2.4.2逆矩阵与逆变换

合集下载

《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量

《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量

《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量 【考情分析】考试要求 1. 二阶逆矩阵,B 级要求;2. 二阶矩阵的特征值与特征向量,B 级要求;3. 二阶矩阵的简单应用,B 级要求.理解逆矩阵的意义并掌握二阶矩阵存在逆矩阵的条件,会利用矩阵求解方程组.掌握矩阵特征值与特征向量的定义,会求二阶矩阵的特征值与特征向量,利用矩阵A 的特征值、特征向量给出A n α的简单表示,并能用它来解决问题.理解矩阵的简单应用. 【知识清单】 1. 逆变换与逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n 的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n ,其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 2.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量. (3)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的一个特征值,它的一个特征向量为X =⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy , 故⎩⎪⎨⎪⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎢⎡⎦⎥⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*) 则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征方程. (4)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2.则AX 1=λ1X 1、AX 2=λ2X 2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征值,X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.【课前预习】1. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式. 解析:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4. 2. (选修4-2P 65习题2.4第7题)已知可逆矩阵A =⎣⎢⎡⎦⎥⎤a 273的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a ,求a 、b 的值. 解析:由题意,知AA -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a=⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3.(选修4-2P 54例4改编)已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.解析:因为 AB =⎣⎢⎡⎦⎥⎤0 -12 0,设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d , 所以 (AB )(AB )-1=⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,故a =0,b =12,c =-1,d =0.即(AB )-1=⎣⎢⎡⎦⎥⎤ 012-10. 4. (选修4-2P 73习题第1题改编)求矩阵M =⎣⎢⎡⎦⎥⎤16-2 -6 的特征值.解析:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)(λ+3),令f (λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.,求矩阵A .解析:由特征值、特征向量定义可知,A α1=λ1α1,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤ 1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1.同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2 32 1. 【典型例题】目标1 求逆矩阵与逆变换例1求矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2 35 6的逆矩阵. 解析:(法一)设矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤x y z w , 则⎣⎢⎡⎦⎥⎤2 35 6⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤2x +3z 2y +3w 5x +6z 5y +6w =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎪⎨⎪⎧2x +3z =1,2y +3w =0,5x +6z =0,5y +6w =1,解得⎩⎪⎨⎪⎧x =-2,y =1,z =53,w =-23.故所求的逆矩阵A -1=⎣⎢⎡⎦⎥⎤-2 153 -23. (法二)注意到2×6-3×5=-3≠0,故A 存在逆矩阵A -1,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤6-3 -3-3-5-3 2-3=⎣⎢⎡⎦⎥⎤-2 153 -23. 【借题发挥】变式1 (2016·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤102-2,矩阵B 的逆矩阵B -1=⎣⎢⎡⎦⎥⎤1 -122,求矩阵AB .解 B =(B -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤22 12202 12=⎣⎢⎢⎡⎦⎥⎥⎤1 14012. ∴AB =⎣⎢⎡⎦⎥⎤120-2·⎣⎢⎢⎡⎦⎥⎥⎤1 14012=⎣⎢⎡⎦⎥⎤1540 -1. 解:设a b B c d ⎡⎤=⎢⎥⎣⎦,则1110120102a b B B c d ⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1110220122a c b d c d ⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,故1121022021a c b d c d ⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得114012a b c d ⎧⎪⎪=⎪⎪=⎨⎪=⎪⎪⎪=⎩,所以114102B ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 因此,151121440210102AB ⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦. 变式2 已知关于直线y =2x 的反射变换对应的矩阵为A =⎣⎢⎢⎡⎦⎥⎥⎤-35 45 4535,切变变换对应的矩阵为B =⎣⎢⎡⎦⎥⎤1 0-2 1,试求出(AB )-1. 解析:反射变换和切变变换对应的矩阵都是可逆的,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35,B -1=⎣⎢⎡⎦⎥⎤1 02 1,(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1021⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35=⎣⎢⎢⎡⎦⎥⎥⎤-35 45-25115. 【规律方法】求一个矩阵A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一:待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义AB =BA =E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.法二:利用逆矩阵公式,对矩阵A =⎣⎢⎡⎦⎥⎤a b c d : ①若ad -bc =0,则A 的逆矩阵不存在.②若ad -bc ≠0,则A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 【同步拓展】(2017·常州期末)已知矩阵,列向量,若AX=B ,直接写出A ﹣1,并求出X .解析:解法一∵矩阵,∴A ﹣1=,∵AX=B ,∴X=A ﹣1B==.解法二:∵矩阵,∴A ﹣1=,∵AX=B , ∴=,∴,解得,∴X=.目标2 特征值与特征向量的计算与应用例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a21,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解析:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4⇒a =3. (2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0,x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0.∴矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.【借题发挥】变式1 已知二阶矩阵A 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值3的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-1 3,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33, 即⎩⎪⎨⎪⎧ a -3b =-1,c -3d =3,a +b =3,c +d =3.解得⎩⎪⎨⎪⎧a =2,b =1,c =3,d =0.∴A =⎣⎢⎡⎦⎥⎤2 13 0. 变式2 (2015·江苏高考)已知R y x ∈,,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0的属于特征值2-的一个特征向量,求矩阵A 以及它的另一个特征值.解析:由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-1 2 , 则⎩⎪⎨⎪⎧x -1=-2,y =2,,即⎩⎪⎨⎪⎧x =-1,y =2,,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0. 从而矩阵A 的特征多项式()()()21f λλλ=+-,所以矩阵A 的另一个特征值为1.【规律方法】1.求矩阵A 的特征值与特征向量的一般思路为:先确定其特征多项式f (λ),再由f (λ)=0求出该矩阵的特征值,然后把特征值代入矩阵A 所确定的二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,即可求出特征向量.2.根据矩阵A 的特征值与特征向量求矩阵A 的一般思路:设A =⎣⎢⎡⎦⎥⎤a b c d ,根据Aα=λα构建a ,b ,c ,d 的方程求解.【同步拓展】已知二阶矩阵M 有特征值λ=3及对应的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .解析:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33,故⎩⎪⎨⎪⎧a +b =3,c +d =3. ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15.联立以上两方程组解得a =-1,b =4,c =-3,d =6,故M =⎣⎢⎢⎡⎦⎥⎥⎤-1 4-3 6. 目标3 根据A ,α计算A n α(n ∈N *)例3 给定的矩阵A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,B =⎣⎢⎡⎦⎥⎤32. (1)求A 的特征值λ1,λ2及对应的特征向量α1,α2; (2)求A 4B .解析: (1)设A 的一个特征值为λ,由题意知:⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=0,即(λ-2)(λ-3)=0,∴λ1=2,λ2=3. 当λ1=2时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11.(2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2,故A 4B =A 4(α1+α2)=24α1+34α2=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤11397. 【规律方法】已知矩阵A 和向量α,求A n α(n ∈N *),其步骤为:(1)求出矩阵A 的特征值λ1,λ2和对应的特征向量α1,α2. (2)把α用特征向量的组合来表示:α=s α1+t α2.(3)应用A n α=sλn 1α1+tλn2α2表示A n α.【同步拓展】已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3. 令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,则m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.【归纳分析】1.不是每个二阶矩阵都可逆,只有当⎣⎢⎡⎦⎥⎤a b c d 中ad -bc ≠0时,才可逆,如当A =⎣⎢⎡⎦⎥⎤1 00 0,因为1×0-0×0=0,找不到二阶矩阵B ,使得BA =AB =E 成立,故A =⎣⎢⎡⎦⎥⎤1 00 0不可逆. 2.逆矩阵的性质:(1)若二阶矩阵A 存在逆矩阵B ,则逆矩阵是惟一的.(2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .3.如果向量α是属于λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量α共线,故t α也是属于λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.4. 由于特征向量的存在,求矩阵幂的作用结果,可以转化成求数的幂的运算结果. 【课后作业】 1.已知矩阵1012,0206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵B A 1-. 解析:设矩阵A 的逆矩阵为 ⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1, 故a =-1,b =0,c =0,d =21∴矩阵A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤-1 00 12. 所以B A1-=⎣⎢⎡⎦⎥⎤-1 00 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3 . 2. 求矩阵M =⎣⎢⎡⎦⎥⎤2 41-1的特征值及对应的特征向量. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-4-1λ+1=λ2-λ-6=(λ-3)(λ+2),令f(λ)=0,得到M 的特征值λ1=3,λ2=-2.当λ1=3时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤41;当λ2=-2时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.3. 已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,求矩阵A 的特征值. 解析:因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1434 12 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.4. 已知矩阵M =⎣⎢⎡⎦⎥⎤10012,N =⎣⎢⎡⎦⎥⎤12001,试求曲线y =cos x 在矩阵M-1N 变换下的函数解析式.解析:由M -1=⎣⎢⎡⎦⎥⎤1002,得M -1N =⎣⎢⎡⎦⎥⎤1002⎣⎢⎡⎦⎥⎤1201=⎣⎢⎡⎦⎥⎤12002,即在矩阵M -1N 的变换下有如下过程,⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤12x 2y ,则12y ′=cos2x ′,即曲线y =cos x 在矩阵M -1N 的变换下的解析式为y =2cos2x .5. 已知二阶矩阵A 的属于特征值-2的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d , 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-2 6,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,即⎩⎪⎨⎪⎧a -3b =-2,c -3d =6,a +b =2,c +d =2,解得⎩⎪⎨⎪⎧a =1,b =1,c =3,d =-1,∴A =⎣⎢⎡⎦⎥⎤1 13 -1. 6. 已知α是矩阵M 的属于特征值λ=3的一个特征向量,其中M =⎣⎢⎡⎦⎥⎤a m 2b ,α=⎣⎢⎡⎦⎥⎤-1 5,且a +b +m =3,求a ,b ,m 的值. 解析:因为α是矩阵M 的属于特征值λ=3的一个特征向量,所以Mα=λα,即⎣⎢⎡⎦⎥⎤a m 2 b ⎣⎢⎡⎦⎥⎤-1 5=3⎣⎢⎡⎦⎥⎤-1 5,所以⎩⎪⎨⎪⎧-a +5m =-3,-2+5b =15,由a +b +m =3,解得a =16,b =175,m =-1730.7. (2016·泰州期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2 n m 1的一个特征值为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值; (2) 求A -1.解析:(1) 由题意得:Aα=λα⎣⎢⎡⎦⎥⎤2 n m 1⎣⎢⎡⎦⎥⎤12=λ⎣⎢⎡⎦⎥⎤12=2⎣⎢⎡⎦⎥⎤12⎩⎪⎨⎪⎧2+2n =2,m +2=4,解得⎩⎪⎨⎪⎧n =0,m =2.(2) 设A -1=⎣⎢⎡⎦⎥⎤a b c d ,⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤a b c d =E =⎣⎢⎡⎦⎥⎤1 00 1, 所以 ⎩⎪⎨⎪⎧2a =1,2b =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =12,b =0,c =-1,d =1,所以 A-1=⎣⎢⎡⎦⎥⎤120-11. 8. 已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1=⎣⎢⎡⎦⎥⎤10,e 2=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α=⎣⎢⎡⎦⎥⎤x y ,求M 100α.解析:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤2 00-1变换的意义知 M-1=⎣⎢⎡⎦⎥⎤12 0-1, 又Me 1=λ1e 1,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2, 同理Me 2=λ2e 2,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1. (2) 因为α=⎣⎢⎡⎦⎥⎤x y =x e 1+y e 2,所以M 100α=M 100(x e 1+y ·e 2)=x M 100e 1+y M 100e 2=x λ1001e 1+y λ2100e 2=⎣⎢⎡⎦⎥⎤2100x y.9. 已知矩阵M =⎣⎢⎡⎦⎥⎤2 13 4. (1)求矩阵M 的逆矩阵;(2)求矩阵M 的特征值及特征向量. 解析:(1)因为2×4-1×3=5≠0,所以M 存在逆矩阵M -1,所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤ 45 -15-35 25. (2)矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -1-3 λ-4=(λ-2)(λ-4)-3=λ2-6λ+5, 令f (λ)=0,得矩阵M 的特征值为1或5,当λ=1时,由二元一次方程⎩⎪⎨⎪⎧-x -y =0,-3x -3y =0,得x +y =0,令x=1,则y =-1,所以特征值λ=1对应的特征向量为α1=⎣⎢⎡⎦⎥⎤1-1.当λ=5时,由二元一次方程⎩⎪⎨⎪⎧3x -y =0,-3x +y =0,得3x -y =0, 令x =1,则y =3,所以特征值λ=5对应的特征向量为α2=⎣⎢⎡⎦⎥⎤13.10.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M 的逆矩阵M -1;(2)设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解析:(1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4.所以M =⎣⎢⎡⎦⎥⎤1 23 4,从而M -1=⎣⎢⎡⎦⎥⎤-2 132-12. (2)设直线l 上任意一点(x ,y ),在变换M 作用下对应直线m 上任意一点(x ′,y ′),因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y ,且m :2x ′-y ′=4, 所以2(x +2y )-(3x +4y )=4,即直线l 的方程为x +4=0.11. 已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). 求:(1) 矩阵M;(2) 矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;(3) 直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.解析:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-24,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4. 联立以上两方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6244. (2) 由(1)知,矩阵M 的特征多项式为f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2.设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y ,则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0. (3) 设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6244⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简,得x ′-y ′+2=0,即x -y +2=0. 【提优训练】1.利用逆矩阵的知识解方程MX =N ,其中M =⎣⎢⎡⎦⎥⎤5241,N =⎣⎢⎡⎦⎥⎤ 5-8. 解析:设M-1=⎣⎢⎡⎦⎥⎤x yz w,⎣⎢⎡⎦⎥⎤5241⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎢⎡⎦⎥⎥⎤5x +2z 5y +2w 4x +z 4y +w=⎣⎢⎡⎦⎥⎤1001,⎩⎪⎨⎪⎧5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解之得⎩⎪⎪⎨⎪⎪⎧x =-13,y =23,z =43,w =-53.所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤-132343-53.。

