【聚焦中考】辽宁省2019中考数学 考点跟踪突破15 统计

合集下载

辽宁省2019年、2020年中考数学试题分类汇编——统计与概率(含答案)

辽宁省2019年、2020年中考数学试题分类汇编——统计与概率(含答案)

2019年、2020年数学中考试题分类——统计与概率一.全面调查与抽样调查(共2小题)1.(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.(2019•抚顺)下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二.频数(率)分布直方图(共1小题)3.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.5.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.7.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.8.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.9.(2020•丹东)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类A B C D E学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类型的有人.(2)在扇形统计图中,求D所对应的圆心角度数,并补全条形统计图.(3)该校学生人数为1250人,选择A、B、C三种学习方式大约共有多少人?五.折线统计图(共1小题)10.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A .众数是9B .中位数是8.5C .平均数是9D .方差是7六.加权平均数(共2小题)11.(2019•铁岭)某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是( ) A .92.5分B .90分C .92分D .95分12.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8 C75这个公司平均每人所创年利润是 万元. 七.中位数(共2小题)13.(2020•辽阳)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .814.(2019•抚顺)一组数据1,3,﹣2,3,4的中位数是( ) A .1B .﹣2C .12D .3八.众数(共9小题)15.(2020•锦州)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16 人数3562则这16名队员年龄的中位数和众数分别是( )A.14,15B.15,15C.14.5,14D.14.5,15 16.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200D.300,300,30017.(2020•葫芦岛)一组数据1,4,3,1,7,5的众数是()A.1B.2C.2.5D.3.5 18.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 19.(2019•盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05 20.(2019•铁岭)为了建设“书香校园”,某班开展捐书活动,班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.5 21.(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11B.12C.13D.14 22.(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4B.3,5C.4,4D.4,5 23.(2019•葫芦岛)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,14九.方差(共7小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A .甲B .乙C .丙D .丁26.(2020•朝阳)临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:S 甲2=0.075,S 乙2=0.04,这两名同学成绩比较稳定的是 (填“甲”或“乙”).27.(2020•葫芦岛)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s 甲2=6.67,s 乙2=2.50,则这6次比赛成绩比较稳定的是 .(填“甲”或“乙”)28.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 甲2=2.9,S 乙2=1.2,则两人成绩比较稳定的是 (填“甲”或“乙”).29.(2020•丹东)甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是 (填“甲”或“乙”).30.(2020•营口)从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S 甲2=3.83,S 乙2=2.71,S 丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是 . 一十.统计量的选择(共1小题)31.(2019•阜新)商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码 36 37 38 39 40 数量/双15281395商场经理最关注这组数据的( ) A .众数B .平均数C .中位数D .方差一十一.随机事件(共2小题)32.(2020•沈阳)下列事件中,是必然事件的是( ) A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 33.(2019•盘锦)下列说法正确的是( )A .方差越大,数据波动越小B .了解辽宁省初中生身高情况适合采用全面调查C .抛掷一枚硬币,正面向上是必然事件D .用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件 一十二.概率公式(共5小题)34.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1235.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4736.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2337.(2020•丹东)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( ) A .14B .12C .34D .138.(2020•锦州)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = .一十三.列表法与树状图法(共9小题)39.(2020•锦州)A ,B 两个不透明的盒子里分别装有三张卡片,其中A 盒里三张卡片上分别标有数字1,2,3,B 盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A 盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ; (2)从A 盒,B 盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.40.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.41.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.42.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.43.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.44.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).45.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.46.(2020•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.47.(2020•辽阳)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.一十四.利用频率估计概率(共3小题)48.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 49.(2020•营口)某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九0.900.850.820.840.820.82环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84 50.(2019•阜新)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A.12B.10C.8D.62019年、2020年辽宁省数学中考试题分类(13)——统计与概率参考答案与试题解析一.全面调查与抽样调查(共2小题)1.【解答】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.2.【解答】解:A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选:B.二.频数(率)分布直方图(共1小题)3.【解答】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50﹣5﹣18﹣17=10(名),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×1050=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×550=150(名),答:该校有150名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.【解答】解:(1)15÷25%=60(人),m=60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人,故答案为60,6;(2)C等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为300×12+6+560=115(人).故答案为:60,6.5.【解答】解:(1)m=20÷40%=50,2n+(n+10)=50﹣20﹣5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%=30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×5+10+550=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.【解答】解:(1)20÷40%=50(名); 故答案为:50;(2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名. 7.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).8.【解答】解:(1)m=8÷8%=100,n%=100−30−2−8100×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,故答案为:108;(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.9.【解答】解:(1)参与本次问卷调查的学生共有:240÷60%=400(人),其中选择B类型的有:400×10%=40(人);故答案为:400,40;(2)在扇形统计图中,D 所对应的圆心角度数为: 360°×(1﹣60%﹣10%﹣20%﹣6%)=14.4°, ∵400×20%=80(人), ∴选择C 种学习方式的有80人. ∴补全的条形统计图如下:(3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有: 1250×(60%+10%+20%)=1125(人).答:选择A 、B 、C 三种学习方式大约共有1125人. 五.折线统计图(共1小题)10.【解答】解:A .数据10出现的次数最多,即众数是10,故本选项错误; B .排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误; C .平均数为:17(7+8+9+9+10+10+10)=9,故本选项正确;D .方差为17[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=87,故本选项错误; 故选:C .六.加权平均数(共2小题) 11.【解答】解:根据题意得: 95×40%+90×60%=92(分). 答:她的最终得分是92分. 故选:C .12.【解答】解:这个公司平均每人所创年利润是:110(10+2×8+7×5)=6.1(万).故答案为:6.1. 七.中位数(共2小题)13.【解答】解:一组数据1,4,4,6,8,8的中位数是4+62=5,故选:B .14.【解答】解:将这组数据从小到大排列为﹣2、1、3、3、4, 则这组数据的中位数为3, 故选:D . 八.众数(共9小题)15.【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;15出现了6次,出现的次数最多,则众数是15; 故选:D .16.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300, 故选:D .17.【解答】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1. 故选:A .18.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B .19.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05; 由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10. 故选:C .20.【解答】解:由表可知,5出现次数最多,所以众数为5; 由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5. 故选:A .21.【解答】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4. 所以这5个数据分别是x ,y ,2,4,4,且x <y <2,当这5个数的和最大时,整数x ,y 取最大值,此时x =0,y =1, 所以这组数据可能的最大的和是0+1+2+4+4=11. 故选:A .22.【解答】解:设被污损的数据为x , 则4+x +2+5+5+4+3=4×7, 解得x =5,∴这组数据中出现次数最多的是5,即众数为5篇/周, 将这7个数据从小到大排列为2、3、4、4、5、5、5, ∴这组数据的中位数为4篇/周, 故选:A .23.【解答】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为15+152=15岁,故选:C .九.方差(共7小题)24.【解答】解:∵四人的平均成绩相同,而观察图形可知,乙和丙的波动较大, ∴应在丁和甲中做出选择. ∵丁有两次成绩恰好为平均成绩,∴丁比甲稳定.故选:D .25.【解答】解:∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲, 故选:A .26.【解答】解:∵S 甲2=0.075,S 乙2=0.04 ∴S 甲2>S 乙2∴乙的波动比较小,乙比较稳定 故答案为:乙.27.【解答】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.28.【解答】解:∵x 甲=7=x 乙,S 甲2=2.9,S 乙2=1.2, ∴S 甲2>S 乙2, ∴乙的成绩比较稳定, 故答案为:乙. 29.【解答】解:∵x 乙=2+3+5+7+85=5,∴S 乙2=15×[(2﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(8﹣5)2]=265, ∵S 甲2=5<S 乙2,∴成绩较稳定的是甲, 故答案为:甲.30.【解答】解:∵平均成绩都是87.9分,S 甲2=3.83,S 乙2=2.71,S 丙2=1.52, ∴S 丙2<S 乙2<S 甲2, ∴丙选手的成绩更加稳定, ∴适合参加比赛的选手是丙, 故答案为:丙.一十.统计量的选择(共1小题)31.【解答】解:对这个商场的经理来说,最关注的是哪一型号的卖得最多,即是这组数据故选:A .一十一.随机事件(共2小题)32.【解答】解:A 、从一个只有白球的盒子里摸出一个球是白球,是必然事件; B 、任意买一张电影票,座位号是3的倍数,是随机事件; C 、掷一枚质地均匀的硬币,正面向上,是随机事件;D 、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件; 故选:A .33.【解答】解:A 、方差越大,数据波动越大,故本选项错误; B 、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误; C 、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D 、用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件,故本选项正确; 故选:D .一十二.概率公式(共5小题)34.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝下的概率是12.故选:D .35.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47.故选:D .36.【解答】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23.故选:D .37.【解答】解:∵从这4张卡片中任意抽取一张共有4种等可能结果,其中抽到的卡片正面是中心对称图形的是圆、平行四边形、正六边形这3种结果, ∴抽到的卡片正面是中心对称图形的概率是34,故选:C .38.【解答】解:根据题意,得:aa+4=23,。

辽宁省沈阳市2019年中考数学试题含答案【Word版】

辽宁省沈阳市2019年中考数学试题含答案【Word版】

2019年沈阳市中考数学试卷试题满分150分 考试时间120分钟参考公式:抛物线2y ax bx c =++的顶点是24(,)24b ac b a a --,对称轴是直线2b x a =-. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题4分,共24分)1.0这个数是( )A.正数B.负数C.整数D.无理数2.2019年端午节小长假期间,沈阳某景区接待游客约为85000人,将数据85000用科学记数法表示为( )A.85×103B.8.5×104C.0.85×105D.8.5×105 3.某几何体的三视图如图所示,这个几何体是( )A.圆柱B.三棱柱C.长方体D.圆锥4.已知一组数据:1,2,6,3,3,下列说法正确的是( )A.众数是3B.中位数是6C.平均数是4D.方差是55.一元一次不等式x-1≥0的解集在数轴上表示正确的是( )A B C D6.正方形是轴对称图形,它的对称轴有( )A.2条B.4条C.6条D.8条7.下列运算正确的是( )A.()623x x -=-B.844x x x =+C.632x x x =⋅D.()34y xy xy -=-÷8.如图,在△ABC 中,点D 在边AB 上,BD=2AD ,DE ∥BC 交AC 于点E ,若线段DE=5,则线段BC 的长为( )A.7.5B.10C.15D.20二、填空题(每小题4分,共32分)9.计算:=9___________10.分解因式:2m 2+10m=___________11.如图,直线a ∥b ,直线l 与a 相交于点P ,与直线b 相交于点Q , PM ⊥l 于点P , 若∠1=50°,则∠2=________°. 12.化简:=⋅⎪⎭⎫ ⎝⎛-+xx 1111___________ 13.已知一次函数y=x+1的图象与反比例函数x k y =的图象相交,其中有一个交点的横坐标是2,则k 的值为________.14.如图,△ABC 三边的中点D ,E ,F 组成△DEF ,△DEF 三边的中点M ,N ,P 组成△MNP ,将△FPM 与△ECD 涂成阴影.假设可以随意在△ABC 中取点,那么这个点取在阴影部分的概率为________.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数) 出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元16.如图,□ABCD 中,AB>AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点H ,连接EM ,若□ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= ① cm ,AB= ② cm.三、解答题(第17、18小题各8分,第19小题10分,共26分)17.先化简,再求值:()()a b a b a ⋅--+22,其中a=-1,b=5.18.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=O F.19.在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.四、(每小题10分,共20分)20.2019年世界杯足球赛于北京时间6月13日2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:根据统计图表提供的信息,解答下列问题:(1)a=________,b=________;(2)根据以上信息,请直接..在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军. 21.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.五、(本题10分)22.如图,⊙O 是△ABC 的外接圆,AB 为直径,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD ,BD ,CD(1)求证:AD=CD ;(2)若AB=10,cos ∠ABC=53,求tan ∠DBC 的值.六、(本题12分)23.如图,在平面直角坐标系中,四边形OABC 的顶点O 为坐标原点,点C 在x 轴的正半轴上,且BC ⊥OC 于点C ,点A 的坐标为 (2,32),AB=34,∠B=60°,点D 是线段OC 上一点,且OD=4,连接AD.(1)求证:△AOD 是等边三角形;(2)求点B 的坐标;(3)平行于AD 的直线l 从原点O 出发,沿x 轴正方向平移.设直线l 被四边形OABC 截得的线段长为m ,直线l 与x 轴交点的横坐标为t.①当直线l 与x 轴的交点在线段CD 上(交点不与点C ,D 重合)时,请直接..写出m 与t 的函数关系式(不必写出自变量t 的取值范围)②若m=2,请直接..写出此时直线l 与x 轴的交点坐标.七、(本题12分)24.如图1,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=13,BD=24,在菱形ABCD 的外部以AB 为边作等边三角形ABE.点F 是对角线BD 上一动点(点F 不与点B 重合),将线段AF 绕点A 顺时针方向旋转60°得到线段AM ,连接FM.(1)求AO 的长;(2)如图2,当点F 在线段BO 上,且点M ,F ,C 三点在同一条直线上时,求证:AC=3AM ;(3) 连接EM ,若△AEM 的面积为40,请直接..写出△AFM 的周长. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.八、(本题14分)25.如图1,在平面直角坐标系中,二次函数122742+-=x y 的图象与y 轴交于点A ,与x 轴交于B ,C 两点(点B 在点C 的左侧),连接AB ,AC.(1)点B 的坐标为________,点C 的坐标为________;(2)过点C 作射线CD ∥AB ,点M 是线段AB 上的动点,点P 是线段AC 上的动点,且始终满足BM=AP(点M 不与点A ,点B 重合),过点M 作MN ∥BC 分别交AC 于点Q ,交射线CD 于点N (点Q 不与点P 重合),连接PM ,PN ,设线段AP 的长为n. ①如图2,当AC n 21<时,求证:△PAM ≌△NCP ; ②直接..用含n 的代数式表示线段PQ 的长; ③若PM 的长为97,当二次函数122742+-=x y 的图象经过平移同时过点P 和点N 时,请直接..写出此时二次函数表达式温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.。

考点跟踪突破15数据的收集与整理

考点跟踪突破15数据的收集与整理

考点跟踪突破15数据的收集与整理一、选择题(每小题6分,共30分)1.(2014·呼和浩特)以下问题,不适合用全面调查的是( D )A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命2.(2014·巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有( C )A.4个B.3个C.2个D.1个3.(2014·福州)若7名学生的体重(单位:kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是( C )A.44 B.45 C.46 D.474.(2014·重庆)某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛.为此,九(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( A )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(2014·成都)近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分) 60 70 80 90 100人数 4 8 12 11 5A.70分,80分B.80分,80分C.90分,80分D.80分,90分二、填空题(每小题6分,共30分)6.(2014·汕尾)小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为__6__,平均数为__6__.7.(2013·南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是__86__分.8.(2014·丽水)有一组数据:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是__2__.9.(2014·巴中)已知一组数据:0,2,x,4,5的众数是4,那么这组数据的中位数是__4__.10.(2013·新疆)某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了条形统计图,请估计该校九年级学生此次植树活动约植树__1_680__棵.三、解答题(共40分)11.(10分)(2014·宁波)作为宁波市政府民生实事之一的公共自行车建设工程已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车辆的统计,结果如下:(1)求这7天日租车辆的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车辆多少万车次?(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车辆3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率.(精确到0.1%)解:(1)根据条形统计图得:出现次数最多的为8,即众数为8;将数据按照从小到大顺序排列为7.5,8,8,8,9,9,10,中位数为8;平均数为(7.5+8+8+8+9+9+10)÷7=8.5(2)根据题意得30×8.5=255(万车次),则估计4月份(30天)共租车辆255万车次(3)根据题意得3200×0.19600=130≈3.3%,则2014年租车费收入占总投入的百分率为3.3%12.(10分)(2012·天门)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一名(不设弃权票),选出了票数最多的甲、乙、丙三人,投票结果统计如图①;其次,对三名候选人进行了笔试和面试两项测试,各项成绩如下表所示;图②是某同学根据下表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:(1)补全图①和图②;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的总成绩,成绩高的将被录取,应该录取谁?解:(1)如图(2)甲的票数:200×34%=68(票);乙的票数:200×30%=60(票);丙的票数:200×28%=56(票)(3)甲的平均成绩:x1=68×2+92×5+85×32+5+3=85.1乙的平均成绩:x2=60×2+90×5+95×32+5+3=85.5丙的平均成绩:x3=56×2+95×5+80×32+5+3=82.7∵乙的平均成绩最高,∴应该录取乙13.(10分)(2013·安徽)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数.现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.解:(1)∵把合格品数从小到大排列,第25,26个数都是4,∴这50名工人加工出的合格品数的中位数为4(2)设加工的合格品数是5的人数是x人,加工的合格品数是6的人数是y人,则2+6+8+10+x+y+4+2=50,即x+y=18,∵当x=11~17时,y=7~1,∴此时众数为5;当x=1~7时,y=17~11,∴此时众数为6;当x=8时,y=10,∴此时众数为4,6;当x=9时,y=9,∴此时众数为4;当x=10时,y=8,∴此时众数为4,5.综上所述,这50名工人加工出合格品数的众数的可能取值为4,5,6(3)这50名工人中,合格品数低于3件的有8人,∵400×850=64,∴估计该厂将接受技能再培训的人数约有64人14.(10分)(2013·天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__50__,图①中m的值是__32__;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(1)根据条形图4+16+12+10+8=50(人),m=100-20-24-16-8=32(2)∵x=150(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为12(15+15)=15(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1 900名学生中捐款金额为10元的学生人数比例为32%,有1 900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名。

