高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第24课时对数函数的性质及其应用_word版含解析

合集下载

高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第24课时对数函数的性质及其应用AKAMql

高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第24课时对数函数的性质及其应用AKAMql

第24课时 对数函数的性质及其应用课时目标1.深刻理解对数函数的图象与性质,能够利用这些性质解决一些较为复杂的问题.2.理解互为反函数的概念.识记强化1.y =log a x (a >0,a ≠1),定义域为(0,+∞),a >1时为增函数,0<a <1时为减函数.2.互为反函数的两个函数图象关于y =x 对称.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.若y =-3log (2a -3)x 在(0,+∞)上是减函数,则实数a 的取值范围为( )A .(0,1)B .(0,1)∪(1,+∞)C.⎝⎛⎭⎫32,2 D .(2,+∞)答案:D解析:由已知,得y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2,故选D.2.设a =log 43,b =ln 3,c =1012-,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a答案:C 解析:log 43=1log 34,ln 3=1log 3e ,1012-=110.因为10>3>log 34>log 3e>0,所以0<110<1log 34<1log 3e,即c <a <b .故选C.3.若a >0,且log 0.25(a 2+1)>log 0.25(a 3+1),则实数a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .[1,+∞)答案:C解析:∵log 0.25(a 2+1)>log 0.25(a 3+1),∴a 2<a 3,即a 2(1-a )<0,∴a >1,故选C.4.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫14x ,x ∈[-1,0)4x ,x ∈[0,1],则f (log 43)=( ) A.13B .3 C.14D .4 答案:B解析:由0<log 43<1,得f (log 43)=44log 3=3.5.函数f (x )=log 2|2x -4|的图象为( )答案:A解析:函数f (x )=log 2|2x -4|的图象可以看作是将函数y =log 2|2x |的图象向右平移2个单位得到的,故选A.6.已知函数f (x )=log a x ,在[2,+∞)上恒有|f (x )|>1,则实数a 的取值范围是( )A .0<a <12或1<a <2B .0<a <12或a >2 C.12<a <2且a ≠1 D.12<a <1或a >2 答案:C解析:|f (x )|>1在[2,+∞)上恒成立.当a >1时,由log a x >1⇒x >a ,由log a x <-1⇒x <1a,得a <2,所以1<a <2. 当0<a <1时,由log a x >1⇒x <a ,由log a x <-1⇒x >1a ,得12<a <1. 综上可知12<a <2且a ≠1. 二、填空题(本大题共3个小题,每小题5分,共15分)7.三个数0.76,60.7,log 0.76的大小关系为________.答案:log 0.76<0.76<60.7解析:因为60.7>60=1,0<0.76<0.70=1.又因为log 0.76<0,所以log 0.76<0.76<60.7.8.函数y =log 12|x -3|的单调递减区间是________.答案:(3,+∞)解析:令t =|x -3|,则在(-∞,3)上t 为x 的减函数,在(3,+∞)上t 为x 的增函数,又∵0<12<1,∴在区间(3,+∞)上y 为x 的减函数.9.函数f (x )=log 13(mx +6)在(1,3)上是增函数,则实数m 的取值范围是________.答案:[-2,0)解析:∵f (x )=log 13(mx +6)在(1,3)上是增函数,∴y =mx +6在(1,3)上是减函数,并且在(1,3)上恒有mx+6>0,∴⎩⎪⎨⎪⎧m <03m +6≥0,解得-2≤m <0,即实数m 的取值范围是[-2,0). 三、解答题(本大题共4小题,共45分)10.(12分)已知函数f (x )=lg (2+x )+lg (2-x ).(1)求函数y =f (x )的定义域;(2)判断函数y =f (x )的奇偶性.解:(1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧2+x >02-x >0,解得-2<x <2.∴函数y=f(x)的定义域为{x|-2<x<2}.(2)由(1),可知函数y=f(x)的定义域为{x|-2<x<2},关于原点对称,对任意x∈(-2,2),有-x∈(-2,2).∵f(-x)=lg (2-x)+lg (2+x)=lg (2+x)+lg (2-x)=f(x),∴函数y=f(x)为偶函数.11.(13分)已知y=log a(2-a x)在[0,1]上是x的减函数,求a的取值范围.解:因为a>0且a≠1.(1)当a>1时,函数t=2-a x>0是减函数,由y=log a(2-a x)在[0,1]上是关于x的减函数,知y=log a t是增函数,∴a>1.由x∈[0,1]时,2-a x≥2-a>0,得a<2.∴1<a<2.(2)当0<a<1时,函数t=2-a x>0是增函数,由y=log a(2-a x)在[0,1]上是关于x的减函数,知y=log a t是减函数,∴0<a<1,由x∈[0,1]时,2-a x≥2-1>0.