18学年高中数学2.4逆变换与逆矩阵2.4.1逆矩阵的概念教学案苏教版选修4_2

18学年高中数学2.4逆变换与逆矩阵2.4.1逆矩阵的概念教学案苏教版选修4_2

2.4.1 逆矩阵的概念1.逆矩阵的定义对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵,记为A -1. 2.逆矩阵的性质(1)若二阶矩阵A 、B 均可逆,则AB 也可逆,且(AB )-1=B -1A -1. (2)已知A 、B 、C 为二阶矩阵且AB =AC ,若A 存在逆矩阵,则B =C . 3.逆矩阵的求法(1)公式法:对于二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,若ad -bc ≠0,则A 必可逆,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .(2)待定系数法. (3)逆变换法.[对应学生用书P30][例1] 求矩阵A =⎣⎡⎦⎤3 22 1的逆矩阵.[思路点拨] 设出逆矩阵,利用待定系数法求解或直接利用公式法求解. [精解详析] 法一:待定系数法:设A -1=⎣⎢⎡⎦⎥⎤xy zw ,则⎣⎢⎡⎦⎥⎤3 22 1 ⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 001. 即⎣⎡⎦⎤3x +2z 3y +2w 2x +z 2y +w =⎣⎡⎦⎤1 00 1,故⎩⎪⎨⎪⎧3x +2z =1,2x +z =0,⎩⎪⎨⎪⎧3y +2w =0,2y +w =1,解得x =-1,z =2,y =2,w =-3,从而A 的逆矩阵为A -1=⎣⎡⎦⎤-1 2 2 -3.法二:公式法:ad -bc =3×1-2×2=-1≠0,∴A -1=⎣⎢⎡⎦⎥⎤-1 2 2 -3.用待定系数法求逆矩阵时,先设出矩阵A 的逆矩阵A -1,再由AA -1=E 得相等矩阵,最后利用相等矩阵的概念求出A -1.1.(江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤-10 02,B =⎣⎢⎡⎦⎥⎤1 206,求矩阵A -1B . 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤-1 0 0 2 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 001故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10 0 12 ⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3. 2.已知矩阵M =⎣⎡⎦⎤21-3-1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解:由M =⎣⎡⎦⎤21-3-1,得2×(-1)-(-3)×1=1≠0, 故M-1=⎣⎡⎦⎤-1-1 32. 从而由⎣⎡⎦⎤21 -3-1 ⎣⎡⎦⎤x y =⎣⎡⎦⎤135得⎣⎡⎦⎤x y =⎣⎡⎦⎤-1-1 32 ⎣⎡⎦⎤13 5=⎣⎡⎦⎤-1×13+3×5-1×13+2×5=⎣⎡⎦⎤ 2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,即A (2,-3)为所求.[例2] 用几何变换的观点求下列矩阵的逆矩阵.(1)A =⎣⎢⎡⎦⎥⎤2 001;(2)B =⎣⎢⎡⎦⎥⎤ 01-10.[思路点拨] A 为伸压变换矩阵,B 为旋转变换矩阵,只需找到它们的逆变换,再写出逆变换对应的矩阵即为所求.[精解详析](1)矩阵A 为伸压变换矩阵,它对应的几何变换为平面内点的纵坐标保持不变,横坐标沿x 轴方向拉伸为原来2倍的伸缩变换,因此它存在逆变换T A -1:将平面内点的纵坐标保持不变,横坐标沿x 轴方向压缩为原来的12,所对应的变换矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 1.(2)矩阵B 为旋转变换矩阵,它对应的几何变换为将平面内的点绕原点顺时针旋转90°.它存在逆变换T B -1:将平面内的点绕原点逆时针旋转90°,所对应的变换矩阵为B -1=⎣⎢⎡⎦⎥⎤0 -11 0. 从几何角度考虑矩阵对应的变换是否存在逆变换,就是观察在变换下是否能“走过去又能走回来”,即对应的变换是一一映射.关键是熟练掌握反射变换、伸缩变换、旋转变换、切变变换等常用变换对应的矩阵,根据矩阵对应的几何变换找出其逆变换,再写出逆变换对应的矩阵,即为所求逆矩阵.3.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-1232-32 -12,求A -1.解:矩阵A 对应的变换是旋转变换R 240°,它的逆变换是R -240°∴A -1=⎣⎢⎡⎦⎥⎤cos -240° -sin -240° sin -240° cos -240°=⎣⎢⎢⎡⎦⎥⎥⎤-12 -32 32 -12.4.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 5,求A -1. 解:因矩阵A 所对应的变换为伸缩变换,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤2 00 15.[例3] 若矩阵A =⎣⎢⎡⎦⎥⎤2 005,B =⎣⎢⎡⎦⎥⎤1 301,求矩阵AB 的逆矩阵.[思路点拨] 根据公式(AB )-1=B -1A -1,先求出B -1、A -1,再利用矩阵乘法求解. [精解详析] 因为矩阵A 所对应的变换为伸缩变换,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤1200 15. 而矩阵B 对应的变换为切变变换,其逆矩阵B -1=⎣⎢⎡⎦⎥⎤1 -30 1,∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1 -30 1⎣⎢⎢⎡⎦⎥⎥⎤12 00 15=⎣⎢⎢⎡⎦⎥⎥⎤12-350 15. (1)要避免犯如下错误(AB )-1=A -1B-1. (2)此题也可以先求出AB 再求其逆.5.已知A =⎣⎢⎡⎦⎥⎤1 -10 1⎣⎢⎢⎡⎦⎥⎥⎤12-323212,求A -1.解:设M =⎣⎢⎡⎦⎥⎤1 -10 1,N =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12,则A =MN . ∵1×1-0×(-1)=1≠0,∴M -1=⎣⎢⎡⎦⎥⎤1101,同理N -1=⎣⎢⎢⎡⎦⎥⎥⎤ 1232-32 12.由逆矩阵的性质,得A -1=(MN )-1=N -1M -1=⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12 ⎣⎢⎡⎦⎥⎤1 10 1=⎣⎢⎢⎡⎦⎥⎥⎤ 121+32-32 1-32.6.若矩阵A =⎣⎢⎡⎦⎥⎤1001,B =⎣⎢⎡⎦⎥⎤1 201,求曲线x 2+y 2=1在矩阵(AB )-1变换下的曲线方程.解:(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1 -20 1 ⎣⎢⎡⎦⎥⎤1001=⎣⎢⎡⎦⎥⎤1 -20 1. 设P (x ,y )是圆x 2+y 2=1上任意一点,P 点在(AB )-1对应变换下变成Q (x ′,y ′) 则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 -20 1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x -2y y . ∴⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .故⎩⎪⎨⎪⎧x =x ′+2y ′,y =y .′∴P (x ′+2y ′,y ′).又P 点在圆上,∴(x ′+2y ′)2+(y ′)2=1. 展开整理为(x ′)2+4x ′y ′+5(y ′)2=1. 故所求曲线方程为x 2+4xy +5y 2=1. [例4] 已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 2-2 -3,B =⎣⎢⎡⎦⎥⎤2312,C =⎣⎢⎡⎦⎥⎤0110,求满足AXB =C 的矩阵X .[思路点拨] 由AXB =C 得X =A -1CB -1,从而求解. [精解详析] ∵A -1=⎣⎢⎡⎦⎥⎤-3 -2 2 1,B -1=⎣⎢⎡⎦⎥⎤ 2 -3-1 2,∴X =A -1CB -1=⎣⎢⎡⎦⎥⎤-3 -2 2 1 ⎣⎢⎡⎦⎥⎤0110 ⎣⎢⎡⎦⎥⎤ 2 -3-1 2 =⎣⎢⎡⎦⎥⎤-2 -3 1 2 ⎣⎢⎡⎦⎥⎤ 2 -3-1 2=⎣⎢⎡⎦⎥⎤-10 01. 此种题型要特别注意左乘还是右乘相应的逆矩阵,若位置错误,则得不到正确结果,原因是矩阵乘法并不满足交换律.7.已知矩阵A =⎣⎢⎡⎦⎥⎤1 -23 -7.若矩阵X 满足AX =⎣⎢⎡⎦⎥⎤31,试求矩阵X .解:设A -1=⎣⎢⎡⎦⎥⎤x y zw ,则⎣⎢⎡⎦⎥⎤1 -23 -7⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤x -2z y -2w 3x -7z 3y -7w =⎣⎢⎡⎦⎥⎤1 001,所以⎩⎪⎨⎪⎧x -2z =1,y -2w =0,3x -7z =0,3y -7w =1,解得⎩⎪⎨⎪⎧x =7,y =-2,z =3,w =-1.故所求的逆矩阵A -1=⎣⎢⎡⎦⎥⎤7 -23 -1. 