细胞生物学课程第4章
细胞生物学第四章细胞外基质
细胞生物学第四章细胞外基质
胶原分子按相邻分子相交错四分之一长度、前 后分子首尾相隔35nm的距离自我装配,成为明暗 相间、直径约10nm~30nm的胶原原纤维。 若干胶原原纤维再经糖蛋白粘合成为粗细不等 的胶原纤维。
细胞生物学第四章细胞外基质
胶原分子
细胞生物学第四章细胞外基质
胶原的结构(左模式图,右电镜照片)
第四章 细胞外基质
(extracellular matrix,ECM)
细胞生物学第四章细胞外基质
细胞外基质(extracellular matrix,ECM): 细胞外间隙中充满由多种不溶性大分子精密组装起 来的错综复杂的网络结构,即细胞外基质,它是多 细胞生物有机体的固有成分。 细胞外基质的成分主 要包括胶原、非胶原糖蛋白、弹性蛋白以及氨基聚 糖和蛋白聚糖。细胞外基质不仅对组织起支持、保 护、营养作用,而且还与细胞的增殖、分化、代谢、 识别、迁移、死亡等基本生命活动密切相关。
α β
γ
细胞生物学第四章细胞外基质
三条短臂:各由3条肽链的N-端序列构成, 每一短臂包括2个球区及2个短杆区;
长臂:由3条肽链的近C-端序列共同构成杆 区;而末端的分叶状大球区仅由α链C-端序列卷 曲而成,是与硫酸肝素结合的部位。
LN分子中至少存在8个与细胞结合的位点。
细胞生物学第四章细胞外基质
㈡层粘连蛋白 (laminin,LN)
1.分子结构特点 LN是糖链结构最复杂的高分子糖蛋白(含糖 量15%~28%),具有50条左右N连接的寡糖,分 子质量巨大,约850 kDa。 LN由一条重链(α链)和两条轻链(β、γ链) 构成,三条肽链借二硫键交联成不对称的十字形分 子。
细胞生物学第四章细胞外基质
细胞生物学第4章作业答案
被动运输:即协助扩散(facilitated diffusion),是指溶质顺着电化学梯度或浓度梯度,不需要细胞提供能量,在膜转运蛋白协助下的跨膜转运方式。
△主动运输:是指由载体蛋白所介导的物质逆着电化学梯度或浓度梯度进行跨膜转运的方式。
△简单扩散:是指小分子物质以热自由运动的方式顺着电化学梯度或浓度梯度,不需要细胞提供能量,也无需膜转运蛋白的协助,直接通过脂双层进出细胞的运输方式。
△协助扩散:是指溶质顺着电化学梯度或浓度梯度,不需要细胞提供能量,在膜转运蛋白协助下的跨膜转运方式。
协同运输:协同运输又称协同转运,是指一种物质的逆浓度梯度跨膜运输依赖于另一种物质的顺浓度梯度的跨膜运输的物质运输方式,不直接消耗能量但是需要间接地消耗能量。
协同转运又可分为同向转运和反向转运。
同向转运的物质运输方向和离子转移方向相同。
△胞吞作用:胞吞作用是指细胞通过质膜内陷形成囊泡,将胞外的生物大分子、颗粒性物质或液体等摄取到细胞内,以维持细胞正常的代谢活动的过程。
△胞吐作用:胞吐作用是指细胞内合成的生物分子(蛋白质和脂质等)和代谢物以分泌泡的形式与质膜融合而将内含物分泌到细胞表面或细胞外的过程。
网格蛋白:网格蛋白是指由分子量为180×103的重链和35×103~40×103的轻链组成的二聚体,三个二聚体形成三脚蛋白复合物的包被结构,受膜受体和配体的激活,在膜下形成包被小窝和包被膜泡,参与膜泡运输。
1. 膜转运蛋白可分为2类:载体蛋白和通道蛋白。
△2. 通道蛋白有3种类型:离子通道、孔蛋白和水孔蛋白。
△3. 物质通过细胞膜的转运主要有3种途径:主动运输、被动运输和胞吞胞吐作用。
4. 主动运输分为ATP直接供能、间接供能和光驱动泵3种基本类型。
△5. 胞吞作用可分为2种基本类型吞噬作用和胞饮作用。
△6. 比较载体蛋白与通道蛋白的异同。
答:(1)载体蛋白与通道蛋白的相同点化学本质均为蛋白质,均分布在细胞的膜结构中,都有控制特定物质跨膜运输的功能。
细胞生物学 第四章
(2)光面内质网(sER) 光面内质网又称滑面内质网或无颗粒 型内质网。这类内质网的膜表面没有核糖体附着,所以表面光滑。光 面内质网的结构与糙面内质网不同,多为分支小管或小囊构成的细网, 很少有扁囊状的。小管直径为50~100nm,它们连接成网,形成较为 复杂的立体结构(图4-3)。
细胞生物学 第四章
第二节 内质网
在内质网膜上合成的磷脂很快就由细胞质基质侧转向 内质网膜腔面,其中有的插入到脂双分子里,有的向其它 膜转运。其转运主要有两种方式:一种是以出芽的方式, 以运输小泡转运到高尔基体、溶酶体和细胞膜上;另一种 方式是凭借一种水溶性的载体蛋白,即磷脂转换蛋白 (phospholipid exchange protein,PEP)在膜之间转移磷脂。 其转运模式是:PED与磷脂分子结合形成水溶性的复合物 进入细胞质基质,通过自由扩散,直到靶膜时,PEP将磷 脂释放出来,并安插在膜上,结果使磷脂从含量高的膜转 移到缺少磷脂的膜上。细胞中转移到线粒体或过氧化物酶 体膜上的磷脂就是通过此方式转运的。
细胞生物学 第四章
第一节 细胞质基质
3.细胞质基质在蛋白质的修饰、蛋白质寿命的控制以 及蛋白质选择性降解等方面有重要作用
现已发现的蛋白质侧链修饰有100余种,其中绝大多 数的修饰是由专一的酶作用于蛋白质侧链的特定位点。已 知在细胞质基质中发生蛋的白质修饰主要有:辅酶或辅基 与酶的共价结合;蛋白生物活性的磷酸化、去磷酸化;将 N-乙酰葡萄糖胺分子加到丝氨酸残基上的糖基化以及某些 蛋白质分子末端的甲基化修饰等。这些不同形式的修饰, 用以调节蛋白质的生物活性。同时,细胞质基质还在控制 蛋白质寿命、降解变性和错误折叠的蛋白质以及帮助变性 或错误折叠的蛋白质重新折叠为新的正确的分子构象等方 面起重要作用。
《细胞生物学》系列课程:第四章质膜和细胞表面一