【聚焦中考】辽宁省2019中考数学 考点跟踪突破3 因式分解

【聚焦中考】辽宁省2019中考数学 考点跟踪突破3 因式分解

因式分解一、选择题(每小题5分,共25分)1.(营口模拟)下列四个多项式中,能因式分解的是( B )A .a 2+1B .a 2-6a +9C .x 2+5yD .x 2-5y2.(2018·贵港)下列因式分解错误的是( C )A .2a -2b =2(a -b)B .x 2-9=(x +3)(x -3)C .a 2+4a -4=(a +2)2D .-x 2-x +2=-(x -1)(x +2)3.(锦州模拟)下列因式分解中正确的个数为( C )①x 3+2xy +x =x(x 2+2y);②x 2+4x +4=(x +2)2;③-x 2+y 2=(x +y)(x -y).A .3个B .2个C .1个D .0个4.若实数x ,y ,z 满足(x -z)2-4(x -y)(y -z)=0,则下列式子一定成立的是( D )A .x +y +z =0B .x +y -2z =0C .y +z -2x =0D .z +x -2y =0点拨:左边=[(x -y)+(y -z)]2-4(x -y)(y -z)=(x -y)2-2(x -y)(y -z)+(y -z)2=[(x -y)-(y-z)]2,故(x -y)-(y -z)=0,x -2y +z =05.(阜新模拟)将下列多项式分解因式,结果中不含因式x -1的是( D )A .x 2-1B .x(x -2)+(2-x)C .x 2-2x +1D .x 2+2x +1二、填空题(每小题5分,共25分)6.(2018·鄂州)分解因式:a 3b -4ab =__ab(a +2)(a -2)__.7.(本溪模拟)(2a +1)2-a 2=__(3a +1)(a +1)__.8.(2018·威海)因式分解:-2x 2y +12xy -18y =__-2y(x -3)2__.9.(丹东模拟)若ab =3,a -2b =5,则a 2b -2ab 2的值是__15__.10.(辽阳模拟)已知实数a ,b 满足:a 2+1=1a ,b 2+1=1b,则2018|a -b|=__1__. 点拨:∵a 2+1=1a ,b 2+1=1b ,两式相减可得a 2-b 2=1a -1b ,即(a +b)(a -b)=b -a ab,∴[ab(a +b)+1](a -b)=0,∴a -b =0,即a =b ,∴2018|a -b|=20180=1三、解答题(共50分)11.(12分)分解因式:(1)(2018·黄石)3x 2-27;解:原式=3(x +3)(x -3)(2)8(a 2+1)-16a ;解:原式=8(a -1)2(3)25(x +y)2-9(x -y)2.解:原式=4(4x +y)(x +4y)12.(9分)已知a ,b ,c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2,判断△ABC 的形状.解:∵a 3+ab 2+bc 2=b 3+a 2b +ac 2,∴a 3-a 2b +ab 2-b 3+bc 2-ac 2=0,∴a 2(a -b)+b 2(a -b)+c 2(b -a)=0,∴(a -b)(a 2+b 2-c 2)=0,∴a -b =0或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形13.(9分)有足够多的长方形和正方形的卡片,如下图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是__a 2+3ab +2b 2=(a +b)(a +2b)__. 解:或14.(10分)设a =12m +1,b =12m +2,c =12m +3.求代数式a 2+2ab +b 2-2ac -2bc +c 2的值. 解:原式=(a 2+2ab +b 2)-(2ac +2bc)+c 2=(a +b)2-2(a +b)c +c 2=(a +b -c)2=[(12m +1)+(12m +2)-(12m +3)]2=(12m)2=14m 215.(10分)已知A =a +2,B =a 2-a +5,C =a 2+5a -19,其中a >2.(1)求证:B >A ;。

2019年辽宁省大连市中考数学试题及答案全解全析

2019年辽宁省大连市中考数学试题及答案全解全析

2019年大连市初中毕业升学考试数学一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(2019辽宁大连中考,1,3分,★☆☆)﹣2的绝对值是()A.2 B.12C.﹣12D.﹣22.(2019辽宁大连中考,2,3分,★☆☆)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2019辽宁大连中考,3,3分,★☆☆)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×104 4.(2019辽宁大连中考,1,3分,★☆☆)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(2019辽宁大连中考,5,3分,★☆☆)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.6.(2019辽宁大连中考,6,3分,★☆☆)下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A .等腰三角形B .等边三角形C .菱形D .平行四边形7.(2019辽宁大连中考,6,3分,★☆☆)计算(﹣2a )3的结果是( ) A .﹣8a 3B .﹣6a 3C .6a 3D .8a 38.(2019辽宁大连中考,8,3分,★★☆)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A .23B .12C .13D .149.(2019辽宁大连中考,9,3分,★★☆)如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A .25B .4C .3D .210.(2019辽宁大连中考,10,3分,★★★)如图,抛物线y =﹣14x 2+12x +2与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为( )A . 3B .51C .4D .52 二、填空题(本题共6小题,每小題3分,共18分)11.(2019辽宁大连中考,11,3分,★☆☆)如图,AB ∥CD ,CB ∥DE ,∠B =50°,则∠D=°.12.(2019辽宁大连中考,12,3分,★☆☆)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(2019辽宁大连中考,13,3分,★☆☆)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.14.(2019辽宁大连中考,14,3分,★☆☆)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(2019辽宁大连中考,15,3分,★★☆)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).16.(2019辽宁大连中考,16,3分,★★☆)甲、乙两人沿同一条直路走步,如果两人分别从这条路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b=.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(2019辽宁大连中考,17,9分,★☆☆32)2121 318.(2019辽宁大连中考,18,9分,★☆☆)计算:21a-÷2241aa--+12a-.19.(2019辽宁大连中考,19,9分,★☆☆)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.(2019辽宁大连中考,20,12分,★★☆)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀15 0.3良好及格不及格 5根据以上信息,解答下列问题:(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(2019辽宁大连中考,21,9分,★★☆)某村2016年的人均收入为20000元,2018年的人均收入为24200元.(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22.(9分)(2019辽宁大连中考,22,9分,★★☆)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=kx(x>0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为点C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=32,设点C的坐标为(a,0),求线段BD的长.23.(10分)(2019辽宁大连中考,23,10分,★★☆)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP.(1)求证:∠BAC=2∠ACD;(2)如图2,过点D作DE⊥AC,垂足为E,当BC=6,AE=2时,求⊙O的半径.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(2019辽宁大连中考,24,11分,★☆☆)如图,在平面直角坐标系xOy中,直线y=﹣34x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=53OC,以CO,CD为邻边作□COED.设点C的坐标为(0,m),□COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.25.(2019辽宁大连中考,25,12分,★★★)阅读下面材料,完成(1)﹣(3)题.数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中22<k<1),∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出AH HC的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出AHHC的值(用含k的代数式表示).26.(2019辽宁大连中考,26,12分,★★★)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当12≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.大连市2019年初中毕业升学考试数学试题答案全解全析1.答案:A.解析:根据绝对值的几何意义,数轴上表示﹣2的点到原点的距离是2,所以﹣2的绝对值是2.考查内容:有理数的绝对值命题意图:本题考查了对绝对值概念的识记,难度较小.2.答案:B.解析:主视图有3列,每列小正方形数目分别为2,1,1.考查内容:简单组合体的三视图.命题意图:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,难度较小.3.答案:D.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.将数58000用科学记数法表示为5.8×104.考查内容:科学记数法—表示较大的数.命题意图:本题考查了对科学记数法的表示方法的掌握.难度较小.4.答案:A.解析:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1).考查内容:图形平移与坐标命题意图:本题考查了图形平移与坐标,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键,难度不大.知识归纳:(1)平移变换与坐标变化:①向右平移a个单位,坐标P(x,y)⇒P(x+a,y)②向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)③向上平移b个单位,坐标P(x,y)⇒P(x,y+b)④向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)5.答案:B.解析:5x+1≥3x﹣1,移项,得5x﹣3x≥﹣1﹣1,合并同类项,得2x≥﹣2,系数化为1,得x≥﹣1,在数轴上表示为.考查内容:解一元一次不等式;在数轴上表示不等式的解集命题意图:在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,难度不大.温馨提示:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是“小于向左,大于向右”.6.答案:C.解析:等腰三角形是轴对称图形,不是中心对称图形,选项A错误;等边三角形是轴对称图形,不是中心对称图形,选项B错误;菱形既是轴对称图形,又是中心对称图形,选项C 正确;平行四边形不是轴对称图形,是中心对称图形,选项D错误.考查内容:轴对称图形;中心对称图形.命题意图:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合,难度不大.7.答案:A.解析:(﹣2a)3=(﹣2)3• a3=﹣8a3.考查内容:幂的乘方与积的乘方.命题意图:本题考查了积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键,难度不大.8.答案:D.解析:用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可.两次摸球的所有的可能性树状图如下:∴P两次都是红球=14.考查内容:用列表法与树状图法求随机事件发生的概率.命题意图:考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别,难度中等.9.答案:C .解析:连接AC 交EF 于点O ,如图所示:∵四边形ABCD 是矩形,∴AD =BC =8,∠B =∠D =90°,AC =22AB BC +=2248+=45.∵折叠矩形使C 与A 重合时,EF ⊥AC ,AO =CO =12AC =25,∴∠AOF =∠D =90°,∠OAF =∠DAC ,∴Rt △FOA ∽Rt △ADC ,∴AO AF =AD AC ,即25AF =845,解得AF =5,∴D ′F =DF =AD ﹣AF =8﹣5=3. 考查内容:矩形的性质,翻折变换(折叠问题),图形的相似.命题意图:本题考查了折叠的性质、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握折叠的性质,证明三角形相似是解题的关键,难度中等偏上.一题多解:∵四边形ABCD 是矩形,∴AD =BC =8,CD =AB =4,∠D =90°,由折叠可得 AD ′=CD =4,∠D ′=∠D =90°,FD =FD ′,设FD ′=x ,则FD = FD ′=x ,AF =AD ﹣FD =8﹣x ,在Rt △A D ′F 中,AD ′2+ FD ′2=AF 2,即42+x 2=(8﹣x )2,解得x =3,即FD ′=3,故选C .10.答案:D解析:当y =0时,﹣14x 2+12x +2=0,解得x 1=﹣2,x 2=4,∴点A 的坐标为(﹣2,0);当x =0时,y =﹣14x 2+12x +2=2,∴点C 的坐标为(0,2);当y =2时,﹣14x 2+12x +2=2,解得x 1=0,x 2=2,∴点D 的坐标为(2,2).设直线AD 的解析式为y =kx +b (k ≠0),将A (﹣2,0),D (2,2)代入y =kx +b ,得2022k b k b -+=⎧⎨+=⎩,,解得121k b ⎧=⎪⎨⎪=⎩,,∴直线AD 的解析式为y =12x +1.当x =0时,y =12x +1=1,∴点E 的坐标为(0,1).当y=1时,﹣14x2+12x+2=1,解得x1=1x2=,∴点P的坐标为(11),点Q的坐标为(1),∴PQ=1考查内容:二次函数的应用.命题意图:本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,难度较大.二、11.答案:130.解析:∵AB∥CD,∴∠B=∠C=50°.∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°.考查内容:平行线的性质.命题意图:此题主要考查了平行线的性质,难度不大.12.答案:25.解析:观察条形统计图知,年龄为25岁的最多,有8人,故众数为25岁.考查内容:众数命题意图:本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小.13.答案:解析:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°.∵CD=AC,∴∠CAD=∠D.∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD=tan30AB3考查内容:等边三角形的性质,含30度角的直角三角形命题意图:本题考查了等边三角形的性质,等腰三角形的性质以及解直角三角形等,难度中等.14.答案:535 2. x yx y+=⎧⎨+=⎩,解析:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组535 2.x y x y +=⎧⎨+=⎩, 考查内容:由实际问题抽象出二元一次方程组.命题意图:本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键,难度中等.15.答案:3.解析:在Rt △BCD 中,tan ∠BDC =BC CD ,则BC =CD •tan ∠BDC =10.在Rt △ACD 中,tan ∠ADC =AC CD,则AC =CD •tan ∠ADC ≈10×1.33=13.3,∴AB =AC ﹣BC =3.3≈3(m ). 考查内容:解直角三角形及其应用.命题意图:本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键,难度中等.16.答案:12(或0.5). 解析:从图1,可见甲的速度为1202=60,从图2可以看出,当x =67时,二人相遇,即:(60+V 乙)×67=120,解得乙的速度V 乙=80.∵乙的速度快,从图2看出乙用了b 分钟走完全程,甲用了a 分钟走完全程,a ﹣b =12060﹣12080=12. 考查内容:一次函数及其应用.命题意图:本题考查了一次函数的应用,把一次函数和行程问题结合在一起,关键是能正确利用待定系数法求一次函数的解析式,明确三个量的关系:路程=时间×速度,难度中等偏上.17. 解析:原式=3+4﹣+6×3 =3+4﹣7.考察内容:二次根式的混合运算.命题意图:本题主要考查了二次根式的混合运算,正确化简二次根式是解题关键,难度不大.18.解析:原式=21a -×(1)(1)2(2)a a a -+-﹣12a - =12a a +-﹣12a -=2a a -. 考查内容:分式的混合运算.命题意图:本题主要考查了分式的混合运算,正确化简是解题关键,难度中等偏下.19.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABF ≌△DCE (SAS ),∴AF =DE .考查内容:全等三角形的判定与性质.命题意图:本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键,难度中等.20.答案:(1)15,20 解析:由统计图表可知,成绩等级为“优秀”的男生人数为15人, 成绩等级为“及格”的男生人数占被测试男生总人数的百分比为20 %.(2)50,10 解析:被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%; (3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,180×40%=72(人).答:该校八年级男生成绩等级为“良好”的学生人数72人.考查内容:用样本估计总体;频数(率)分布表;扇形统计图.命题意图:本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,难度中等偏上.四、21.解析:(1)设2016年到2018年该村人均收入的年平均增长率为x ,根据题意得20000(1+x )2=x 2=-2.1(不合题意,舍去).24200,解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.考查内容:一元二次方程的应用.命题意图:本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算,难度中等偏上.规律方法:列一元二次方程解应用题的“六字诀”①审:理解题意,明确未知量、已知量以及它们之间的数量关系.②设:根据题意,可以直接设未知数,也可以间接设未知数.③列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.④解:准确求出方程的解.⑤验:检验所求出的根是否符合所列方程和实际问题.⑥答:写出答案.22.解析:(1)∵点A(3,2)在反比例函数y=kx(x>0)的图象上,∴k=3×2=6,∴反比例函数y=6x.答:反比例函数的关系式为y=6x;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入,解得k=23,∴直线OA的函数关系式为y=23 x.∵点C(a,0),把x=a代入y=23x,得y=23a,把x=a代入y=6x,得y=6a,∴B(a,23a),即BC=23a,D(a,6a),即CD=6a.∵S△ACD=32,∴12CD•EC=32,即12×6a×(a﹣3)=32,解得a=6,∴BD=BC﹣CD=23a﹣6a=3.答:线段BD的长为3.考查内容:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.命题意图:本题考查正比例函数的图象和性质、反比例函数的图象和性质,将点的坐标转化为线段的长,利用方程求出所设的参数,进而求出结果是解决此类问题常用的方法,难度较大.23.解析:(1)证明:作DF ⊥BC 于F ,连接DB ,∵AP 是⊙O 的切线,∴∠PAC =90°,即∠P +∠ACP =90°.∵AC 是⊙O 的直径,∴∠ADC =90°,即∠PCA +∠DAC =90°,∴∠P =∠DAC =∠DBC .∵∠APC =∠BCP ,∴∠DBC =∠DCB ,∴DB =DC .∵DF ⊥BC ,∴DF 是BC 的垂直平分线,∴DF 经过点O .∵OD =OC ,∴∠ODC =∠OCD . ∵∠BDC =2∠ODC ,∴∠BAC =∠BDC =2∠ODC =2∠OCD ;(2)解:∵DF 经过点O ,DF ⊥BC ,∴FC =12BC =3.在△DEC 和△CFD 中, DCE FDC DEC CFD DC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△DEC ≌△CFD (AAS ),∴DE =FC =3.∵∠ADC =90°,DE ⊥AC ,∴DE 2=AE •EC ,则EC =2DE AE =92,∴AC =2+92=132,∴⊙O 的半径为134.考查内容:圆周角定理;圆内接四边形的性质;切线的性质命题意图:本题考查的是切线的性质、全等三角形的判定和性质、垂径定理、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键,难度中等偏上.一题多解:(1)证明:∵AC 是⊙O 的直径,∴∠ABC =90°. ∵AP 是⊙O 的切线,∴∠PAC =90°,∠APC =90°﹣∠ACP ,∵∠APC =∠BCP ,∴∠BCP=90°﹣∠ACP ,∴∠ACB =∠BCP ﹣∠ACP=90°﹣2∠ACP ,∴∠BAC =90°﹣∠ACB=90°﹣(90°﹣2∠ACP )=2∠ACP=2∠ACD .五、24.(1)当x =0时,y =3,当y =0时,x =4,∴直线y =﹣34x +3与x 轴交点A (4,0),与y轴交点B(0,3),∴OA=4,OB=3,∴AB=5,因此线段AB的长为5.(2)当CD∥OA时,如图1,∵BD=53OC,OC=m,∴BD=53m,由△BCD∽△BOA得:BD BA =BCBO,即535m=33m-,解得m=32;①当32≤m≤3时,如图2,设DE与x轴交点为M,作DF⊥OB,垂足为F,则∠CFD=90°.在Rt△AOB中,sin∠ABO=OAAB=45,cos∠ABO=OBAB=35.∵点C的坐标为(0,m),∴OC=m.在Rt△BDF中,DF=BD•sin∠ABO= 53m×45=43m,BF=BD•cos∠ABO=53m×35=m,∴CF=BF+OC﹣OB=2m﹣3,S△CFD=12CF•DF=12(2m﹣3)•43m=43m2﹣2m.∵四边形COED是平行四边形,∴CD=OE,∠OCD=∠OEM,DE∥OC,∴∠EMO=∠BOA=∠CFD=90°,∴△CFD≌△EMO,∴S= S△EMO =S△CFD=43m2﹣2m.②当0<m<32时,如图3,由图易知S=0.③当﹣3≤m<0时,如图4,作DF⊥OB,垂足为F,∵点C的坐标为(0,m),∴OC=﹣m.同理,BF=﹣m,DF=﹣43m,CF=OB+OC﹣BF=3+(﹣m)﹣(﹣m)=3,∵DF⊥OB,∴∠CFD=∠CON =90°,∴ON∥DF,∴△CON∽△CFD,∴ONDF=OCCF,∴ON=OC DFCF=3m-•(﹣43m)=49m2,∴S=12ON•OC=12•49m2•(﹣m)=29-m3.④当m<﹣3时,如图5,设DE与x轴交点为M,作DF⊥OB,垂足为F.同理,OM =DF =﹣43m ,DM =OF =﹣m ﹣3, ∴S =12(DM +OC )•DF =12(﹣m ﹣3﹣m )(﹣43m )=43m 2+2m . 综上所述,S =232433(3)3230(0)22(30)942(3).3m m m m m m m m m ⎧-≤≤⎪⎪⎪⎪⎨⎪--≤⎪⎪⎪+-⎩,,,<<<<图1 图2图3 图4 图5考查内容:一次函数图象上点的坐标特征;平行四边形的性质.命题意图:考查了平行四边形的性质、相似三角形的性质,全等三角形等知识,分类讨论,分别探究在不同情况下,存在的不同函数解析式,根据不同情况,画出相应的图形,再利用所学的知识探究出不同函数解析式,难度较大.25.证明:(1)∵AB =AD ,∴∠ABD =∠ADB .∵∠ADB =∠C +∠DAC ,∠ABD =∠ABC =∠C +∠BAE ,∴∠BAE =∠DAC .(2)BG=12kAC.证明:设∠DAC=α=∠BAE,∠C=β,∴∠ABC=∠ADB=α+β.∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC,∴∠EAC=2β.∵AF平分∠EAC,∴∠FAC=∠EAF=β,∴∠FAC=∠C,∠ABE=∠BAF=α+β,∴AF=BF,AF=FC,∴AF=12BC=BF.∵∠ABE=∠BAF,∠BGA=∠BAC=90°,∴△ABG∽△BCA,∴BGAC=ABBC.∵∠ABF=∠DBA,∠BAF=∠BDA=α+β,∴△BAF∽△BDA,∴ABBD=BFAB,且AB=kBD,AF=12BC=BF,∴k=12BCAB=2BCAB,即ABBC=12k,∴BGAC=12k,即BG=12kAC.(3)AHCH=2142k-.解析:∵∠ABE=∠BAF,∠BAC=∠AGB=90°,∴∠ABH=∠C,且∠BAC=∠BAC,∴△ABH∽△ACB,∴ABAC=AHAB,∴AB2=AC×AH.设BD=m,AB=km,∵ABBC=12k,∴BC=2k2m,∴AC=,∴AB2=AC×AH,(km)2=×AH,∴AH,∴HC=AC﹣AH=2∴AHCH=2142k-.考查内容:等腰三角形与直角三角形;图形的相似.命题意图:本题是相似形综合题,考查了相似三角形的判定和性质,直角三角形的性质,灵活运用相似三角形的判定是本题的关键,难度较大.26.答案:(1)2m﹣1;解析:C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为x=2m﹣1,t=2m﹣1.(2)a=﹣1时,C1:y=(x﹣1)2﹣4,①当12≤t<1时,x=12时,有最小值y2=154,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣154=1,无解;②1≤t≤32时,x=1时,有最大值y1=4;x=12时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=14≠1(舍去);③当t>32时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得a=13,当C2过点D′时,同理可得a=1,故0<a≤13或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得a=﹣13,故a≤﹣13;综上,a的取值范围为0<a≤13或a≥1或a≤﹣13.考查内容:二次函数综合题.命题意图:本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转等,其中(2)(3),要注意分类求解,避免遗漏,难度较大.。