因为AX =⎣⎢⎡⎦⎥⎤31,所以A -1AX =A -1⎣⎢⎡⎦⎥⎤31,所以X =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤7 -23 -1 ⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤19 8.8.若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解:因为M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1.解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.法一:由M =⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤cos 90° -sin 90°sin 90° cos 90°,知M 是绕原点O 逆时针旋转90°的旋转变换矩阵,于是M -1=⎣⎢⎡⎦⎥⎤cos -90° -sin -90° sin -90° cos -90° =⎣⎢⎡⎦⎥⎤ 01-10. 法二:由M =⎣⎢⎡⎦⎥⎤0 -11 0,则ad -bc =1≠0.∴M -1=⎣⎢⎡⎦⎥⎤ 0 1-10.[对应学生用书P32]1.求下列矩阵的逆矩阵. (1)A =⎣⎢⎡⎦⎥⎤1 123;(2)B =⎣⎢⎡⎦⎥⎤2345.解:法一:利用逆矩阵公式.(1)注意到1×3-2×1=1≠0,故A 存在逆矩阵A -1,且 A -1=⎣⎢⎢⎡⎦⎥⎥⎤ 31 -11-21 11=⎣⎢⎡⎦⎥⎤ 3 -1-2 1.(2)注意到2×5-4×3=-2≠0,故B 存在逆矩阵B -1,且 B -1=⎣⎢⎢⎡⎦⎥⎥⎤5-2 -3-2-4-2 2-2=⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1.法二:利用待定系数法. (1)设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤1 12 3 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤a +c b +d 2a +3c 2b +3d =⎣⎢⎡⎦⎥⎤1 001.故⎩⎪⎨⎪⎧a +c =1,2a +3c =0,b +d =0,2b +3d =1.解得a =3,c =-2,b =-1,d =1.从而A -1=⎣⎢⎡⎦⎥⎤ 3 -1-2 1.(2)设矩阵B 的逆矩阵为⎣⎢⎡⎦⎥⎤x y zw ,则⎣⎢⎡⎦⎥⎤2 34 5 ⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤2x +3z 2y +3w 4x +5z 4y +5w =⎣⎢⎡⎦⎥⎤1 001.故⎩⎪⎨⎪⎧2x +3z =1,4x +5z =0,2y +3w =0,4y +5w =1.解得x =-52,z =2,y =32,w =-1.从而B -1=⎣⎢⎢⎡⎦⎥⎥⎤-52 322 -1.2.已知可逆矩阵A =⎣⎢⎡⎦⎥⎤a273的逆矩阵A -1=⎣⎢⎡⎦⎥⎤b -2-7 a ,求a ,b 的值. 解:根据题意,得AA -1=E ,所以⎣⎢⎡⎦⎥⎤a27 3 ⎣⎢⎡⎦⎥⎤ b -2-7 a =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤ab -2×7 -2a +2a 7b -21 -2×7+3a =⎣⎢⎡⎦⎥⎤1 001,所以⎩⎪⎨⎪⎧ab -14=1,7b -21=0,-14+3a =1,解得a =5,b =3.3.已知A =⎣⎢⎡⎦⎥⎤1 112,B =⎣⎢⎡⎦⎥⎤ 2 -1-1 1,求证B 是A 的逆矩阵. 证明:因为A =⎣⎢⎡⎦⎥⎤1 11 2,B =⎣⎢⎡⎦⎥⎤2 -1-1 1, 所以AB =⎣⎢⎡⎦⎥⎤1 11 2 ⎣⎢⎡⎦⎥⎤ 2 -1-1 1=⎣⎢⎡⎦⎥⎤1 00 1, BA =⎣⎢⎡⎦⎥⎤ 2 -1-1 1 ⎣⎢⎡⎦⎥⎤1 11 2=⎣⎢⎡⎦⎥⎤1 001,所以B 是A 的逆矩阵. 4.求矩阵乘积AB 的逆矩阵. (1)A =⎣⎢⎡⎦⎥⎤2 001,B =⎣⎢⎡⎦⎥⎤1 004;(2)A =⎣⎢⎡⎦⎥⎤-1 0 0 -1,B =⎣⎢⎡⎦⎥⎤1234.解:(1)(AB )-1=B -1A -1=⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎢⎡⎦⎥⎥⎤12 00 1=⎣⎢⎢⎡⎦⎥⎥⎤12 014. (2)(AB )-1=B -1A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 132-12 ⎣⎢⎡⎦⎥⎤-1 00 -1=⎣⎢⎢⎡⎦⎥⎥⎤2 -1-3212. 5.已知变换矩阵A 把平面上的点P (2,-1),Q (-1,2)分别变换成点P 1(3,-4),Q 1(0,5). (1)求变换矩阵A ;(2)判断变换矩阵A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如果不可逆,请说明理由.解:(1)设A =⎣⎢⎡⎦⎥⎤ab cd ,依题意,得⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤ 3-4,⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤05, 即⎩⎪⎨⎪⎧2a -b =3,2c -d =-4,-a +2b =0,-c +2d =5.解得⎩⎪⎨⎪⎧a =2,b =1,c =-1,d =2.所以A =⎣⎢⎡⎦⎥⎤ 21-1 2. (2)变换矩阵A 是可逆的,理由如下:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤xy zw ,则由⎣⎢⎡⎦⎥⎤ 2 1-1 2 ⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1,得⎩⎪⎨⎪⎧2x +z =1,2y +w =0,-x +2z =0,-y +2w =1.解得⎩⎪⎪⎨⎪⎪⎧x =25,y =-15,z =15,w =25.故矩阵A 的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤25 -1515 25. 6.已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 12,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,试求曲线y =cos x 在矩阵M -1N 对应的线性变换作用下的函数解析式.解:M -1=⎣⎢⎡⎦⎥⎤1002,∴M -1N =⎣⎢⎡⎦⎥⎤1 002 ⎣⎢⎢⎡⎦⎥⎥⎤12 00 1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 2. ∴⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12 00 2 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12x 2y 即⎩⎪⎨⎪⎧x ′=12x ,y ′=2y .∴⎩⎪⎨⎪⎧x =2x ′,y =12y ′.代入y =cos x 得12y ′=cos 2x ′故曲线y =cos x 在矩阵M -1N 对应的变换作用下解析式为y =2cos 2x . 7.已知矩阵A =⎣⎢⎡⎦⎥⎤1 234. (1)求矩阵A 的逆矩阵B ;(2)若直线l 经过矩阵B 变换后的方程为y =x ,求直线l 的方程. 解:(1)设矩阵A 的逆矩阵为B =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤1 23 4 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,得⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B =⎣⎢⎢⎡⎦⎥⎥⎤-2 132-12.(2)设直线l 上任一点P (x ,y )经过B 对应变换变为点P (x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤-2 132-12 ⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x ′y ′, 即⎩⎪⎨⎪⎧x ′=-2x +y ,y ′=32x -12y ,又y ′=x ′,所以-2x +y =32x -12y ,即直线l 的方程为7x -3y =0.8.已知曲线C 在矩阵⎣⎢⎢⎡⎦⎥⎥⎤13 00 12对应的变换作用下的象为x 2+y 2=1,求曲线C 的方程.解:矩阵⎣⎢⎢⎡⎦⎥⎥⎤1300 12对应的变换为:平面内点的纵坐标沿y 轴方向缩短为原来的12,横坐标沿x 轴方向缩短为原来的13,其逆变换为:将平面内点的纵坐标沿y 轴方向拉伸为原来的2倍,横坐标沿x 轴方向拉伸为原来的3倍,故⎣⎢⎢⎡⎦⎥⎥⎤13 00 12-1=⎣⎢⎡⎦⎥⎤3 002.设圆x 2+y 2=1上任一点P (x ,y )在矩阵⎣⎢⎡⎦⎥⎤3002对应的伸缩变换作用下的象为P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=3x ,y ′=2y ,即⎩⎪⎨⎪⎧x =13x ′,y =y ′2,代入x 2+y 2=1,得 x ′ 29+ y ′ 24=1.故曲线C 的方程为x 29+y 24=1.。