∴0<a<1.综上,0<a<1或1<a<2.能力提升12.(5分)设函数f(x)=log a x(a>0,且a≠1),若f(x1·x2·…·x2013)=8,则f(x21)+f(x22)+…+f(x22013)的值等于()A.4 B.8C.16 D.2log a8答案:C解析:∵f(x)=log a x,f(x1·x2·…·x2013)=8,∴由对数的运算性质,得f(x21)+f(x22)+…+f(x22013)=f(x21·x22·…·x22013)=f[(x1·x2·…·x2013)2]=log a(x1·x2·…·x2013)2=2log a(x1·x2·…·x2013)=2×8=16.13.(15分)如图所示,在函数f(x)=log a x(0<a<1,x≥1)的图象上有A,B,C三点,它们的横坐标分别是t,t+2,t+4.(1)若△ABC的面积为S,求S=f(t);(2)判断S=f(t)的单调性;(3)求S=f(t)的最大值.解:(1)设A,B,C三点的坐标分别为A(t,log a t),B(t+2,log a(t+2)),C(t+4,log a(t+4)),S△ABC=S 梯形AA′B′B+S梯形BB′C′C-S梯形AA′C′C=2|log a(t+2)|-(|log a t|+|log a(t+4)|).∵t≥1,∴t+2>1,t+4>1.∵0<a<1,∴由对数的性质,得S=-2log a(t+2)+log a t+log a(t+4)=log a t(t+4)(t+2)2.(2)由(1)知S=log a t(t+4)(t+2)2=log a[1-4(t+2)2].当t≥1时,(t+2)2单调递增,4(t+2)2单调递减,1-4(t+2)2单调递增.∵0<a<1,∴S=f(t)=log a[1-4(t+2)2]为递减函数.(3)∵t≥1,∴(t+2)2≥9,1-4(t+2)2≥59,∵S=f(t)是减函数,∴函数有最大值log a59.。

高中数学(人教A版)必修一课后习题:对数的概念(课后习题)【含答案及解析】

高中数学(人教A版)必修一课后习题:对数的概念(课后习题)【含答案及解析】

对数对数的概念课后篇巩固提升合格考达标练1.方程2log 3x =14的解是( )A.19B.√3C.√33D.92log 3x =14=2-2,∴log 3x=-2,∴x=3-2=19.2.(多选题)下列指数式与对数式互化正确的是( )A.e 0=1与ln 1=0B.8-13=12与log 812=-13C.log 39=2与912=3D.log 77=1与71=739=2应转化为32=9.3.(多选题)(2021湖南邵阳十一中高一期末)下列结论正确的是( )A.log 24=2B .2.10.5>2.1-1.8C .3log 32=2D .-ln e =124=2,故A 正确;根据函数y=2.1x 是增函数可知2.10.5>2.1-1.8,故B 正确;根据指对恒等式可知3log 32=2,故C 正确;-ln e =-1,故D 不正确.故选ABC .4.(2021北京大兴高一期末)813+log 122等于( ) A.0B .1C .2D .3813+log 122=23×13-log 22=2-1=1.故选B .5.若a>0,a 2=49,则lo g 23a= .a 2=49且a>0,∴a=23,∴lo g 2323=1.6.解答下列各题.(1)计算:lg 0.000 1;log 2164;log 3.12(log 1515).(2)已知log 4x=-32,log 3(log 2y )=1,求xy 的值.因为10-4=0.000 1,所以lg 0.000 1=-4.因为2-6=164,所以log 2164=-6.log 3.12(log 1515)=log 3.121=0.(2)因为log 4x=-32,所以x=4-32=2-3=18.因为log 3(log 2y )=1,所以log 2y=3.所以y=23=8.所以xy=18×8=1.7.求下列各式的值:(1)lo g 1162; (2)log 7√493; (3)log 2(log 93).设lo g 1162=x ,则(116)x =2,即2-4x =2,∴-4x=1,x=-14,即lo g 1162=-14. (2)设log 7√493=x ,则7x =√493=723. ∴x=23,即log 7√493=23.(3)设log 93=x ,则 9x =3,即32x =3,∴x=12.设log 212=y ,则2y =12=2-1,∴y=-1.∴log 2(log 93)=-1.等级考提升练8.若log a 3=m ,log a 5=n (a>0且a ≠1),则a 2m+n 的值是( )A.15B.75C.45D.225log a 3=m ,得a m =3,由log a 5=n ,得a n =5, ∴a 2m+n =(a m )2·a n =32×5=45.9.函数y=log (2x-1)√3x -2的定义域是( )A.23,1∪(1,+∞)B.12,1∪(1,+∞)C.23,+∞ D.12,+∞解析要使函数有意义,则{2x -1>0,2x -1≠1,3x -2>0,解此不等式组可得x>12且x ≠1且x>23,故函数的定义域是23,1∪(1,+∞),故选A .10.已知f (x 6)=log 2x ,则f (8)=( )A.43B .8C .18D .12x 6=8,则x 2=2,因为x>0,则x=√2,故f (8)=log 2√2=12.11.(多选题)(2021福建泉州高一期末)下列函数中,与y=x 是同一个函数的是( )A.y=√x 33B .y=√x 2C .y=lg 10xD .y=10lg x的定义域为R ,值域为R ,函数y=√x 33=x 的定义域为R ,故是同一函数;函数y=√x 2=|x|≥0,与y=x 解析式、值域均不同,故不是同一函数;函数y=lg 10x =x ,且定义域为R ,对应关系相同,故是同一函数;y=10lg x =x 的定义域为(0,+∞),与函数y=x 的定义域不相同,故不是同一函数.