图像处理的源代码
图像处理编码
1."浮雕"图像"浮雕"图象效果是指图像的前景前向凸出背景。
所谓的"浮雕"概念是指标绘图像上的一个像素和它左上方的那个像素之间差值的一种处理过程,为了使图像保持一定的亮度并呈现灰色,我在处理过程中为这个差值加了一个数值为128的常量。
需要读者注意的是,当设置一个像素值的时候,它和它左上方的像素都要被用到,为了避免用到已经设置过的像素,应该从图像的右下方的像素开始处理,下面是实现的源代码:void CDibView::OnFDImage() //产生"浮雕"效果图函数{HANDLE data1handle;//用来存放图像数据的句柄;LPBITMAPINFOHEADER lpBi;//图像的信息头结构;CDibDoc *pDoc=GetDocument();//得到文挡指针;HDIB hdib;//用来存放图像数据的句柄;unsigned char *pData;//指向原始图像数据的指针;unsigned char *data;//指向处理后图像数据的指针;hdib=pDoc->m_hDIB;//拷贝存放已经读取的图像文件数据句柄;lpBi=(LPBITMAPINFOHEADER)GlobalLock((HGLOBAL)hdib);//获取图像信息头pData=(unsigned char*)FindDIBBits((LPSTR)lpBi);//FindDIBBits是我定义的一个函数、根据图像的结构得到位图的灰度值数据、pDoc->SetModifiedFlag(TRUE);//设置文档修改标志为"真"、为后续的修改存盘作准备;data1handle=GlobalAlloc(GMEM_SHARE,WIDTHBYTES(lpBi->biWidth*8)*lpBi-> biHeight); //声明一个缓冲区用来暂存处理后的图像数据;data=(unsigned char*)GlobalLock((HGLOBAL)data1handle);//得到该缓冲区的指针;AfxGetApp()->BeginWaitCursor();int i,j,buf;for( i=lpBi->biHeight; i>=2; i--)//从图像右下角开始对图像的各个像素进行"浮雕"处理;for( j=lpBi->biWidth; j>=2; j--){//浮雕处理buf=*(pData+(lpBi->biHeight-i)*WIDTHBYTES(lpBi->biWidth*8)+j)-*(pData +(lpBi->biHeight-i+1)*WIDTHBYTES(lpBi->biWidth*8)+j-1)+128;if(buf>255) buf=255;if(buf<0)buf=0;*(data+(lpBi->biHeight-i)*WIDTHBYTES(lpBi->biWidth*8)+j)=(BYTE)buf; }for( j=0; jbiHeight; j++)for( i=0; ibiWidth; i++)//重新写回原始图像的数据缓冲区;*(pData+i*WIDTHBYTES(lpBi->biWidth*8)+j)=*(data+i*WIDTHBYTES(lpBi->bi Width*8)+j); AfxGetApp()->EndWaitCursor();pDoc->m_hDIB =hdib//将处理过的图像数据写回pDoc中的图像缓冲区;GlobalUnlock((HGLOBAL)hdib);//解锁、释放缓冲区;GlobalUnlock((HGLOBAL)data1handle);GlobalFree((HGLOBAL)hdib);GlobalFree((HGLOBAL)data1handle);Invalidate(TRUE);//显示图像}2."雕刻"图像上面讲述了通过求一个像素和它左上方像素之间的差值并加上一个常数的方法生成"浮雕"效果的灰度图像,"雕刻"图像与之相反,它是通过取一个像素和它右下方的像素之间的差值并加上一个常数,这里我也取128,经过这样处理,就可以得到"雕刻"图像,这时候图像的前景凹陷进背景之中。
VC++图形图像处理源代码
delete pData; pData=NULL;
if(m_pBMI!=NULL) delete m_pBMI; m_pBMI=NULL; if(pfi!=NULL)
delete pfi; pfi=NULL; } CAvi::CAviCreate(CString &string)//读文件初始化该类 { HRESULT hr; pfi=new AVIFILEINFO; hr = AVIFileOpen(&pfile, // returned file pointer string, // file name OF_READ, // mode to open file with NULL); hr= AVIFileInfo(pfile, file://获取 AVI 信息,放入 pfi 中 pfi, sizeof(AVIFILEINFO) ); cx=pfi>dwWidth;//图象宽、高 cy=pfi>dwHeight; hr=AVIFileGetStream(//将 AVI 变成视频流 pfile, &pavi, streamtypeVIDEO, 0//LONG lParam ); m_pBMI=new BITMAPINFO;//定义 BMP 信息头 m_pBMI>bmiHeader.biBitCount=24; m_pBMI>bmiHeader.biClrImportant=0; m_pBMI>bmiHeader.biClrUsed=0; m_pBMI>bmiHeader.biCompression=BI_RGB; m_pBMI>bmiHeader.biHeight=cy; m_pBMI>bmiHeader.biWidth=cx; m_pBMI>bmiHeader.biPlanes=1; m_pBMI>bmiHeader.biSize=sizeof(BITMAPINFOHEADER); m_pBMI>bmiHeader.biXPelsPerMeter=0; m_pBMI>bmiHeader.biYPelsPerMeter=0; m_pBMI>bmiHeader.biSizeImage=cx*cy*3; pData=(BYTE*)new char[cx*cy*3];//根据 AVI 中 BMP 图象的信息定义缓冲区 } BOOL CAvi::AviRead(int mFrame)//将 AVI 文件的 M 帧数据读入 PData 缓冲区 { HRESULT hr; hr= AVIStreamRead( pavi, mFrame, 1, pData, cx*cy*3,
图像处理源代码
去噪function y= quzaoI= imread('4.jpg'); %读取图像f=rgb2gray(I);%转化成灰度图subplot(3,2,1);% 分割2*3个窗口。
取第一个窗口,下面在第一个窗口处显示图像imshow (f);%显示灰度图title('原图')%给显示的图像命名为“原始图”subplot(3,2,3), imshow(f),title('原图');subplot(3,2,5), imshow(f);title('原图');[m n]=size(f); %获取灰度图的大小f=im2double(f);%转换f为双精度型c=1/9*[1 1 1;1 1 1;1 1 1]; %3*3模板for i=1:mfor j=1:nL=f(i:i,j:j).*c; %求点积G(i,j)=sum(sum(L));%求和endendG=imadjust(G,[0/255 255/255],[0 1]);subplot(3,2,2); imshow(G);%取第三个窗口title('3*3模板邻域平均')%命名为“3*3模板”K1=medfilt2(f,[3,3]);%3*3的窗口对f进行中值滤波subplot(3,2,4), imshow(K1),title('中值滤波后结果');X = im2double(f); % 转换成双精度类型%提取通道信息xr = X(:, :, 1);%自适应阈值-------------------------------------------------------------x4_r = den4(X, 'sym4', 2);% 恢复去噪后的图像x4 = cat(3, x4_r); % 自适应阈值x4=im2double(x4);%显示去噪后的图像subplot(3,2,6), imshow(x4);title('自适应阈值去噪');psnr1 = PSNR_color(K1, f)psnr2 = PSNR_color(x4, X)imwrite(x4,'qz2.jpg','jpg');imwrite(K1,'qz1.jpg','jpg');增强clear;clc;f = imread('qz2.jpg');g=im2double(f);%******************************************************************* %显示灰度图的直方图,进行直方图均衡化以后的图像g1 = histeq(g);figure,subplot(1,2,1),imhist(g),title('原图的直方图');subplot(1,2,2),imhist(g1),title('直方图均衡化后的直方图');pause;%******************************************************************* %利用高斯多峰值算法来对图像进行相应的直方图处理p= manualhist%交互输入双峰值参数理想值为(0.15,0.05,0.75,0.05,1,0.07,0.002)g2= histeq(g,p);figure,imhist(g2);subplot(2,2,1),imshow(g),title('原图');subplot(2,2,2),imshow(g1),title('普通直方图处理后的图');subplot(2,2,3),imshow(g2),title('高斯多峰值算法处理后的图');imwrite(g1,'zq1.jpg','jpg');imwrite(g2,'zq2.jpg','jpg');q=qingxi(g1);q=qingxi(g2);pause;%****************************************************************** %利用空间掩膜来对所处理的图像进行增强w = [0 1 0;1 -4 1;0 1 0];%产生([0 1 0;1 -4 1;0 1 0])的拉普拉斯算子;h = fspecial(type,para)% 其中type指定算子的类型,para 指定相应的参数;参数alpha用于控制算子形状,取值范围为[0,1],默认值为0.2w1 = [1 1 1;1 -8 1;1 1 1];%离散拉普拉斯算子的扩展模板g3 = im2double(g);g4 = im2double(g1);g5 = im2double(g2);g6 = g3 + imfilter(g3,w,'replicate');g7 = g3 + imfilter(g3,w1,'replicate');g8 = g4 + imfilter(g4,w,'replicate');g9 = g4 + imfilter(g4,w1,'replicate');g10 = g5 + imfilter(g5,w,'replicate');g11 = g5 + imfilter(g5,w1,'replicate');figure,subplot(2,3,1),imshow(g6);title('原图普通掩膜');subplot(2,3,4),imshow(g7);title('原图扩展掩膜');subplot(2,3,2),imshow(g8);title('直方图后普通掩膜');q=qingxi(g8);imwrite(g8,'zq3.jpg','jpg');subplot(2,3,5),imshow (g9);title('直方图后扩展掩膜');subplot(2,3,3),imshow(g10);title('高斯双峰后普通掩膜');imwrite(g10,'zq4.jpg','jpg');q=qingxi(g10);subplot(2,3,6),imshow(g11);title('高斯双峰后扩展掩膜');pause;%******************************************************************* %利用小波进行图片增强处理[c,s]=wavedec2(f,2,'sym4');%实现图像(即二维信号)的2层分解sizec=size(c);for i=1:sizec(2)if(c(i)>1000)c(i)=6*c(i);elsec(i)=0.005*c(i);endendxx=waverec2(c,s,'sym4');q=qingxi(xx);figure;subplot(1,2,1);imshow(f);title('原图');subplot(1,2,2);imshow(xx);title('小波增强图像'); imwrite(xx,'zq5.jpg','jpg');神经网络clcclose all;P=[0.6192;0.5628;0.6208;0.5000;0.6155;0.6182;0.4210;0.0433;0.1094;0.1910;0.3023;0.2539;0.3215;0.3927;0.3604;0.3649;0.3283;0.4050;]';%数据输入(弧度)T=[0; 0; 0; 0; 0; 0; 0; 2; 2; 2; 2; 2; 2; 1; 1; 1; 1; 1;]';%数据的输出net=newff([0 1],[30,1],{'tansig','purelin'});%隐含层有30个神经元,输出层有一个神经元。