《细胞生物学》系列课程:第四章质膜和细胞表面一《细胞生物学》系列课程第四章质膜和细胞表面一第四章质膜和细胞表面概述:质膜、内膜系统、生物膜、单位膜第一节质膜的化学成分第二节质膜的分子结构第三节质膜的特性第四节细胞表面及其特化结构第五节质膜与细胞的物质运输概述:质膜(plasmamembrane)细胞质与外界相隔开的一层界膜,又称细胞膜(cellmembrane),厚7~10nm存在意义:屏障作用,提供稳定的内环境物质转运信号传递、细胞识别等内膜系统(Endo-membranesystem)除质膜外,真核细胞内还有一些膜结构。
概念:真核细胞内那些在结构、功能及发生上密切关联的膜性结构细胞器的总称。
生物膜(biologicalmembrane)所有膜性结构的总称20Ao35Ao20Ao单位膜(unitmembrane)——生物膜的共同形态结构特征概念:透射电镜下,生物膜呈现出“两暗夹一明”铁轨样形态,称为单位膜。
第一节质膜的化学成分脂类:50%蛋白质:40~50%糖类:1~10%不同类型生物膜三种物质的比例不同,一般,膜功能复杂,蛋白质含量高。
一、膜脂(membranelipid)概述膜脂是细胞膜的基本组成成分种类:磷脂(最多)、胆固醇和糖脂特点:兼性(双亲性、两亲性)分子存在形式:脂质双分子层功能:生物膜的基本骨架屏障作用赋予膜流动性(一)磷脂(phospholipid)——膜脂的基本成分含量最多的膜脂,约占膜脂的50%以上双亲性分子1个亲水头2个疏水尾(多为脂肪酸链)可分两大类:甘油磷脂鞘磷脂胆碱乙醇胺丝氨酸肌醇1.甘油磷脂——以甘油为骨架磷脂酰胆碱(卵磷脂)磷脂酰乙醇胺(脑磷脂)磷脂酰丝氨酸磷脂酰肌醇极性基团磷酸甘油脂肪酸链磷脂酰乙醇胺(脑磷脂)磷脂酰胆碱(卵磷脂)2.鞘磷脂——以鞘氨醇为骨架在神经细胞膜中特别丰富,原核和植物细胞膜中不含。
1个亲水头2个疏水尾胆碱等胆碱脂肪酸脂肪酸脂肪酸烃链甘油磷脂鞘磷脂磷脂酰乙醇胺磷脂酰丝氨酸磷脂酰胆碱鞘磷脂鞘氨醇分子团脂质体磷脂双层磷脂分子在水溶液中的3种构型:①球形单层分子团②双分子层③脂质体抗体聚乙二醇脂溶性药物人工脂质体应用:转基因载体药物载体膜功能的研究疏水尾(二)胆固醇(cholesterol)主要存在于动物细胞膜上,原核细胞中无植物细胞中少(约占膜脂2%)含量多不超过膜脂的1/3个别达50%两亲性分子亲水头&疏水尾(胆固醇)分布:散布在磷脂分子之间功能:①维持膜的稳定性②调节膜的流动性(双向调节)甾环胆固醇对膜流动性的双向调节糖脂(三)糖脂(glycolipid)普遍存在于原核和真核细胞质膜上,约占膜脂总量的5%。
细胞生物学学习资料(第4-6章)
细胞生物学学习资料(第4-6章)第四章细胞质膜学习要点第一节第一细胞质膜的结构模型一、生物膜的结构模型 1.生物膜模型的发展历程① Danielli和Davson提出“蛋白质-脂质-蛋白质”的三明治结构模型。
② 1959年Robertson提出单位膜模型③ Singer和Nicolson于1974年提出流体镶嵌模型,主要强调生物膜的流动性、膜蛋白分布的不对称性。
随后的液晶态模型及板块镶嵌模型对流体镶嵌模型进行了补充、完善。
④1988年Simon提出脂筏模型。
2.对生物膜结构的归纳总结①具有极性头部和非极性尾部的磷脂分子形成可运动的磷脂双层。
②可运动的蛋白质以非对称方式镶嵌在磷脂双层中或结合于表面。
③生物膜可以看作是在磷脂双层中镶嵌蛋白质的二维溶液。
二、膜脂成分膜脂主要包括磷脂、糖脂和胆固醇膜脂的运动方式①沿膜平面的侧向运动,是膜脂运动的基本方式。
②脂分子围绕轴心的自旋运动。
③脂分子尾部的摆动。
④双层脂分子间的翻转运动。
脂质体脂质体是根据磷脂分子可以在水相中形成稳定的脂双层膜的趋势而制备的人工膜。
单层脂分子铺展在水面上,即形成极性端向外而非极性端向内的脂分子团。
脂质体可以用不同的膜脂来制备,还可以嵌入不同的膜蛋白,因此脂质体是研究膜蛋白与膜脂及其生物学性质的极好材料,在临床治疗中有很好的前景。
三、膜蛋白膜蛋白的类型①外在膜蛋白:为水溶性蛋白,依靠离子键或其他弱键与膜表面的膜蛋白分子或膜脂分子结合。
②内在膜蛋白:与膜结合比较紧密,占整个膜蛋白的70%—80%。
③脂锚定膜蛋白:通过与之共价相连的脂分子插入脂双层,从而锚定在细胞质膜上。
内在膜蛋白与膜脂结合的方式内在膜蛋白与膜脂结合的主要方式有以下几种。
①膜蛋白的跨膜结构域与脂双层的疏水核心的相互作用。
②带正电的膜蛋白跨膜结构域与带负电的磷脂极性分子结合。
③有些膜蛋白通过共价结合脂肪酸分子,插入到脂双层中。
④少数蛋白与糖脂共价结合。
内在膜蛋白跨膜结构域是与膜脂结合的主要部位,具体作用方式如下。
细胞生物学4章 细胞膜与表面
二、弹性蛋白(elastin) 非糖基化纤维状蛋白 高度韧性与回缩能力
三、非胶原糖蛋白 纤粘连蛋白(FN) 层粘连蛋白(LN)
V字形 十字形
四、氨基聚糖与蛋白聚糖 重复二糖单位组成氨基聚糖 氨基聚糖与核心蛋白组成蛋白聚糖
蛋 白 聚 糖
第4章:
1.细胞膜的化学组成和生物膜的特性 2.液态镶嵌模型 3.细胞的连接装置 4.细胞膜的特化结构和功能 5.细胞外基质的化学成分
第四节 细胞表面与特化
细胞表面(cell surface) 细胞表面是一个复合结构体系 细胞膜是核心 还有细胞外被、胞质溶胶、特化结构
一. 细胞外被(cell coat) 糖萼(glycocalyx) 组成寡糖链的单糖主要有7种: 半乳糖、葡萄糖、岩藻糖、甘露糖、乙酰 氨基半乳糖、乙酰氨基葡萄糖、唾液酸。
每个寡糖链不同: 1.单糖种类 2.数量 3.排列顺序 4.连接方式 5.有无分枝
细胞被的功能: 1.保护和润滑作用 2.通讯识别与黏着 3.构成细胞间连接装置 4.构成细胞膜抗原
二. 胞质溶胶(cytosol,cell sap) 细胞膜内表面0.1~0.2 μm的溶胶层 有微管、微丝等成分
三. 细胞表面的特化结构 1.微绒毛(小肠上皮细胞表面) 2.细胞膜内褶(肾小管上皮细胞基部) 3.纤毛(气管上皮细胞表面/输卵管上皮细胞) 4.鞭毛(精子的尾部)
甘油磷脂(甘油衍生物)