故选AC .12.已知f (x )={1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (2)的值为( ) A.6B .5C .4D .3f (-2)+f (2)=(1+log 24)+2=5,故选B .13.已知lo g 12(log 2x )=lo g 13(log 3y )=1,则x ,y 的大小关系是( )A.x<yB.x=yC.x>yD.不确定lo g 12(log 2x )=1,所以log 2x=12.所以x=212=√2.又因为lo g 13(log 3y )=1,所以log 3y=13.所以y=313=√33.因为√2=√236=√86<√96=√326=√33,所以x<y.故选A . 14.21+12·log 25的值等于 .√51+12log 25=2×212log 25=2×(2log 25)12=2×512=2√5.15.已知log a b=log b a (a>0,a ≠1,b>0,b ≠1),求证:a=b 或ab=1.log a b=log b a=k ,则b=a k ,a=b k ,因此b=(b k )k =b k 2.因为b>0,b ≠1,所以k 2=1,即k=±1.当k=1时,a=b ;当k=-1时,a=b -1=1b ,即ab=1.综上可知a=b 或ab=1. 新情境创新练16.已知二次函数f (x )=(lg a )x 2+2x+4lg a (a>0)的最大值是3,求a 的值.f (x )有最大值,所以lg a<0.又f (x )max =16lg 2a -44lga =4lg 2a -1lga=3, 所以4lg 2a-3lg a-1=0.所以lg a=1或lg a=-14.因为lg a<0,所以lg a=-14.所以a=10-14.。

高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第24课时对数函数的性质及其应用(含解析)

高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第24课时对数函数的性质及其应用(含解析)
C. <a<2且a≠1 D. <a<1或a>2
答案:C
解析:|f(x)|>1在[2,+∞)上恒成立.
当a>1时,由logax>1⇒x>a,
由logax<-1⇒x< ,得a<2,所以1<a<2.
当0<a<1时,由logax>1⇒x<a,
由logax<-1⇒x> ,得 <a<1.
综上可知 <a<2且a≠1.
A.(0,1)∪(1,+∞) B.(0,1)
C.(1,+∞) D.[1,+∞)
答案:C
解析:∵log0.25(a2+1)>log0.25(a3+1),∴a2<a3,即a2(1-a)<0,∴a>1,故选C.
4.若函数f(x)= ,则f(log43)=()
A. B.3
C. D.4
答案:B
解析:由0<log43<1,得f(log43)=4 =3.
二、填空题(本大题共3个小题,每小题5分,共15分)
7.三个数0.76,60.7,log0.76的大小关系为________.
答案:log0.76<0.76<60.7
解析:因为60.7>60=1,0<0.76<0.70=1.又因为log0.76<0,所以log0.76<0.76<60.7.
8.函数y=log |x-3|的单调递减区间是________.
13.(15分)如图所示,在函数f(x)=logax(0<a<1,x≥1)的图象上有A,B,C三点,它们的横坐标分别是t,t+2,t+4.
(1)若△ABC的面积为S,求S=f(t);
(2)判断S=f(t)的单调性;

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版 )高中数学必修1 (全册 )课时同步作业汇总活页作业(一) 集合的含义(时间:45分钟总分值:100分)一、选择题(每题5分 ,共25分)1.以下几组对象可以构成集合的是( )A.充分接近π的实数的全体B.善良的人C.世|界著名的科学家D .某单位所有身高在1.7 m 以上的人 解析:A 、B 、C 中标准不明确 ,应选D. 答案:D2.下面有四个语句: ①集合N *中最|小的数是0; ②-a ∉N ,那么a ∈N ;③a ∈N ,b ∈N ,那么a +b 的最|小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中正确语句的个数是( ) A .0 B .1 C .2D .3解析:N *是不含0的自然数 ,所以①错误; 取a = 2 ,那么-2∉N ,2∉N ,所以②错误;对于③ ,当a =b =0时 ,a +b 取得最|小值是0 ,而不是2 ,所以③错误;对于④ ,解集中只含有元素1 ,故④错误.答案:A3.集合A 含有三个元素2,4,6 ,且当a ∈A 时 ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4D .0解析:假设a =2∈A ,那么6-a =4∈A ;或a =4∈A ,那么6-a =2∈A ;假设a =6∈A ,那么6-a =0∉A .应选B.答案:B4.假设集合M 中的三个元素a ,b ,c 是△ABC 的三边长 ,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:由集合中元素的互异性可知△ABC 的三边长满足a ≠b ≠c .应选D. 答案:D5.设a ,b ∈R ,集合A 中含有0 ,b ,ba三个元素 ,集合B 中含有1 ,a ,a +b 三个元素 ,且集合A 与集合B 相等 ,那么a +2b =( )A .1B .0C .