数字图像处理及matlab实现源代码【1】
% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*%{% (一)图像文件的读/写A=imread('drum.jpg'); % 读入图像imshow(A); % 显示图像imwrite(A,'drum.jpg');info=imfinfo('drum.jpg') % 查询图像文件信息% 用colorbar函数将颜色条添加到坐标轴对象中RGB=imread('drum.jpg');I=rgb2gray(RGB); % 把RGB图像转换成灰度图像h=[1 2 1;0 0 0;-1 -2 -1];I2=filter2(h,I);imshow(I2,[]);colorbar('vert') % 将颜色条添加到坐标轴对象中% wrap函数将图像作为纹理进行映射A=imread('4.jpg');imshow(A);I=rgb2gray(RGB);[x,y,z]=sphere;warp(x,y,z,I); % 用warp函数将图像作为纹理进行映射%}% subimage函数实现一个图形窗口中显示多幅图像RGB=imread('drum.jpg');I=rgb2gray(RGB);subplot(1,2,1);subimage(RGB); % subimage函数实现一个图形窗口中显示多幅图像subplot(1,2,2),subimage(I);% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*% (二)图像处理的基本操作% ----------------图像代数运算------------------%{% imadd函数实现两幅图像的相加或给一幅图像加上一个常数% 给图像每个像素都增加亮度I=imread('4.jpg');J=imadd(I,100); % 给图像增加亮度subplot(1,2,1),imshow(I);title('原图');subplot(1,2,2),imshow(J);title('增加亮度图');%% imsubtract函数实现将一幅图像从另一个图像中减去或减去一个常数I=imread('drum.jpg');J=imsubtract(I,100); % 给图像减去亮度subplot(1,2,1),imshow(I);%% immultiply实现两幅图像的相乘或者一幅图像的亮度缩放I=imread('drum.jpg');J=immultiply(I,2); % 进行亮度缩放subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% imdivide函数实现两幅图像的除法或一幅图像的亮度缩放I=imread('4.jpg');J=imdivide(I,0.5); % 图像的亮度缩放subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%}% ----------------图像的空间域操作------------------%{% imresize函数实现图像的缩放J=imread('4.jpg');subplot(1,2,1),imshow(J);title('原图');X1=imresize(J,0.2); % 对图像进行缩放subplot(1,2,2),imshow(X1);title('缩放图');%% imrotate函数实现图像的旋转I=imread('drum.jpg');J=imrotate(I,50,'bilinear'); % 对图像进行旋转subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% imcrop函数实现图像的剪切I=imread('drum.jpg');I2=imcrop(I,[1 100 130 112]); % 对图像进行剪切subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(I2);%}% ----------------特定区域处理------------------%{% roipoly函数用于选择图像中的多边形区域I=imread('4.jpg');c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(BW);%% roicolor函数式对RGB图像和灰度图像实现按灰度或亮度值选择区域进行处理a=imread('4.jpg');subplot(2,2,1),imshow(a);I=rgb2gray(a);BW=roicolor(I,128,225); % 按灰度值选择的区域subplot(2,2,4),imshow(BW);%% ploy2mask 函数转化指定的多边形区域为二值掩模x=[63 186 54 190 63];y=[60 60 209 204 601];bw=poly2mask(x,y,256,256); % 转化指定的多边形区域为二值掩模imshow(bw);hold onplot(x,y,'r','LineWidth',2);hold off%% roifilt2函数实现区域滤波a=imread('4.jpg');I=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域h=fspecial('unsharp');J=roifilt2(h,I,BW); % 区域滤波subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% roifill函数实现对特定区域进行填充a=imread('4.jpg');I=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];J=roifill(I,c,r); % 对特定区域进行填充subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%}% ----------------图像变换------------------%{% fft2 和ifft2函数分别是计算二维的快速傅里叶变换和反变换f=zeros(100,100);subplot(1,2,1);imshow(f);f(20:70,40:60)=1;subplot(1,2,2);imshow(f);F=fft2(f); % 计算二维的快速傅里叶变换F2=log(abs(F));% 对幅值对对数figure;subplot(1,2,1),imshow(F),colorbar;subplot(1,2,2),imshow(F2),colorbar;%% fftsshift 函数实现了补零操作和改变图像显示象限f=zeros(100,100);subplot(2,2,1),imshow(f);title('f')f(10:70,40:60)=1;subplot(2,2,2),imshow(f);title('f取后')F=fft2(f,256,256);subplot(2,2,3),imshow(F);title('F')F2=fftshift(F); % 实现补零操作subplot(2,2,4),imshow(F2);title('F2')figure,imshow(log(abs(F2)));title('log(|F2|)')%% dct2 函数采用基于快速傅里叶变换的算法,用于实现较大输入矩阵的离散余弦变换% idct2 函数实现图像的二维逆离散余弦变换RGB=imread('drum.jpg');I=rgb2gray(RGB);J=dct2(I); % 对I进行离散余弦变换imshow(log(abs(J))),title('对原图离散后取对数'),colorbar;J(abs(J)<10)=0;K=idct2(J); % 图像的二维逆离散余弦变换figure,imshow(I),title('原灰度图')figure,imshow(K,[0,255]);title('逆离散变换');%% dctmtx 函数用于实现较小输入矩阵的离散余弦变figure;RGB=imread('4.jpg');I=rgb2gray(RGB);subplot(3,2,1),imshow(I),title('原灰度图');I=im2double(I);subplot(3,2,2),imshow(I),title('取双精度后');T=dctmtx(8); % 离散余弦变换subplot(3,2,3),imshow(I),title('离散余弦变换后');B=blkproc(I,[8,8],'P1*x*P2',T,T');subplot(3,2,4),imshow(B),title('blkproc作用I后的B');mask=[ 1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0 ];B2=blkproc(B,[8,8],'P1.*x',mask);subplot(3,2,5),imshow(B2),title('blkproc作用B后的B2');I2=blkproc(B2,[8,8],'P1*x*P2',T',T);subplot(3,2,6),imshow(I2),title('blkproc作用B2后的I2');%% edge函数用于提取图像的边缘RGB=imread('4.jpg');I=rgb2gray(RGB);BW=edge(I);imshow(I);figure,imshow(BW);%% radon 函数用来计算指定方向上图像矩阵的投影RGB=imread('4.jpg');I=rgb2gray(RGB);BW=edge(I);theta=0:179;[R,XP]=radon(BW,theta); % 图像矩阵的投影figure,imagesc(theta,XP,R);colormap(hot);xlabel('\theta(degrees)');ylabel('x\prime');title('R_{\theta}(x\prime)');colorbar;%}% ----------------图像增强、分割和编码------------------%{% imhist 函数产生图像的直方图A=imread('4.jpg');B=rgb2gray(A);subplot(2,1,1),imshow(B);subplot(2,1,2),imhist(B);%% histeq 函数用于对图像的直方图均衡化A=imread('4.jpg');B=rgb2gray(A);subplot(2,1,1),imshow(B);subplot(2,1,2),imhist(B);C=histeq(B); % 对图像B进行均衡化figure;subplot(2,1,1),imshow(C);subplot(2,1,2),imhist(C);%% filter2 函数实现均值滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=filter2(fspecial('average',3),I)/255; % 3*3的均值滤波K2=filter2(fspecial('average',5),I)/255; % 5*5的均值滤波K3=filter2(fspecial('average',7),I)/255; % 7*7的均值滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%% wiener2 函数实现Wiener(维纳)滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=wiener2(I,[3,3]); % 3*3 wiener滤波K2=wiener2(I,[5,5]); % 5*5 wiener滤波K3=wiener2(I,[7,7]); % 7*7 wiener滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%% medfilt2 函数实现中值滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=medfilt2(I,[3,3]); % 3*3 中值滤波K2=medfilt2(I,[5,5]); % 5*5 中值滤波K3=medfilt2(I,[7,7]); % 7*7 中值滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%}% ----------------图像模糊及复原------------------%{% deconvwnr 函数:使用维纳滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"'); subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1'); subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');% 进行维纳滤波wnr1=deconvwnr(Blurred1,PSF1); % 维纳滤波wnr2=deconvwnr(Blurred2,PSF2); % 维纳滤波figure;subplot(1,2,1);imshow(wnr1);title('Restored1,True PSF'); subplot(1,2,2);imshow(wnr2);title('Restored2,True PSF');%% deconvreg函数:使用约束最小二乘滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');NP=V*prod(size(I));reg1=deconvreg(BlurredNoisy1,PSF1,NP); % 约束最小二乘滤波reg2=deconvreg(BlurredNoisy2,PSF2,NP); % 