鞘磷脂(鞘氨醇衍生物)
神经鞘磷脂(SM)
亲水的头部(碱基、磷酸、甘油) 疏水的尾部(脂肪酸链) 既亲水又疏水的兼性分子
(二)胆固醇 极性羟基头部 非极性类固醇环 非极性碳氢链
(三)糖脂 半乳糖脑苷脂 鞘糖脂 神经节苷脂
细胞生物学4-5章
《细胞生物学》第四章——第五章一. 名词解释1.生物膜2.细胞质膜3.脂质体4.外在膜蛋白5.脂锚定膜蛋白6.内在膜蛋白7.去垢剂8.细胞外表面9.原生质表面10.原生质小页断裂面11.膜骨架12.红细胞影(血影)13.细胞运输14.胞内运输15.跨细胞运输16.通道蛋白17.被动运输18.简单扩散19.协助扩散20.水孔蛋白21.主动运输22.ATP驱动泵23.光驱动泵24.钙泵25.ABC超家族26.协同转运27.胞饮作用28.吞噬作用29.胞吐作用二.填空1.S.J.Singer和G.Nicolson于1972年提出了生物膜的____________,最近,有人提出_________对其进行补充。
2.膜脂是生物膜的基本组成成分,主要包括磷脂、_________和________三种类型,其中磷脂可分为两类:_________和__________.3.一般情况下,膜脂分子的热运动中_________极少发生,但其在细胞某些_______中发生的频率很高,特别是在_________上,新合成的磷脂分子经过几分钟后,将有半数从脂双层的一侧通过__________转位到另一侧,但这一过程需要特殊的__________协助完成。
4.膜蛋白可分为三种基本类型:_________、________、_________,其中与膜结合比较紧密的为:____________,只有用去垢剂使膜崩解才可分离出来。
5.去垢剂是分离与研究膜蛋白的常用试剂,有______________和____________两类。
____________对蛋白质的作用比较温和。
常用的去垢剂有______________、_____________。
6.膜脂的活动性主要指分子的________运动,它在很大程度上是有脂分子本身的性质决定的。
一般来说,脂肪酸链________,不饱和程度________,膜脂的流动性越大。
温度对膜脂的运动有明显的影响,各种膜脂都具有其不同的__________。
细胞生物学第四章 细胞质膜及其表面
磷脂与糖脂分布的不对称性
2.复合糖 的不对称性
• 膜糖以糖 蛋白或糖脂 的形式存在, 无论是糖蛋 白还是糖脂 的糖基都是 位于膜的外 表面
膜糖分布的不对称性
3、膜蛋白的 不对称性:
每种膜蛋白分子在 细胞膜上都具有特 定的方向性和分布 的区域性。 膜蛋白的不对称性 包括外周蛋白分布 的不对称以及整合 蛋白内外两侧氨基 酸残基数目的不对 称。
①,② integral protein; ③,④ lipid-anchored protein; ⑤,⑥ peripheral protein
膜蛋白的功能
ቤተ መጻሕፍቲ ባይዱ
第二节 细胞膜的结构 一、细胞膜结构的研究历史
1. E. Overton 1895 发现凡是溶 于脂肪的物质很容易透过植物的 细胞膜,而不溶于脂肪的物质不 易透过细胞膜,因此推测细胞膜 由连续的脂类物质组成。
1. 具有一个极性头和两个非极性的尾(脂肪酸链), 线粒体内膜上的心磷脂具有4个非极性尾部。 2. 脂肪酸碳链为偶数,多数碳链由16,18或20个碳 原子组成。 3. 常含有不饱和脂肪酸(如油酸)。
1、甘油磷脂
• 以甘油为骨架的磷脂类,在骨架上结合两个脂
肪酸链,磷酸基团,胆碱、乙醇胺、丝氨酸或肌醇 等分子籍磷酸基团连接到脂分子上。主要类型有:
• 细胞膜、 细胞外被和表层胞质溶胶构成细胞表面。
细胞生物学4-第四章:细胞环境与互作
14. 细胞环境与互作细胞环境(图4-1)包括内环境和外环境, 互作包括细胞与细胞、细胞与环境之间的相互作用。
这些作用主要是通过细胞表面进行的, 包括细胞识别、细胞粘着、细胞连接、细胞通讯等。
本章主要集中讨论细胞的表面结构、细胞外基质、细胞识别、细胞粘着和细胞连接等。
图4-1 细胞与环境的关系4.1 细胞表面¨细胞表面(cell surface)¦ 结构上:包括细胞被(cell coat)和细胞质膜。
¦ 功能上:是细胞质膜功能的扩展,它保护细胞,使细胞有一个相对稳定的内环境;负责细胞内外的物质交换和能量交换,并通过表面结构进行细胞识别、信息的接收和传递、细胞运动以及维护细胞的各种形态,并且与免疫、癌变都有十分密切的关系。
4.1.1 细胞被(cell coat)¨细胞被的结构与组成细胞质膜通常是由覆盖在细胞表面的保护层保护着,这种保护层即是细胞被。
由于这层结构的主要成份是糖,所以又称为糖萼(glycocalyx),或多糖包被(图4-2)。
2图4-2 细胞被用钌红染色,电子显微镜观察到的淋巴细胞的细胞被糖被通常含有两种主要的成份: 糖蛋白和蛋白聚糖(图4-3)。
这些糖蛋白和蛋白聚糖都是在细胞内合成的,然后分泌出来并附着到细胞质膜上。
图4-3 糖被的结构和组成示意图¨ 细胞被的功能 ¦保护作用: 如消化道、呼吸道、生殖腺等上皮细胞的外被有助于润滑、防止机械损伤, 同时又可保护上皮组织不受消化酶的作用和细菌的侵袭。
植物和细菌的细胞壁不仅可以保护细胞质膜和细胞器, 同时还赋予细胞以特定的形状。
革兰氏阳性菌的细胞壁是一种蛋白聚糖, 青霉素通过抑制它的合从而抑制细菌的生长。
¦ 参与细胞与环境的相互作用, 参与细胞与环境的物质交换, 细胞增殖的接触抑制、细胞识别等。
4.1.2 植物的细胞外结构:细胞壁植物没有骨骼系统,但却有相当强度的细胞壁维持着植物的形态。
细胞生物学-4第四章质膜
七、细胞质膜的功能
为细胞的生命活动提供相对稳定的内环境; 选择性的物质运输,包括代谢底物的输入与代谢