高中数学: 矩阵与变换 课件1(新人教A选修4-2)

高中数学: 矩阵与变换 课件1(新人教A选修4-2)

19
旋转矩阵
20
21
2.3 变换的复合与矩阵的乘法
1.矩阵乘法的法则是: 1.矩阵乘法的法则是: 矩阵乘法的法则是
a11 a12 b11 b12 a11 × b11 + a12 × b21 a11 × b12 + a12 × b22 a a b b = a × b + a × b a × b + a × b 21 22 21 22 21 11 22 21 21 12 22 22
x = r cosα r P(x, y) y = r sinα θ r
P′(x′, y′)
α
x′ = r cos(α +θ) = r cosα cosθ − r sinα sinθ = x cosθ − y sinθ y′ = r sin(α +θ) = r sinα cosθ + r cosα sinθ = y cosθ + xsinθ cosθ − sinθ x x cosθ − y sinθ x′ sinθ cosθ y = xsinθ + y cosθ = y′
3.伸压变换矩阵是指将图形作沿x轴方向伸长或压缩, 3.伸压变换矩阵是指将图形作沿x轴方向伸长或压缩, 伸压变换矩阵是指将图形作沿 或沿y轴方向伸长或压缩的变换矩阵. 或沿y轴方向伸长或压缩的变换矩阵. 伸压变换不是简单地把平面上的点(向量) “向下 向下” 伸压变换不是简单地把平面上的点(向量) “向下” 而是向x轴或y轴方向压缩. 压,而是向x轴或y轴方向压缩.
主要数学思想
(1)数学化思想; 1 数学化思想; 数学建模; (2)数学建模; 数形结合的思想; 算法思想。 (3)数形结合的思想;(4)算法思想。

矩阵求逆的方法

矩阵求逆的方法

前言矩阵理论在《线性代数》课程中有着重要的地位,矩阵和数相仿可以运算,特别是乘法和数一样有逆运算,其定义为:对于 n 阶方阵 A,如果存在 n 个阶段 B 使得 AB=BA=E,则 n 个阶方阵 A 为可逆的,B 为 A 的逆矩阵。

掌握好求逆矩阵的方法对线性方程组、二次型、线性变换等问题的解决有很大帮助。

关于矩阵求逆问题,不同的《线性代数》教材介绍了不同的方法。

下面对求逆矩阵方法进行全面论述,并做一步探讨。

1矩阵求逆常见的几种方法 1.1 用伴随矩阵法求逆矩定理1.1.1:n 阶矩阵)(ij a A =可逆的充要条件0≠A ,而且当)2(≥n 阶矩阵A 有逆矩阵,*-=A AA 11,其中*A 伴随矩阵。