约束最小二乘滤波figure;subplot(1,2,1);imshow(reg1);title('Restored1 with NP');subplot(1,2,2);imshow(reg2);title('Restored2 with NP');%% deconvlucy函数:使用Lucy-Richardson滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');luc1=deconvlucy(BlurredNoisy1,PSF1,5); % 使用Lucy-Richardson滤波luc2=deconvlucy(BlurredNoisy1,PSF1,15); % 使用Lucy-Richardson滤波figure;subplot(1,2,1);imshow(luc1);title('Restored Image,NUMIT=5'); subplot(1,2,2);imshow(luc2);title('Restored Image,NUMIT=15');%}% deconvblind 函数:使用盲卷积算法a=imread('4.jpg');I=rgb2gray(a);figure;imshow(I);title('Original Image');PSF=fspecial('motion',13,45); % 运动模糊figure;imshow(PSF);Blurred=imfilter(I,PSF,'circ','conv'); % 得到运动模糊图像figure;imshow(Blurred);title('Blurred Image');INITPSF=ones(size(PSF));[J,P]=deconvblind(Blurred,INITPSF,30); % 使用盲卷积figure;imshow(J);figure;imshow(P,[],'notruesize');% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{% 对图像进行减采样a=imread('lena.jpg');%subplot(1,4,1);figure;imshow(a);title('原图');b=rgb2gray(a);%subplot(1,4,2);figure;imshow(b);title('原图的灰度图');[wid,hei]=size(b);%---4倍减采样----quartimg=zeros(wid/2+1,hei/2+1);i1=1;j1=1;for i=1:2:widfor j=1:2:heiquartimg(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end%subplot(1,4,3);figure;imshow(uint8(quartimg));title('4倍减采样')% ---16倍减采样---quanrtimg=zeros(wid/4+1,hei/4+1);i1=1;j1=1;for i=1:4:widfor j=1:4:heiquanrtimg(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end%subplot(1,4,4);.figure;imshow(uint8(quanrtimg));title('16倍减采样');%}% 图像类型% 将图像转换为256级灰度图像,64级灰度图像,32级灰度图像,8级灰度图像,2级灰度图像a=imread('4.jpg');%figure;subplot(2,3,1);imshow(a);title('原图');b=rgb2gray(a); % 这是256灰度级的图像%figure;subplot(2,3,2);imshow(b);title('原图的灰度图像');[wid,hei]=size(b);img64=zeros(wid,hei);img32=zeros(wid,hei);img8=zeros(wid,hei);img2=zeros(wid,hei);for i=1:widfor j=j:heiimg64(i,j)=floor(b(i,j)/4); % 转化为64灰度级endend%figure;subplot(2,3,3);imshow(uint8(img64),[0,63]);title('64级灰度图像');for i=1:widfor j=1:heiimg32(i,j)=floor(b(i,j)/8);% 转化为32灰度级endend%figure;subplot(2,3,4);imshow(uint8(img32),[0,31]);title('32级灰度图像');for i=1:widfor j=1:heiimg8(i,j)=floor(b(i,j)/32);% 转化为8灰度级endend%figure;subplot(2,3,5);imshow(uint8(img8),[0,7]);title('8级灰度图像');for i=1:widfor j=1:heiimg2(i,j)=floor(b(i,j)/128);% 转化为2灰度级endend%figure;subplot(2,3,6);imshow(uint8(img2),[0,1]);title('2级灰度图像');% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{% ------------------ 图像的点运算------------------I=imread('lena.jpg');figure;subplot(1,3,1);imshow(I);title('原图的灰度图');J=imadjust(I,[0.3;0.6],[0.1;0.9]); % 设置灰度变换的范围subplot(1,3,2);imshow(J);title('线性扩展');I1=double(I); % 将图像转换为double类型I2=I1/255; % 归一化此图像C=2; % 非线性扩展函数的参数K=C*log(1+I2); % 对图像的对数变换subplot(1,3,3);imshow(K);title('非线性扩展');M=255-I;figure;subplot(1,3,1);imshow(M);title('灰度倒置');N1=im2bw(I,0.4); % 将此图像二值化,阈值为0.4N2=im2bw(I,0.7); % 将此图像二值化,阈值为0.7 subplot(1,3,2);imshow(N1);title('二值化阈值0.4');subplot(1,3,3);imshow(N2);title('二值化阈值0.7');%}%{% ------------------ 图像的代数运算------------------% 将两幅图像进行加法运算I=imread('lena.jpg');I=rgb2gray(I);J=imread('rice.png');% 以下把两幅图转化为大小一样for i=1:size(I)for j=size(J):size(I)J(i,j)=0;endendI=im2double(I); % 将图像转化为double型J=im2double(J);% imshow(I);figure;imshow(J);K=I+0.3*J; % 将两幅图像相加subplot(1,3,1);imshow(I);title('人物图');subplot(1,3,2);imshow(J);title('背景图');subplot(1,3,3);imshow(K);title('相加后的图');imwrite(K,'i_lena1.jpg');%%% 将两幅图像做减运算,分离背景与原图A=imread('i_lena1.jpg');B=imread('rice.png');% 以下把两幅图转化为大小一样for i=1:size(A)for j=size(B):size(A)B(i,j)=0;endendC=A-0.3*B;a=imread('lena.jpg');subplot(2,2,1);imshow(a);title('原图图');subplot(2,2,2);imshow(A);title('混合图');subplot(2,2,3);imshow(B);title('背景图');subplot(2,2,4);imshow(C);title('分离后的图');%% 设置掩模,需要保留下来的区域,掩模图像的值为1,否则为0 A=imread('drum.jpg');A=rgb2gray(A);A=im2double(A);sizeA=size(A);subplot(1,2,1);imshow(A);title('原图');B=zeros(sizeA(1),sizeA(2)); % 设置模板B(100:400,100:500)=1;K=A.*B; % 两幅图像相乘subplot(1,2,2);imshow(K);title('局部图');%}%{% ------------------ 图像的缩放------------------A=imread('drum.jpg');B1=imresize(A,1.5); % 比例放大1.5杯,默认采用的是最近邻法进行线性插值B2=imresize(A,[420 384]); % 非比例放大到420:384C1=imresize(A,0.7); % 比例缩小0.7倍C2=imresize(A,[150 180]); % 非比例缩小到150:180figure;imshow(B1);title('比例放大图');figure;imshow(B2);title('非比例放大图');figure;imshow(C1);title('比例缩小图');figure;imshow(C2);title('非比例缩小图');% 检测非比例缩放得到的图片是否能还原到原图a=size(A)d=imresize(C2,[a(1),a(2)]);figure;imshow(d);%}% ------------------ 图像的旋转------------------I=imread('drum.jpg');J=imrotate(I,45); % 图像进行逆时针旋转,默认采用最近邻插值法进行插值处理K=imrotate(I,90); % 默认旋转出界的部分不被截出subplot(1,3,1);imshow(I);subplot(1,3,2);imshow(J);subplot(1,3,3);imshow(K);% 检测旋转后的图像是否失真P=imrotate(K,270);figure;imshow(P);。
opencv的warpaffine函数的源代码实现 -回复
opencv的warpaffine函数的源代码实现-回复OpenCV是一个强大的计算机视觉库,提供了许多图像处理和计算机视觉算法。
其中,warpAffine函数是OpenCV中的一个重要函数,用于对图像进行仿射变换。
在本文中,我们将一步一步地回答"[opencv的warpaffine函数的源代码实现]" 这个问题,探讨warpAffine函数的实现细节。
首先,我们需要了解仿射变换的概念。
仿射变换是一种平面几何变换,保持了一些线段的相对平行性和长度比例。
它可以描述平面上的旋转、平移、缩放和剪切等几何变换操作。
在OpenCV中,warpAffine函数的原型如下所示:cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])其中,参数说明如下:- src: 输入图像,可以是任意维度的数组。
- M: 2x3的仿射变换矩阵。
- dsize: 输出图像的大小,即变换后的图像尺寸。
- dst: 可选参数,输出图像。
- flags: 可选参数,用于确定插值方法。
默认为线性插值。
- borderMode: 可选参数,用于确定边界像素的处理方式。
默认为边界像素的复制。
- borderValue: 可选参数,用于设置边界像素的值。
默认为0。
了解了warpAffine函数的参数,接下来我们将一步一步讨论函数的源代码实现。
首先,我们需要导入相应的库。
pythonimport numpy as np接下来,我们将创建一个函数来实现warpAffine功能。
pythondef warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None):# 确定输出图像的大小if dst is None:dst = np.zeros(dsize, dtype=src.dtype)else:assert dst.shape == dsize# 提取仿射变换矩阵的参数M = np.float32(M[:2])# 计算输出图像的尺寸rows, cols = dst.shape[:2]# 循环遍历输出图像的每个像素for row in range(rows):for col in range(cols):# 计算输入图像中的对应坐标input_coords = M.dot(np.array([col, row, 1]))x, y = input_coords[:2] / input_coords[2]# 判断坐标是否在输入图像范围内if x >= 0 and x < src.shape[1] and y >= 0 and y < src.shape[0]:# 使用插值方法计算输出图像中的像素值if flags is not None and flags !=cv2.INTER_NEAREST:# 使用双线性插值f_x = int(x)c_x = f_x + 1 if f_x < src.shape[1] - 1 else f_xf_y = int(y)c_y = f_y + 1 if f_y < src.shape[0] - 1 else f_yalpha = x - f_xbeta = y - f_ydst[row, col] = (1 - alpha) * (1 - beta) * src[f_y, f_x] + \(1 - alpha) * beta * src[c_y, f_x] + \alpha * (1 - beta) * src[f_y, c_x] + \alpha * beta * src[c_y, c_x]else:# 使用最近邻插值dst[row, col] = src[int(y), int(x)]# 处理边界像素elif borderMode is not None:if borderMode == cv2.BORDER_CONSTANT:# 使用常数填充边界像素dst[row, col] = borderValueelif borderMode == cv2.BORDER_REPLICATE:# 使用复制边界像素x = min(max(x, 0), src.shape[1] - 1)y = min(max(y, 0), src.shape[0] - 1)dst[row, col] = src[int(y), int(x)]return dst让我们逐行解释一下这段源代码的实现。