产物的排除,其中伴随着能量的传递; 提供细胞识别位点,并完成细胞内外信息跨膜传递; 为多种酶提供结合位点,使酶促反应高效而有序地进行; 介导细胞与细胞、细胞与基质之间的连接; 质膜参与形成具有不同功能的细胞表面特化结构。
脂质体的应用
研究膜脂与膜蛋白及其生物学性质; 脂质体中裹入DNA可用于基因转移; 在临床治疗中,脂质体作为药物或酶等载体
三、膜蛋白
基本类型 内在膜蛋白与膜脂结合的方式 外在膜蛋白与膜脂结合的方式 去垢剂(detergent)
基本类型
外在(外周)膜蛋白(extrinsic/peripheral membrane proteins )
膜的不对称性
细胞质膜各部分的名称 膜脂与糖脂的不对称性
糖脂仅存在于质膜的ES面,是完成其生理功能的结构基础 膜蛋白与糖蛋白的不对称性
膜蛋白的不对称性是指每种膜蛋白分子在细胞膜上都 具有明确的方向性; 糖蛋白糖残基均分布在质膜的ES面(GO+3HBH4 labeling); 膜蛋白的不对称性是生物膜完成复杂的在时间与空间上 有序的各种生理功能的保证。
糖脂:糖脂普遍存在于原核和真核细胞的质膜上(5%以下),神经细 胞糖脂含量较高;
胆固醇:胆固醇存在于真核细胞膜上(30%以下),细菌质膜不含有 胆固醇,但某些细菌的膜脂中含有甘油脂等中性脂类。
运动方式
沿膜平面的侧向运动(基本运动方式),其扩散 系数为10-8cm2/s;相当于2μm/s
脂分子围绕轴心的自旋运动; 脂分子尾部的摆动; 双层脂分子之间的翻转运动,发生频率还不到
第四章 细胞质膜 (Cell membrance)
细胞生物学 第四章
第二节 内质网
2.脂类的合成
内质网是脂类合成的重要场所。已经实验证明,大部分膜的脂双 层是在内质网组装的。ER膜能合成几乎所有细胞需要的脂类,包括磷 脂和胆固醇。其中最主要的磷脂是磷脂酰胆碱 (又称卵磷脂)。磷脂 酰胆碱是由两个脂肪酸、一个磷酸甘油和一个胆碱在三种酶的催化下 合成的。这些酶位于sER的脂类双层内,它们的活性部位都朝向细胞 质基质。这样,新合成的脂类分子最初只嵌入sER脂类双层的细胞质 基质面。磷脂酰胆碱的合成过程如图4-7所示。首先由酰基转移酶催 化细胞质中的脂酰辅酶A和3-磷酸甘油,将2个脂肪酸加到磷酸甘油上, 形成磷脂酸,磷脂酸为非水溶性化合物,合成后便保留在脂类双层中; 然后,在磷酸酶的作用下,将磷脂酸转化为二酰基甘油;最后,再在 胆碱磷酸转移酶的催化下,由二酰基甘油和CDP-胆碱合成磷脂酰胆碱。 除磷脂酰胆碱外,其它几种磷脂,如磷脂酰乙醇胺、磷脂酰丝氨酸以 及磷脂酰肌醇等都以类似的方式合成。
类型与形态差异很大。
图4-1 内质网立体结 构模式图
ห้องสมุดไป่ตู้
第二节 内质网
2.内质网的类型
根 据 内 质 网 表 面 有 无 核 糖 体 , 可 分 为 糙 面 内 质 网 ( rough endoplasmic reticulum,rER) 和 光 面 内 质 网 ( smooth endoplasmic reticulum, sER)两种基本类型。
第二节 内质网
在内质网膜上合成的磷脂很快就由细胞质基质侧转向 内质网膜腔面,其中有的插入到脂双分子里,有的向其它 膜转运。其转运主要有两种方式:一种是以出芽的方式, 以运输小泡转运到高尔基体、溶酶体和细胞膜上;另一种 方式是凭借一种水溶性的载体蛋白,即磷脂转换蛋白 (phospholipid exchange protein,PEP)在膜之间转移磷脂。 其转运模式是:PED与磷脂分子结合形成水溶性的复合物 进入细胞质基质,通过自由扩散,直到靶膜时,PEP将磷 脂释放出来,并安插在膜上,结果使磷脂从含量高的膜转 移到缺少磷脂的膜上。细胞中转移到线粒体或过氧化物酶 体膜上的磷脂就是通过此方式转运的。
细胞生物学 第四章细胞质膜
蛋白与膜的结合方式 ①、②整合蛋白;③、④脂锚定蛋白;⑤、⑥外周蛋白
(一)内在蛋白(integral proteins)
内在蛋白又称为整合蛋白,以不同程度嵌入脂双层的内部 ,有的为全跨膜蛋白(tansmembrane proteins)。膜蛋白为
两性分子。它与膜结合非常紧密,只有用去垢剂(detergent)
5.血型糖蛋白(glycophorin ) 血型糖蛋白又称涎糖蛋白(sialo glycoprotein),因 它富含唾液酸。血型糖蛋白是第一个被测定氨 基酸序列的蛋白质,有几种类型,包括A、B、C、 D。血型糖蛋白B、C、D在红细胞膜中浓度较 低。血型糖蛋白A是一种单次跨膜糖蛋白, 由 131个氨基酸组成, 其亲水的氨基端露在膜的外 侧, 结合16个低聚糖侧链。血型糖蛋白的基本 功能可能是在它的唾液酸中含有大量负电荷,防 止了红细胞在循环过程中经过狭小血管时相互 聚集沉积在血管中。
才能从膜上洗涤下来,常用SDS和Triton-X100。
内在蛋白的跨膜结构域形成亲水通道有两种形式,一是由多
个α螺旋组成亲水通道;二是由β折叠组成亲水通道。
内在蛋白与脂膜的结合方式:
膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。
跨膜结构域两端带正电荷的aa残基与磷脂分子带负电的
极 性头形成离子键,或带负电的氨基酸残基通过Ca2+、Mg2+等 阳离子与带负电的磷脂极性头相互作用。 膜蛋白在细胞质基质一侧的半胱氨酸残基上共价结合脂肪 酸分子,插入脂双层之间, 还有少数蛋白与糖脂共价结合。
细胞融合技术观察蛋白质运动
光脱色恢复技术(FRAP)
4.膜流动性的意义
质膜的流动性是保证其正常功能的必要条件。例如 跨膜物质运输、细胞信息传递、细胞识别、细胞免疫 、细胞分化以及激素的作用等等都与膜的流动性密切 相关。当膜的流动性低于一定的阈值时,许多酶的活 动和跨膜运输将停止,反之如果流动性过高,又会造
细胞生物学题库第4章答案