-1D .不确定解析:由题意知a +b =0 ,∴b a=-1 ,∴a =-1 ,b =1 ,∴a +2b =1.答案:A二、填空题(每题5分 ,共15分)6.集合A中只含有1 ,a2两个元素 ,那么实数a不能取的值为________.解析:由a2≠1 ,得a≠±1.答案:±17.假设集合P含有两个元素1,2 ,集合Q含有两个元素1 ,a2 ,且P ,Q相等 ,那么a =________.解析:由于P ,Q相等 ,故a2=2 ,从而a=± 2.答案:± 28.集合P中元素x满足:x∈N ,且2<x<a ,又集合P中恰有三个元素 ,那么整数a =________.解析:∵x∈N ,且2<x<a ,∴结合数轴可得a=6.答案:6三、解答题(每题10分 ,共20分)9.假设所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.解:∵3a+2b(a∈Z ,b∈Z)中 ,令a=2 ,b=-2 ,可得6-2 2 ,∴6-22是集合A中的元素.10.设集合A中含有三个元素3 ,x ,x2-2x.(1)求实数x应满足的条件;(2)假设-2∈A ,求实数x.解:(1)由集合中元素的互异性可知 ,x≠3 ,且x≠x2-2x ,x2-2x≠3.解得x≠3 ,且x≠0 ,且x≠-1.(2)∵-2∈A ,∴x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1 ,∴x=-2.一、选择题(每题5分 ,共10分)1.2a∈A ,a2-a∈A ,假设A只含这两个元素 ,那么以下说法中正确的选项是( ) A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D .a 可取除去0和3以外的所有实数解析:∵2a ∈A ,a 2-a ∈A ,∴2a ≠a 2-a .∴a (a -3)≠0.∴a ≠0且a ≠3.应选D. 答案:D2.集合A 中的元素y 满足y ∈N 且y =-x 2+1 ,假设t ∈A ,那么t 的值为( ) A .0 B .1C .0或1D .小于等于1解析:∵y ∈N 且y =-x 2+1≤1 ,∴y =0或1.∵t ∈A ,∴t =0或1. 答案:C二、填空题(每题5分 ,共10分)3.集合A 是由m -1,3m ,m 2-1三个元素组成的集合 ,且3∈A ,那么实数m 的值为________.解析:由m -1=3 ,得m =4 ,此时3m =12 ,m 2-1=15 ,故m =4符合题意;由3m =3 ,得m =1 ,此时m -1=m 2-1=0 ,故舍去;由m 2-1=3 ,得m =±2 ,经检验m =±2符合题意.故填4或±2.答案:4或±24.假设a ,b ∈R 且a ≠0 ,b ≠0 ,那么|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a >0 ,b >0时 ,|a |a +|b |b=2;当ab <0时 ,|a |a +|b |b =0;当a <0 ,b <0时 ,|a |a+|b |b=-2.所以集合中的元素为2,0 ,-2.即集合中元素的个数为3. 答案:3三、解答题(每题10分 ,共20分)5.集合A 的元素由kx 2-3x +2=0的解构成 ,其中k ∈R ,假设A 中的元素只有一个 ,求k 的值.解:由题意知A 中元素即方程kx 2-3x +2=0(k ∈R )的解. 假设k =0 ,那么x =23 ,知A 中只有一个元素 ,符合题意;假设k ≠0 ,那么方程为一元二次方程.当Δ=9-8k =0 ,即k =98时 ,方程kx 2-3x +2=0有两个相等的实数解 ,此时A 中只有一个元素.综上所述 ,k =0或98.6.集合A 中的元素全为实数 ,且满足:假设a ∈A ,那么1+a1-a ∈A .(1)假设a =2 ,求出A 中其他所有元素. (2)0是不是集合A 中的元素 ?请说明理由. 解:(1)由2∈A ,得1+21-2=-3∈A .又由-3∈A, 得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A .由13∈A ,得1+131-13=2∈A . 故A 中除2外 ,其他所有元素为-3 ,-12 ,13.(2)0不是集合A 中的元素.理由如下: 假设0∈A ,那么1+01-0=1∈A ,而当1∈A 时 ,1+a1-a不存在 ,故0不是集合A 中的元素.活页作业(二) 集合的表示(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合A ={x ∈N |-3≤x ≤3} ,那么有( ) A .-1∈A B .0∈A C.3∈AD .2∈A解析:∵0∈N 且-3<0< 3 ,∴0∈A . 答案:B2.集合M ={y |y =x 2} ,用自然语言描述M 应为( ) A .函数y =x 2的函数值组成的集合B.函数y=x2的自变量的值组成的集合C.函数y=x2的图象上的点组成的集合D.以上说法都不对解析:从描述法表示的集合来看 ,代表元素是函数值 ,即集合M表示函数y=x2的函数值组成的集合.答案:A3.集合{-2,1}等于( )A.{(x-1)(x+2)=0} B.{y|y=x+1 ,x∈Z}C.{x|(x+1)(x-2)=0} D.{x|(x-1)(x+2)=0}解析:选项A是含有一个一元二次方程的集合 ,选项B是函数y=x+1 ,x∈Z的函数值组成的集合 ,有无数多个元素 ,选项C是方程(x+1)(x-2)=0的解的集合为{-1,2} ,选项D是方程(x-1)(x+2)=0的解的集合为{1 ,-2}.应选D.答案:D4.假设1∈{x ,x2} ,那么x=( )A.1 B.-1C.0或1 D.0或1或-1解析:∵1∈{x ,x2} ,∴x=1或x2=1 ,∴xx=1 ,那么x=x2=1 ,不符合集合中元素的互异性.答案:B5.