最大高度 4m ,设篮球运行的轨迹为抛物线,篮圈距地面 3m .( 1)建立如 图所示的平面直角坐标系,求抛物线的解析式 并判断此球能否准确投中 ?( 2)此时,若对方队员乙在甲前面 1m 处跳 起盖帽拦截,已知乙的最大摸高为 3.1m ,那么他能否获得成功?精品资料 欢迎下载附加练习 某大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、 材料费 2.7 万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为 顷种植蔬菜需种子、化肥、农药等开支 0.3万元.每公顷蔬菜年均可卖 7.5 万元.(1)基地的菜农共修建大棚 x (公顷),当年收益(扣除修建和种植成本后)为 y (万元), 函数关系式.( 2)若某菜农期望通过种植大棚蔬菜当年获得 5万元收益,工作组应建议他修建多少公项大棚.( 3)除种子、化肥、农药投资只能当年受益外,其它设施 3 年内不需增加投资仍可继续使用.如果按 农膜等0.9;另外每公写出 y 关于 x 的 用分数表示即可)3年计算,是否三、不等式与二次函数的综合应用9、、某公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在x(元)存在如图所示的一次函数关系函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5 万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元练习10、、某高科技发展公司投资500 万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500 万元进行批量生产。
已知生产每件产品的成本为40 元,在销售过程中发现:当销售单价定为100 元时,年销售量为20万件;销售单价每增加10 元,年销售量将减少1万件,设销售单价为x元,年销售量为y万件,年获利(年获利=年销售额-生产成本-投资)z 万元。
(1)试写出y与x之间的函数关系式;(不必写出x 的取值范围)(2)试写出z与x之间的函数关系式;(不必写出x的取值范围)(3)计算销售单价为160 元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件?(4)公司计划:在第一年按年获利最大确定的销售单价进行销售,第二年年获利不低于1130 万元。
请你借助函数的大致图象说明,第二年的销售单价x (元)应确定在什么范围内?练习11为了扶持大学生自主创业,市政府提供了80 万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40 元,员工每人每月的工资为2500元,公司每月需支付其它费用15 万元.该产品每月销售量y(万件)与销售单价x(元)(x>40)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到 5 万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?四、双二次函数综合应用12、某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润 2.4 万元,当投资 4 万元时,可获利润 3.2 万元.(1)求出y B与x 的函数关系式.(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x 之间的关系,并求出y A与x 的函数关系式.(3)如果企业同时对A、B两种产品共投资15 万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?练习13、某地区地理位置偏僻,严重制约着经济的发展,某种土特产品只有在本地销售。
该地区政府每投资x 万元,12所获利润为P=-(x-40)2+10 万元。
为顺应开发大西北的宏伟决策,该地区政府在制订经济发展十年规划时,160拟开发此种土特产品,而开发前后用于该项目投资的专项财政拨款每年都是60 万元。
若开发该产品,必须在前 5 年中,每年从60 万元专款中拿出30 万元投资修通一条公路,且 5 年可以修通。