例1 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=412112013A 是否可逆?若可逆,求1-A 解:A A ∴≠=05可逆又511=A ,421=A ,3131=A ,1012=A ,1222=A ,332-=A ,013=A ,123=A ,133=A∴*-=A AA 11 例 2 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,求()1-*A 解:1-*=A A A ,又()kB kB 11--=, 所以()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡====---*5430220011011011111A A A AA A且有规律可循。

对于三阶以上方阵用该方法逆矩阵,不仅计算量大且易出错,一般不用此种方法。

对求出逆矩阵正确与否,一般用E AA A A ==--11来检验是否正确。

1.2 用初等变换法求逆矩阵定理 1.2.1 如果n 阶方阵A 可逆,则存在有限个初等矩阵,l P P P 21,使得l P P P A 21=。

如果A 可逆,则1-A 也可逆,由上述定理, 存在初等矩阵l Q Q Q ,,,21 使得l Q Q Q A 211=-那么A A AA E 11--== 即A Q Q Q E l 21= E Q Q Q A l 211=-于是我们得到一个求逆矩阵的方法如下:如果n 阶方阵A 可逆,作一个n n 2⨯的矩阵E A ,然后对此矩阵施以初等行换,使A 化为单位矩阵E 同时化为1-A ,即:E A 1-−−−→−A E 初等行变换例1 用初等行变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=521310132A 的逆矩阵解:=E A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100132310521100010001521310132 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--201010100910310521211010100600310521⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→316161100123210103461361001316161100010310100521 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=-3161611232134613611A 同理,如果n 阶矩阵A 可逆,作一个n n ⨯2的矩阵⎥⎦⎤⎢⎣⎡E A ,然后此矩阵施以初等变换,使矩阵A 化为单位阵E ,则同时E 化为1-A ,即⎥⎦⎤⎢⎣⎡−−−→−⎥⎦⎤⎢⎣⎡-1A E E A 初等列变换。

高中数学2.4逆变换与逆矩阵2.4.2二阶矩阵与二元一次方程组教学案苏教版选修0

高中数学2.4逆变换与逆矩阵2.4.2二阶矩阵与二元一次方程组教学案苏教版选修0

λ-2 3λ+ 5

的最大值为 3.
2λ- 2 5λ+ 8
ab
ab
(1)矩阵 A=
与它的行列式 det(A)=
的意义是不同的.矩阵 A 不是一个数,
cd
cd
而是 4 个数按顺序排列成的一个数表, 行列式 det(A)是由矩阵 A 算出来的一个数, 不同的矩
阵可以有相同的行列式的值.
ab
(2)
=ad- bc,它是位于两条对角线上的元素的乘积之差.
3 -3
解: (1)因为 D= -1
= 3× 4-(- 3)×(- 1)= 9≠ 0,此方程组存在唯一解. 4
1 -3
又 D x= 3
= 1× 4- (- 3)× 3= 13, 4
31
Dy=
= 3× 3- 1×(- 1)= 10.
-1 3
D x 13
D y 10
所以
x= D = 9
,y= D =
. 9
cd
ab
(1)首先计算 det(A)=
= ad- bc,当 det(A)≠ 0 时,逆矩阵存在.
cd
d
det A (2)利用 A- 1=
-c
det A
-b det A
a det A
,求出逆矩阵 A- 1.
3.判断下列矩阵是否可逆,若可逆,求出逆矩阵.
-1 1
1a
a0
(1)
; (2)
; (3)
.
11
01
3x- 2y mx
即为


x- 4y my
3x- 2y= mx, ∴
x- 4y= my,
3- m x- 2y=0, 即

2017_2018学年高中数学2.4逆变换与逆矩阵2.4.2二阶矩阵与二元一次方程组课件苏教版选修4_2

2017_2018学年高中数学2.4逆变换与逆矩阵2.4.2二阶矩阵与二元一次方程组课件苏教版选修4_2

ax+by=m 2.方程组 写成矩阵形式为 AZ=B,其中 A= cx+dy=n a b x m c d ,称为系数矩阵, Z = , B = ,当 ________ A 可逆 时,方 _______ y n
∴3x2-54≠0. ∴ x≠ ± 3 2. 故 x 的取值范围是{x|x∈R 且 x≠± 3 2}.
二元一次方程组的行列式解法及矩阵解法
[ 例 3]
3x-2y=1, -x+4y=3.
分别利用行列式及逆矩阵解二元一次方程组
[思路点拨]
Dx Dy 求出相应行列式的值,利用 x= D ,y= D 求
0 . 1
-1 解:(1)二阶行列式 1
1 =-1-1=-2≠0,所以矩阵 1
1 -2 可逆,逆矩阵为 1 2
1 2 . 1 2
1 (2)二阶行列式 0 a (3)二阶行列式 0
1 a = 1 ≠ 0 , 所以矩阵可逆, 逆矩阵为 1 0
a b b 与它的行列式 det( A ) = c d 的意义是 d
不同的. 矩阵 A 不是一个数, 而是 4 个数按顺序排列成的一个 数表,行列式 det(A)是由矩阵 A 算出来的一个数,不同的矩阵 可以有相同的行列式的值.
a (2) c
b =ad-bc,它是位于两条对角线上的元素的乘积 d
ax+by=0 4.对于方程组 cx+dy=0
,令
a D= c
b ,当 D=0 时, d
非零解 . 此方程组有_______
5.二阶矩阵 =
a A= c
b -1 det( A ) ≠ 0 可逆的充要条件是 __________ 且 A d

江苏省铜山县高中数学2.4逆变换与逆矩阵2.4.2二阶矩阵与二元一次方程组教案苏教版选修4-2

江苏省铜山县高中数学2.4逆变换与逆矩阵2.4.2二阶矩阵与二元一次方程组教案苏教版选修4-2

.4。

2二阶矩阵与二元一次方程组一、消元法二求解元一次方程组错误!当ad -bc≠0时,方程组的解为错误!二、二阶行列式定义:det(A ) =a b c d =ad -bc 因此方程组的解为错误! 记:D =a b c d ,D x =m b n d,D y =a m c n ,所以,方程组的解为错误! 例1 求下列行列式的值⑴ 21 43 ⑵21 43- ⑶21 - 40 ⑷ 2b a dc 解:⑴21 43=1×4—2×3=—2 ⑵21 43-=1×4—2×(—3)=10 ⑶21 - 40=-1×4—2×0=-4 ⑷2b a dc =2(ad —bc) 例2 若x= θθsin con θθcon sin (θ∈R ) 试求f(x)=x 2+2x —3 的最值。

解:∵x= θθsin con θθcon sin =con 2θ-sin 2θ=con2θ ∴-1≤x ≤1 ∵f (x)=x 2+2x —3=(x+1)2-4∴当x=—1时f (x ) 取得最小值 -4; 当x=1时f (x )取得最大值0例3 利用行列式求解二元一次方程组⎩⎨⎧=+=-7y 3x 42y 3x 例4 利用行列式求解A =⎢⎣⎡33 ⎥⎦⎤12-的逆矩阵 应用:一、用逆矩阵方法求二元一次方程组⎩⎨⎧=+=-7y 3x 42y 3x 的解 解:已知方程组可以写为:⎢⎣⎡33 ⎥⎦⎤12-⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡74 令M=⎢⎣⎡33 ⎥⎦⎤12- 其行列式33 12-=3×1-3×(-2)=9≠0∴M -1 =⎢⎢⎢⎣⎡93-91 ⎥⎥⎥⎦⎤9392 = ⎢⎢⎢⎣⎡31-91 ⎥⎥⎥⎦⎤3192 ∴⎥⎦⎤⎢⎣⎡y x = M -1⎥⎦⎤⎢⎣⎡74=⎢⎢⎢⎣⎡31-91 ⎥⎥⎥⎦⎤3192⎥⎦⎤⎢⎣⎡74=⎥⎦⎤⎢⎣⎡12 即方程组的解为:⎩⎨⎧==1y 2x 二、用几何变换的观点讨论方程的解(1)错误!(2)AX =B ,其中A =11⎡⎢⎣ 00⎤⎥⎦,B =22⎡⎤⎢⎥⎣⎦尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