以下集合中表示同一集合的是( )A.M={(3,2)} ,N={(2,3)}B.M={3,2} ,N={2,3}C.M={(x ,y)|x+y=1} ,N={y|x+y=1}D.M={1,2} ,N={(1,2)}解析:A中M、N都为点集 ,元素为点的坐标 ,顺序不同表示的点不同;C中M、N分别表示点集和数集;D中M为数集 ,N为点集 ,应选B.答案:B二、填空题(每题5分 ,共15分)6.集合A={x|x2=a ,x∈R} ,那么实数a的取值范围是________.解析:当x∈R时 ,a=x2≥0.答案:a≥07.集合A={-1,0,1} ,集合B={y|y=|x| ,x∈A} ,那么B=____________.解析:∵|-1|=1 ,|0|=0 ,|1|=1 ,∴B={0,1}.答案:{0,1}8.集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫125-x ∈N x ∈N ,那么用列举法表示为__________________.解析:根据题意 ,5-x 应该是12的因数 ,故其可能的取值为1,2,3,4,6,12 ,从而可得到对应xx ∈N ,所以x 的值为4,3,2,1.答案:{4,3,2,1}三、解答题(每题10分 ,共20分) 9.用另一种方法表示以下集合. (1){绝|对值不大于2的整数}; (2){能被3整除 ,且小于10的正数}; (3){x |x =|x | ,x <5 ,且x ∈Z }; (4){(x ,y )|x +y =6 ,x ∈N *,y ∈N *}; (5){-3 ,-1,1,3,5}. 解:(1){-2 ,-1,0,1,2}. (2){3,6,9}.(3)∵x =|x | ,∴x ∵x ∈Z ,且x <5 , ∴x =0或1或2或3或4. ∴集合可以表示为{0,1,2,3,4}.(4){(1,5) ,(2,4) ,(3,3) ,(4,2) ,(5,1)}. (5){x |x =2k -1 ,-1≤k ≤3 ,k ∈Z }.10.集合A ={x |ax 2-3x -4=0 ,x ∈R } ,假设A 中至|多有一个元素 ,求实数a 的取值范围.解:当a =0时 ,A =⎩⎨⎧⎭⎬⎫-43;当a ≠0时 ,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根 , ∴Δ=9+16a ≤0 ,即a ≤-916. 综上 ,所求实数a 的取值范围是a =0或a ≤-916.一、选择题(每题5分 ,共10分)1.设x =13-52 ,y =3+2π ,集合M ={m |m =a +2b ,a ∈Q ,b ∈Q } ,那么x ,y 与集合M 的关系是( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M 解析:x =13-52=3+523-523+52=-341-2×541∈M ,y ∉M .应选B. 答案:B2.用描述法表示如下图阴影局部的点(包括边界上的点)的坐标的集合是( )A .{-2≤x ≤0且-2≤y ≤0}B .{(x ,y )|-2≤x ≤0且-2≤y ≤0}C .{(x ,y )|-2≤x ≤0且-2≤y <0}D .{(x ,y )|-2≤x ≤0或-2≤y ≤0}解析:阴影局部为点集 ,且包括边界上的点 ,所以-2≤x ≤0且-2≤y ≤0. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={(x ,y )|y =2x +1} ,B ={(x ,y )|y =x +3} ,a ∈A 且a ∈B ,那么a 为________.解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎨⎧y =2x +1 y =x +3的解.解方程组得⎩⎪⎨⎪⎧x =2 y =5 ∴a为(2,5).答案:(2,5)4.A ={1,2,3} ,B ={1,2} ,定义集合间的运算A +B ={x |x =x 1+x 2 ,x 1∈A ,x 2∈B } ,那么集合A +B 中元素的最|大值是________.解析:当x 1=1 ,x 2=1或2时 ,x =2或3;当x 1=2 ,x 2=1或2时 ,x =3或4;当x 1=3 ,x 2=1或2时 ,x =4或5.∴集合A +B 中元素的最|大值是5.答案:5三、解答题(每题10分 ,共20分)5.集合A ={(x ,y )|2x -y +m >0} ,B ={(x ,y )|x +y -n ≤0} ,假设点P (2,3)∈A ,且P (2,3)∉B ,试求m ,n 的取值范围.解:∵点P ∈A ,∴2×2-3+m >0.∴m >-1. ∵点P ∉B ,∴2+3-n >0.∴n <5.∴所求m ,n 的取值范围分别是{m |m >-1} ,{n |n <5}.6.集合P ={x |x =2k ,k ∈Z } ,M ={x |x =2k +1 ,k ∈Z } ,a ∈P ,b ∈M ,设c =a +b ,那么c 与集合M 有什么关系 ?解:∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1 ,k 1∈Z ,b =2k 2+1 ,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1. 又k 1+k 2∈Z , ∴c ∈M .活页作业(三) 集合间的根本关系(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分) 1.以下关系中 ,表示正确的选项是( ) A .1∈{0,1} B .1{0,1} C .1⊆{0,1}D .{1}∈{0,1}解析:、⊆表示集合之间的关系 ,故B 、C 错误;∈表示元素与集合之间的关系 ,故D 错误.答案:A2.