2019年辽宁省沈阳市中考数学试题与答案解析版

2019年辽宁省沈阳市中考数学试题与答案解析版

2019年省市中考数学试卷(总分120分)一、选择题(每小题2分,共20分) 1.(2分)﹣5的相反数是( ) A .5B .﹣5C .51D .512.(2分)2019年1月1日起我国开始贯彻《国务院关于印发个人所得税专项附加扣除暂行办法的通知》的要求,此次减税围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为( ) A .6.5×102B .6.5×103C .65×103D .0.65×1043.(2分)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )4.(2分)下列说确的是( )A .若甲、乙两组数据的平均数相同,S 甲2=0.1,S 乙2=0.04,则乙组数据较稳定 B .如果明天降水的概率是50%,那么明天有半天都在降雨 C .了解全国中学生的节水意识应选用普查方式 D .早上的太阳从西方升起是必然事件 5.(2分)下列运算正确的是( ) A .2m 3+3m 2=5m 5B .m 3÷m 2=mC .m •(m 2)3=m 6D .(m ﹣n )(n ﹣m )=n 2﹣m 26.(2分)某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁) 12 13 14 15 16 人数31251则这12名队员年龄的众数和中位数分别是( ) A .15岁和14岁B .15岁和15岁 C .15岁和14.5岁D .14岁和15岁7.(2分)已知△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,若AD =10,A 'D '=6,则△ABC 与△A 'B 'C '的周长比是( )A .3:5B .9:25C .5:3D .25:98.(2分)已知一次函数y =(k +1)x +b 的图象如图所示,则k 的取值围是( )A .k <0B .k <﹣1C .k <1D .k >﹣19.(2分)如图,AB 是⊙O 的直径,点C 和点D 是⊙O 上位于直径AB 两侧的点,连接AC ,AD ,BD ,CD ,若⊙O 的半径是13,BD =24,则sin ∠ACD 的值是( ) A .1312B .512C .125D .13510.(2分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论正确的是( )A .abc <0B .b 2﹣4ac <0C .a ﹣b +c <0D .2a +b =0 二、填空题(每小题3分,共18分) 11.(3分)因式分解:﹣x 2﹣4y 2+4xy =.12.(3分)二元一次方程组⎩⎨⎧=+=-52323y x y x 的解是.13.(3分)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有个白球. 14.(3分)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,若AD =BC =52,则四边形EGFH 的周长是.15.(3分)如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=xk 2(x >0)的图象相交于点A (3,23),点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,则△AOB 的面积是.16.(3分)如图,正方形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若AB =5,CF =2,则线段EP 的长是.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:02)2019(|31|30cos 221-+-︒-+⎪⎭⎫⎝⎛--π18.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A ,B ,C ,D 依次表示这四个社团),并把这四个字母分别写在四完全相同的不透明的卡片的正面上,然后将这四卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一卡片是足球社团B 的概率是.(2)小明先从中随机抽取一卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一是科技社团D 的概率.19.(8分)如图,在四边形ABCD 中,点E 和点F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G .(1)求证:四边形ABCD 是平行四边形; (2)若tan ∠CAB =52,∠CBG =45°,BC =42,则▱ABCD 的面积是.四、(每小题8分,共16分)20.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能与的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:A (0≤x <10),B (10≤x <20),C (20≤x <30),D (30≤x <40),E (x ≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m 的值是,类别D 所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.(8分)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元. (1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?五、(本题10分)22.(10分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,直线MN 与⊙O 相切于点C ,过点B 作BD ⊥MN 于点D . (1)求证:∠ABC =∠CBD ; (2)若BC =45,CD =4,则⊙O 的半径是.六、(本题10分)23.(10分)在平面直角坐标系中,直线y =kx +4(k ≠0)交x 轴于点A (8,0),交y 轴于点B .(1)k 的值是;(2)点C 是直线AB 上的一个动点,点D 和点E 分别在x 轴和y 轴上.①如图,点E 为线段OB 的中点,且四边形OCED 是平行四边形时,求▱OCED 的周长; ②当CE 平行于x 轴,CD 平行于y 轴时,连接DE ,若△CDE 的面积为433,请直接写出点C 的坐标.七、(本题12分)24.(12分)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E 在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;2,(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.2019年省市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分) 1.(2分)﹣5的相反数是( ) A .5B .﹣5C .51D .51【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣5的相反数是5, 故选:A .【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2分)2019年1月1日起我国开始贯彻《国务院关于印发个人所得税专项附加扣除暂行办法的通知》的要求,此次减税围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为( ) A .6.5×102B .6.5×103C .65×103D .0.65×104【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:6500=6.5×103, 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以与n 的值.3.(2分)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(2分)下列说确的是()A.若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.04,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件【分析】根据方差、概率、全面调查和抽样调查以与随机事件的意义分别对每一项进行分析即可得出答案.【解答】解:A、∵S甲2=0.1,S乙2=0.04,∴S甲2>S乙2,∴乙组数据较稳定,故本选项正确;B、明天降雨的概率是50%表示降雨的可能性,故此选项错误;C、了解全国中学生的节水意识应选用抽样调查方式,故本选项错误;D、早上的太阳从西方升起是不可能事件,故本选项错误;故选:A.【点评】本题考查了方差、概率、全面调查和抽样调查以与随机事件,熟练掌握定义是解题的关键.5.(2分)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.【点评】本题考查了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.6.(2分)某青少年篮球队有12名队员,队员的年龄情况统计如下:则这12名队员年龄的众数和中位数分别是()A.15岁和14岁B.15岁和15岁C.15岁和14.5岁D.14岁和15岁【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是14512名队员的年龄数据里,第6和第7个数据的平均数21514=14.5,因而中位数是14.5.故选:C.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(2分)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5B.9:25C.5:3D.25:9【分析】相似三角形的周长比等于对应的中线的比.【解答】解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.故选:C.【点评】本题考查相似三角形的性质,解题的关键是记住相似三角形的性质,灵活运用所学知识解决问题.8.(2分)已知一次函数y=(k+1)x+b的图象如图所示,则k的取值围是()A.k<0B.k<﹣1C.k<1D.k>﹣1【分析】根据一次函数的增减性确定有关k的不等式,求解即可.【解答】解:∵观察图象知:y随x的增大而减小,∴k+1<0,解得:k<﹣1,故选:B.【点评】考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.9.(2分)如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O 的半径是13,BD =24,则sin ∠ACD 的值是( ) A .1312B .512C .125D .135 【分析】首先利用直径所对的圆周角为90°得到△ABD 是直角三角形,然后利用勾股定理求得AD 边的长,然后求得∠B 的正弦即可求得答案. 【解答】解:∵AB 是直径, ∴∠ADB =90°, ∵⊙O 的半径是13, ∴AB =2×13=26, 由勾股定理得:AD =10, ∴sin ∠B =1352610==AB AD ∵∠ACD =∠B , ∴sin ∠ACD =sin ∠B =135, 故选:D .【点评】本题考查了圆周角定理与解直角三角形的知识,解题的关键是能够得到直角三角形并利用锐角三角函数求得一个锐角的正弦值,难度不大.10.(2分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论正确的是( )A .abc <0B .b 2﹣4ac <0C .a ﹣b +c <0D .2a +b =0【分析】由图可知a >0,与y 轴的交点c <0,对称轴x =1,函数与x 轴有两个不同的交点,当x =﹣1时,y >0;【解答】解:由图可知a >0,与y 轴的交点c <0,对称轴x =1, ∴b =﹣2a <0; ∴abc >0,A 错误;由图象可知,函数与x 轴有两个不同的交点,∴△>0,B 错误; 当x =﹣1时,y >0,(由图像关于对称轴对称可知)∴a ﹣b +c >0,C 错误; ∵b =﹣2a ,D 正确; 故选:D .【点评】本题考查二次函数的图象与性质;熟练掌握二次函数的图象与性质,能够从给出的图象上获取信息确定a ,b ,c ,△,对称轴之间的关系是解题的关键. 二、填空题(每小题3分,共18分)11.(3分)因式分解:﹣x 2﹣4y 2+4xy = ﹣(x ﹣2y )2.【分析】先提取公因式﹣1,再套用公式完全平方公式进行二次因式分解. 【解答】解:﹣x 2﹣4y 2+4xy , =﹣(x 2+4y 2﹣4xy ), =﹣(x ﹣2y )2.【点评】本题考查利用完全平方公式分解因式,先提取﹣1是利用公式的关键.12.(3分)二元一次方程组⎩⎨⎧=+=-52323y x y x 的解是⎩⎨⎧==5.12y x .【分析】通过观察可以看出y 的系数互为相反数,故①+②可以消去y ,解得x 的值,再把x 的值代入①或②,都可以求出y 的值. 【解答】解:⎩⎨⎧=+=-②52①323y x y x ,①+②得:4x =8, 解得x =2,把x =2代入②中得:2+2y =5, 解得y =1.5, 所以原方程组的解为⎩⎨⎧==5.12y x .故答案为⎩⎨⎧==5.12y x .【点评】此题主要考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.13.(3分)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有 3 个白球.【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况. 【解答】解:由题意可得,红球的概率为70%.则白球的概率为30%, 这个口袋中白球的个数:10×30%=3(个), 故答案为3.【点评】本题考查了用样本估计总体,正确理解概率的意义是解题的关键.14.(3分)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,若AD =BC =25,则四边形EGFH 的周长是 45.【分析】根三角形的中位线定理即可求得四边形EFGH 的各边长,从而求得周长. 【解答】证明:∵E 、G 是AB 和AC 的中点,∴EG =21BC =55221=⨯, 同理HF =21BC =5,EH =GF =21AD =55221=⨯.∴四边形EGFH 的周长是:4×5=45. 故答案为:45.【点评】本题考查了三角形的中位线定理,三角形的中位线平行于第三边且等于第三边的一半. 15.(3分)如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=xk 2(x >0)的图象相交于点A (3,23),点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,则△AOB 的面积是 23.【分析】把点A (3,23)代入y 1=k 1x 和y 2=xk 2(x >0)可求出k 1、k 2的值,即可正比例函数和求出反比例函数的解析式,过点B 作BD ∥x 轴交OA 于点D ,结合点B 的坐标即可得出点D 的坐标,再根据三角形的面积公式即可求出△AOB 的面积.【解答】解:(1)∵正比例函数y 1=k 1x 的图象与反比例函数y 2=xk 2(x >0)的图象相交于点A (3,23),∴23=3k 1,23=31k , ∴k 1=2,k 2=6,∴正比例函数为y =2x ,反比例函数为:y =x6, ∵点B 是反比例函数图象上一点,它的横坐标是3, ∴y =36=2, ∴B (3,2), ∴D (1,2), ∴BD =3﹣1=2. ∴S △AOB =S △ABD +S △OBD =21×2×(23﹣2)+21×2×2=23, 故答案为23.【点评】本题考查了反比例函数与一次函数的交点问题、反比例(一次)函数图象上点的坐标特征、待定系数法求一次函数和反比例函数的解析式以与三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出△AOB 的面积.16.(3分)如图,正方形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若AB =5,CF =2,则线段EP 的长是2213. 【分析】如图,作FH ⊥PE 于H .利用勾股定理求出EF ,再证明△CEF ∽△FEP ,可得EF 2=EC •EP ,由此即可解决问题.【解答】解:如图,作FH ⊥PE 于H .∵四边形ABCD 是正方形,AB =5, ∴AC =52,∠ACD =∠FCH =45°, ∵∠FHC =90°,CF =2, ∴CH =HF =2, ∵CE =4AE ,∴EC =42,AE =2, ∴EH =52,在Rt △EFH 中,EF 2=EH 2+FH 2=(52)2+(2)2=52, ∵∠GEF =∠GCF =90°, ∴E ,G ,F ,C 四点共圆, ∴∠EFG =∠ECG =45°, ∴∠ECF =∠EFP =135°, ∵∠CEF =∠FEP , ∴△CEF ∽△FEP , ∴EFECEP EF =, ∴EF 2=EC •EP ,∴EP =22132452= 故答案为2213. 【点评】本题考查正方形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题. 三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:02)2019(3130cos 221-+--︒+⎪⎭⎫⎝⎛--π【分析】直接利用负指数幂的性质、特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4+2×23﹣3+1+1=6. 【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A ,B ,C ,D 依次表示这四个社团),并把这四个字母分别写在四完全相同的不透明的卡片的正面上,然后将这四卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一卡片是足球社团B 的概率是41. (2)小明先从中随机抽取一卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一是科技社团D 的概率. 【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一是科技社团D 的结果数,然后根据概率公式求解.【解答】解:(1)小明从中随机抽取一卡片是足球社团B 的概率=41; (2)列表如下:由表可知共有12种等可能结果,小明两次抽取的卡片中有一是科技社团D 的结果数为6种, 所以小明两次抽取的卡片中有一是科技社团D 的概率为21126 . 【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率19.(8分)如图,在四边形ABCD 中,点E 和点F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G .(1)求证:四边形ABCD 是平行四边形; (2)若tan ∠CAB =52,∠CBG =45°,BC =42,则▱ABCD 的面积是 24 .【分析】(1)根据已知条件得到AF =CE ,根据平行线的性质得到∠DFA =∠BEC ,根据全等三角形的性质得到AD =CB ,∠DAF =∠BCE ,于是得到结论;(2)根据已知条件得到△BCG 是等腰直角三角形,求得BG =CG =4,解直角三角形得到AG =10,根据平行四边形的面积公式即可得到结论. 【解答】(1)证明:∵AE =CF , ∴AE ﹣EF =CF ﹣EF , 即AF =CE ,∵DF ∥BE , ∴∠DFA =∠BEC , ∵DF =BE ,∴△ADF ≌△CBE (SAS ), ∴AD =CB ,∠DAF =∠BCE , ∴AD ∥CB ,∴四边形ABCD 是平行四边形; (2)解:∵CG ⊥AB , ∴∠G =90°, ∵∠CBG =45°,∴△BCG 是等腰直角三角形, ∵BC =42, ∴BG =CG =4, ∵tan ∠CAB =52, ∴AG =10, ∴AB =6,∴▱ABCD 的面积=6×4=24, 故答案为:24.【点评】本题考查了平行相交线的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.四、(每小题8分,共16分)20.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能与的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:A (0≤x <10),B (10≤x <20),C (20≤x <30),D (30≤x <40),E (x ≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)本次共调查了 50 名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m 的值是 32 ,类别D 所对应的扇形圆心角的度数是 57.6 度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.【分析】(1)本次共调查了10÷20%=50(人);(2)B 类人数:50×24%=12(人),D 类人数:50﹣10﹣12﹣16﹣4=8(人),根据此信息补全条形统计图即可; (3)%1005016⨯=32%,即m =32,类别D 所对应的扇形圆心角的度数360°×508=57.6°; (4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名). 【解答】解:(1)本次共调查了10÷20%=50(人), 故答案为50;(2)B 类人数:50×24%=12(人),D 类人数:50﹣10﹣12﹣16﹣4=8(人),(3)%1005016⨯=32%,即m =32, 类别D 所对应的扇形圆心角的度数360°×508=57.6°,故答案为32,57.6;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数. 800×(1﹣20%﹣24%)=448(名),答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元. (1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵? 【分析】(1)根据题意列出分式方程求解即可; (2)根据题意列出不等式求解即可.【解答】解:(1)设甲种树苗每棵x 元,根据题意得:6600800-=x x , 解得:x =40,经检验:x =40是原方程的解, 答:甲种树苗每棵40元;(2)设购买乙中树苗y 棵,根据题意得: 40(100﹣y )+36y ≤3800, 解得:y ≥3331, ∵y 是正整数, ∴y 最小取34,答:至少要购买乙种树苗34棵.【点评】本题考查了分式方程的应用与一元一次不等式的应用,解题的关键是根据题意找到等量关系,难度不大. 五、(本题10分)22.(10分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,直线MN 与⊙O 相切于点C ,过点B 作BD ⊥MN 于点D . (1)求证:∠ABC =∠CBD ;(2)若BC =45,CD =4,则⊙O 的半径是 5 .【分析】(1)连接OC ,由切线的性质可得OC ⊥MN ,即可证得OC ∥BD ,由平行线的性质和等腰三角形的性质可得∠CBD =∠BCO =∠ABC ,即可证得结论;(2)连接AC ,由勾股定理求得BD ,然后通过证得△ABC ∽△CBD ,求得直径AB ,从而求得半径. 【解答】(1)证明:连接OC , ∵MN 为⊙O 的切线, ∴OC ⊥MN , ∵BD ⊥MN , ∴OC ∥BD , ∴∠CBD =∠BCO . 又∵OC =OB , ∴∠BCO =∠ABC , ∴∠CBD =∠ABC .; (2)解:连接AC ,在Rt △BCD 中,BC =4,CD =4, ∴BD =22CD BC -=8, ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACB =∠CDB =90°, ∵∠ABC =∠CBD , ∴△ABC ∽△CBD , ∴BD CB BC AB =,即85454=AB , ∴AB =10, ∴⊙O 的半径是5, 故答案为5.【点评】本题考查了切线的性质和圆周六、(本题10分)角定理、三角形相似的判定和性质以与解直角三角形,作出辅助线构建等腰三角形、直角三角形是解题的关键.23.(10分)在平面直角坐标系中,直线y =kx +4(k ≠0)交x 轴于点A (8,0),交y 轴于点B .(1)k 的值是21-; (2)点C 是直线AB 上的一个动点,点D 和点E 分别在x 轴和y 轴上.①如图,点E 为线段OB 的中点,且四边形OCED 是平行四边形时,求▱OCED 的周长; ②当CE 平行于x 轴,CD 平行于y 轴时,连接DE ,若△CDE 的面积为433,请直接写出点C 的坐标. 【分析】(1)根据点A 的坐标,利用待定系数法可求出k 值;(2)①利用一次函数图象上点的坐标特征可得出点B 的坐标,由平行四边形的性质结合点E 为OB 的中点可得出CE 是△ABO 的中位线,结合点A 的坐标可得出CE 的长,在Rt △DOE 中,利用勾股定理可求出DE 的长,再利用平行四边形的周长公式即可求出▱OCED 的周长; ②设点C 的坐标为(x ,421+-x ),则CE =|x |,CD =|421+-x |,利用三角形的面积公式结合△CDE 的面积为433可得出关于x 的方程,解之即可得出结论. 【解答】解:(1)将A (8,0)代入y =kx +4,得:0=8k +4,解得:k =21-. 故答案为:21-.(2)①由(1)可知直线AB 的解析式为y =21-x +4. 当x =0时,y =21-x +4=4, ∴点B 的坐标为(0,4), ∴OB =4.∵点E 为OB 的中点, ∴BE =OE =21OB =2. ∵点A 的坐标为(8,0), ∴OA =8.∵四边形OCED 是平行四边形, ∴CE ∥DA , ∴1==OEBEAC BC , ∴BC =AC ,∴CE 是△ABO 的中位线, ∴CE =21OA =4. ∵四边形OCED 是平行四边形, ∴OD =CE =4,OC =DE .在Rt △DOE 中,∠DOE =90°,OD =4,OE =2, ∴DE =5222=+OE OD ,∴C 平行四边形OCED =2(OD +DE )=2(4+25)=8+45.②设点C 的坐标为(x ,x 21-+4),则CE =|x |,CD =|21-x +4|, ∴S △CDE =21CD •CE =|﹣41x 2+2x |=433,∴x 2+8x +33=0或x 2+8x ﹣33=0. 方程x 2+8x +33=0无解;解方程x 2+8x ﹣33=0,得:x 1=﹣3,x 2=11, ∴点C 的坐标为(﹣3,211)或(11,23-).【点评】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质、勾股定理、平行四边形的周长、三角形的面积、解一元二次方程以与三角形的中位线,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 值;(2)①利用勾股定理与三角形中位线的性质,求出CE ,DE 的长;②利用三角形的面积公式结合△CDE 的面积为433,找出关于x 的方程. 七、(本题12分)24.(12分)思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD ∥AB 交AP 的延长线于点D ,此时测得CD =200米,那么A ,B 间的距离是 200 米.思维探索:(2)在△ABC 和△ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将△ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时△ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . ; ②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论; ③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值.【分析】(1)由由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,。

辽宁省沈阳市2019年中考数学试题含答案【Word版】

辽宁省沈阳市2019年中考数学试题含答案【Word版】

2019年沈阳市中考数学试卷试题满分150分 考试时间120分钟参考公式:抛物线2y ax bx c =++的顶点是24(,)24b ac b a a --,对称轴是直线2b x a =-. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题4分,共24分)1。

0这个数是( )A.正数 B 。

负数 C.整数 D 。

无理数2.2019年端午节小长假期间,沈阳某景区接待游客约为85000人,将数据85000用科学记数法表示为( )A.85×103B.8.5×104C.0。

85×105D.8.5×105 3。

某几何体的三视图如图所示,这个几何体是( )A.圆柱B.三棱柱C.长方体 D 。

圆锥4。

已知一组数据:1,2,6,3,3,下列说法正确的是( )A.众数是3 B 。

中位数是6 C.平均数是4 D 。

方差是55。

一元一次不等式x-1≥0的解集在数轴上表示正确的是( )A B C D6。

正方形是轴对称图形,它的对称轴有( )A 。

2条B 。

4条 C.6条 D.8条7.下列运算正确的是( )A.()623x x -=- B 。

844x x x =+ C 。

632x x x =⋅ D.()34y xy xy -=-÷8.如图,在△ABC 中,点D 在边AB 上,BD=2AD ,DE ∥BC 交AC 于点E ,若线段DE=5,则线段BC 的长为( )A.7.5 B 。

10 C 。

15 D.20二、填空题(每小题4分,共32分)9.计算:=9___________10.分解因式:2m 2+10m=___________11.如图,直线a ∥b,直线l 与a 相交于点P ,与直线b 相交于点Q , PM ⊥l 于点P, 若∠1=50°,则∠2=________°。

12.化简:=⋅⎪⎭⎫ ⎝⎛-+xx 1111___________ 13.已知一次函数y=x+1的图象与反比例函数x k y =的图象相交,其中有一个交点的横坐标是2,则k 的值为________.14.如图,△ABC 三边的中点D ,E,F 组成△DEF,△DEF 三边的中点M ,N ,P 组成△MNP ,将△FPM 与△ECD 涂成阴影.假设可以随意在△ABC 中取点,那么这个点取在阴影部分的概率为________.15。