数字图像处理~图像编码
Eb = -log2(0.3) = 1.737
Ec = -log2(0.2) = 2.322
总信息量也即表达整个字符串需要的位数为:
E = Ea * 5 + Eb * 3 + Ec * 2 = 14.855 位
举例说明:
如果用二进制等长编码,需要多少位?
数据压缩技术的理论基础是信息论。
2.信息量和信息熵
A
B
数据压缩的基本途径
数据压缩的理论极限
信息论中信源编码理论解决的主要问题:
信息量等于数据量与冗余量之差
I = D - du
数据是用来记录和传送信息的,或者说数据
是信息的载体。
数据所携带的信息。
信息量与数据量的关系:
du—冗余量
I— 信息量
D— 数据量
叁
实时传输:在10M带宽网上实时传输的话,需要压缩到原来数据量的?
肆
存储: 1张CD可存640M,如果不进行压缩,1张CD则仅可以存放?秒的数据
伍
可见,单纯依靠增加存储器容量和改善信道带宽无法满足需求,必须进行压缩
1 图像编码概述
数字化后的图像信息数据量非常大,图像压缩利用图像数据存在冗余信息,去掉这些冗余信息后可以有效压缩图像。
01.
02.
03.
04.
问题:
把某地区天气预报的内容看作一个信源,它有6种可能的天气:晴天(概率为0.30)、阴天(概率为0.20)、多云(概率为0.15)、雨天(概率为0.13)、大雾(概率为0.12)和下雪(概率为0.10),如何用霍夫曼编码对其进行编码?平均码长分别是多少?
哈夫曼编码
30
10
数字图像处理 实验报告(完整版)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理代码大全
1.图像反转MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H);2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]subplot(2,2,3),imshow(J);title('线性变换图像[0.1 0.5]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]subplot(2,2,4),imshow(K);title('线性变换图像[0.3 0.7]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系3.非线性变换MATLAB程序实现如下:I=imread('xian.bmp');I1=rgb2gray(I);subplot(1,2,1),imshow(I1);title('灰度图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系J=double(I1);J=40*(log(J+1));H=uint8(J);subplot(1,2,2),imshow(H);title('对数变换图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系4.直方图均衡化MATLAB程序实现如下:I=imread('xian.bmp');I=rgb2gray(I);figure;subplot(2,2,1);imshow(I);subplot(2,2,2);imhist(I);I1=histeq(I);figure;subplot(2,2,1);imshow(I1);subplot(2,2,2);imhist(I1);5.线性平滑滤波器用MATLAB实现领域平均法抑制噪声程序:I=imread('xian.bmp');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title('添加椒盐噪声的图像')k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波subplot(233),imshow(k1);title('3*3模板平滑滤波');subplot(234),imshow(k2);title('5*5模板平滑滤波');subplot(235),imshow(k3);title('7*7模板平滑滤波');subplot(236),imshow(k4);title('9*9模板平滑滤波'); 6.中值滤波器用MATLAB实现中值滤波程序如下:I=imread('xian.bmp');I=rgb2gray(I);J=imnoise(I,'salt&pepper',0.02);subplot(231),imshow(I);title('原图像');subplot(232),imshow(J);title('添加椒盐噪声图像');k1=medfilt2(J); %进行3*3模板中值滤波k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波subplot(233),imshow(k1);title('3*3模板中值滤波'); subplot(234),imshow(k2);title('5*5模板中值滤波'); subplot(235),imshow(k3);title('7*7模板中值滤波'); subplot(236),imshow(k4);title('9*9模板中值滤波'); 7.用Sobel算子和拉普拉斯对图像锐化:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,2,2),imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系H=fspecial('sobel'); %选择sobel算子J=filter2(H,I1); %卷积运算subplot(2,2,3),imshow(J);title('sobel算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子J1=conv2(I1,h,'same'); %卷积运算subplot(2,2,4),imshow(J1);title('拉普拉斯算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系8.梯度算子检测边缘用MATLAB实现如下:I=imread('xian.bmp');subplot(2,3,1);imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,3,2);imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=edge(I1,'roberts');figure;subplot(2,3,3);imshow(I2);title('roberts算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=edge(I1,'sobel');subplot(2,3,4);imshow(I3);title('sobel算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I4=edge(I1,'Prewitt');subplot(2,3,5);imshow(I4);title('Prewitt算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系9.LOG算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1);imshow(I);title('原始图像');I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'log');subplot(2,2,3);imshow(I2);title('log算子分割结果'); 10.Canny算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp'); subplot(2,2,1);imshow(I);title('原始图像')I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'canny'); subplot(2,2,3);imshow(I2);title('canny算子分割结果');11.边界跟踪(bwtraceboundary函数)clcclear allI=imread('xian.bmp');figureimshow(I);title('原始图像');I1=rgb2gray(I); %将彩色图像转化灰度图像threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限BW=im2bw(I1, threshold); %将灰度图像转化为二值图像figureimshow(BW);title('二值图像');dim=size(BW);col=round(dim(2)/2)-90; %计算起始点列坐标row=find(BW(:,col),1); %计算起始点行坐标connectivity=8;num_points=180;contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_p oints);%提取边界figureimshow(I1);hold on;plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2); title('边界跟踪图像');12.Hough变换I= imread('xian.bmp');rotI=rgb2gray(I);subplot(2,2,1);imshow(rotI);title('灰度图像');axis([50,250,50,200]);grid on;axis on;BW=edge(rotI,'prewitt');subplot(2,2,2);imshow(BW);title('prewitt算子边缘检测后图像');axis([50,250,50,200]);grid on;axis on;[H,T,R]=hough(BW);subplot(2,2,3);imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit'); title('霍夫变换图');xlabel('\theta'),ylabel('\rho');axis on , axis normal, hold on;P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));x=T(P(:,2));y=R(P(:,1));plot(x,y,'s','color','white');lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7); subplot(2,2,4);,imshow(rotI);title('霍夫变换图像检测');axis([50,250,50,200]);grid on;axis on;hold on;max_len=0;for k=1:length(lines)xy=[lines(k).point1;lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');len=norm(lines(k).point1-lines(k).point2);if(len>max_len)max_len=len;xy_long=xy;endendplot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); 13.直方图阈值法用MATLAB实现直方图阈值法:I=imread('xian.bmp');I1=rgb2gray(I);figure;subplot(2,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系[m,n]=size(I1); %测量图像尺寸参数GP=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255GP(k+1)=length(find(I1==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置endsubplot(2,2,2),bar(0:255,GP,'g') %绘制直方图title('灰度直方图')xlabel('灰度值')ylabel('出现概率')I2=im2bw(I,150/255);subplot(2,2,3),imshow(I2);title('阈值150的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=im2bw(I,200/255); %subplot(2,2,4),imshow(I3);title('阈值200的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系14. 