假设x ,y ∈R ,A ={(x ,y )|y =x } ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xy ⎪⎪⎪y x =1 ,那么A ,B 的关系为( ) A .A B B .A B C .A =BD .A ⊆B解析:集合A 表示函数y =x 图象上所有点组成的集合 ,集合B 中要求x ≠0 ,所以集合B 表示除点(0,0)以外的y =x 图象上的点组成的集合 ,A B 成立.答案:B3.全集U =R ,那么正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:∵M={-1,0,1} ,N={0 ,-1} ,∴N M.应选B.答案:B4.集合A={x|0≤x<3 ,x∈N}的真子集的个数是( )A.16 B.8C.7 D.4解析:易知集合A={0,1,2} ,∴A的真子集为∅ ,{0} ,{1} ,{2} ,{0,1} ,{0,2} ,{1,2} ,共有7个.答案:C5.设A={x|1<x<2} ,B={x|x<a} ,假设A⊆B ,那么a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2解析:如图 ,在数轴上表示出两集合 ,只要a≥2 ,就满足A⊆B.答案:D二、填空题(每题5分 ,共15分)6.右图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系 ,那么A ,B ,C ,D ,E分别代表的图形的集合为______________.解析:由以上概念之间的包含关系可知:集合A={四边形} ,集合B={梯形} ,集合C ={平行四边形} ,集合D={菱形} ,集合E={正方形}.答案:A={四边形} ,B={梯形} ,C={平行四边形} ,D={菱形} ,E={正方形}7.设集合M={(x ,y)|x+y<0 ,xy>0}和P={(x ,y)|x<0 ,y<0} ,那么M与P的关系为________.解析:∵xy>0 ,∴x ,y同号.又x+y<0 ,∴x<0 ,y<0 ,即集合M表示第三象限内的点.而集合P表示第三象限内的点 ,故M=P.答案:M=P8.集合A={x|-2≤x≤3} ,B={x|x≥m} ,假设A⊆B ,那么实数m的取值范围为_________________________________.解析:集合A ,B 在数轴上的表示如下图.由图可知 ,假设A ⊆B ,那么m ≤-2. 答案:m ≤-2三、解答题(每题10分 ,共20分)9.集合A ={(x ,y )|x +y =2 ,x ,y ∈N } ,试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2 ,x ,y ∈N } , ∴A ={(0,2) ,(1,1) ,(2,0)}. ∴A 的子集有:∅ ,{(0,2)} ,{(1,1)} ,{(2,0)} ,{(0,2) ,(1,1)} ,{(0,2) ,(2,0)} ,{(1,1) ,(2,0)} ,{(0,2) ,(1,1) ,(2,0)}.10.集合A ={x |1<ax <2} ,B ={x |-2<x <2} ,求满足A ⊆B 的实数a 的取值范围. 解:B ={x |-2<x <2}. (1)当a =0时 ,A =∅ ,显然A ⊆B . (2)当a >0时 ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <2a . ∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≥-2 2a ≤2 解得a ≥1.(3)当a <0时 ,A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a<x <1a .∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≤22a ≥-2 解得a ≤-1.综上可知 , a =0 ,或a ≥1 ,或a ≤-1时 ,A ⊆B .一、选择题(每题5分 ,共10分)1.集合A ={x |x 2-3x +2=0 ,x ∈R } ,B ={x |0<x <5 ,x ∈N } ,那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:因为集合A ={1,2} ,B ={1,2,3,4} ,所以当满足A ⊆C ⊆B 时 ,集合C 可以为{1,2} ,{1,2,3} ,{1,2,4} ,{1,2,3,4} ,故满足条件的集合C 有4个.答案:D2.集合M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n 2-13 n ∈Z ,那么集合M ,N 的关系是( )A .M ⊆NB .M NC .N ⊆MD .N M解析:设n =2m 或2m +1 ,m ∈Z , 那么有N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪x =2m 2-13或x =2m +12-13m ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪ x =m -13或x =m +16 m ∈Z . 又∵M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z ,∴M N .答案:B二、填空题(每题5分 ,共10分)3.假设A ={1,2} ,B ={x |x ⊆A } ,那么B =________.解析:∵x ⊆A ,∴x =∅ ,{1} ,{2} ,{1,2} ,∴B ={∅ ,{1} ,{2} ,{1,2}}.答案:{∅ ,{1} ,{2} ,{1,2}}4.集合A ={x |ax 2+2x +a =0 ,a ∈R } ,假设集合A 有且仅有2个子集 ,那么a 的取值构成的集合为________________.