考点跟踪突破15 数据的收集与整理

考点跟踪突破15 数据的收集与整理

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 考点跟踪突破15 数据的收集与整理抽取数学本容这组赛.都是的是购买中环成绩90 分差是__4_量,棵.一、选择题1.(2019呼A.旅客上飞B.学校招聘C.了解全校D.了解一批2.(2019巴取 2000 名考生学中考成绩的容量是 2000.其A.4 个 B.3.(2019福组数据的平均A.44 B.4.(2019重为此,九(1是 96 分,甲的是( A ) A.甲的成绩B.乙的成绩C.甲、乙两D.无法确定5.(2019长买数量如下表则这十一双A.41,41 C.41,42 二、填空题6.(2019汕环数的众数为7.(2019南绩占 40%,期分,则小海这8.(2019丽是__2__. 9.(2019巴__. 10.(2019新并根据数据题(每小题 6分呼和浩特)以下飞机前的安检聘教师,对应校学生的课外批灯泡的使用巴中)今年我市生的数学成绩的全体是总体其中说法正确.3 个 C.2福州)若 7 名学均数是( C ) 45 C.46 D重庆)某校将举)班组织了五的成绩的方差绩比乙的成绩绩比甲的成绩两人的成绩一定甲、乙的成长安一中模拟表:尺购买双运动鞋尺码 B.40,43 D.42,43 题(每小题 6分汕尾)小明在射为__6__,平均南宁)某中学规期末考试成绩这个学期的体丽水)有一组数巴中)已知一组新疆)某校九据绘制了条形考点跟踪突分,共 30分)下问题,不适检应聘人员的面外读书时间用寿命市有 4 万名学绩进行统计分体;②每个考确的有( C )个 D.1 个学生的体重(单D.47 举办一场中五轮班级选拔差是 0.2,乙绩稳定绩稳定一样稳定成绩谁更稳定拟)某校给足球码/码数量/双码的众1 / 6数和中位分,共 30分)射击训练中,均数为__6__规定:学生的绩占 60%,小体育综合成绩数据:3,a组数据:0,九年级 420 名形统计图,请突破 15 数据) 适合用全面调面试学生参加中考分析.在这个考生是个体;个单位:kg)分中国汉字听写拔赛,在这五的成绩的方差定球队的十一位40 41 2 4 位数分别为() ,五次命中的_.的学期体育综小海这个学期绩是__86__分,4,6,7,2,x,4,5学生参加植树请估计该校九据的收集与整调查的是( D )考,为了了解个问题中,下③2000 名考分别是 40,42写大赛,要五轮选拔赛中差是 0.8,根位运动员每人42 432 2( A ) 的环数分别为综合成绩满分期的期中、期分.它们的平均的众数是 4 树活动,随机九年级学生此整理 ) 解这些考生的下列说法:①考生是总体的2,43,45,要求各班推选中,甲、乙两根据以上数据人购买了一双44 1 为 5,7,6,分为 100 分,末成绩(百分均数是 5,那4,那么这组机调查了 50此次植树活动的数学成绩,①这 4 万名考的一个样本;47,47,58选一名同学参两位同学的平据,下列说法双运动鞋,尺6,6,则小其中,期中分制)分别是 8那么这组数据组数据的中位名学生植树动约植树__16从中生的④样,则加比均分法正确码及明命考试80 分、的方位数是树的数680__ 成,次,0.1%顺序=8.序:多的测试计算三、解答题11.(10 分某部门对今(1)求这 7 天(2)---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用(1)中的(3)市政府在每车次平均%) 解:(1)根据序排列为 7.5.5 (2)根据题意(3)根据题意 12.(10 分首先由本年的甲、乙、丙试,各项成绩请你根据以(1)补全图①(2)请计算每(3)若每名候算三名候选人解:(1)如图题(共 40分) )(2019宁波)今年 4 月份中天日租车辆的的平均数估计在公共自行车均收入租车费据条形统计图,8,8,8,意得 308.5=意得 32000.9600)(2019天门)年级 200 名学丙三人,投票绩如下表所示以上信息解答①和图②;每名候选人的候选人得一票人的总成绩,图 )作为宁波市的 7 天进行了的众数、中位计 4 月份(30 天车建设项目中费 0.1 元,求图得:出现次9,9,10,=255(万车次1 = 130 3.3%)某初中学校学生民主投票票结果统计如示;图②是某答下列问题:的得票数;票记 1 分,投成绩高的将被市政府民生实了公共自行车位数和平均数天)共租车辆中共投入 9600求 2019 年租次数最多的为中位数为 8次),则估计 4%,则 2019 年校欲向高一级票,每人只能如图①;其次同学根据下表投票、笔试、被录取,应该实事之一的公车日租车辆的;多少万车次0万元,估计租车费收入占为8,即众数;平均数为(4月份(30 天年租车费收入级学校推荐一能推荐一名(不次,对三名候表绘制的一个面试三项得该录取谁?公共自行车建的统计,结果?计 2019年共租占总投入的百数为 8;将数(7.5+8+8+)共租车辆 2入占总投入的一名学生,根不设弃权票)3 / 6候选人进行了个不完整的条得分按照2∶5建设工程已基果如下:租车辆 3200百分率.(精数据按照从小+8+9+9+1255 万车次的百分率为 3根据规定的推),选出了票笔试和面试条形图.5∶3 的比确本完万车确到到大10)73.3% 荐程数最试两项定, 200平均机抽整数接受合格+8+当 xx=950 名技能心得到(2)甲的票数28%=56(票682+922+5均成绩:x 3 = 13.(10 分抽取了 50 名工数.现提供统(1)根据统计(2)写出这 5(3)厂方认定受技能再培训解:(1)∵把格品数的中位(2)设加工的+10+x+y+x=1~7时,9 时,y=9名工人加工出(3)这 50 名能再培训的人 14.(10 分心系雅安捐到的数据绘制(1)本次接受数:20034票) (3)甲的5+8535+3=562+952+5)(2019安徽)工人加工的零统计图的部分计图,求这 550名工人加工定,工人在单训.已知该厂把合格品数从位数为 4 的合格品数是+4+2=50y=17~11,,此时众数出合格品数的工人中,合格人数约有 64 人)(2019天津)捐款活动.为制了如下统计受随机抽样调4%=68(票)的平均成绩:=85.1 乙的5+803+3=)某厂为了解零件进行检测分信息如图,请0名工人加工工出合格品数单位时间内加厂有同类工人从小到大排列是 5 的人数是,即 x+y=1,此时众数数为 4;当 x的众数的可能格品数低于人 )四川雅安发为了解捐款情计图①和图②调查的学生人);乙的票数x 1 =的平均成绩:=82.7 ∵乙解工人在单位测,统计出他请解答下列工出的合格---------------------------------------------------------------最新资料推荐------------------------------------------------------ 品数的众数的可加工出的合格400 名,请估列,第 25,2是 x 人,加工18,∵当 x=数为 6;当 xx=10 时,y能取值为 4,53 件的有 8 人发生地震后,情况,学生会,请根据相关人数为__50__数: 2003x 2 = 602+的平均成绩最位时间内加工他们各自加工问题:品数的中位数可能取值;品数不低于估计该厂将接6 个数都是工的合格品数=11~17 时=8 时,y=y=8,此时5,6 人,∵400某校学生会会随机调查了关信息,解答_,图①中 m 0%=60(票+905+952+5+3最高,应该工同一种零件工的合格品数数; 3 件为技能接受技能再培 4,这 50是 6 的人数是,y=7~1,10,此时众时众数为 4,850 =64,会向全校 190部分学生的答下列问题:的值是__32_);丙的票3 =85.5 该录取乙件的技能水平数是1 到 8 这能合格,否则培训的人数.名工人加工是 y 人,则此时众数众数为 4,6,5.综上所述估计该厂将00 名学生发的捐款金额,2__;数:丙的,随这八个,将工出的2+6数为 5;6;当述,这将接受起了并用 (2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为 10 元的学生人数.解:(1)根据条形图 4+16+12+10+8=50(人),m=100-20-24-16-8=32 (2)∵x=150(54+1016+1512+2019+308)=16,这组数5 / 6据的平均数为 16,∵在这组样本数据中,10 出现次数最多为 16 次,这组数据的众数为 10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 15,这组数据的中位数为 12 (15+15)=15 (3)∵在 50 名学生中,捐款金额为 10 元的学生人数比例为32%,由样本数据,估计该校1 900 名学生中捐款金额为 10 元的学生人数比例为 32%,有 1 90032%=608,该校本次活动捐款金额为 10 元的学生约有 608 名。

【聚焦中考】辽宁省2019中考数学 考点跟踪突破31 图形的相似

【聚焦中考】辽宁省2019中考数学 考点跟踪突破31 图形的相似

图形的相似一、选择题(每小题5分、共25分)1.(2015·乐山)如图、l 1∥l 2∥l 3、两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F.已知AB BC =32、则DEDF 的值为( D )A .32B .23C .25D .35,第1题图) ,第2题图)2.(铁岭模拟)如图、点P 是▱ABCD 边AB 上的一点、射线CP 交DA 的延长线于点E 、则图中相似的三角形有( D )A .0对B .1对C .2对D .3对3.(2015·呼伦贝尔)如图、把△ABC 沿AB 边平移到△A′B′C′的位置、它们的重叠部分(即图中阴影部分)的面积是△ABC 面积的一半、若AB =2、则此三角形移动的距离AA′是( A )A .2-1B .22C .1D .12,第3题图) ,第4题图)4.(2015·咸宁)如图、以点O 为位似中心、将△ABC 放大得到△DEF.若AD =OA 、则△ABC 与△DEF 的面积之比为( B )A .1∶2B .1∶4C .1∶5D .1∶65.(沈阳模拟)如图、在△ABC 中、点D 、E 分别在边AB 、AC 上、下列条件中不能判断△ABC∽△AED 的是( D )A .∠AED =∠B B .∠ADE =∠CC .AD AE =AC ABD .AD AB =AE AC二、填空题(每小题5分、共25分)6.(铁岭模拟)如图、△ABC 中、点D 、E 分别在边AB 、BC 上、DE ∥A C .若BD =4、DA =2、BE =3、则EC =__32__.7.(丹东模拟)若两个相似三角形的周长比为2∶3、则它们的面积比是__4∶9__.,第6题图) ,第8题图)8.(2015·黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图、点P 处放一水平的平面镜、光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处、已知AB⊥BD、CD ⊥BD 、且测得AB =1.2米、BP =1.8米、PD =12米、那么该古城墙的高度是__8__米(平面镜的厚度忽略不计).9.(2015·河池)如图、菱形ABCD 的边长为1、直线l 过点C 、交AB 的延长线于M 、交AD 的延长线于N 、则1AM +1AN=__1__.,第9题图) ,第10题图)10.(2014·抚顺)如图、已知CO 1是△ABC 的中线、过点O 1作O 1E 1∥AC 交BC 于点E 1、连接AE 1交CO 1于点O 2;过点O 2作O 2E 2∥AC 交BC 于点E 2、连接AE 2交CO 1于点O 3;过点O 3作O 3E 3∥AC 交BC 于点E 3、…、如此继续、可以依次得到点O 4、O 5、…、O n 和点E 4、E 5、…、E n 、则O n E n =__1n +1__AC.(用含n 的代数式表示)解析:∵O 1E 1∥AC 、∴△BO 1E 1∽△BAC 、∴BO 1BA =O 1E 1AC 、∵CO 1是△ABC 的中线、∴BO 1BA =O 1E 1AC=12、∵O 1E 1∥AC 、∴△O 2O 1E 1∽△O 2CA 、∴O 1E 1AC =O 2E 1O 2A =12、由O 2E 2∥AC 、可得:E 1O 2AE 1=O 2E 2AC =13、可得:O n E n =1n +1AC 、故答案为:1n +1三、解答题(共50分)11.(10分)(大连模拟)如图、在△ABC 中、AB =AC 、∠A =36°、BD 为角平分线、DE ⊥AB 、垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形; (2)选择(1)中一对加以证明.解:(1)△ADE≌△BDE、△ABC ∽△BDC(2)证明:∵AB=AC 、∠A =36°、∴∠ABC =∠C =72°、∵BD 为角平分线、∴∠ABD =12∠ABC=36°=∠A、在△ADE 和△BDE 中、∵⎩⎪⎨⎪⎧∠A=∠DBA,∠AED =∠BED,ED =ED ,∴△ADE ≌△BDE(AAS );证明:∵AB=AC 、∠A =36°、∴∠ABC =∠C=72°、∵BD 为角平分线、∴∠DBC =12∠ABC=36°=∠A、∵∠C =∠C、∴△ABC ∽△BDC12.(10分)(2015·抚顺)如图、将△ABC 在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A 3B 3C 3.(1)△ABC 与△A 1B 1C 1的位似比等于__12__;(2)在网格中画出△A 1B 1C 1关于y 轴的轴对称图形△A 2B 2C 2; (3)请写出△A 3B 3C 3是由△A 2B 2C 2怎样平移得到的? (4)设点P(x 、y)为△ABC 内一点、依次经过上述三次变换后、点P 的对应点的坐标为__(-2x -2、2y +2)__.解:(2)如图所示:(3)△A 3B 3C 3是由△A 2B 2C 2沿x 轴向左平移2个单位、再沿y 轴向上平移2个单位得到 13.(10分)(2015·泰安)如图、在△ABC 中、AB =AC 、点P 、D 分别是BC 、AC 边上的点、且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB =10、BC =12、当PD∥AB 时、求BP 的长.解:(1)∵AB=AC 、∴∠B =∠C.∵∠APD=∠B、∴∠APD =∠B=∠C.∵∠APC=∠BAP+∠B、∠APC =∠APD+∠DPC 、∴∠BAP =∠DPC、∴△ABP ∽△PCD 、∴BP CD =ABCP、∴AB ·CD=CP·BP.∵A B =AC 、∴AC ·CD =CP·BP (2)∵PD∥AB、∴∠APD =∠BAP.∵∠APD=∠C、∴∠BAP =∠C.∵∠B =∠B 、∴△BAP ∽△BCA 、∴BA BC =BP BA .∵AB =10、BC =12、∴1012=BP10、∴BP =25314.(10分)(2015·陕西)晚饭后、小聪和小军在社区广场散步、小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻、提议用广场照明灯下的影长及地砖长来测量小军的身高.于是、两人在灯下沿直线NQ 移动、如图、当小聪正好站在广场的A 点(距N 点5块地砖长)时、其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时、其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成、小聪的身高AC 为1.6米、MN ⊥NQ 、AC ⊥NQ 、BE ⊥NQ.请你根据以上信息、求出小军身高BE 的长.(结果精确到0.01米)解:由题意得:∠CAD =∠MND =90°、∠CDA =∠MDN、∴△CAD ∽△MND 、∴CA MN =ADND、∴1.6MN =1×0.8(5+1)×0.8、∴MN =9.6、又∵∠EBF=∠MNF =90°、∠EFB =∠MFN、∴△EFB ∽△MFN 、∴EB MN =BF NF 、∴EB 9.6=2×0.8(2+9)×0.8、∴EB ≈1.75、∴小军身高约为1.75米15.(10分)(2015·威海)(1)如图①、已知∠ACB=∠DCE=90°、AC =BC =6、CD =CE 、AE =3、∠CAE =45°、求AD 的长;(2)如图②、已知∠ACB=∠DCE=90°、∠ABC =∠CED=∠CAE=30°、AC =3、AE =8、求AD 的长.解:(1)如图①、连接BE 、∵∠ACB =∠DCE=90°、∴∠ACB +∠ACE=∠DCE +∠ACE 、即∠BCE=∠ACD、又∵AC=BC 、DC =EC 、在△ACD 和△BCE 中、⎩⎪⎨⎪⎧AC =BC ,∠ACD=∠BCE,DC =EC ,∴△ACD ≌△BCE 、∴AD =BE 、∵AC =BC =6、∴AB =62、∵∠BAC =∠CAE =45°、∴∠BAE =90°、在Rt △BAE 中、AB =62、AE =3、∴BE =9、∴AD =9(2)如图2、连接BE 、在Rt △ACB 中、∠ABC =∠CED=30°、tan 30°=AC BC =DC CE =33、∵∠ACB =∠DCE=90°、∴∠BCE =∠ACD、∴△ACD ∽△BCE 、∴AD BE =AC BC =33、∵∠BAC =60°、∠CAE =30°、∴∠BAE =90°、又AB =6、AE =8、∴BE =10、∴AD =1033。

【聚焦中考】辽宁省2019中考数学 考点跟踪突破10 平面直角坐标系与函数

【聚焦中考】辽宁省2019中考数学 考点跟踪突破10 平面直角坐标系与函数

平面直角坐标系与函数一、选择题(每小题5分,共25分)1.(2018·柳州)如图,点A(-2,1)到y 轴的距离为( C )A .-2B .1C .2D . 52.(辽阳模拟)函数y =1x -2+x -2的自变量x 的取值范围是( B ) A .x ≥2 B .x >2 C .x ≠2 D .x ≤2,第1题图) ,第3题图)3.(丹东模拟)如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x(0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( C )4.(2018·北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( C )A .A →O →B B .B →A →CC .B →O →CD .C →B →O 5.(2017·哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的有( C )A .1个B .2个C .3个D .4个二、填空题(每小题5分,共25分)6.(鞍山模拟)如果点M(3,x)在第一象限,则x 的取值范围是__x >0__.7.(2018·齐齐哈尔)在函数y =x +3+1x2中,自变量x 的取值范围是__x≥-3,且x≠0__. 8.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动,图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程s(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶__35__千米.解析:∵据函数图象知:甲用了30分钟行驶了12千米,乙用了(18-6)分钟行驶了12千米,∴甲每分钟行驶12÷30=25(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-25=35(千米),第8题图) ,第9题图)9.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过__8__分钟,容器中的水恰好放完.10.(2018·黑龙江)如图,在平面直角坐标系中,点A(0,3),B(-1,0),过点A 作AB 的垂线交x 轴于点A 1,过点A 1作AA 1的垂线交y 轴于点A 2,过点A 2作A 1A 2的垂线交x 轴于点A 3…按此规律继续作下去,直至得到点A 2018为止,则点A 2018坐标为__(-31008,0)__.三、解答题(共50分)11.(12分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s 与时间t 之间的图象.请回答下列问题:(1)求师生何时回到学校? (2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进时,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10 km ,8 km .现有A ,B ,C ,D 四个植树点与学校的路程分别是13 km ,15 km ,17 km ,19 km ,试通过计算说明哪几个植树点符合要求.解:(1)设师生返校时的函数解析式为s =kt +b ,把(12,8),(13,3)代入得⎩⎪⎨⎪⎧8=12k +b ,3=13k +b ,解得⎩⎪⎨⎪⎧k =-5,b =68,∴s =-5t +68,当s =0时,t =13.6,∴师生在13.6时回到学校(2)如图,由图象得,当三轮车追上师生时,离学校4 km(3)设符合学校要求的植树点与学校的路程为x(km ),由题意得x 10+2+x 8+8<14,解得x <1779,答:A ,B ,C 植树点符合学校的要求。