高中数学2.4逆变换与逆矩阵2二阶矩阵与二元一次方程组课件苏教版选修4-2

高中数学2.4逆变换与逆矩阵2二阶矩阵与二元一次方程组课件苏教版选修4-2

一次方程组→
用行列式 解方程组

A-1
Hale Waihona Puke 法二:(用行列式法) 计算det(A) → A-1
利用行列式知识求逆矩阵,有两种情况,其一,是利用待定矩阵法时,对 构建的方程组求解时用行列式知识;其二是计算 det(A)时用.
利用逆矩阵的知识解方程组 利用逆矩阵知识求解例 1 中的方程组.
【精彩点拨】 找到 A,X,B→对应矩阵方程 AX=B→ A-1 → X=A-1B→ 得解
(2)二元一次方程组与几何变换 从几何变换的角度看,解这个方程组实际上就是已知变换矩阵ac db和变换 后的象mn ,去求在这个变换的作用下的原象.
利用行列式解方程组
利用行列式解方程组x3+x+2y4+y-1= 1=0, 0.
【导学号:30650040】
将方程化成 【精彩点拨】 一般形式 → 求出D,Dx、Dy → 求解
利用逆矩阵的知识解方程组一般思路;先由方程组找到 A,X,B,找到其 对应的矩阵方程 AX=B,再求出 A-1 然后由 X=A-1B,求出 x,y 即可.
从几何变换的角度研究方程组解的情况
已知二元一次方程组 AX=B,A=10 21,B=32,X=xy,试从几 何变换的角度研究方程组解的情况.
【精彩点拨】 找到矩阵A对应的几何变换 → 判断几何变换的逆变换情况 → 方程组解的存在情况
我还有这些不足: (1) ________________________________________________________ (2) ________________________________________________________ 我的课下提升方案: (1) ________________________________________________________ (2) ________________________________________________________

挑战课改的数学教案:剖析矩阵变换的精髓

挑战课改的数学教案:剖析矩阵变换的精髓

挑战课改的数学教案:剖析矩阵变换的精髓教学目标:1. 理解矩阵的概念及其在数学中的应用。

2. 掌握矩阵的基本运算,包括加法、减法、数乘和矩阵乘法。

3. 理解矩阵变换的实质,并能够运用矩阵变换解决实际问题。

4. 培养学生的逻辑思维能力,提高他们分析问题和解决问题的能力。

教学内容:第一章:矩阵的概念与基本运算1.1 矩阵的定义与表示1.2 矩阵的加法与减法1.3 矩阵的数乘1.4 矩阵的乘法第二章:矩阵变换的本质2.1 矩阵变换的定义2.2 矩阵变换的图像解释2.3 矩阵变换的性质2.4 逆矩阵与逆变换第三章:矩阵变换在几何中的应用3.1 二维空间中的矩阵变换3.2 三维空间中的矩阵变换3.3 投影矩阵与图像变换3.4 矩阵变换与线性方程组第四章:矩阵变换在计算机图形学中的应用4.1 计算机图形学中的矩阵变换4.2 二维图形变换:平移、缩放、旋转4.3 三维图形变换:投影、视图转换4.4 矩阵变换与计算机动画第五章:矩阵变换在实际问题中的应用5.1 线性方程组的矩阵表示5.2 高斯消元法与矩阵变换5.3 特征值与特征向量5.4 矩阵变换与优化问题教学方法:1. 采用讲授与讨论相结合的方式,引导学生深入理解矩阵变换的概念和性质。

2. 通过具体的例题和实际应用问题,让学生掌握矩阵变换的方法和技巧。

3. 利用多媒体教学手段,如动画和图形展示,帮助学生直观地理解矩阵变换的效果。

4. 鼓励学生进行自主学习和合作学习,培养他们的创新能力和解决问题的能力。

教学评估:1. 定期进行课堂测验和作业批改,了解学生对矩阵变换的理解和掌握程度。

2. 组织小组讨论和报告,评估学生在合作学习中的表现和思维能力。

3. 布置综合性的课后习题和项目任务,考察学生运用矩阵变换解决实际问题的能力。

4. 期末考试对学生进行全面评估,包括矩阵变换的基本概念、运算方法和应用领域。

第六章:矩阵变换在物理学中的应用6.1 经典力学中的矩阵变换6.2 电磁学中的矩阵变换6.3 相对论中的矩阵变换6.4 矩阵变换与量子力学第七章:矩阵变换在信号处理中的应用7.1 信号处理中的矩阵变换7.2 傅里叶变换与矩阵变换7.3 拉普拉斯变换与矩阵变换7.4 矩阵变换与数字信号处理第八章:矩阵变换在机器学习中的应用8.1 机器学习中的矩阵变换8.2 特征变换与降维8.3 线性回归与矩阵变换8.4 神经网络与矩阵变换第九章:矩阵变换在数据挖掘中的应用9.1 数据挖掘中的矩阵变换9.2 关联规则挖掘与矩阵变换9.3 聚类分析与矩阵变换9.4 矩阵变换与数据可视化第十章:矩阵变换在其它学科领域的应用10.1 生物学中的矩阵变换10.2 化学中的矩阵变换10.3 经济学中的矩阵变换10.4 矩阵变换与地球科学教学方法与评估:6. 采用案例分析和实验验证的方式,让学生了解矩阵变换在不同学科中的应用。

高中数学2.4逆变换与逆矩阵1逆矩阵的概念学业分层测评苏教版选修4_2

高中数学2.4逆变换与逆矩阵1逆矩阵的概念学业分层测评苏教版选修4_2

【课堂新坐标】2016-2017学年高中数学 2.4 逆变换与逆矩阵 1 逆矩阵的概念学业分层测评 苏教版选修4-2学业达标]1.已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转π4,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.【解】 这个变换的逆变换是作关于x 轴反射变换,再作绕原点顺时针旋转π4变换,其矩阵⎣⎢⎢⎡⎦⎥⎥⎤cos (-π4) -sin (-π4)sin (-π4) cos (-π4)⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎢⎡⎦⎥⎥⎤ 22 -22-22 -22. 2.求矩阵⎣⎢⎡⎦⎥⎤0111的逆矩阵.【导学号:30650038】【解】 法一 待定矩阵法:设矩阵⎣⎢⎡⎦⎥⎤11 1的逆矩阵为⎣⎢⎡⎦⎥⎤xy zw ,则⎣⎢⎡⎦⎥⎤011 1⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤ z w x +z y +w =⎣⎢⎡⎦⎥⎤1 00 1,所以⎩⎪⎨⎪⎧z =1,w =0,x +z =0,y +w =1, 解得⎩⎪⎨⎪⎧x =-1,y =1,z =1,w =0,故所求逆矩阵为⎣⎢⎡⎦⎥⎤-1 1 1 0.法二 A =⎣⎢⎡⎦⎥⎤0 111中,0×1-1×1=-1≠0, ∴A-1=⎣⎢⎢⎡⎦⎥⎥⎤1-1 -1-1-1-1 0-1=⎣⎢⎡⎦⎥⎤-1 1 1 0.3.已知A =⎣⎢⎡⎦⎥⎤1112,B =⎣⎢⎡⎦⎥⎤ 2 -1-1 1,求证B 是A 的逆矩阵. 【证明】 因为A =⎣⎢⎡⎦⎥⎤1112,B =⎣⎢⎡⎦⎥⎤ 2 -1-1 1, 所以AB =⎣⎢⎡⎦⎥⎤111 2⎣⎢⎡⎦⎥⎤ 2 -1-1 1=⎣⎢⎡⎦⎥⎤1 001,BA =⎣⎢⎡⎦⎥⎤ 2 -1-1 1⎣⎢⎡⎦⎥⎤1 112=⎣⎢⎡⎦⎥⎤1 001,所以B 是A 的逆矩阵.4.已知M =⎣⎢⎡⎦⎥⎤2001,N =⎣⎢⎢⎡⎦⎥⎥⎤1 00 12,求矩阵MN 的逆矩阵.【解】 因为M =⎣⎢⎡⎦⎥⎤2001,N =⎣⎢⎢⎡⎦⎥⎥⎤1 00 12, 所以MN =⎣⎢⎡⎦⎥⎤2 00 1⎣⎢⎢⎡⎦⎥⎥⎤1 00 12=⎣⎢⎢⎡⎦⎥⎥⎤2 00 12. 设矩阵MN 的逆矩阵为⎣⎢⎡⎦⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤2 00 12⎣⎢⎡⎦⎥⎤ab c d=⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤2a 2b c 2d 2=⎣⎢⎡⎦⎥⎤1 00 1,所以⎩⎪⎨⎪⎧2a =1,2b =0,c 2=0,d 2=1,解得⎩⎪⎨⎪⎧a =12,b =0,c =0,d =2.故所求的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2. 5.已知变换矩阵A 把平面上的点P (2,-1),Q (-1,2)分别变换成点P 1(3,-4),Q 1(0,5).(1)求变换矩阵A ;(2)判断变换矩阵A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如不可逆,请说明理由.【解】 (1)设A =⎣⎢⎡⎦⎥⎤ab cd ,依题意,得⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤2-1=⎣⎢⎡⎦⎥⎤ 3-4,⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤05,即⎩⎪⎨⎪⎧2a -b =3,2c -d =-4,-a +2b =0,-c +2d =5.解得⎩⎪⎨⎪⎧a =2,b =1,c =-1,d =2.所以A =⎣⎢⎡⎦⎥⎤2 1-1 2. (2)变换矩阵A 是可逆的. 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤xy zw ,则由⎣⎢⎡⎦⎥⎤ 2 1-1 2⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1001,得⎩⎪⎨⎪⎧2x +z =1,2y +w =0,-x +2z =0,-y +2w =1.解得⎩⎪⎪⎨⎪⎪⎧x =25,y =-15,z =15,w =25.故矩阵A 的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤25 -1515 25. 6.(江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤-10 0 2,B =⎣⎢⎡⎦⎥⎤1 206,求矩阵A -1B .【导学号:30650039】【解】 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b cd , 则⎣⎢⎡⎦⎥⎤-1 0 0 2·⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 001,故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3. 7.已知矩阵A =⎣⎢⎡⎦⎥⎤ 2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,求满足AX =B 的二阶矩阵X .【解】 因为A =⎣⎢⎡⎦⎥⎤2 -1-4 3,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1.因为AX =B ,所以A -1(AX )=A -1B .又因为(A -1A )X =A -1(AX ),所以(A -1A )X =A -1B ,所以X =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1⎣⎢⎡⎦⎥⎤ 4 -1-3 1=⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1. 能力提升]8.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M 的逆矩阵M -1;(2)设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程. 【解】 (1)设M =⎣⎢⎡⎦⎥⎤a b cd ,则有⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4.所以M =⎣⎢⎡⎦⎥⎤1234,从而M -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 32-12.(2)设直线l 上任意一点(x ,y ),在变换M 作用下对应直线m 上任意一点(x ′,y ′),因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :2x ′-y ′=4,所以2(x +2y )-(3x +4y )=4,即直线l 的方程为x +4=0.。