解析:∵集合A 有且仅有2个子集 ,∴A 仅有一个元素 ,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时 ,方程化为2x =0 , ∴x =0 ,此时A ={0} ,符合题意.当a ≠0时 ,Δ=22-4·a ·a =0 ,即a 2=1 ,∴a =±1. 此时A ={-1} ,或A ={1} ,符合题意. ∴a =0或a =±1. 答案:{0,1 ,-1}三、解答题(每题10分 ,共20分)5.设集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x x +4⎝ ⎛⎭⎪⎫x -12=0 x ∈Z ,B ={x |x 2+2(a +1)x +a 2-1=0} ,假设B ⊆A ,求实数a 的值.解:由题意得A ={0 ,-4}.(1)当B =∅时 ,方程x 2+2(a +1)x +a 2-1=0无解 , ∴Δ=4(a +1)2-4(a 2-1)<0. ∴a <-1. (2)当BA (B ≠∅)时 ,那么B ={0}或B ={-4} ,即方程x 2+2(a +1)x +a 2-1=0只有一解 , ∴Δ=8a +8=0. ∴aB ={0}满足条件.(3)当B =A 时 ,方程x 2+2(a +1)x +a 2-1=0 有两实根0 ,-4 ,∴⎩⎨⎧16-8a +1+a 2-1=0 a 2-1=0.∴a =1.综上可知 ,a ≤-1 ,或a =1.6.设集合A ={x |-1≤x +1≤6} ,B ={x |m -1<x <2m +1}. (1)当x ∈Z 时 ,求A 的非空真子集的个数; (2)假设A ⊇B ,求m 的取值范围. 解:化简集合A 得A ={x |-2≤x ≤5}. (1)∵x ∈Z ,∴A ={-2 ,-1,0,1,2,3,4,5} ,即A 中含有8个元素.∴A 的非空真子集的个数为28-2=254(个). (2)①当m ≤-2时 ,B =∅⊆A ;②当m >-2时 ,B ={x |m -1<x <2m +1} , 因此 ,要B ⊆A ,那么只要⎩⎨⎧m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述 ,m 的取值范围是{m |-1≤m ≤2或m ≤-2}.活页作业(四)并集、交集(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.设集合M ={m ∈Z |-3<m <2} ,N ={n ∈Z |-1≤n ≤3} ,那么M ∩N =( ) A .{0,1} B .{-1,0,1} C .{0,1,2}D .{-1,0,1,2}解析:由题意 ,得M ={-2 ,-1,0,1} ,N ={-1,0,1,2,3} ,∴M ∩N ={-1,0,1}. 答案:B2.假设集合M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N 等于( ) A .{0} B .{1} C .{0,1,2}D .{0,1}解析:M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N ={0,1} ,应选D. 答案:D3.以下各组集合 ,符合Venn 图所示情况的是( )A .M ={4,5,6,8} ,N ={4,5,6,7,8}B .M ={x |0<x <2} ,N ={x |x <3}C .M ={2,5,6,7,8} ,N ={4,5,6,8}D .M ={x |x <3} ,N ={x |0<x <2}解析:因为{4,5,6,8}⊆{4,5,6,7,8} ,即M ⊆N ,所以选项A 错误.又因{x |0<x <2}⊆{x |x <3} ,所以选项B 错误 ,选项C 显然错误 ,选项D 正确.答案:D4.设集合A ={1,2} ,那么满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4D .8解析:∵A ={1,2} ,且A ∪B ={1,2,3} ,∴B ={3}或{1,3}或{2,3}或{1,2,3}. 答案:C5.设集合A ={x ∈N |1≤x ≤10} ,B ={x ∈R |x 2+x -6=0} ,那么图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}解析:∵A ={1,2,3,4,5,6,7,8,9,10} ,B ={-3,2} ,∴图中阴影表示的集合为A ∩B ={2}.答案:A二、填空题(每题5分 ,共15分)6.集合M ={x |-3<x ≤5} ,N ={x |-5<x <-2 ,或x >5} ,那么M ∪N =____________ ,M ∩N =__________________.解析:借助数轴可知:M ∪N ={x |x >-5} ,M ∩N ={x |-3<x <-2}.答案:{x |x >-5} {x |-3<x <-2}7.集合A ={(x ,y )|y =x 2,x ∈R } ,B ={(x ,y )|y =x ,x ∈R } ,那么A ∩B 中的元素个数为________.解析:由⎩⎪⎨⎪⎧y =x 2y =x 得⎩⎪⎨⎪⎧x =0y =0 或⎩⎨⎧x =1y =1.答案:28.设集合A ={x |-1<x <2} ,B ={x |x <a } ,假设A ∩B ≠∅ ,那么a 的取值范围是________.解析:利用数轴分析可知 ,a >-1.答案:a >-1三、解答题(每题10分 ,共20分)9.集合A ={1,3,5} ,B ={1,2 ,x 2-1} ,假设A ∪B ={1,2,3,5} ,求x 及A ∩B . 解:∵B ⊆(A ∪B ) , ∴x 2-1∈(A ∪B ).∴x 2-1=3或x 2-1=5 ,解得x =±2或x =± 6. 