自动阈值法:Otsu法用MATLAB实现Otsu算法:clcclear allI=imread('xian.bmp');subplot(1,2,1),imshow(I);title('原始图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系level=graythresh(I); %确定灰度阈值BW=im2bw(I,level);subplot(1,2,2),imshow(BW);title('Otsu法阈值分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系15.膨胀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀subplot(1,2,2);imshow(I2);title('膨胀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系16.腐蚀操作MATLAB实现腐蚀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀subplot(1,2,2);imshow(I2);title('腐蚀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系17.开启和闭合操作用MATLAB实现开启和闭合操作I=imread('xian.bmp'); %载入图像subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1); %采用半径为1的圆作为结构元素I3=imclose(I1,se); %闭合操作subplot(2,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(2,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系18.开启和闭合组合操作I=imread('xian.bmp'); %载入图像subplot(3,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(3,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I3=imclose(I1,se); %闭合操作subplot(3,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(3,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I4=imopen(I1,se);I5=imclose(I4,se);subplot(3,2,5),imshow(I5); %开—闭运算图像title('开—闭运算图像');axis([50,250,50,200]);axis on; %显示坐标系I6=imclose(I1,se);I7=imopen(I6,se);subplot(3,2,6),imshow(I7); %闭—开运算图像title('闭—开运算图像');axis([50,250,50,200]);axis on; %显示坐标系19.形态学边界提取利用MATLAB实现如下:I=imread('xian.bmp'); %载入图像subplot(1,3,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(1,3,2),imshow(I1);title('二值化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=bwperim(I1); %获取区域的周长subplot(1,3,3),imshow(I2);title('边界周长的二值图像');axis([50,250,50,200]);grid on;axis on;20.形态学骨架提取利用MATLAB实现如下:I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on;I1=im2bw(I);subplot(2,2,2),imshow(I1); title('二值图像');axis([50,250,50,200]); axis on;I2=bwmorph(I1,'skel',1); subplot(2,2,3),imshow(I2); title('1次骨架提取');axis([50,250,50,200]); axis on;I3=bwmorph(I1,'skel',2); subplot(2,2,4),imshow(I3); title('2次骨架提取');axis([50,250,50,200]); axis on;21.直接提取四个顶点坐标I = imread('xian.bmp');I = I(:,:,1);BW=im2bw(I);figureimshow(~BW)[x,y]=getpts。
图像处理边缘提取与分割实验报告附源码
图像处理边缘提取与分割实验报告附源码实验一数字图像处理实例专业:模式识别与智能系统姓名:XXX学号:*************边缘提取与图像分割理论、算法、源码与实例1)理论一、边缘检测的基本方法:各种差分算子,主要有:差分边缘检测方法Roberts梯度模算子前两种对垂直,水平,对角检测好。
Prewitt算子,Robinson算子(算八个方向的梯度最大值)Sobel算子(利用上下左右加权,可平滑噪声);Kirsch算子Rosenfeld算子Laplace算子(二阶导数算子,一般不用于检测,用于之后判别暗区与明区。
)LOG算子,(XXX平滑后求导提取边界。
)主要思路用高斯函数对图像平滑滤波,然后再对图像进行拉普拉斯运算,算得的值等于零的点认为是边界点。
该算法高斯函数方差取值很重要,过大会导至精度不高。
还容易产生虚假边界。
但可以用一些准备去除虚假边界。
对于灰度渐变图的效果也不太好。
但大部份图片边缘提取效果还好。
Canny边界检测算子二、拟合曲面求导提取边界。
主要思路为在点的邻域各点拟合一个曲面,由曲面的求导代替离散点求差分,这种方法对于噪声比较不敏感。
三、统计判决法提取边界以误判几率最小化设置门限,对边界检测算子作用后的每一个像点判别/。
统计判决法依赖于先验知识。
四、分裂—合并算法按一定的均一化标准,将图片分成子图。
合并满足均一性准则的子图。
实验一数字图像处理实例专业:模式识别与智能系统姓名:陈光磊学号:*************五、跟踪技术1)区域跟踪,基于区域的图像分割方法。
应用于直接提取区域。
检测满足跟踪准则的点,找到这样的点,检测其所有邻点,把满足跟踪准则的任合邻点合并再重复。
直到没有邻点满足检测准则。
2)曲线跟踪,基于边界的图像分割方法。
对整幅图扫描,对所有“目前点”的邻点检测,周围没有满足跟踪条件的点时,返回到上一个最近的分支处,掏出另一个满足跟踪原则的目前点。
重复根踪。
6、模型化与统计检验法检测边界开始步骤为对图像划分成多块子图,每块子图进行曲面拟合。
(完整版)数字图像处理代码大全
1.图像反转MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H);2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]subplot(2,2,3),imshow(J);title('线性变换图像[0.1 0.5]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]subplot(2,2,4),imshow(K);title('线性变换图像[0.3 0.7]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系3.非线性变换MATLAB程序实现如下:I=imread('xian.bmp');I1=rgb2gray(I);subplot(1,2,1),imshow(I1);title('灰度图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系J=double(I1);J=40*(log(J+1));H=uint8(J);subplot(1,2,2),imshow(H);title('对数变换图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系4.直方图均衡化MATLAB程序实现如下:I=imread('xian.bmp');I=rgb2gray(I);figure;subplot(2,2,1);imshow(I);subplot(2,2,2);imhist(I);I1=histeq(I);figure;subplot(2,2,1);imshow(I1);subplot(2,2,2);imhist(I1);5.线性平滑滤波器用MATLAB实现领域平均法抑制噪声程序:I=imread('xian.bmp');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title('添加椒盐噪声的图像')k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波subplot(233),imshow(k1);title('3*3模板平滑滤波');subplot(234),imshow(k2);title('5*5模板平滑滤波');subplot(235),imshow(k3);title('7*7模板平滑滤波');subplot(236),imshow(k4);title('9*9模板平滑滤波'); 6.中值滤波器用MATLAB实现中值滤波程序如下:I=imread('xian.bmp');I=rgb2gray(I);J=imnoise(I,'salt&pepper',0.02);subplot(231),imshow(I);title('原图像');subplot(232),imshow(J);title('添加椒盐噪声图像');k1=medfilt2(J); %进行3*3模板中值滤波k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波subplot(233),imshow(k1);title('3*3模板中值滤波'); subplot(234),imshow(k2);title('5*5模板中值滤波'); subplot(235),imshow(k3);title('7*7模板中值滤波'); subplot(236),imshow(k4);title('9*9模板中值滤波'); 7.用Sobel算子和拉普拉斯对图像锐化:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,2,2),imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系H=fspecial('sobel'); %选择sobel算子J=filter2(H,I1); %卷积运算subplot(2,2,3),imshow(J);title('sobel算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子J1=conv2(I1,h,'same'); %卷积运算subplot(2,2,4),imshow(J1);title('拉普拉斯算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系8.梯度算子检测边缘用MATLAB实现如下:I=imread('xian.bmp');subplot(2,3,1);imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,3,2);imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=edge(I1,'roberts');figure;subplot(2,3,3);imshow(I2);title('roberts算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=edge(I1,'sobel');subplot(2,3,4);imshow(I3);title('sobel算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I4=edge(I1,'Prewitt');subplot(2,3,5);imshow(I4);title('Prewitt算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系9.LOG算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1);imshow(I);title('原始图像');I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'log');subplot(2,2,3);imshow(I2);title('log算子分割结果'); 10.Canny算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp'); subplot(2,2,1);imshow(I);title('原始图像')I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'canny'); subplot(2,2,3);imshow(I2);title('canny算子分割结果');11.