【聚焦中考】辽宁省2019中考数学 考点跟踪突破2 整式及其运算

【聚焦中考】辽宁省2019中考数学 考点跟踪突破2 整式及其运算

整式及其运算一、选择题(每小题5分、共25分)1.(沈阳模拟)下列计算正确的是( B )A .a 2·a 3=a 6B .(-2ab)2=4a 2b 2C .(a 2)3=a 5D .3a 2b 2÷a 2b 2=3ab 22.(2015·临沂)观察下列关于x 的单项式、探究其规律:x 、3x 2、5x 3、7x 4、9x 5、11x 6、…按照上述规律、第2015个单项式是( C )A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20153.(抚顺模拟)下列各式的变形中、正确的是( A )A .(-x -y)(-x +y)=x 2-y 2B .1x -x =1-x xC .x 2-4x +3=(x -2)2+1D .x ÷(x 2+x)=1x+1 4.(本溪模拟)定义运算:a ⊗b =a(1-b).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0、则(a ⊗a)+(b ⊗b)=2ab ;④若a ⊗b =0、则a =0或b =1、其中结论正确的序号是( A )A .①④B .①③C .②③④D .①②④5.若m 、n 是正数、m -n =1、mn =2、则m +n =( B )A .-3B .3C .±3D .9二、填空题(每小题5分、共25分)6.(2015·绵阳)计算:a(a 2÷a)-a 2=__0__.7.(2015·大庆)若a 2n =5、b 2n =16、则(ab)n =8.(丹东模拟)计算:b(2a +5b)+a(3a -2b)=__5b +3a 2__.9.(2015·连云港)已知m +n =mn 、则(m -1)(n -1)=__1__.10.请看杨辉三角①、并观察下列等式②:根据前面各式的规律、则(a +b)6=__a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6__.三、解答题(共50分)11.(10分)计算:(1)(锦州模拟)化简:(a 2b -2ab 2-b 3)÷b-(a -b)2;解:原式=-2b 2(2)已知x 2+y 2=25、x +y =7、且x >y 、求x -y 的值.解:由题意可得xy =12、∵x >y 、∴x -y =(x -y )2=112.(10分)(1)(2015·南昌)先化简、再求值:2a(a +2b)-(a +2b)2、其中a =-1、b=3;解:原式=2a 2+4ab -a 2-4ab -4b 2=a 2-4b 2、当a =-1、b =3时、原式=1-12=-11(2)(2015·长沙)先化简、再求值:(x+y)(x-y)-x(x+y)+2xy、其中x=(3-π)0、y=2.解:(x+y)(x-y)-x(x+y)+2xy=x2-y2-x2-xy+2xy=xy-y2、∵x=(3-π)0=1、y=2、∴原式=2-4=-213.(10分)利民商店出售一种原价为a的商品、有如下几种方案:(1)先提价10%、再降价10%;(2)先降价10%、再提价10%;(3)先提价20%、再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?解:(1)a(1+10%)(1-10%)=0.99a (2)a(1-10%)(1+10%)=0.99a (3)a(1+20%)(1-20%)=0.96a、∴调价结果不都一样、只有(1)(2)相同、最后都没有恢复原价14.(10分)先阅读后作答:我们已经知道、根据几何图形的面积关系可以说明完全平方公式、实际上还有一些等式也可以用这种方式加以说明、例如:(2a+b)(a+b)=2a2+3ab +b2、就可以用图(1)的面积关系来说明.①根据图(2)写出一个等式__(2a+b)(2b+a)=2b2+4ab+2a2__;②已知等式:(x+p)(x+q)=x2+(p+q)x+pq、请你画出一个相应的几何图形加以说明.解:②15.(10分)(1)填空:(a-b)(a+b)=__a2-b2__;(a-b)(a2+ab+b2)=__a3-b3__;(a-b)(a3+a2b+ab2+b3)=__a4-b4__.(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=__a n-b n__.(其中n为正整数、且n≥2) (3)利用(2)猜想的结论计算:29-28+27-…+23-22+2.解:(3)29-28+27-…+23-22+2=(2-1)(28+26+24+22+2)=342。

2019年辽宁省各市中考数学真题汇编压轴题:《二次函数》

2019年辽宁省各市中考数学真题汇编压轴题:《二次函数》

2019年辽宁省各市中考数学真题汇编压轴题:《二次函数》1.(2019•营口)在平面直角坐标系中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若=,求a的值.2.(2019•丹东)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y 件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?3.(2019•抚顺)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON=,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.4.(2019•盘锦)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x… 3 4 5 6 …售价y1/元…12 14 16 18 …(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?5.(2019•丹东)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C 两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤),请直接写出S与t的函数关系式.6.(2019•营口)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量y(kg)与时间第t天之间的函数关系式为y=2t+100(1≤t≤80,t为整数),销售单价p(元/kg)与时间第t天之间满足一次函数关系如下表:时间第t天 1 2 3 (80)销售单价p/(元/kg)49.5 49 48.5 (10)(1)直接写出销售单价p(元/kg)与时间第t天之间的函数关系式.(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?7.(2019•铁岭)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.8.(2019•抚顺)某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y(件)与销售单价x(元)满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.(1)求y与x之间的函数关系式.(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?9.(2019•朝阳)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).(1)直接写出y与x之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?10.(2019•铁岭)如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.11.(2019•盘锦)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).(1)求抛物线的解析式.(2)若△AOC与△FEB相似,求a的值.(3)当PH=2时,求点P的坐标.12.(2019•鞍山)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x(元)之间的关系如图所示.(1)根据图象直接写出y与x之间的函数关系式.(2)设这种商品月利润为W(元),求W与x之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?13.(2019•阜新)如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.14.(2019•鞍山)在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S=2S△APQ时,求点P的坐标.△AQD(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.15.(2019•朝阳)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.16.(2019•葫芦岛)某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式.(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?17.(2019•葫芦岛)如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y =﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.18.(2019•锦州)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?19.(2019•辽阳)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=﹣x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.20.(2019•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N (点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.参考答案1.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即c=﹣3a,则点C(0,﹣3a);(2)过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,∵∠PCD+∠PDC=90°,∠PDC+∠QDB=90°,∴∠QDB=∠DCP,设:D(1,n),点C(0,﹣3a),∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴,其中:CP=n+3a,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3a,BD=3,将以上数值代入比例式并解得:a=±,∵a<0,故a=﹣,故抛物线的表达式为:y=﹣x2+x+;(3)如图2,当点C在x轴上方时,连接OD交BC于点H,则DO⊥BC,过点H、D分别作x轴的垂线交于点N、M,设:OC=m=﹣3a,S=S△OBD=×OB×DM=DM,1S=S△OAC=×1×m,而=,2则DM=,HN=DM==OC,∴BN=BO=,则ON=3﹣=,则DO⊥BC,HN⊥OB,则∠BHN=∠HON,则tan∠BHN=tan∠HON,则HN2=ON×BN==()2,解得:m=±6(舍去负值),CO=|﹣3a|=6,解得:a=﹣2(不合题意值已舍去),故:a=﹣2.当点C在x轴下方时,同理可得:a=2(舍去);故a=﹣2,综上,a=±2.2.解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200 (30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.3.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.(2)如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON=.在Rt△OHM中,∠OHM=90°,OH=1.∴,∴M1(1,1);M2(1,﹣1).①当M1(1,1)时,直线OM解析式为:y=x,依题意得:x=x2﹣2x﹣3.解得:,,∵点Q在对称轴右侧的抛物线上运动,∴Q点纵坐标y=.∴,②当M2(1,﹣1)时,直线OM解析式为:y=﹣x,同理可求:,综上所述:点Q的坐标为:,,(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC=,AD=,CD=,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE=,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).Ⅱ.PC=AD,PE=AC,即△PCE≌△ADC(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为P1(﹣3,﹣4),P2(﹣1,﹣6),P3(2,1),P4(4,﹣1).4.解:(1)设y1与x之间的函数关系式为y1=kx+b,将(3,12)(4,14)代入y1得,,解得:,∴y1与x之间的函数关系式为:y1=2x+6;(2)由题意得,抛物线的顶点坐标为(3,9),∴设y2与x之间的函数关系式为:y2=a(x﹣3)2+9,将(5,10)代入y2=a(x﹣3)2+9得a(5﹣3)2+9=10,解得:a=,∴y2=(x﹣3)2+9=x2﹣x+;(3)由题意得,w=y1﹣y2=2x+6﹣x2+x﹣=﹣x2+x﹣,∵﹣<0,∴w有最大值,∴当x=﹣=﹣=7时,w最大=﹣×72+×7﹣=7.所以7月份销售每千克猪肉所获得的利润最大,最大利润是每千克7元.5.解:(1)直线y=﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣x2+bx+2,将点C坐标代入上式并解得:b=,故抛物线的表达式为:y=﹣x2+x+2…①;(2)抛物线的对称轴为:x=,点N的横坐标为:+=5,故点N的坐标为(5,﹣3);(3)∵tan∠ACO==tan∠FAC=,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=,即点R的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AR的表达式为:y=﹣x+2…②,联立①②并解得:x=,故点F(,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tanα==,则sinα=,cosα=;①当0≤t≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT====t,DS=,S=S=DT×DS=t2;△DST②当<t≤时(右侧图),同理可得:S=S梯形DGS′T′=×DG×(GS′+DT′)=3+(+﹣)=t﹣;③当<t≤时,同理可得:S=t+;综上,S=.6.