《细胞生物学》题库参考答案第四章细胞膜与细胞表面一、名词解释1. 脂质体——脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜,脂质体中可以裹入不同的药物或酶等具有特殊功能的生物大分子。
2. 流体镶嵌模型——主要强调:1.膜的流动性,膜脂和膜蛋白均可侧向运动2.膜蛋白分布的不对称性3. 细胞膜——又称质膜,是指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。
4. 去垢剂——是一端亲水一端疏水的两性小分子,是分离与研究膜蛋白的常用试剂。
5. 膜内在蛋白——又称整合蛋白,多数为跨膜蛋白,与膜紧密结合。
6. 细胞外被——又称糖萼,曾用来指细胞膜外表面覆盖的一层粘多糖基质,实际上细胞外被中的糖与细胞膜的蛋白分子或脂质分子是共价结合的,形成糖蛋白和糖脂,所以,细胞外被应是细胞膜的正常结构组分,它不仅对膜蛋白起保护作用,而且在细胞识别中起重要作用。
7. 细胞外基质——是指分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。
细胞外基质将细胞粘连在一起构成组织,同时,提供一个细胞外网架,在组织中或组织之间起支持作用。
8. 透明质酸——是一种重要的糖胺聚糖,是增殖细胞和迁移细胞胞外基质的主要成分,尤其在胚胎组织中。
9. 细胞连接——是多细胞有机体中相邻细胞之间通过细胞质膜相互联系,协同作用的重要组织方式。
10. 细胞粘着——在细胞识别的基础上,同类细胞发生聚集,形成细胞团或组织的过程。
11. 整联蛋白家族——细胞膜上能够识别并结合各种能够含RGD三肽顺序的受体称整联蛋白家族。
12. 连接子——构成间隙连接的基本单位。
13. 免疫球蛋白超家族的CAM——分子结构中具有与免疫球蛋白类似的结构域的CAM超家族。
二、选择题1.D2.A3.B4.D5.A6.C7.A8.C9.C 10. B 11.C 12.C 13.B 14.D 15.A16.B 17.B 18.D 19.C 20.D 21.B 22.C三、判断题1.×2.×3.√4.×5.√6.×7.√8.×9.√四、填空题1. 流动性、不对称性2.α螺旋3.运输、识别、酶活性、细胞连接、信号转导4.去垢剂5. 糖脂6. 脂肪酸长度、脂肪酸饱和度、温度、胆固醇含量7. 胶原、30%8. 水不溶性9. 原胶原10. 氨基己糖、糖醛酸11. 透明质酸、4-硫酸软骨素、硫酸皮肤素、硫酸乙酰肝素12. 层粘连蛋白13. 整联蛋白14. 1/4、平行15. 封闭连接、锚定连接、通讯连接;锚定16. 高等植物17. 可兴奋细胞18. 间隙连接、胞间连丝、化学突触19. 封闭蛋白(occludin)、claudins 20. 连接子21. RGD;Arg、Gly、Asp五、问答题1. ㈠荧光抗体免疫标记实验是分别用抗鼠细胞膜蛋白的荧光抗体和抗人细胞膜蛋白的荧光抗体标记小鼠和人的细胞表面,使这两种细胞融合,观察不同颜色的荧光在融合细胞表面的扩散和分布。
细胞生物学之笔记--第4章 细胞膜与物质的穿膜运输
第四章细胞膜与物质的穿膜运输第一节细胞膜的化学组成与生物特性一、细胞膜的化学组成细胞膜上的脂类=膜脂(membrane lipid),约占膜成分的50%,主要有磷脂(phospholipid)、胆固醇(cholesterol)、和糖脂(glycolipid)(一)膜脂构成细胞膜的结构骨架1.磷脂是膜脂的主要成分甘油磷酸的共同特征:以甘油为骨架,甘油分子的1、2位羟基分别于脂肪酸形成酯键,3位羟基与磷酸基团形成酯键。
磷酸基团结合胆碱/乙醇胺/丝氨酸/肌醇。
脂肪酸链长短不一,通常14~24个碳原子,一条脂肪酸链不含双键,另一条含有一个或几个双键,形成30°弯曲。
鞘磷脂以鞘氨醇代替甘油,鞘氨醇的氨基结合长链的不饱和脂肪酸,分子末端的一个羟基与胆碱磷酸结合,另一个游离羟基可与相邻分子的极性头部、水分子或膜蛋白形成氢键。
鞘磷脂及其代谢产物神经酰胺、鞘氨醇、1-磷酸鞘氨醇参与各种细胞活动。
神经酰胺是第二信使;1-磷酸鞘氨醇在细胞外通过 G蛋白偶联受体起作用,在细胞内与靶蛋白作用2.胆固醇能够稳定细胞膜和调节膜的流动性胆固醇为两性极性分子。
极性头部为连接于固醇环(甾环)上的羟基,靠近相邻的磷脂分子。
固醇环疏水,富有刚性,固定在磷脂分子临近头部的烃链上,对林芝的脂肪酸尾部的运动具有干扰作用。
尾部为疏水性烃链。
埋在磷脂的疏水尾部中。
胆固醇分子调节膜的流动性和加强膜的稳定性。
没有胆固醇,细胞膜会解体。
PS.不同生物膜有各自特殊的脂类组成。
哺乳动物细胞膜上富含胆固醇和糖脂,线粒体膜内富含心磷脂;大肠杆菌质膜则不含胆固醇。
3.糖脂主要位于质膜的非胞质面糖脂含量占膜脂总量5%以下,遍布原核、真核细胞表面细菌和植物的糖脂均是甘油磷脂衍生物,一般是磷脂酰胆碱PC 衍生来动物糖脂都是鞘氨醇衍生物,称为鞘糖脂,糖基取代磷脂酰胆碱,成为极性头部已发现40多种糖脂,区别在于极性头部不同,由1至几个糖残基构成最简单的糖脂是脑苷脂,极性头部只是一个半乳糖/葡萄糖残基最复杂的糖脂是神经节苷脂,极性头部有七个糖残基;在神经细胞膜中最丰富,占总膜脂5%~10%脂质体(lipidsome)可以作运载体(二)膜蛋白以多种方式与脂双分子层结合又称含量作用力特点膜内在蛋白穿膜蛋白70%~80%范德华力α-螺旋构象/β-筒孔蛋白膜外在蛋白外周蛋白20%~30%非共价键水溶性脂锚定蛋白脂连接的蛋白共价键运动性增大1.内在膜蛋白又称跨膜蛋白,占膜蛋白总量70%~80%;分单次跨膜、多次跨膜、多亚基跨膜三种类型跨膜区域 20~30个疏水氨基酸残基,通常N端在细胞外侧内在膜蛋白跨膜结构域与膜脂结合区域,作用方式:①疏水氨基酸形成α-螺旋,跨膜并与脂双层脂肪酸链通过范德华力相互作用②某些α-螺旋外侧非极性,内侧是极性链,形成特异性畸形分子的跨膜通道多数跨膜区域是α-螺旋,也有以β-折叠片多次穿膜形成筒状结构,称β-筒,如孔蛋白(porin)2.