边界跟踪(bwtraceboundary函数)clcclear allI=imread('xian.bmp');figureimshow(I);title('原始图像');I1=rgb2gray(I); %将彩色图像转化灰度图像threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限BW=im2bw(I1, threshold); %将灰度图像转化为二值图像figureimshow(BW);title('二值图像');dim=size(BW);col=round(dim(2)/2)-90; %计算起始点列坐标row=find(BW(:,col),1); %计算起始点行坐标connectivity=8;num_points=180;contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_p oints);%提取边界figureimshow(I1);hold on;plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2); title('边界跟踪图像');12.Hough变换I= imread('xian.bmp');rotI=rgb2gray(I);subplot(2,2,1);imshow(rotI);title('灰度图像');axis([50,250,50,200]);grid on;axis on;BW=edge(rotI,'prewitt');subplot(2,2,2);imshow(BW);title('prewitt算子边缘检测后图像');axis([50,250,50,200]);grid on;axis on;[H,T,R]=hough(BW);subplot(2,2,3);imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit'); title('霍夫变换图');xlabel('\theta'),ylabel('\rho');axis on , axis normal, hold on;P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));x=T(P(:,2));y=R(P(:,1));plot(x,y,'s','color','white');lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7); subplot(2,2,4);,imshow(rotI);title('霍夫变换图像检测');axis([50,250,50,200]);grid on;axis on;hold on;max_len=0;for k=1:length(lines)xy=[lines(k).point1;lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');len=norm(lines(k).point1-lines(k).point2);if(len>max_len)max_len=len;xy_long=xy;endendplot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); 13.直方图阈值法用MATLAB实现直方图阈值法:I=imread('xian.bmp');I1=rgb2gray(I);figure;subplot(2,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系[m,n]=size(I1); %测量图像尺寸参数GP=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255GP(k+1)=length(find(I1==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置endsubplot(2,2,2),bar(0:255,GP,'g') %绘制直方图title('灰度直方图')xlabel('灰度值')ylabel('出现概率')I2=im2bw(I,150/255);subplot(2,2,3),imshow(I2);title('阈值150的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=im2bw(I,200/255); %subplot(2,2,4),imshow(I3);title('阈值200的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系14. 自动阈值法:Otsu法用MATLAB实现Otsu算法:clcclear allI=imread('xian.bmp');subplot(1,2,1),imshow(I);title('原始图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系level=graythresh(I); %确定灰度阈值BW=im2bw(I,level);subplot(1,2,2),imshow(BW);title('Otsu法阈值分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系15.膨胀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀subplot(1,2,2);imshow(I2);title('膨胀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系16.腐蚀操作MATLAB实现腐蚀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀subplot(1,2,2);imshow(I2);title('腐蚀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系17.开启和闭合操作用MATLAB实现开启和闭合操作I=imread('xian.bmp'); %载入图像subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1); %采用半径为1的圆作为结构元素I3=imclose(I1,se); %闭合操作subplot(2,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(2,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系18.开启和闭合组合操作I=imread('xian.bmp'); %载入图像subplot(3,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(3,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I3=imclose(I1,se); %闭合操作subplot(3,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(3,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I4=imopen(I1,se);I5=imclose(I4,se);subplot(3,2,5),imshow(I5); %开—闭运算图像title('开—闭运算图像');axis([50,250,50,200]);axis on; %显示坐标系I6=imclose(I1,se);I7=imopen(I6,se);subplot(3,2,6),imshow(I7); %闭—开运算图像title('闭—开运算图像');axis([50,250,50,200]);axis on; %显示坐标系19.形态学边界提取利用MATLAB实现如下:I=imread('xian.bmp'); %载入图像subplot(1,3,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(1,3,2),imshow(I1);title('二值化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=bwperim(I1); %获取区域的周长subplot(1,3,3),imshow(I2);title('边界周长的二值图像');axis([50,250,50,200]);grid on;axis on;20.形态学骨架提取利用MATLAB实现如下:I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on;I1=im2bw(I);subplot(2,2,2),imshow(I1); title('二值图像');axis([50,250,50,200]); axis on;I2=bwmorph(I1,'skel',1); subplot(2,2,3),imshow(I2); title('1次骨架提取');axis([50,250,50,200]); axis on;I3=bwmorph(I1,'skel',2); subplot(2,2,4),imshow(I3); title('2次骨架提取');axis([50,250,50,200]); axis on;21.直接提取四个顶点坐标I = imread('xian.bmp');I = I(:,:,1);BW=im2bw(I);figureimshow(~BW)[x,y]=getpts。
8种常用图像处理算法这是我毕业设计的一部分代码
( ( > ) ( < ) ( > ) ( < ))
{
指向源图象第行,第个象素的指针
() * ( ) *;
复制象素
();
}
{
对于源图中没有的象素,直接赋值为
();
}
}
}
}
{
("只支持色和真彩色位图");
释放内存
();
();
;
}
返回
;
}
*************************************************************************
* * ;
* * ;
* * ;
* * ;
* * ;
* * ;
* * ;
* * ;
计算旋转后的图像实际宽度
() ( ( ( ),
( ) ) );
计算旋转后的图像高度
() ( ( ( ),
( ) ) );
计算旋转后图像每行的字节数
( * >);
计算两个常数
() ( * ( ) * * ( ) *
* ( ));
*
*该函数用来实现图像的垂直镜像。
*
************************************************************************
( )
{
原图象宽度
;
原图象高度
;
原图象的颜色数
;
原图象的信息头结构指针
;
指向原图象和目的图象的像素的指针
;
平移后剩余图像在源图像中的位置(矩形区域)
opencv编程案例详解
opencv编程案例详解OpenCV是一个非常流行的开源计算机视觉库,它提供了丰富的图像处理和计算机视觉算法。
在本文中,我们将列举10个使用OpenCV 进行编程的案例,以帮助读者更好地理解OpenCV的应用。
1. 图像读取和显示:通过OpenCV可以轻松地读取图像文件,并将其显示在屏幕上。
使用cv2.imread()函数读取图像,然后使用cv2.imshow()函数显示图像。
2. 图像缩放:OpenCV提供了cv2.resize()函数,可以对图像进行缩放操作。
可以通过设置目标图像的大小来实现缩放效果。
3. 图像平滑:OpenCV中的图像平滑可以通过使用不同的滤波器来实现,例如均值滤波、高斯滤波和中值滤波等。
这些滤波器可以通过cv2.blur()、cv2.GaussianBlur()和cv2.medianBlur()函数来应用。
4. 图像边缘检测:OpenCV提供了多种边缘检测算法,包括Sobel、Canny和Laplacian等。
可以使用cv2.Sobel()、cv2.Canny()和placian()函数来实现边缘检测。
5. 目标检测:OpenCV中的目标检测可以通过使用特征提取和机器学习算法来实现。
例如,可以使用Haar级联分类器进行人脸检测,或者使用HOG特征和SVM进行行人检测。
6. 图像分割:OpenCV中的图像分割可以通过使用不同的算法来实现,例如阈值分割、区域生长和基于图割的分割等。
可以使用cv2.threshold()、cv2.floodFill()和cv2.grabCut()函数来实现图像分割。
7. 特征匹配:OpenCV提供了多种特征匹配算法,例如SIFT、SURF 和ORB等。
可以使用cv2.SIFT()、cv2.SURF()和cv2.ORB()函数来提取图像特征,并使用cv2.match()函数进行特征匹配。
8. 光流估计:OpenCV中的光流估计可以通过使用不同的算法来实现,例如Lucas-Kanade和Farneback等。
matlab数字图像处理源代码
数字图像去噪典型算法及matlab实现希望得到大家的指点和帮助图像去噪是数字图像处理中的重要环节和步骤。
去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。
图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等;目前比较经典的图像去噪算法主要有以下三种:均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。
有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。