第二章 、逆矩阵和线性方程组的矩阵解法 ppt课件

第二章 、逆矩阵和线性方程组的矩阵解法 ppt课件
线性代数
1
第二章 矩阵
2.1 矩阵 2.2 矩阵的运算 2.3 逆矩阵 2.4 线性方程组的矩阵解法
2
第二章 矩阵
§2.3 可逆矩阵
数的乘法满足交换律 abba,且当 ab 1
时,有 ba1,ab1.
矩阵的乘法一般不满足交换律 ABBA
但当 A BB AE时,A 与 B 有什么关系
? 例如:10
[A, b] =
a21 a22 … a2n …………
b2 …
为增广矩阵
am1 am2 … amn bm
13
第一章 线性方程组与消元法
§1.2 Gauss消元法
Gauss消元法(Gauss’ method)
2x13x2+4x3 = 4 x1+2x2 x3 = 3
2x1+2x2 6x3 = 2
r1
1
11 1 0
1 1
1
0
11 1 0
1
1
1 0
0 1
3
第二章 矩阵
§2.3 可逆矩阵
§2.3 可逆矩阵 1. 定义: 设A为方阵, 若存在方阵B, 使得
AB = BA = E, 则称A可逆, 并称B为A的逆矩阵.
2. 逆矩阵的唯一性 若AB = BA = E, AC = CA = E, 则B = BE =B(AC) = (BA)C = EC = C.
注: A的逆矩阵记为A1.
☺ 结合律的妙用之二
4
第二章 矩阵
§2.3 可逆矩阵
注 ①对于方阵A, AB = E A可逆且A1 = B. BA = E A可逆且A1 = B.
例1. 设方阵 A,B,C 满足 ABC = E, 则必有( )

线性代数4.逆矩阵、分块矩阵

线性代数4.逆矩阵、分块矩阵

0
0
B2
As 0 0
0 A1B1 0
0
0
A2 B2
Bs
0
0
0
0
.
As
Bs
A1 0
0
A2
0
0
0 k
0
A1k
0
0 A2k
As
0 0
0
0
(k为正整数)
Ask
26
性质3 若A1 , A2 , As 都可逆,
A1
则A
A2
也可逆,且有:
As
A11
A1
A
3
1
5
的逆矩阵.
3 2 3
解:| A | = 1,
M11 7, M12 6, M13 3, M21 4, M22 3, M23 2, M31 9, M32 7, M33 4,
7 4 9

A1
|
1 A* A|
A*
6 3
3
7
2 4
6
二、可逆矩阵的运算性质
1 若A可逆,则A1亦可逆,且 A1 1 A.
As1B11
A1t Bt1 Ast Bt1
A11B1r As1B1r
A1t Btr
Ast Btr
21
1 0 0 0 1 0 1 0

设A
0 1
1 2
0 1
0 0
,
B
1 1
2 0
0 4
1 1
,求
AB.
1
1
0
1
1
1
2
0

1 0 0 0 1 0 1 0
A1r

第三节 逆矩阵

第三节 逆矩阵

a11
N a21
an1
矩阵多项式 ( ) 书本第15页
设A是n阶方阵, f (x) an xn an1xn1 L a1x a0 是多项式,f ( A) an An an1An1 L a1A a0En
性质: f (A)g(A) g(A) f (A).
2.4 线性方程组的逆矩阵解法
第三节 逆矩阵
一、背景
1、数 在数的运算中,当数α≠0时,有
aa1 a1a 1,
则 a1 称1为 的a倒数, (或称为 a的逆);
a
2、矩阵 在矩阵的运算中,单位阵E相当于数的
乘法运算中的1。 那么,对于矩阵A,如果存在另
一个矩阵 B, 使得 AB BA E,
则矩阵A称为的可逆矩阵, B 称为A的逆阵.
c
2a

x
d 2b ad-bc
y
c 2a ad-bc
3、逆矩阵的运算规 (设 A 均B 是 阶律n可逆方阵)
1 若A可逆,则A1亦可逆,且 A1 1 A.
2 若A可逆,数 0,则A可逆,且 A1 1 A1.
3 若A, B为同阶方阵且均可逆,则AB亦可逆,且
AB 1 B1 A 1
证明 若设 B和 是C 可A逆矩阵, 则有
AB BA E, AC CA E, 于是 B EB (CA)B C( AB) CE C 所以 A的逆矩阵是唯一的,即 B C A1 .
例1

A
2 1
1
0
,求
A的逆.


a
B
c
b
d
AB BA E
B
0 1
1 2

2
1
1a
证明 AB B1A1 A BB1 A1 AEA1 AA1 E,

2.4 逆矩阵

2.4  逆矩阵

a b 调换主对角元 d A c d c
用 A 去除
1 d b , 1 d b 1 A c a A . ad bc c a A ad bc
求二阶矩阵逆矩阵可用 两调一除 的方法, 其做法是 : " "

1
由B , C可逆, 有 A B C 0, 得A可逆.
X 设 A W
BX DW E , BZ DY O , CW O , CY E .
因此 B 1 1 A O
X B 1 , Y C 1 , Z B 1 DC 1 , W O. B 1 DC 1 . 1 C
第四节
逆矩阵
在数的运算中,当数a 0时, 有
aa1 a 1a 1,
(或称 a 的逆); 其中 a 1 1 为 a 的倒数, a 在矩阵的运算中,单位阵 E 相当于数的乘法运算中的1
那么,对于矩阵 A , 如果存在一个矩阵 B ,
使得 AB BA E , 则矩阵 B 称为 A 的逆矩阵或逆阵.
充分性:
a11 a 21 AA a n1
a12 a1n A11 A21 a22 a2 n A12 A22 an 2 ann A1n A2 n
An1 A An 2 Ann
又由A2 A 2 E 0
A 2 E A 3 E 4 E 0
1 A 2 E A 3 E E 4
A 2E
1
A 2E