外在膜蛋白又称外周蛋白,占膜蛋白总量20%~30%;完全在脂双层之外,胞质侧或胞外侧,通过非共价键附着膜脂或膜蛋白胞质侧的外周蛋白形成纤维网络,为膜提供机械支持,也连接整合蛋白,如红细胞的血影蛋白和锚蛋白外周蛋白为水溶性蛋白,与膜结合较弱,改变溶液离子浓度或pH,可分离它们而不破坏膜结构3.脂锚定蛋白①一种位于膜的两侧,蛋白质直接以共价键结合于脂类分子;此种锚定方式与细胞恶变有关②还有糖基磷脂酰肌醇锚定蛋白(GPI),通过蛋白质C端与磷脂酰肌醇连接的糖链共价结合脂锚定蛋白在膜上运动性增大(侧向运动),有利于结合更多蛋白,有利于更快地与胞外蛋白结合、反应GPI-锚定蛋白分布极广,100种以上,如多种水解酶、免疫球蛋白、细胞黏附分子、膜受体等4.去垢剂(detergent)离子型去垢剂:SDS十二烷基磺酸钠引起蛋白质变性非离子型去垢剂:Triton X-100 对蛋白质比较温和(三)膜糖类覆盖细胞膜表面细胞膜的糖类,占质膜重量2%~10%;①大多以低聚糖或多聚糖共价结合膜蛋白,形成糖蛋白(糖蛋白中的糖基化主要发生在天冬酰胺(N-连接),其次是丝氨酸和苏氨酸(O-连接)残基上);②或以低聚糖共价结合膜脂,形成糖脂,所有糖链朝向细胞外表面形成低聚糖的单糖类型:甘露糖、岩藻糖、半乳糖、半乳糖胺、葡萄糖、葡萄糖胺、唾液酸等A.唾液酸残基在糖链末端,形成细胞外表面净负电荷B.寡糖链中的单糖的数量、种类、排列顺序、有无支链等不同,可以出现千变万化的组合形式。
细胞生物学第四章细胞膜及物质的跨膜运输
0.23 0.7 1.5 1.5-4 3.2
(一) 膜脂 生物膜上的脂类统称膜脂。
磷脂 膜 脂 胆固醇
糖脂
均为“双亲性分子”(★★)
既有亲水性一端,又有 疏水性一端的分子。
1、磷脂的类型
X
极
磷脂酰胆碱(卵磷脂)
性 头
磷 磷脂酰乙醇胺(脑磷脂)
部 (
脂 磷脂酰丝氨酸
亲 水 性
鞘磷脂
)
非
极
性
尾
鞘
部 (
(一)吞噬作用
※指细胞内吞较大的固体颗粒或分子复合物的过程,
如细菌、细胞碎片、无机尘粒等。
※吞噬作用形成的囊泡称吞噬体。
※是原生动物获取营养的重要方式。 ※在高等动物和人类是机体免疫系统的重要功能
(如巨噬细胞等)。
(二)胞饮作用
※是指细胞内吞液体或小溶质分子的活动。 ※胞饮形成的囊泡称胞饮体。
※大多数细胞具有胞饮作用。
ATP
Na+
细胞外
Na+
小 亚 基 小 亚 基 小 亚 基
Na+
Na+ Na+
细胞内
K+ K+
K+
浓 钾结合部位 度
梯 度 30 倍
ADP+Pi
K+
K+
K+
K+
K+ K+
K+
K+
K+
K+
K+ K+
K+ K+
K+
K+
K+
K+
K+
K+ K+
《医学细胞生物学》第04章 细胞膜与物质的跨膜运输
17、协同运输:通过消耗ATP间接提供能量,借助某种物质浓度梯度或电化学梯度为动力进行运输。
18、配体门通道:通道蛋白亚基在膜上形成的孔道,如果通过与一些信号分子(配体)结合后构象发生改变而导致孔道的开关,则这样的通道蛋白称为配体门通道。
19、电压门通道:通道蛋白亚基在膜上形成的孔道,如果通过细胞内外离子浓度产生膜电位,由膜电位发生变化控制开关,则这样的通道蛋白称为电压门通道。
E、细胞膜及内膜系统的总称
2、生物膜的主要化学成分是( )。
A、蛋白质和核酸 B、蛋白质和糖类 C、蛋白质和脂肪
D、蛋白质和脂类 E、糖类和脂类
3、生物膜的主要作用是( )。
A、区域化 B、合成蛋白质 C、提供能量 D、运输物质 E、合成脂类
6、间隙连接和紧密连接都是脊椎动物的通讯连接方式。( )
7、桥粒和半桥粒的形态结构不同,但功能相同。( )
8、所有生物膜中的蛋白质和脂的相对含量都相同。( )
9、胞吞作用与胞吐作用是大分子物质与颗粒性物质的跨膜运输方式,也是一种主动运输,需要消耗能量。( )
2、外在(外周)膜蛋白为水不溶性蛋白,形成跨膜螺旋,与膜结合紧密,需用去垢剂使膜崩解后才可分离。( )
3、哺乳动物成熟的红细胞没有细胞核和内膜体系,所以红细胞的质膜是最简单最易操作的生物膜。( )
4、连接子(connexon) 是锚定连接的基本单位。
5、上皮细胞、肌肉细胞和血细胞都存在细胞连接。( )
9、桥粒:又称点状桥粒,位于粘合带下方。是细胞间形成的钮扣式的连接结构,跨膜蛋白(钙粘素)通过附着蛋白(致密斑)与中间纤维相联系,提供细胞内中间纤维的锚定位点。中间纤维横贯细胞,形成网状结构,同时还通过桥粒与相邻细胞连成一体,形成整体网络,起支持和抵抗外界压力与张力的作用。
细胞生物学四五章总结
第四节 细胞黏着及其分子基础
细胞黏 着分子(cell adhesion molecule,CAM)通过3 种方式介导细胞识别与黏着 同亲型结合、异亲型结合、衔接分子依赖性结合
1. 钙黏蛋白(cadherin)
• • • • 同亲型结合、Ca2+ 依赖的细胞黏着糖蛋白 典型钙黏蛋白胞外部分形成5 个重复结构域 铰链区是Ca2+ 结合位点 胞外最后一个重复结构域在Ca2+ 结合后彼此“嵌 合”在一起,从而实现Ca2+ 依赖性细胞黏着
二 、膜脂的运动方式
• 沿膜平面的侧向运动
• 脂分子围绕轴心的自旋运动 • 脂分子尾部摆动 • 双层脂分子之间的翻转运动
三、膜蛋白(membrane protein)
• 膜蛋白种类 外在膜蛋白或外周膜蛋白 内在膜蛋白或整合膜蛋白 脂锚定膜蛋白 (目前了解的内在膜蛋白均为跨膜蛋白,由 胞质外结构域、跨膜结构域、胞质内结构 域3部分组成)
四、细胞质膜的基本功能
• 为细胞的生命活动提供相对稳定的内环境; • 选择性的物质运输,包括代谢底物的输入与代谢产物的排除 ,其中伴随着能量的传递; • 提供细胞识别位点,并完成细胞内外信息跨膜转导; • 为多种酶提供结合位点,使酶促反应高效而有序地进行; • 介导细胞与细胞、细胞与外基质之间的连接; • 质膜参与形成具有不同功能的细胞表面特化结构;