解:(1)设销售单价p(元/kg)与时间第t天之间的函数关系式为:p=kt+b,将(1,49.5),(2,49)代入得,,解得:,∴销售单价p(元/kg)与时间第t天之间的函数关系式为:p=﹣t+50;(2)设每天获得的利润为w元,由题意得,w=(2t+100)(50﹣0.5t)﹣6(2t+100)=﹣t2+38t+4400=﹣(t﹣19)2+4761,∵a=﹣1<0∴w有最大值,当t=19时,w最大,此时,w最大=4761,答:第19天的日销售利润最大,最大利润是4761元.7.解:(1)根据题意得,y=200﹣10(x﹣8)=﹣10x+280,故y与x的函数关系式为y=﹣10x+280;(2)根据题意得,(x﹣6)(﹣10x+280)=720,解得:x1=10,x2=24(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,w=(x﹣6)(﹣10x+280)=﹣10(x﹣17)2+1210,∵﹣10<0,∴当x<17时,w随x的增大而增大,当x=12时,w最大=960,答:当x为12时,日销售利润最大,最大利润960元.8.解:(1)设y与x之间的函数关系式为y=kx+b,根据题意得,,解得:,∴y与x之间的函数关系式为y=﹣10x+700;(2)设利润为w元,∵x≤30×(1+60%)=48,∴x≤48,根据题意得,w=(﹣10x+700)(x﹣30)=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵a=﹣10<0,对称轴x=50,∴当x=48时,w最大=﹣10×(48﹣50)2+4000=3960,答:当销售单价为48时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是3960元.9.解:(1)由图象知,当10<x≤14时,y=640;当14<x≤30时,设y=kx+b,将(14,640),(30,320)代入得,解得,∴y与x之间的函数关系式为y=﹣20x+920;综上所述,y=;(2)(14﹣10)×640=2560,∵2560<3100,∴x>14,∴(x﹣10)(﹣20x+920)=3100,解得:x1=41(不合题意舍去),x2=15,答:销售单价x应定为15元;(3)当14<x≤30时,W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,∵﹣20<0,14<x≤30,∴当x=28时,每天的销售利润最大,最大利润是6480元.10.解:(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax﹣12a,即:﹣12a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,令y=0,解得:x=4或﹣2,故点A(﹣2,0),函数的对称轴为:x=2,故点D(2,8);(2)将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AD的表达式为:y=2x+4,设点N(n,2n+4),∵MN=OA=2,则点M(n+2,2n+4),①将点M的坐标代入抛物线表达式得:2n+4=﹣(n+2)2+2(n+2)+6,解得:n=﹣2±2,故点M的坐标为(2,4)或(﹣2,﹣4);②点M(n+2,2n+4),点B、D的坐标分别为(6,0)、(2,8),则BD2=(6﹣2)2+82,MB2=(n﹣4)2+(2n+4)2,MD2=n2+(2n﹣4)2,当∠BMD为直角时,由勾股定理得:(6﹣2)2+82=(n﹣4)2+(2n+4)2+n2+(2n﹣4)2,解得:n=;当∠MBD为直角时,同理可得:n=﹣4,当∠MDB为直角时,同理可得:n=,故点M的坐标为:(﹣2,﹣4)或(,)或(,)或(,).11.解:(1)点C(0,4),则c=4,二次函数表达式为:y=﹣x2+bx+4,将点A的坐标代入上式得:0=﹣1﹣b+4,解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4;(2)tan∠ACO==,△AOC与△FEB相似,则∠FBE=∠ACO或∠CAO,即:tan∠FBE=或4,∵四边形OEFG为正方形,则FE=OE=a,EB=4﹣a,则或,解得:a=或;(3)令y=﹣x2+3x+4=0,解得:x=4或﹣1,故点B(4,0);分别延长CF、HP交于点N,∵∠PFN+∠BFN=90°,∠FPN+∠PFN=90°,∴∠FPN=∠NFB,∵GN∥x轴,∴∠FPN=∠NFB=∠FBE,∵∠PNF=∠BEF=90°,FP=FB,∴△PNF≌△BEF(AAS),∴FN=FE=a,PN=EB=4﹣a,∴点P(2a,4),点H(2a,﹣4a2+6a+4),∵PH=2,即:﹣4a2+6a+4﹣4=±2,解得:a=1或或或(舍去),故:点P的坐标为(1,4)或(2,4)或(,4).12.解:(1)当40≤x≤60时,设y与x之间的函数关系式为y=kx+b,将(40,140),(60,120)代入得,解得:,∴y与x之间的函数关系式为y=﹣x+180;当60<x≤90时,设y与x之间的函数关系式为y=mx+n,将(90,30),(60,120)代入得,解得:,∴y=﹣3x+300;综上所述,y=;(2)当40≤x≤60时,W=(x﹣30)y=(x﹣30)(﹣x+180)=﹣x2+210x﹣5400,当60<x≤90时,W=(x﹣30)(﹣3x+300)=﹣3x2+390x﹣9000,综上所述,W=;(3)当40≤x≤60时,W=﹣x2+210x﹣5400,∵﹣1<0,对称轴x=﹣=105,∴当40≤x≤60时,W随x的增大而增大,∴当x=60时,W最大=﹣602+210×60﹣5400=3600,当60<x≤90时,W=﹣3x2+390x﹣9000,∵﹣3<0,对称轴x=﹣=65,∵60<x≤90,∴当x=65时,W最大=﹣3×652+390×65﹣9000=3675,∵3675>3600,∴当x=65时,W最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675元.13.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2,(2)连接OP,设点P(x,﹣x2﹣x+2),则S=S四边形ADCP=S△APO+S△CPO﹣S△ODC=×AO×y P+×OC×|x P|﹣×CO×OD =(﹣x2﹣x+2)×2×(﹣x)﹣=﹣x2﹣3x+2,∵﹣1<0,故S有最大值,当x=﹣时,S的最大值为;(3)存在,理由:△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N的情况(△M1N1O):1设点N1的坐标为(x,﹣x2﹣x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∠FN1O+∠M1N1E=90°,∠M1N1E+∠EM1N1=90°,∴∠EM1N1=∠FN1O,∠M1EN1=∠N1FO=90°,ON1=M1N1,∴△M1N1E≌△N1OF(AAS),∴M1E=N1F,即:x+1=﹣x2﹣x+2,解得:x=(舍去负值),则点N1(,);N的情况(△M2N2O):2同理可得:点N2(,);②当点N在x轴下方时,点N的位置为N3、N4,同理可得:点N3、N4的坐标分别为:(,)、(,).综上,点N的坐标为:(,)或(,)或(,)或(,).14.解:(1)将点A(3,4),B(﹣1,0)代入y=ax2+bx+4,得:,解得,∴y=﹣x2+3x+4;(2)如图1,过点P作PE∥x轴,交AB于点E,∵A(3,4),AD⊥x轴,∴D(3,0),∵B(﹣1,0),∴BD=3﹣(﹣1)=4,∵S△AQD=2S△APQ,△AQD与△APQ是等高的两个三角形,∴=,∵PE∥x轴,∴△PQE∽△DQB,∴==,∴=,∴PE=2,∴可求得直线AB的解析式为y=x+1,设E(x,x+1),则P(x﹣2,x+1),将点P坐标代入y=﹣x2+3x+4得﹣(x﹣2)2+3(x﹣2)+4=x+1,解得x1=3+,x2=3﹣,当x=3+时,x﹣2=3+﹣2=1+,x+1=3++1=4+,∴点P(1+,4+);当x=3﹣时,x﹣2=3﹣﹣2=1﹣,x+1=3﹣+1=4﹣,∴P(1﹣,4﹣),∵点P是直线AB上方抛物线上的一个动点,∴﹣1<x﹣2<3,∴点P的坐标为(1+,4+)或(1﹣,4﹣);(3)由(1)得,抛物线的解析式为y=﹣x2+3x+4,∴C(0,4),∵A(3,4),∴AC∥x轴,∴∠OCA=90°,∴GH⊥MN,∴∠GHM=90°,在四边形CGHM中,∠GCM+∠GHM=180°,∴点C、G、H、M共圆,如图2,连接CH,则∠GCH=∠GMH=60°,∴点H在与y轴夹角为60°的定直线上,∴当BH⊥CH时,BH最小,过点H作HP⊥x轴于点P,并延长PH交AC于点Q,∵∠GCH=60°,∴∠HCM=30°,又BH⊥CH,∴∠BHC=90°,∴∠BHP=∠HCM=30°,设OP=a,则CQ=a,∴QH=a,∵B(﹣1,0),∴OB=1,∴BP=1+a,在Rt△BPH中,HP==(a+1),BH==2(1+a),∵QH+HP=AD=4,∴a+(a+1)=4,解得a=,∴BH最小=2(1+a)=.15.解:(1)在y=2x+6中,当x=0时y=6,当y=0时x=﹣3,∴C(0,6)、A(﹣3,0),∵抛物线y=﹣2x2+bx+c的图象经过A、C两点,∴,解得,∴抛物线的解析式为y=﹣2x2﹣4x+6;(2)令﹣2x2﹣4x+6=0,解得x1=﹣3,x2=1,∴B(1,0),∵点E的横坐标为t,∴E(t,﹣2t2﹣4t+6),如图,过点E作EH⊥x轴于点H,过点F作FG⊥x轴于点G,则EH∥FG,∵EF=BF,∴===,∵BH=1﹣t,∴BG=BH=﹣t,∴点F的横坐标为+t,∴F(+t,+t),∴﹣2t2﹣4t+6=(+t),∴t2+3t+2=0,解得t1=﹣2,t2=﹣1,当t=﹣2时,﹣2t2﹣4t+6=6,当t=﹣1时,﹣2t2﹣4t+6=8,∴E1(﹣2,6),E2(﹣1,8),当点E的坐标为(﹣2,6)时,在Rt△EBH中,EH=6,BH=3,∴BE===3,∴sin∠EBA===;同理,当点E的坐标为(﹣1,8)时,sin∠EBA==,∴sin∠EBA的值为或;(3)∵点N在对称轴上,∴x N==﹣1,①当EB为平行四边形的边时,分两种情况:(Ⅰ)点M在对称轴右侧时,BN为对角线,∵E(﹣2,6),x N=﹣1,﹣1﹣(﹣2)=1,B(1,0),∴x M=1+1=2,当x=2时,y=﹣2×22﹣4×2+6=﹣10,∴M(2,﹣10);(Ⅱ)点M在对称轴左侧时,BM为对角线,∵x N=﹣1,B(1,0),1﹣(﹣1)=2,E(﹣2,6),∴x M=﹣2﹣2=﹣4,当x=﹣4时,y=﹣2×(﹣4)2﹣4×(﹣4)+6=﹣10,∴M(﹣4,﹣10);②当EB为平行四边形的对角线时,∵B(1,0),E(﹣2,6),x N=﹣1,∴1+(﹣2)=﹣1+x M,∴x M=0,当x=0时,y=6,∴M(0,6);综上所述,M的坐标为(2,﹣10)或(﹣4,﹣10)或(0,6).16.解:(1)设y=kx+b(k≠0,b为常数)将点(50,160),(80,100)代入得解得∴y与x的函数关系式为:y=﹣2x+260(2)由题意得:(x﹣50)(﹣2x+260)=3000化简得:x2﹣180x+8000=0解得:x1=80,x2=100∵x≤50×(1+90%)=95∴x2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w元,由题意得w=(x﹣50)(﹣2x+260)=﹣2x2+360x﹣13000=﹣2(x﹣90)2+3200∵a=﹣2<0,抛物线开口向下∴w有最大值,当x=90时,w最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.17.解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.18.解:(1)由题意得,月销售量y=100﹣2(x﹣60)=220﹣2x(60≤x≤110,且x 为正整数)答:y与x之间的函数关系式为y=220﹣2x.(2)由题意得:(220﹣2x)(x﹣40)=2250化简得:x2﹣150x+5525=0解得x1=65,x2=85答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w元,由(2)知w=(220﹣2x)(x﹣40)=﹣2x2+300x﹣8800∴w=﹣2(x﹣75)2+2450∴当x=75,即售价为75元时,月利润最大,且最大月利润为2450元.19.解:(1)将点C、E的坐标代入二次函数表达式得:,解得:,故抛物线的解析式为:y=﹣x2+2x+3,则点A(1,4);(2)将点A、C的坐标代入一次函数表达式并解得:直线AC的表达式为:y=﹣2x+6,点P(1,4﹣t),则点D(,4﹣t),设点Q(,4﹣),S=×DQ×BC=﹣t2+t,△ACQ∵﹣<0,故S△ACQ有最大值,当t=2时,其最大值为1;(3)设点P(1,m),点M(x,y),①当EC是菱形一条边时,当点M在点P右方时,点E向右平移3个单位、向下平移3个单位得到C,则点P向右平移3个单位、向下平移3个单位得到M,则1+3=x,m﹣3=y,而MP=EP得:1+(m﹣3)2=(x﹣1)2+(y﹣m)2,解得:y=m﹣3=,故点M(4,);当点M在点P左方时,同理可得:点M(﹣2,3+);②当EC是菱形一对角线时,则EC中点即为PM中点,则x+1=3,y+m=3,而PE=PC,即1+(m﹣3)2=4+m2,解得:m=1,故x=2,y=3﹣m=3﹣1=2,故点M(2,2);综上,点M(4,)或(﹣2,3+)或M(2,2).20.解:(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y=﹣x+1,设点P(x,﹣x2+x+2),则点H(x,﹣x+1),S=S△OBF+S△PFB=×4×1+×PH×BO=2+2(﹣x2+x+2+x﹣1)=7,四边形OBPF解得:x=2或,故点P(2,3)或(,);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过点A'作直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线A″P的表达式为:y=﹣3x+9…③,联立①③并解得:x=,即点M(,),点M沿ED向下平移2个单位得:N(,﹣).。