中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。
中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。
其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。
很容易自适应化。
Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。
对于去除高斯噪声效果明显。
实验一:均值滤波对高斯噪声的效果I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声subplot(2,3,1);imshow(I);title('原始图像');subplot(2,3,2); imshow(J);title('加入高斯噪声之后的图像');%采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9subplot(2,3,3);imshow(K1);title('改进后的图像1');subplot(2,3,4); imshow(K2);title('改进后的图像2');subplot(2,3,5);imshow(K3);title('改进后的图像3');subplot(2,3,6);imshow(K4);title('改进后的图像4');PS:filter2用法:filter2用法fspecial函数用于创建预定义的滤波算子,其语法格式为:h = fspecial(type)h = fspecial(type,parameters)参数type制定算子类型,parameters指定相应的参数,具体格式为:type='average',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。
数字图像处理实验报告(完整版)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为,存入一个数组中;2.利用whos 命令提取该读入图像的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为。
7.用imread()读入图像和;8.用imfinfo()获取图像和的大小;9.用figure,imshow()分别将和显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('')>> imfinfo '';>> imwrite(I,'','quality',20);>> imwrite(I,'');7~9 >>I=imread('');>>J=imread('')>>imfinfo ''>> imfinfo ''>>figure(1),imshow('')>>figure(2),imshow('')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
processing优秀作品代码
processing优秀作品代码##一、图像处理优秀作品代码。
###1.图像风格转换。
```python。
import tensorflow as tf。
#加载图片风格转换所需模型。
model = tf.keras.models.load_model('model.h5')。
#加载要处理的图片。
img = tf.io.read_file('source.jpg')。
img = tf.image.deserizalize(img)。
#将图片转换为模型需要的输入格式。
input_shape = (img.shape[0],img.shape[1],3)。
input_imgs =tf.reshape(tf.image.resize(img,input_shape),[1,input_shape[0],in put_shape[1],3])。
#调用模型进行风格转换。
output_imgs = model.predict(input_imgs)。
output_imgs = tf.reshape(output_imgs,input_shape)。
#保存处理后的图片。
tf.io.write_file('target.jpg',tf.image.serialize_jpeg(output _imgs))。
```。
###2.图像滤波。
```python。
import numpy as np。
from PIL import Image。
#加载要处理的图片。
img = Image.open('source.jpg')。
#将图片转换为灰度图。
im_gray = img.convert('L')。
#创建滤波器。
kernel = np.array([[0, -1, 0], 。
[-1,5,-1],。
[0,-1,0]])。
#使用滤波器处理图片。
img_filtered =im_gray.filter(ImageFilter.Kernel((3,3),kernel,scale=1,offset=0) )。
ddim difusiondet 源代码解析
ddim difusiondet 源代码解析1. 引言1.1 概述本文旨在对"ddim diffusiondet"源代码进行解析,并深入分析该算法的实现原理和关键代码。
"ddim diffusiondet"是一种用于目标检测的图像处理算法,主要应用于计算机视觉领域。
通过对源代码的解析,可以更好地了解该算法的背景、实现原理以及相关代码细节。
1.2 文章结构本文将按照以下结构进行论述:"ddim difusiondet 源代码解析"部分将详细介绍该算法的背景、实现原理和关键代码分析;"结果与讨论"部分将涵盖实验设置与数据集、实验结果分析以及相关讨论和启示;"总结与展望"部分将对主要观点进行总结,并展望未来的研究方向;最后,在"结论"部分对整个研究工作进行总结,并探讨了"ddim diffusiondet"在未来的应用前景。
1.3 目的本文旨在提供一个详细而清晰的关于“ddim difusiondet”源码解析的指南,为读者提供深入了解该算法的基础知识和实现细节。
通过对源码中关键部分的剖析,读者能够更好地理解该算法的工作原理,并为相关研究和应用提供有价值的参考。
同时,本文也希望能够激发读者对目标检测和计算机视觉领域更广泛的探索兴趣。
2. ddim difusiondet 源代码解析2.1 背景介绍在本节中,我们将介绍ddim difusiondet的背景信息。
ddim difusiondet是一个基于深度学习技术的目标检测算法,主要用于检测并定位图像或视频中的对象。
2.2 实现原理在这一节中,我们将详细解释ddim difusiondet的实现原理。
首先,该算法采用了深层残差网络(Deep Residual Network)作为其主干网络。
接下来,在主干网络上构建了多个特征金字塔模块(Feature Pyramid Network),以便对不同尺度的特征进行提取和处理。
8种常用图像处理算法(函数)
8种常用图像处理算法(函数)这是我毕业设计的一部分代码/*************************************************************************** 函数名称:** VertMirror()** 参数:** LPSTR lpDIB //指向源DIB图像指针** 返回值:** BOOL //镜像成功返回TRUE,否则返回FALSE。
** 说明:** 该函数用来实现DIB图像的垂直镜像。
*************************************************************************/BOOL WINAPI VertMirror(LPSTR lpDIB){//原图象宽度LONG lWidth;//原图象高度LONG lHeight;//原图象的颜色数WORD wNumColors;//原图象的信息头结构指针LPBITMAPINFOHEADER lpbmi;//指向原图象和目的图象的像素的指针LPBYTE lpSrc,lpDst;//平移后剩余图像在源图像中的位置(矩形区域)CRect rectSrc;//指向原图像像素的指针LPBYTE lpDIBBits;//指向复制图像像素的指针LPBYTE lpNewDIBBits;//内存句柄HLOCAL h;//循环变量LONG i;//图像每行的字节数LONG lLineBytes;//获取图象的信息头结构的指针lpbmi=(LPBITMAPINFOHEADER)lpDIB;//找到图象的像素位置lpDIBBits=(LPBYTE)::FindDIBBits(lpDIB);//获取图象的宽度lWidth=::DIBWidth(lpDIB);//获取图象的高度lHeight=::DIBHeight(lpDIB);//获取图象的颜色数wNumColors=::DIBNumColors(lpDIB);//计算图像每行的字节数lLineBytes = WIDTHBYTES(lWidth *(lpbmi->biBitCount));// 暂时分配内存,以保存新图像h= LocalAlloc(LHND, lLineBytes);// 分配内存失败,直接返回if (!h)return FALSE;// 锁定内存lpNewDIBBits = (LPBYTE)LocalLock(h);//如果是256色位图或真彩色位图if(wNumColors==256||wNumColors==0){//平移图像,每次移动一行for(i = 0; i<lHeight/2; i++){//指向原图象倒数第i行像素起点的指针lpSrc =(LPBYTE)lpDIBBits + lLineBytes * i;//目标区域同样要注意上下倒置的问题lpDst =(LPBYTE)lpDIBBits+lLineBytes * (lHeight-i-1) ;//备份一行memcpy(lpNewDIBBits, lpDst, lLineBytes);//将倒数第i行像素复制到第i行memcpy(lpDst, lpSrc, lLineBytes);//将第i行像素复制到第i行memcpy(lpSrc, lpNewDIBBits, lLineBytes);}}else{AfxMessageBox("只支持256色和真彩色位图");// 释放内存LocalUnlock(h);LocalFree(h);return false;}// 释放内存LocalUnlock(h);LocalFree(h);// 返回return TRUE;}/************************************************************************* ** 函数名称:** RotateDIB ()** 参数:** LPSTR lpDIB //指向源DIB图像指针** int iAngle* 说明:** 该函数用来实现DIB图像的旋转。
通信工程应用技术-图像处理
课程设计任务书学生姓名:专业班级:通信1102指导教师:许建霞工作单位:武汉理工大学题目: 图像处理初始条件:要求学生已完成通信专业各主干课程的学习,通过本课设进一步掌握专业课程群的综合原理、操作技能,形成基本的解决实践问题的知识体系,提高学生对现代通信系统的全面认识.要求完成的主要任务:编程实现一幅图像的平移、镜像、旋转、缩小和放大。
要求:给出所用算法的理论依据和必要的推导过程;给出原始图像和处理后的图像。
时间安排:2015年1月 6日布置任务;2015年1月 7日-10日查阅资料,确定设计方案;2015年1月 11日-16日完成仿真、制作实物等;2015年1月 17日完成答辩。
指导教师签名: 2015 年 1 月 6 日系主任(或责任教师)签名: 2015 年 1 月 6 日目录摘要 (I)Abstract (II)1MATLAB简介 (1)1.1 MATLAB说明 (1)1.2 MATLAB的语言特点 (1)1.3 MATLAB系统构成 (1)2基本原理 (3)2.1总体思路 (3)2.2各部分原理 (3)2.2.1平移变换 (3)2.2.2镜像翻转 (3)1.2.4缩小和放大 (4)3编程与实现 (6)3.1原始图像选择读取 (6)3.2 平移变换 (7)3.2.1平移变换法1 (7)3.2.2平移变换法2 (8)3.3 镜像翻转 (9)3.4 旋转变换 (11)3.5 缩小和放大 (12)4总结与分析 (16)5心得体会 (17)6参考文献 (18)附录:程序 (19)摘要MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印.高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。
可用于科学计算和工程绘图.新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力.同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。
国家自然科学基金委信息学部的学科名称及代码