线性代数课件—对称矩阵、分块矩阵、逆矩阵

线性代数课件—对称矩阵、分块矩阵、逆矩阵
的分块矩阵, 其中App(p=1,2, ,s)都是方阵, 称为对角分块矩阵.同结构的对角分块矩阵的和, 积, 仍是对角分块矩阵.
形如
或的分块矩阵, 其中App(p=1,2, ,s)是方阵, 分别称为上三角形分块矩阵或下三角形分块矩阵.同结构的上(或下)三角形分块矩阵的和, 积,
仍是同结构的分块矩阵.
定理2.1
n阶矩阵A=(aij)为可逆的充分必
要条件是A非奇异, 而且
其中Aij是|A|中元素aij的代数余子式.
证: 必要性设A可逆
AA-1=I|AA-1|=|I|
由有则 所以
|A| |A-1|=1|A| 0, 即A为非奇异.
充分性
设A非奇异, 存在矩阵

同理可证
BA=I
由此可知A可逆, 且
那么矩阵A称为可逆矩阵, 而B称为A的逆矩阵.
如果A可逆, A的逆矩阵是唯一的.因为, 如果B和B1都是A的逆矩阵, 则有AB=BA=I, AB1=B1A=I那么 B=BI=B(AB1)=(BA)B1=IB1=B1即 B=B1所以逆矩阵是唯一的. 我们把矩阵A唯一的逆矩阵记作A-1.
0, 则称
定义2.8 若n阶矩阵A的行列式|A|A为非奇异的.
BT=B.如果AB=BA, 则有 (AB)T=BTAT=BA=AB所以AB是对称的.反之, 如果AB是对称的, 即(AB)T=AB, 则有AB=(AB)T=BTAT=BA即A与B可交换.
对任意矩阵A,
ATA和AAT都是对称矩阵.
§2.4 分块矩阵
在矩阵的讨论和运算中, 有时需要将一个矩阵分成若干个"子块"(子矩阵), 使原矩阵显得结构简单而清晰.例如:
然后分别计算kI, kC, I+D, D+CF, 代入上面3式, 得

逆矩阵怎样求几何变换的观点-江苏滨海中学

逆矩阵怎样求几何变换的观点-江苏滨海中学
苏教版 选修4-2 高二数学
2.4.1逆矩阵的概念
江苏省滨海中学 徐 义
2018/10/6
2018年10月6日星期六
创设情境
建构概念
由前面学习我们知道:二阶矩阵对应着平面上的一个几 何变换,它把点(x ,y)变换到点(x′,y′).反过来: 若知道变换后的结果(x′,y′),能否“找到回家的路”, 再让它变回到原来的(x ,y)呢? 如图示:
分析情境 形成概念
(1)以x轴为反射轴的反射变换;
解:(1)对于反射变换TA,满足条件的变换即为其自身,即 B=A;
(2)绕原点逆时针旋转600的旋转变换;
解:(2)对于旋转变换TA,存在旋转变换TB,即B为绕原点顺 0 60 时针旋转 的变换矩阵;
(3)横坐标不变,沿y轴方向将纵坐标伸长为原来 的2倍的伸压变换;
应用概念 探究性质
思考:(1)如果 A 矩阵可逆,那么逆矩阵唯一吗?如何证明?
证明:若设 B 和 C是 A的可逆矩阵,则有
AB BA E , AC CA E ,
可得 B EB CAB C AB CE C . 所以 A 的逆矩阵是唯一的,即
B C A 1 .
x y 解:设矩阵A的逆矩阵为 ,则 z w
5 1 x 7 3 z
3 8 -1 所求的逆矩阵为:A = 7 8
3 1 7 5 x , y , z , w , 8 8 8 9
1 8 . 5 9
1 1 A (2)如果 矩阵可逆,那么 ( A ) 结果是什么?
A
1 1
A
思考:(3)定义中只有 AB E 此时 BA 的结果是多少?
矩阵

矩阵逆、初等变换矩阵秩

矩阵逆、初等变换矩阵秩
a 0, a , 使aa a a 1.
矩阵 A, ? 矩阵 B, 使 AB BA E
1 1 1
定义:对n阶方阵A,若有n阶矩阵B,使AB=BA=E,则 称A为可逆矩阵,并称B为A的逆矩阵. (1)逆阵惟一。 设B,C都是A的逆,则 B=EB=(CA)B=C(AB)=CE=C (2)并非每个方阵都可逆。 a b 1 0 例如 A 就不可逆。 B c d , 0 0
是否可逆? 若可逆,求其逆阵. 解:
3
0
8

A 3 1 6 1 0 2 0 5
A
可逆,并且
A11
1 0
6 5
5, A12
3
6
2 5
3,
3 1 0 8 A13 2, A21 0, 2 0 0 5
A22 A31
3 0 8
例5
试证明可逆上三角形矩阵 的逆矩阵仍是上三角形矩阵,并且
的主对角线上的元素是A的主对角线上的 1 元素的倒数 (i 1,2, , n)
A
1
aii
证:对A的阶数n作数学归纳法。
当n=2时, 则

a11 A 0
a12 , (a11 a 22 0), a 22
证明A-E可逆,并求(A-E)-1. 证:由
A2 A 4 E 0 有( A E )( A 2 E ) 2 E 0,
( A E )( A 2 E ) 2 E
所以
A ( A E )( E ) E,故A-E可逆,且 ( A E ) 1 A E。 2 2
0 0 1
3 0 0
1 2 2 3 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4.2二阶矩阵与二元一次方程组
一、消元法二求解元一次方程组

⎪⎨⎪⎧ax +by =m
cx +dy =n 当ad -bc≠0时,方程组的解为⎩⎨⎧x =md -bn ad -bc y =an -cm ad -bc
二、二阶行列式
定义:det(A) =a b
c d
=ad -bc
因此方程组的解为⎩⎪⎪⎨⎪⎪⎧x =m b
n d a b c
d y =a
m c n a b c
d
记:D =a b c d ,D x =m b n d
,D y =
a
m c n ,所以,方程组的解为⎩
⎨⎧x =D x
D
y =D y D
例1 求下列行列式的值 ⑴
21 43 ⑵21 43- ⑶21 - 40 ⑷ 2b a d c 解:⑴
21 43=1×4-2×3=-2 ⑵21 43
-=1×4-2×(-3)=10 ⑶
21 - 40=-1×4-2×0=-4 ⑷2b a d
c
=2(ad-bc ) 例2 若x= θθsin con θ
θcon sin (θ∈R ) 试求f(x)=x 2
+2x-3 的最值。

解:∵x=
θθsin con θ
θcon sin =con 2θ-sin 2
θ=con2θ ∴-1≤x ≤1 ∵f(x)=x 2
+2x-3=(x+1)2
-4
∴当x=-1时f(x) 取得最小值 -4; 当x=1时f(x)取得最大值0 例3 利用行列式求解二元一次方程组⎩⎨⎧=+=-7
y 3x 4
2y 3x
例4 利用行列式求解A =⎢⎣⎡33 ⎥⎦

12-的逆矩阵 应用:
一、用逆矩阵方法求二元一次方程组⎩

⎧=+=-7y 3x 4
2y 3x 的解
解:已知方程组可以写为:⎢⎣⎡33 ⎥⎦⎤12-⎥⎦⎤⎢⎣⎡y x =⎥⎦
⎤⎢⎣⎡74
令M=⎢⎣⎡33 ⎥⎦
⎤12- 其行列式33
12-=3×1-3×(-2)=9≠0 ∴M -1 =⎢⎢⎢⎣⎡93-91 ⎥⎥⎥⎦⎤9392 = ⎢⎢⎢⎣⎡31-91 ⎥⎥⎥⎦⎤3192 ∴⎥⎦⎤⎢⎣⎡y x = M -1⎥⎦⎤⎢⎣⎡74=⎢⎢⎢⎣⎡3
1-91

⎥⎥⎦⎤3192⎥⎦⎤⎢⎣⎡74=⎥⎦
⎤⎢⎣⎡12
即方程组的解为:⎩
⎨⎧==1y 2
x
二、用几何变换的观点讨论方程的解
(1)⎩
⎪⎨⎪⎧x +12y =3
y =2 (2)AX =B ,其中A =1
1⎡⎢⎣ 00⎤⎥⎦,B =22⎡⎤⎢⎥⎣⎦。

相关文档
最新文档