2019年辽宁中考数学专题突破训练(27)统计(含解析)

2019年辽宁中考数学专题突破训练(27)统计(含解析)

第27讲统计(时间40分钟满分80分)一、选择题(每小题3分,共27分)1.(2019·重庆A)下列调查中,最适合采用全面调查(普查)方式的是( D )A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查2.(2019·深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( B )A.平均数 B.中位数 C.众数 D.方差3.(2019·苏州)有一组数据:2,5,5,6,7,这组数据的平均数为( C )A.3 B.4 C.5 D.64.(2019·安顺)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( B )A.16,10.5 B.8,9C.16,8.5 D.8,8.55.(2019·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:( D ) A.甲 B.乙 C.丙 D.丁6.(2019·牡丹江)一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是( C )A.6 B.5 C.4.5 D.3.57.(2019·呼和浩特)如图,是根据某市2019年至2019年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( D )A.2019年至2019年间工业生产总值逐年增加B.2019年的工业生产总值比前一年增加了40亿元C.2019年与2019年每一年与前一年比,其增长额相同D.从2019年至2019年,每一年与前一年比,2019年的增长率最大8.(2019·常德改编)据统计我市某天七个整点时的气温分别为(单位:℃):22,23,28,31,30,26,22,则这七个整点时气温的中位数和平均数分别是( B )A.30,28 B.26,26C.31,30 D.26,229.(2019·嘉兴)已知一组数据a,b,c的平均数为5,方差为4,那么数据a-2,b-2,c-2的平均数和方差分别是( B )A.3,2 B.3,4 C.5,2 D.5,4(导学号58824208)二、填空题(每小题3分,共15分)10.(2019·上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是_80_万元.11.(2019·江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是_5_.12.(2019·南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有_680_人.(导学号58824209)13.(2019·咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数中,众数和中位数分别是_1.4;1.35_.14.(2019·南京)如图是某市2019-2019年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是_2019_年,私人汽车拥有量年增长率最大的是_2019_年.三、解答题(本大题4小题,共38分)15.(9分)(2019·江西)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有_800_人,其中选择B类的人数有_240_人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.解:(2)∵A类人数所占百分比为1-(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人).补全条形图如解图;(3)12×(25%+30%+25%)=9.6(万人).答:估计该市“绿色出行”方式的人数为9.6万人.16.(9分)(2019·龙东地区)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)(2)将条形统计图补充完整;(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.(导学号58824210)解:(1)总人数:60÷30%=200(人),a=50÷200=25%,b=(200-50-60-30)÷200=30%;(2)补全条形统计图略;(3)1500×30%=450(人).答:约有450人喜欢“拉丁舞蹈”.17.(10分)(2019·齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦·中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a =_70_,b =_0.40_;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第_3_组; (4)请估计该校七年级学生日阅读量不足1小时的人数.(导学号 58824211) 解:(2)补全直方图略;(4)1200×(0.05+0.1)=1200×0.15=180(人).答:估计该校七年级学生日阅读量不足1小时的人数为180人.18.(10分)(2019·沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m =_50_,n =_30_; (2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是_72_度; (3)请根据以上信息补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 解:(3)文学有:50-10-15-5=20(名), 补全的条形统计图略;(4)由题意可得600×1550=180(名).答:该校600名学生中有180名学生最喜欢科普类图书.2019-2020学年数学中考模拟试卷一、选择题1.下列四个数中,最大的数是( ) A .﹣2B .﹣1C .0D .|﹣3|2.如图,矩形ABCD 中,AB =4,AD =6,E 为AD 中点,分别以B 、E 为圆心,以AB 、AE 为半径画弧,两弧交于点F ,连接AF 、BE ,则AF 的长为( )A.125B.135C.245D.53.如图,从A 点出发的光线,经C 点反射后垂直地射到B 点,然后按原路返回A 点.若∠AOC =33°,OC =1,则光线所走的总路线约为( )A .3.8B .2.4C .1.9D .1.24.如果a 2+3a ﹣2=0,那么代数式() 的值为( )A.1B.C.D.5.如图所示的运算程序中,若开始输入的x 值为18,我们发现第一次输出的结果为9,第二次输出的结果为12,……,则第10次输出的结果为( )A .0B .3C .5D .66.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m7.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .8.分式方程22111x x x -=--,解的情况是( ) A .x =1B .x =2C .x =﹣1D .无解9.如图,有一块边长为的正方形厚纸板ABCD ,做成如图①所示的一套七巧板(点O 为正方形纸板对角线的交点,点E 、F 分别为AD 、CD 的中点,CE ∥BI ,IH ∥CD ),将图①所示七巧板拼成如图②所示的“鱼形”,则“鱼尾”MN 的长为( )A.2C.310.如图,点A 在x 轴上,点B ,C 在反比例函数y =(k >0,x >0)的图象上.有一个动点P 从点A 出发,沿A→B→C→O 的路线(图中“→”所示路线)匀速运动,过点P 作PM ⊥x 轴,垂足为M ,设△POM 的面积为S ,点P 的运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .11.下列运算正确的是( ) A .2m×3m=6m B .(m 3)2=m 6C .(﹣2m )3=﹣2m 3D .m 2+m 2=m 412.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种. A .3 B .4 C .5 D .6二、填空题13.若x 2-4x+1=0,则221x x +=______. 14.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 15.如图,直线a ∥b ,∠A=38°,∠1=46°,则∠ACB 的度数是______.16.如图,∠APB=30°,圆心在PB 上的⊙O 的半径为1cm ,OP=3cm ,若⊙O 沿BP 方向平移,当⊙O 与PA 相切时,圆心O 平移的距离为_____cm .17.在半径为2 cm 的⊙O 中,用刻度尺(单位:cm )测得弦AB 的长如图所示,则劣弧AB 的长为____cm .18.将数201900000用科学记数法表示为_____. 三、解答题19.解不等式组:{30240x x-≤+>20.如图1,△ACB为等腰直角三角形,△EDF为非等腰直角三角形,∠ACB=∠EDF=90°,且AB=EF.(1)如图2,将两个直角三角形按如图2将斜边重叠摆放.当AB=EF=6,①DA=______;②求DC的长.(2)若将题中两个直角三角形的斜边重叠摆放,那么线段CD、AD、BD之间存在怎样的数量关系?请直接写出答案.21.化简:(1)a(a﹣b)﹣(a+b)(a+2b);(2)2233222 a aaa a a-⎛⎫÷--⎪++⎝⎭22.中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)m=,n=;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?23.231125123x x x x +≥+⎧⎪+⎨-<-⎪⎩24.如图,已知△ABC .按如下步骤作图:①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ;③连结BD ,与AC 交于点E ,连结AD ,CD(1)求证:△ABC ≌△ADC ;(2)若∠BAC =30°,∠BCA =45°,BC =2; ①求∠BAD 所对的弧BD 的长;②直接写出AC 的长. 25.先化简,再求值22142x x x ---,其中x =2019.【参考答案】*** 一、选择题二、填空题 13.1414.k <5且k≠1. 15.96°. 16.1或5 17.23π 18.019×108 三、解答题 19.-2<x≤3. 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解不等式x-3≤0,得:x≤3, 解不等式2x+4>0,得:x >-2, 则不等式组的解集为-2<x≤3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.(1) ①CD, 【解析】 【分析】(1)直接用勾股定理即可求出DA ,在AD 上截取AE=BD ,连接CE ,可证△ACE ≌△BCD (SAS ),从而判断出∠ECD=90°,在Rt △CDE 中,由勾股定理可得出DE 的值,即可求解. (2)由(1)题②中的过程可直接求得. 【详解】解:(1)①在Rt △ABD 中,∠ADB=90°,由勾股定理,得==②在AD 上截取AE=BD ,连接CE ,如图∵∠ACB=∠ADB=90° ∴∠CAE+∠CFA=∠DBA+∠DFB ∵∠CFA=∠DFB ∴∠CAE=∠DBC 在△ACE 和△BCD 中AC BC CAE CBD AE BD =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD (SAS ) ∴∠ACE=∠BCD ,CE=CD ∵∠ACE+∠ECB=90°∴∠ECD=∠ECB+∠BCD=∠ACE+∠ECB=90°在Rt △CDE 中,由勾股定理,得==∴CD DE 22==(AD-AE )555⎛⎫-= ⎪⎝⎭.(2)CD ,理由:在AD 上截取AE=BD ,如图,连接CE ,由(1)题②中可知CD ,∴CD ,即CD .【点睛】此题主要考查等腰直角三角形,在运用勾股定理的过程中,关键在于利用辅助线构建直角三角形.21.(1)﹣4ab ﹣2b 2;(2)237a a --. 【解析】【分析】(1)根据整式乘法的运算法则即可得出答案;(2)根据分式混合运算法则即可化简原式.【详解】解:(1)原式22222a ab a ab ab b -+++-=() 22222a ab a ab ab b --=---242ab b =--;(2)原式2(3)7(2)2a a a a a a ---=÷++ 2(3)2(2)7a a a a a a --+=+- 237a a -=-. 【点睛】本题主要考查了整式的化简与分式化简,熟知掌握整式化简的方法与分式化简的法则是解题关键.22.(1)70,0.2(2)70(3)750【解析】【分析】(1)根据题意和统计表中的数据可以求得m 、n 的值;(2)根据(1)中求得的m 的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.【详解】解:(1)由题意可得,m =200×0.35=70,n =40÷200=0.2,故答案为:70,0.2;(2)由(1)知,m =70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.原不等式组无解.【解析】【分析】分别解两个不等式后,利用“同大取大,同小取小,大小小大中间找,大大小小找不到”确定不等式组的解集即可.【详解】231125123x x x x +≥+⎧⎪⎨+-<-⎪⎩①② 解不等式①得,x≥8;解不等式②得,x<45; 所以,原不等式组无解.【点睛】本题考查的是解一元一次不等式组,掌握解一元一次不等式组一般步骤及方法是关键.24.(1)见解析;(2)①BD;②AC =【解析】【分析】(1)由“SSS”可证△ABC≌△ADC;(2)①由题意可得AC垂直平分BD,可得BE=DE,AC⊥BD,由直角三角形的性质可得,,由等腰三角形的性质可得∠BAD=2∠BAC=60°,由弧长公式可求弧BD的长;②由AC=AE+CE可求解.【详解】证明:(1)由题意可得AB=AD,BC=CD,又∵AC=AC∴△ABC≌△ADC(SSS);(2)①∵AB=AD,BC=CD∴AC垂直平分BD∴BE=DE,AC⊥BD∵∠BCA=45°,BC=2;∴BE=CE,且∠BAC=30°,AC⊥BD∴AB=2BE=,AE∵AB=AD,AC⊥BD∴∠BAD=2∠BAC=60°∴BD==②∵AC=AE+CE∴AC+【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,弧长公式,灵活运用这些性质解决问题是本题的关键.25.12x+,12021【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=22 (2)(2)(2)(2)x xx x x x+-+-+-=2 (2)(2)xx x-+-=12 x,当x=2019时,∴原式=1 2021;【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2019-2020学年数学中考模拟试卷一、选择题1x 的取值范围在数轴上表示正确的是( )A .B .C .D . 2.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6 3.目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳米,已知1纳米910-=米,用科学记数法将12纳米表示为( )米A.91210-⨯B.101.210-⨯C.81.210-⨯D.80.1210-⨯4.如图,A 为双曲线y =1x 上任意一点,过点A 作轴的垂线,交双曲线y =﹣2x于点B ,连结OA ,OB ,则△AOB 的面积等于( )A.12B.32C.3D.65.下列说法,不正确的是( )A .AB AC CB -= B .如果AB CD =,那么AB CD =C .