国家自然科学基金委信息学部的学科名称及代码F01 电子学与信息系统F0101 信息论F0102 信息系统F0103通信理论与系统F0104通信网络F0105移动通信F0106 空天通信F0107 水域通信F0108 多媒体通信F0109 光通信F0110 量子通信与量子信息处理F0111 信号理论与信号处理F0112雷达原理与雷达信号F0113 信息获取与处理F0114 探测与成像F0115 图像处理F0116图像表征与显示F0117 多媒体信息处理F0118 电路与系统F0119电磁场F0120电磁波F0121 微波光电子F0122物理电子学F0123 敏感电子学与传感器F0124生物电子学与生物信息处理F0125 医学信息检测与处理F02 计算机科学F0201计算机科学的基础理论F0202 计算机软件F0203计算机体系结构F0204计算机硬件技术F0205 计算机应用技术F0206 信息安全F0207计算机网络F03 自动化F0301控制理论与技术F0302控制系统F0303系统建模与仿真技术F0304系统工程理论与技术F0305生物系统分析与调控F0306检测技术及装置F0307导航、制导与控制F0308智能制造自动化理论与技术F0309机器人学与机器人技术F0310人工智能驱动的自动化F04 半导体科学与信息器件F0401 半导体材料F0402集成电路设计F0403 半导体光电子器件F0404 半导体电子器件与集成F0405 半导体物理F0406 集成电路器件、制造与封装F0407微纳机电器件与控制系统F0408 新型信息器件F05 光学与光电子学F0501光学信息获取、显示与处理F0502 光子与光电子器件F0503 传输与交换光子学F0504红外与太赫兹物理及技术F0505 非线性光学与梁子光学F0506 激光F0507 光谱技术F0508 应用光学F0509 光学和光电子材料F0510 空间光学F0511 大气、海洋与环境光学F0512 生物、医学光学与光子学F0514 能源与照明光子学F0514 维纳光子学F0515 光子集成技术与器件F0506 交叉学科中的光学问题F06 人工智能F0601 人工智能基础F0602 机器学习F0603机器感知与模式识别F0604 自然语言处理F0605知识表示与处理F0606智能系统与应用F0607人知与神经科学启发的人工智能F07 交叉学科中的信息科学F0701 教育信息科学与技术F0702信息与数学交叉问题国家自然科学基金委信息学部的学科名称及代码F01 电子学与信息系统F0101信息理论与信息系统F010101信息论F010102信源编码与信道编码F010103通信网络与通信系统安全F010104网络服务理论与技术F010105信息系统建模与仿真F010106认知无线电F0102通信理论与系统F010201网络通信理论与技术F010202无线通信理论与技术F010203空天通信理论与技术F010204多媒体通信理论与技术F010205光、量子通信理论与系统F010206计算机通信理论与系统F0103信号理论与信号处理F010301多维信号处理F010302声信号分析与处理F010303雷达原理与技术F010304雷达信号处理F010305自适应信号处理F010306人工神经网络信息处理方法与技术F010401图像处理F010402图像理解与识别F010403 多媒体信息处理F010404探测与成像系统F010405信息检测与估计F010406 智能信息处理F010407视觉信息获取与处理F010408遥感信息获取与处理网络信息获取与处理F010410传感信息提取与处理F0105电路与系统F010501电路设计理论与技术F010502电路故障检测理论与技术F010503 电路网络理论F010504高性能电路F010505非线性电路系统理论与应用F010506 功能集成电路与系统F010507功率电子技术与系统F010508射频技术与系统F010509电路与系统可靠性F0106电磁场与波F010601电磁场理论F010602计算电磁学散射与逆散射F010604电波传播F010605天线理论与技术F010606毫米波与亚毫米波技术F010607微波集成电路与元器件F010608太赫兹电子技术F010609微波光子学F010610F010611瞬态电磁场理论与应用F010612新型介质电磁特性与应用F0107物理电子学F010701真空电子学F010702量子、等离子体电子学F010703超导电子学F010704相对论电子学纳电子学F010706表面和薄膜电子学F010707新型电磁材料与器件基础研究F010708 分子电子学F010709有机、无机电子学F0108生物电子学与生物信息处理F010801 电磁场生物效应F010802生物电磁信号检测与分析F010803生物分子信息检测与识别F010804生物细胞信号提取与分析F010805生物信息处理与分析F010806生物系统信息网络与分析F010807生物系统功能建模与仿真F010808仿生信息处理方法与技术F010809系统生物学理论与技术F010810医学信息检测方法与技术F0109敏感电子学与传感器F010901机械传感机理与信息检测F010902气体、液体信息传感机理与检测F010903 压电、光电信息传感机理与检测F010904 生物信息传感机理与检测F010905微纳米传感器原理与集成F010906多功能传感器与综合技术F010907新型敏感材料特性与器件F010908新型传感器理论与技术F010909传感信息融合与处理F02计算机科学F0201计算机科学的基础理论F020101理论计算机科学F020102新型计算模型计算机编码理论F020104算法及其复杂性F020105容错计算F020106形式化方法F020107机器智能基础理论与方法F0202计算机软件F020201软件理论与软件方法学F020202F020203程序设计语言及支撑环境F020204 数据库理论与系统F020205系统软件F020206并行与分布式软件F020207实时与嵌入式软件F020208可信软件F0203计算机体系结构计算机系统建模与模拟F020302计算机系统设计与性能评测F020303 计算机系统安全与评估F020304并行与分布式处理F020305高性能计算与超级计算机F020306新型计算系统F020307计算系统可靠性F020308。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GetPaletteEntries(hPalSrc, 0, iNumEntries, plogPal->palPalEntry);
// 创建一个Windows调色板
hPalette = CreatePalette(plogPal);
// 释放以分配的内存
GlobalUnlock( hTemp );
GlobalFree ( hTemp );
return hPalette;
}
/*************************************************************************
*/
#include "GlobalApi.h"
#include "stdafx.h"
#include "cdib.h"
/*************************************************************************
*
* \函数名称:
* CopyPalette
*
* \输入参数:
* HPALETTE hPalSrc - 需要拷贝的源调色板句柄
*
* \返回值:
* HPALETTE - 如果操作成功,则返回拷贝的调色板句柄
*************************************************************************
* 文件DIBPrcs.cpp用来存放有关DIB的操作函数
* 文件头存放在GlobalApi.h中
*************************************************************************
if((*pLpBMIH)->biSize != sizeof(BITMAPINFOHEADER)) {
TRACE("Not a valid Windows bitmap -- probabl*
*************************************************************************
*/
HPALETTE GetSystemPalette()
{
// 设备上下文
HDC hDC;
*pLpBMIH = (LPBITMAPINFOHEADER) new char[nSize];
// 读取信息头和调色板
nCount = pFile->Read(*pLpBMIH, nSize);
// 计算图象数据大小并设置调色板指针
// 设置调色板信息
lpLogPal->palVersion = 0x300;
lpLogPal->palNumEntries = nColors;
// 将系统的调色板拷贝到当前的逻辑调色板中
GetSystemPaletteEntries(hDC, 0, nColors,
// 声明调色板句柄、指针等临时变量
static HPALETTE hPal = NULL;
HANDLE hLogPal;
LPLOGPALETTE lpLogPal;
// 当前系统调色板的颜色数
throw new CException;
}
// 计算信息头加上调色板的大小,并分配相应的内存
nSize = bmfh.bfOffBits - sizeof(BITMAPFILEHEADER);
if (iNumEntries == 0)
return (HPALETTE) NULL;
// 分配调色板内存,得到句柄
hTemp = GlobalAlloc(GHND, sizeof(DWORD) + sizeof(PALETTEENTRY)*iNumEntries);
nColors = ( 1 << (GetDeviceCaps(hDC, BITSPIXEL) * GetDeviceCaps(hDC, PLANES)));
// 给调色板分配内存
hLogPal = GlobalAlloc(GHND, sizeof(LOGPALETTE) + nColors *
//LPBYTE lpImage;
// 进行读操作
try
{
// 读取文件头
nCount = pFile->Read((LPVOID) &bmfh, sizeof(BITMAPFILEHEADER));
int nColors;
// 获得当前系统设备上下文
hDC = GetDC(NULL);
if (!hDC)
return NULL;
// 获得当前系统调色板的颜色数目
*
* \函数名称:
* ReadDIB
*
* \输入参数:
* CFile* pFile - 需要打开的DIB文件
* LPBITMAPINFOHEADER* pLpBMIH - DIB信息头指针的指针
(LPPALETTEENTRY)(lpLogPal->palPalEntry));
// 创建Windows调色板
hPal = CreatePalette(lpLogPal);
// 释放已分配内存并删除临时对象
if (! hTemp)
return (HPALETTE) NULL;
// 得到调色板的指针
plogPal = (PLOGPALETTE)GlobalLock(hTemp);
if (! plogPal)
{
// 临时存放信息的变量
int nCount, nSize;
BITMAPFILEHEADER bmfh;
// 信息头指针
//LPBITMAPINFOHEADER lpBMIH;
// DIB图象数据指针
return (HPALETTE) NULL;
// 设置调色板的信息
plogPal->palVersion = 0x300;
plogPal->palNumEntries = (WORD) iNumEntries;
*
* \说明:
* 该函数将创建一个新的调色板,并从指定的调色板拷贝调色板内容
*
*************************************************************************
*/
HPALETTE CopyPalette(HPALETTE hPalSrc)
*
* \函数名称:
* GetSystemPalette()
*
* \输入参数:
* 无
*
* \返回值:
* HPALETTE - 系统调色板句柄
*
* \说明:
* 该函数获得当前正在使用的系统调色板的句柄
GlobalUnlock(hLogPal);
GlobalFree(hLogPal);
ReleaseDC(NULL, hDC);
// 返回
return hPal;
}
/*************************************************************************
if(nCount != sizeof(BITMAPFILEHEADER)) {
throw new CException;
}
// 如果文件类型部位"BM",则返回并进行相应错误处理
if(bmfh.bfType != 0x4d42) {
// 调色板表项数
int iNumEntries=0;
// 获取调色板中的表项数
iNumEntries = GetPaletteEntries(hPalSrc, 0, iNumEntries, NULL);
* LPBYTE* pLpImage - DIB位图数据块指针的指针
*
* \返回值:
* BOOL - 如果操作成功,则返回TRUE
*
* \说明:
* 该函数将指定文件中的DIB文件载入,其中信息头和调色板放在*pLpBMIH中
sizeof(PALETTEENTRY));
if (!hLogPal)
return NULL;
// 得到调色板内存指针
lpLogPal = (LPLOGPALETTE)GlobalLock(hLogPal);
{
// 调色板指针,临时变量
PLOGPALETTE plogPal;
// 声明一个调色板句柄和一个临时句柄
HPALETTE hPalette;
HANDLE hTemp;
* 图象数据存放到*pLpImage中。
*
*************************************************************************
*/
BOOL ReadDIB(CFile* pFile, LPBITMAPINFOHEADER* pLpBMIH, LPBYTE* pLpImage)