• 低浓度(<0.05 mmol/L) Ca2+ 导致钙黏蛋白胞 外部分的刚性丧失 • 阳离子螯合剂EDTA 能破坏Ca2+ 或Mg2+ 依赖性 的细胞黏着 • 通过调控钙黏蛋白的种类与数量能影响细胞间的 黏着与迁移,从而影响组织分化
2. 选择素(selectin)
• 异亲型结合、Ca2+依赖性的细胞黏着分子 • 选择素是跨膜蛋白,其胞外部分具有高度 保守并能识别其他细胞表面特异性 寡糖链 的凝集素(lectin)结构域 • 选择素及整联蛋白介导的细胞黏着,帮助 白细胞从血液进入组织
细胞生物学重要章节(4-15章大部分章节)讲义归纳汇总
细胞生物学重要章节(4-15章大部分章节)讲义归纳汇总第四章细胞膜与物质的穿膜运输细胞膜:是包围在细胞质表面的一层薄膜,又称质膜。
内膜系统:除质膜外,细胞内还有丰富的膜结构,它们形成了细胞内各种膜性细胞器,如内质网、高尔基复合体、溶酶体、各种膜泡等,称为细胞的内膜系统。
生物膜:质膜和细胞内膜系统的总称。
单位膜:生物膜因在电子显微镜下呈“两暗夹一明”的形态结构,又称为生物膜。
脂质体:脂质分子在水环境中排列呈双层,两层分子的疏水尾部被亲水头部夹在中间,为了避免双分子层两端疏水尾部与水接触,其游离端往往能自动闭合形成充满液体的球状小泡。
孔蛋白:有些穿膜蛋白以β-折叠片层构象穿膜,在脂双层中围成筒状结构,称β筒,有些β筒在质膜上起运输蛋白的作用,称为孔蛋白,主要存在于线粒体、叶绿体和一些细菌的外膜。
膜内在蛋白(穿膜蛋白、整合蛋白):占膜蛋白总量70-80%,两亲性分子,分为单次穿膜、多次穿膜和多亚基穿膜蛋白三种类型。
膜外在蛋白(周边蛋白):占膜蛋白总量20-30%,是一类与细胞膜结合比较松散的不插入脂双层的蛋白质,分布在质膜的胞质侧或胞外侧。
如红细胞的血影蛋白和锚蛋白。
脂锚定蛋白(脂连接蛋白):可位于膜两侧,以共价键与脂双层内的脂分子结合。
糖基磷脂酰肌醇锚定蛋白(GPI):位于质膜外的表面的一些蛋白质,通过与脂双层外层中磷脂酰肌醇分子相连的寡糖链共价键结合而锚定到质膜上,这些蛋白称为GPI细胞外被(糖萼):大多数真核细胞表面富含糖类的周缘区,现一般用来指与质膜相连接的糖类物质,即质膜中糖蛋白和糖脂向外表面延伸出的寡糖链部分,所以细胞外被实质上是质膜结构的一部分,基本功能是保护细胞抵御各种物理、化学性损伤。
(不与质膜相连的细胞外覆盖物称为细胞外物质或胞外结构)膜的不对称性:细胞膜中各种成分如膜脂,膜蛋白,膜糖,分布是不均匀的,包括种类和数量上都有很大差异。
(如红细胞外层鞘磷脂SM最多,内层磷脂酰乙醇胺PE即脑磷脂最多)脂双层的液晶态:脂双层作为生物膜的主体,它的组分既有固体分子排列的有序性,又有液体的流动性,这一两种特性兼有的居于晶态和液态之间的状态即液晶态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞膜的功能:
维持细胞的形态、内环境稳定、功能区分隔、物质运输、能量转换、信息传递、免疫、癌变
三、细胞膜的分子结构模型
研究简史:
1. E. Overton 1895 发现凡是溶于脂肪的物质很容易透过植物的细胞膜, 而不溶于脂肪的物质不易透过细胞膜,因此推测细胞膜由连续的脂类 物质组成。 2. E. Gorter & F. Grendel 1925 用有机溶剂提取了人类红细胞质膜的 脂类成分,将其铺展在水面,测出膜脂展开的面积二倍于细胞表面积, 因而推测细胞膜由双层脂分子组成。 3. J. Danielli & H. Davson 1935 发现质膜的表面张力比油-水界面 的张力低得多,推测膜中含有蛋白质,从而提出了”蛋白质-脂类-蛋 白质”的三明治模型。认为质膜由双层脂类分子及其内外表面附着的 蛋白质构成的。1959年在上述基础上提出了修正模型,认为膜上还具 有贯穿脂双层的蛋白质通道,供亲水物质通过。 4. J. D. Robertson 1959 用超薄切片技术获得了清晰的细胞膜照片, 显示暗-明-暗三层结构,厚约7.5nm。这就是所谓的“单位膜”模型。 它由厚约3.5nm的双层脂分子和内外表面各厚约2nm的蛋白质构成。单 位膜模型的不足之处在于把膜的动态结构描写成静止的不变的。 5. S. J. Singer & G. Nicolson 1972 根据免疫荧光技术、冰冻蚀刻 技术的研究结果,在“单位膜”模型的基础上提出“流动镶嵌模型”。 强调膜的流动性和膜蛋白分布的不对称性。 6. K.Simons et al (1997): 脂筏模型(lipid rafts model) Functional rafts in Cell membranes. Nature 387:569-572
1.整合蛋白(integral protein)
2.外在蛋白(Peripheral protein)
3.脂锚定蛋白(lipid-anchored protein)
GPI
4.膜蛋白在膜中的几种结合方式
(三)膜糖——覆盖在细胞表面
糖类约占细胞膜总重量 的2%~10%。
膜 糖 类 (细 糖胞 萼外 )被
(一)片层结构模型
(二)单位膜模型
(三)流动镶嵌模型
(四)脂筏模型
脂筏的功能与疾病
脂筏的功能
参与信号转导、受体介导的内吞作用和胆固
醇代谢运输等 功能紊乱涉及HIV、肿瘤、动脉粥样硬化、 Alzheimer病、疯牛病、肌营养不良等
下一次继续
第二节 小分子物质的跨膜运输
基本途径: 一、简单扩散 二、离子通道 三、易化扩散 四、主动运输
细胞内膜:细胞内除了细胞膜以外的细胞内所有膜性结构。 生物膜:细胞膜和细胞内膜的统称。
细胞膜的结构
The Cell Membrane
第一节 细胞膜的化学组成与分子结构
一、细胞膜的化学组成 二、生物膜的特性 三、细胞膜的分子结构模型
一、细胞膜的化学组成
细胞膜的化学组成主要是脂类、蛋白质和糖类.