+a b b a +=r r r rD .若非零向量()0a k b k =≠r r g ,则//a b6.在同一平面内,⊙O 的半径为5cm ,点A 到圆心O 的距离OA =3cm ,则点A 与圆O 的位置关系为( )A .点A 在圆内B .点A 在圆上C .点A 在圆外D .无法确定7.下列计算正确的是( )A.224·x x x -=B.()224x x -=C.234·x x x =D.()222m n m n -=-8.如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1,BC 1.若∠ACB =30°,AB =1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ②当x =1时,四边形ABC 1D 1是菱形 ③当x =2时,△BDD 1为等边三角形 ④s =2(x ﹣2)2(0<x <2),其中正确的有( )A .1 个B .2 个C .3 个D .4 个9.下列计算正确的是( )A .3362a a a +=B .236()a a -=C .623a a a ÷=D .538a a a ⋅=10.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点B 逆时针旋转60°得到△A'BC’,连接A'C ,则A'C 的长为( )A .6B .C .D .11.如图,在平面直角坐标系中,过y 轴正半轴上一点C 作直线l ,分别与2y x=-(x <0)和3y x =(x >0)的图象相交于点A 、B ,且C 是AB 的中点,则△ABO 的面积是( )A .32B .52C .2D .512.肥皂泡的泡壁厚度大约是0.0000007m ,将0.0000007用科学计数法可表示为( )A .60.710-⨯B .7710-⨯C .6710-⨯D .70.710-⨯ 二、填空题13.如图,在平面直角坐标系中,点A (0,3),将△AOB 沿x 轴向右平移得到△A'O'B',与点A 对应的点A'恰好在直线y =32x 上,则BB'=_____.14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.15.某工程队承建30千米的管道铺设工程,预计工期为60天,设施工x天时未铺设的管道长度是y千米,则y关于x的函数关系式是_____.16.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+12PC的最小值等于_____.17.如果关于x的方程x2+2x+m=0有两个实数根,那么m的取值范围是_____.18.如图,在△ABC中,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交AB于点D,同法得到点E,连接DE.若BC=10cm,则DE=_____cm.三、解答题19.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.(1)求证:△BDF≌△CDE;(2)当ED与BC满足什么数量关系时,四边形BECF是正方形?请说明理由.20.如图,E点为DF上的点,B为AC上的点,∠1=∠2,DF∥AC,求证:∠C=∠D.21.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.22.如图,在平面直角坐标系中,△ABC的三个顶点为:A(1,1),B(4,4),C(5,1).(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1;(2)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出PB1+PC1的最小值为.23.某公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含进价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表(1)求出当销售量为2.5万个时,销售价格为多少?(2)求出该公司销售这种计算器的净得利润w (万元)与销售价格x (元个)的函数关系式;(3)销售价格定为多少元时,该公司获得的利润最大?最大利润是多少?24.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是100m ,求乙楼的高CD (结果保留根号).25.如图,V ABC 中,AB AC = ,以AB 为直径的O 与BC 相交于点D ,与CA 的延长线相交于点E ,O 的切线DF 交EC 于点F .(Ⅰ)求DFC ∠的度数;(Ⅱ)若3AC AE =,12BC = ,求O 的直径AB .【参考答案】***一、选择题二、填空题13.214.﹣2或﹣1或0或1或2.15.1302y x =-16.517.m≤118.5三、解答题19.(1)详见解析;(2)当DE=12BC时,四边形BECF是正方形.【解析】【分析】(1)根据等腰三角形的性质得到BD=CD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到BF=CE,DE=DF,推出四边形BECF是平行四边形,得到四边形BECF是菱形,于是得到结论.【详解】(1)证明:∵AD是BC边上的中线,AB=AC,∴BD=CD,∵BF∥EC,∴∠DBF=∠DCE,∵∠BDF=∠CDE,∴△BDF≌△CDE(ASA);(2)解:当DE=12BC时,四边形BECF是正方形,理由:∵△BDF≌△CDE,∴BF=CE,DE=DF,∵BF∥CE,∴四边形BECF是平行四边形,∵AB=AC,AD是中线,∴四边形BECF是菱形,∵DE=12BC,DE=DF=12EF,∴EF=BC,∴四边形BECF是正方形【点睛】本题考查了正方形的判定,菱形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.20.见解析.【解析】【分析】根据∠1=∠2,再根据对顶角相等可知:∠1=∠3,∠2=∠4,等到∠3=∠4,利用内错角相等,两直线平行,得到BD∥CE,根据平行线的性质,得到∠DBA=∠C,根据DF∥AC,利用平行线的性质,得到∠D=∠DBA,进而得到∠C=∠D,故得证.【详解】∵∠1=∠2,又∵∠1=∠3,∠2=∠4,∴∠3=∠4,∴BD∥CE,∴∠DBA =∠C ,∵DF ∥AC ,∴∠D =∠DBA ,∴∠C =∠D .【点睛】此题考查平行线的性质和判定,正确掌握平行线的性质及判定定理是解题关键.21.(1)本次共调查了50名学生;(2)72°;(3)补全条形统计图见解析;(4)该校2000名学生中最喜爱小品的人数为640人;【解析】【分析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;(3)先计算出最喜欢舞蹈类的人数,然后补全条形统计图;(4)用2000乘以样本中最喜爱小品类的人数所占的百分比即可;【详解】(1)14÷28%=50,所以本次共调查了50名学生;(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数=360°×1050=72°; (3)最喜欢舞蹈类的人数为50﹣10﹣14﹣16=10(人),补全条形统计图为:(4)2000×1650=640, 估计该校2000名学生中最喜爱小品的人数为640人;【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)见解析;(2【解析】【分析】(1)分别作出三角形ABC 三顶点关于原点的对称点,再顺次连接即可得;(2)作点C1关于x轴的对称点C′,连接B1C′与x轴的交点即为所求点P,继而利用勾股定理求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求,PB1+PC1.【点睛】本题主要考查作图﹣旋转变换,解题的关键是熟练掌握旋转变换的定义和性质,并据此得出变换后的对应点.23.(1)当销售量等于2.5万个时,销售价格等于55元/个;(2)当30≤x≤60时,w=﹣0.1x2+10x﹣200;当60<x≤80时,w=2400x-+80;(3)销售价格定为50或80元/件时,获得的利润最大,最大利润是50万元.【解析】【分析】(1)根据销售量的代数式等于2.5,求出符合题意的解;(2)根据x的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;(3)结合(1)中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.【详解】解:(1)由题意得,110-x+8=2.5,解得,x=55,答:当销售量等于2.5万个时,销售价格等于55元/个;(2)当30≤x≤60时,w=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200;当60<x≤80时,w=(x﹣20)•120x-402400x=-+80;(3)当30≤x≤60时,w=﹣0.1x2+10x﹣200=﹣0.1(x﹣50)2+50,∴当x=50时,w取得最大值50(万元);当60<x≤80时,w2400x=-+80,∵﹣2400<0,∴w随x的增大而增大,当x=80时,w最大=50万元,∴销售价格定为50或80元/件时,获得的利润最大,最大利润是50万元.【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.24.乙楼的高CD . 【解析】【分析】在Rt △ADC 中,根据三角函数的定义计算即可.【详解】由题意可得:∠BDA =45°,则AB =AD =100m ,又∵∠CAD =30°,∴在Rt △ADC 中,tan ∠CDA =tan30°=CD AD解得:CD (m ),答:乙楼的高CD . 【点睛】本题主要考查三角函数的定义,根据正切函数的定义求解未知数.25.(Ⅰ)90DFC ∠=︒;(Ⅱ)AB =【解析】【分析】(Ⅰ)连接OD .由切线的性质可知OD ⊥DF .再由AC=AB ,OB=OD 可证明∠ODB=∠C ,从而可证明OD ∥AC ,再由平行线的性质可证明DF ⊥AC ;(Ⅱ)连结BE ,根据直径所对的圆周角为直角得出90AEB ∠=°,设AE k =,根据已知用k 表示出AB 、EC,然后根据勾股定理列出关于k 的方程求解即可.【详解】解:(Ⅰ)连接OD ,∵=OB OD ,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴ODB C ∠=∠,∴OD AC ∥,∵DF 是O 的切线∴OD DF ⊥,∴DF AC ⊥,∴90DFC ODF ∠=∠=︒;(Ⅱ)连接BE∵AB 是直径,∴90AEB ∠=°,∵AB AC =,3AC AE = ,∴3AB AE =,4CE AE = ,设AE k =,则3AB k =,3AB AC k ==,4EC k = ,∴在Rt ABE △中,22228BE AB AE k =-=,在Rt BEC 中,222BE EC BC +=.∵12BC =,∴22281612k k +=,∴26k =∴k =(负舍),∴直径3AB AE ==【点睛】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质、勾股定理以及圆周角的性质定理,根据勾股定理列出方程是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计
一、选择题(每小题5分,共25分)
1.(2018·重庆)下列调查中,最适宜采用全面调查方式(普查)的是( C )
A .对重庆市中学生每天学习所用时间的调查
B .对全国中学生心理健康现状的调查
C .对某班学生进行6月5日是“世界环境日”知晓情况的调查
D .对重庆市初中学生课外阅读量的调查
2.(2018·丹东)如果一组数据2,4,x ,3,5的众数是4,那么该组数据的平均数是( D )
A .5.2
B .4.6
C .4
D .3.6
3.(2018·遵义)如果一组数据x 1,x 2,…,x n 的方差是4,则另一组数据x 1+3,x 2+3,…,x n +3的方差是( A )
A .4
B .7
C .8
D .19
4.(辽阳模拟)现有甲、乙两个合唱队队员的平均身高为170 cm ,方差分别是s 甲2,s 乙2,且s 甲2>s 乙2,则两个队的队员的身高较整齐的是( B )
A .甲队
B .乙队
C .两队一样整齐
D .不能确定
5.(2018·烟台)丽华根据演讲比赛中九位评委所给的分数作了如下表格:
D )
A .平均数
B .众数
C .方差
D .中位数
二、填空题(每小题5分,共25分)
6.(抚顺模拟)“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的平均数是__5__.
7.(2018·贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是__5__.
8.(2018·咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有__360__人.
,第8题图) ,第10题图)
9.(朝阳模拟)在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组
数据的方差为__53
__. 10.(2018·河池)某学校计划开设A ,B ,C ,D 四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A 课程的学生有__800__人.
三、解答题(共50分)
11.(12分)(2018·大连)某地区共有1800名九年级学生,为了解这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.
(1)本次测试学生体质健康成绩为良好的有__36__人,达到优秀的人数占本次测试总人数的百分比为__70__%.
(2)本次测试的学生数为__200__人,其中,体质健康成绩为及格的有__18__人,不及格的人数占本次测试人数的百分比为__3__%.
(3)试估计该地区九年级学生开学之初体质健康成绩达到良好及以上等级的学生数.
解:(1)本次测试学生体质健康成绩为良好的有36人,达到优秀的人数占本次测试总人数的百分比为70%,故答案是:36,70 (2)调查的总人数是:140÷70%=200(人),体质健康成绩为及格的有200-140-
36-6=18(人),不及格的人数占本次测试总人数的百分比是:6200
×100%=3% (3)本次测试学生体质健康成绩为良好的有36人,36200
×100%=18%,估计该地区九年级学生开学之初体质健康成绩达到良好及以上等级的学生数是:1800×(70%+18%)=1584(人)
12.(12分)(2018·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.
(1)已求得甲的平均成绩为8环,求乙的平均成绩;
(2)观察图形,直接写出甲,乙这10次射击成绩的方差s 甲2,s 乙2哪个大;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选__乙__参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选__甲__参赛更合适.
解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环) (2)根据图象可知:甲的波
动大于乙的波动,则s 甲2>s 乙2 (3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更
合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲
13.(12分)(2018·营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.
(1)本次被调查的市民共有多少人?
(2)分别补全条形统计图和扇形统计图,并计算图②中区域B 所对应的扇形圆心角的度数;
(3)若该市有100万人口,请估计持有A ,B 两组主要成因的市民有多少人?。

相关文档
最新文档