膜 化 学 组 成
后三者都是需要膜转运蛋白介导的跨膜运输方式
一、简单扩散
分子或离子以自由扩散的方式跨膜转运中,不 需要细胞提供能量,也没有膜蛋白的协助,因此称 为简单扩散。 小分子的热运动可使分子以自由扩散的方式从 膜的一侧通过细胞质膜进入膜的另一侧,其结果是 分子由浓度高的一侧转运到浓度低的一侧,即沿着 浓度梯度降低的方向转运。对于离子来说,同样是 从离子浓度高的一侧向离子浓度低的一侧转运。离 子转运既是沿着浓度梯度也是沿着电化学梯度转运。
糖类+膜 蛋 白
糖类+膜蛋白
共价键
糖蛋白
N-连接;O-连接
糖蛋白功能:有助于膜蛋白的定位与固定,与 细胞识别、信息传递、免疫、癌变等有关。
二、生物膜的特性
——不对称性和流动性
(一)细胞膜的不对称性
1.膜脂的不对称性 2.膜蛋白的不对称性 3.膜糖的不对称性
1.膜脂的不对称性
(3)血型与糖脂
ABO血型抗原是一种糖脂,其寡糖部分具有决定 抗原特异性的作用:
A型:膜脂寡糖链的末端是N-乙酰半乳糖胺,GalNAc。 B型:末端是半乳糖,Gal。 O型:末端没有这两种糖基。 AB型:末端同时具有这两种糖基。
4.脂质体(liposome)
膜脂在水溶液中具有形成封闭结构的倾向,常形成以下结构: (a)水溶液中的磷脂分子团; (b)球形脂质体; (c)平面脂 质体膜; (d)用于疾病治疗的脂质体的示意图 脂质体是根据磷脂分子可在水相中形成稳定的脂双 层膜的 趋势而制备的人工膜。
(1)脂质体的应用
脂质体中裹入DNA可用于基因转移; 在临床治疗中,脂质体作为药物或酶等载体 研究膜脂与膜蛋白及其生物学性质;
(二)蛋白质——细胞膜功能的主要执行者
• •
•
•
膜蛋白:生物膜所含的蛋白质。 生物膜的基本结构是由脂双层组成,但是它的特定功能却主要是由蛋白 质完成的 。如: 载体蛋白——膜内外的物质运输 连接蛋白——细胞的相互作用 受体蛋白——信号转导 各类酶——相关的代谢反应 在不同细胞中膜蛋白的含量及类型有很大差异,依在膜上存在方式不 同可分为: 1.整合蛋白(integral protein) 2.外周蛋白(peripheral protein) 3.脂锚定蛋白(lipid-anchored protein)
4.卵磷脂/鞘磷脂:该比例高则膜流动性增加,因为鞘磷脂粘度高于卵磷脂。
5.其他因素:膜蛋白和膜脂的结合方式、温度、酸碱度、离子强度等。
4.膜蛋白的运动性
5.膜流动性的生理意义
① 细胞质膜适宜的流动性是生物膜正常功能的必要条件。 ② 酶活性与流动性有极大的关系,流动性大活性高。 ③ 如果没有膜的流动性,细胞外的营养物质无法进入,细 胞内合成的胞外物质及细胞废物也不能运到细胞外,这样 细胞就要停止新陈代谢而死亡。 ④ 膜流动性与信息传递有着极大的关系。 ⑤ 如果没有流动性,能量转换是不可能的。
2.膜脂的流动性
膜脂分子的运动
1. 2. 3. 4. 5. 侧向扩散:同一平面上相邻的脂分子交换位置。 旋转运动:膜脂分子围绕与膜平面垂直的轴进行快速旋转。 摆动运动:膜脂分子围绕与膜平面垂直的轴进行左右摆动。 伸缩震荡:脂肪酸链沿着与纵轴进行伸缩震荡运动。 翻转运动:膜脂分子从脂双层的一层翻转到另一层。是在翻转酶 (flippase)的催化下完成。 6. 旋转异构:脂肪酸链围绕C-C键旋转,导致异构化运动。
第四章 细胞膜和物质的跨膜运输
目的与要求
1.掌握细胞膜的化学组成、分子结构及细胞生 物学特性,了解生物膜的分子结构模型。 2.掌握小分子物质跨膜运输方式及特点,大分 子和颗粒物质运输的胞吞和胞吐作用,受体 介导的内吞作用。 3.熟悉细胞表面的特化结构,细胞膜异常与疾 病发生的关系。
细胞膜概述
细胞膜(cell memberane):是包围在细胞外周的一层薄 膜,又称质膜(plasma membrane). 单位膜:“二暗一明”的膜式结构叫三层夹板式结构。
(一)特点与条件
特点:
①沿浓度梯度(或电化学梯度)由高至低扩散; ②不需要细胞提供能量; ③没有膜蛋白的协助,也称被动扩散;
条件:
溶质在膜两侧保持一定的浓度差; 溶质必须能透过膜
(二)膜的选择通透性
二、膜蛋白介导的跨膜运输
(一)膜转运蛋白
1.类型
载体蛋白
能特异性结合溶质分子,通过构象的改变进行物质运输的蛋白质,可介导被动运 输和主动运输。 运输特点: ①与特定的溶质分子结合,通过一系列构象改变介导溶质的跨膜转运; ②对所转运的物质具有高度选择性; ③载体蛋白又称为通透酶(Permease): 对物质的转运过程具有类似于酶与底物作用的动 力学曲线、可被类似物竞争性抑制、具有竞争性抑制等酶的特性。但与酶不同的是: 载体蛋白不对转运分子作任何共价修饰。
脂质双分子层中,各层所含磷脂种类有明显不同。
2.膜蛋白的不对称性
* 膜蛋白的不对称性是指每种膜蛋白分子在细胞膜上都有特定的排布方
向,与其功能相适应,这是膜蛋白不对称性的主要因素。 是生物膜
在时间与空间上有序完成复杂的各种生理功能的保证。 膜蛋白的不对称性包括:
整合蛋白内外两侧氨基酸残基数目、种类和排序的不对称。
半乳糖脑苷脂
脂神经节甘脂
唾液酸残基
(2)功能
功能:作为某些分子的受体,与细胞识 别及信号转导有关。 例如神经节苷脂本身就是一类膜上的 受体,已知破伤风毒素、霍乱毒素、 干扰素、促甲状腺素、绒毛膜促性腺 激素和5-羟色胺等的受体就是不同的 神经节苷脂。 疾病与糖脂:儿童所患的家族性白痴病 (Tay-sachs disease)就是因为在 其细胞内缺乏氨基己糖脂酶,不能将 神经节苷脂GM2 加工成为GM3,结果 大量的GM2累积在神经细胞中,导致 中枢神经系统退化。
细胞间的识别、运动、物质运输、信号传递等都具有方向性。这些方向 性的维持就是靠分布不对称的膜蛋白、膜脂和膜糖来提供。
(二)细胞膜的流动性
细胞膜的流动性: 膜内部的脂和蛋白质分子的运动性。膜 的流动性不仅是膜的基本特性之一,也是 细胞进行生命活动的必要条件。
1. 膜脂双分子层是二维流体
脂类: 约50% 蛋白质: 约40% 糖类: 2~10%
(一)膜脂——细胞膜的基本组分
生物膜上的脂类统称膜脂。细胞膜中含有3种主 要的脂类:磷脂(含量最丰富)、胆固醇和糖脂。它 们都是双亲性分子,包括1个亲水(极性)末端和1个 疏水(非极性)末端。
1.磷脂
(1)甘油磷脂的化学结构
甘 油 磷 脂
3.影响膜脂流动性的因素
影响膜脂流动的因素主要来自膜本身的组分,遗传因子及环境因子等。 包括: 1.胆固醇双向调节: 相变温度以上,胆固醇的含量增加会降低膜的流动性; 相变温度以下,胆固醇的含量增加可阻止晶态的形成。 2.脂肪酸链的饱和度:脂肪酸链所含双键越多越不饱和,使膜流动性增加。 3.脂肪酸链的链长:长链脂肪酸相变温度高,膜流动性降低。