假设x 2-1=3 ,那么A ∩B ={1,3}; 假设x 2-1=5 ,那么A ∩B ={1,5}.10.设集合A ={x |x 2-3x +2=0} ,B ={x |x 2-4x +a =0} ,假设A ∪B =A ,求实数a 的取值范围.解:A ={1,2} ,∵A ∪B =A ,∴B ⊆A .集合B 有两种情况:B =∅或B ≠∅. (1)B =∅时 ,方程x 2-4x +a =0无实数根 , ∴Δ=16-4a <0.∴a >4. (2)B ≠∅时 ,当Δ=0时 ,a =4 ,B ={2}⊆A 满足条件;当Δ>0时 ,假设1,2是方程x 2-4x +a =0的根 , 由根与系数的关系知1+2=3≠4 ,矛盾 ,∴a =4. 综上 ,a 的取值范围是a ≥4.一、选择题(每题5分 ,共10分)1.集合A ={1,2} ,B ={x |mx -1=0} ,假设A ∩B =B ,那么符合条件的实数m 的值组成的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 12 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1 12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 0 12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 -12解析:当m =0时 ,B =∅ ,A ∩B =B ;当m ≠0时 ,x =1m ,要使A ∩B =B ,那么1m =1或1m=2 ,即m =1或m =12,选C.答案:C2.定义集合{x |a ≤x ≤b }的 "长度〞是b -a .m ,n ∈R ,集合M =xm ≤x ≤m +23 ,N =xn-34≤x ≤n ,且集合M ,N 都是集合{x |1≤x ≤2}的子集 ,那么集合M ∩N 的 "长度〞的最|小值是( )A.23B.12C.512D .13解析:集合M ,N 的 "长度〞分别为23 ,34 ,又M ,N 都是集合{x |1≤x ≤2}的子集 ,如图 ,由图可知M ∩N 的 "长度〞的最|小值为53-54=512.答案:C二、填空题(每题5分 ,共10分)3.集合A ={1,3 ,m } ,B ={1 ,m } ,A ∪B =A ,那么m =________.解析:由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1 ,经检验 ,m =1时 ,B ={1,1}矛盾 ,m =0或3时符合题意.答案:0或34.设集合A ={5 ,a +1} ,集合B ={a ,b }.假设A ∩B ={2} ,那么A ∪B =______________. 解析:∵A ∩B ={2} ,∴2∈A .故a +1=2 ,a =1 ,即A ={5,2};又2∈B ,∴b =2 ,即B ={1,2}.∴A ∪B ={1,2,5}.答案:{1,2,5}三、解答题(每题10分 ,共20分)5.A ={x |2a ≤x ≤a +3} ,B ={x |x <-1或x >5} ,假设A ∩B =∅ ,求a 的取值范围. 解:A ∩B =∅ ,A ={x |2a ≤x ≤a +3}. (1)假设A =∅ ,有2a >a +3 ,∴a >3. (2)假设A ≠∅ ,如下图.那么有⎩⎪⎨⎪⎧2a ≥-1a +3≤5 2a ≤a +3解得-12≤a ≤2.综上所述 ,a 的取值范围是-12≤a ≤2或a >3.6.集合M ={x |2x -4=0} ,N ={x |x 2-3x +m =0}. (1)当m =2时 ,求M ∩N ,M ∪N . (2)当M ∩N =M 时 ,求实数m 的值. 解:由得M ={2}. (1)当m =2时 ,N ={1,2}. ∴M ∩N ={2} ,M ∪N ={1,2}. (2)假设M ∩N =M ,那么M ⊆N , ∴2∈N . ∴4-6+m =0. ∴m =2.活页作业(五) 补集及集合运算的综合应用(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.全集U ={0,1,2} ,且∁U A ={2} ,那么A 等于( ) A .{0} B .{1} C .∅D .{0,1}解析:∵∁U A ={2} ,∴A ={0,1}. 答案:D2.A ={x |x +1>0} ,B ={-2 ,-1,0,1} ,那么(∁R A )∩B =( ) A .{-2 ,-1} B .{-2} C .{-1,0,1}D .{0,1} 解析:解不等式求出集合A ,进而得∁R A ,再由集合交集的定义求解. 因为集合A ={x |x >-1} ,所以∁R A ={x |x ≤-1}. 那么(∁R A )∩B ={x |x ≤-1}∩{-2 ,-1,0,1} ={-2 ,-1}. 答案:A3.如下图 ,U 是全集 ,A ,B 是U 的子集 ,那么图中阴影局部表示的集合是( )A.A∩B B.B∩(∁U A)C.A∪B D.A∩(∁U B)解析:阴影局部在B中且在A的外部 ,由补集与交集的定义可知阴影局部可表示为B∩(∁U A).答案:B4.设集合M={x|x=3k ,k∈Z} ,P={x|x=3k+1 ,k∈Z} ,Q={x|x=3k-1 ,k∈Z} ,那么∁Z(P∪Q)=( )A.M B.PC.Q D.∅解析:x=3k ,k∈Z表示被3整除的整数;x=3k+1 ,k∈Z表示被3整除余1的整数;x=3k-1表示被3整除余2的整数 ,所以∁Z(P∪Q)=M.答案:A5.集合A={x|x<a} ,B={x|1<x<2} ,且A∪(∁R B)=R,那么实数a的取值范围是( ) A.a≤1B.a<1C.a≥2D.a>2解析:如下图 ,假设能保证并集为R ,那么只需实数a在数2的右边 ,注意等号的选取.选C.答案:C二、填空题(每题5分 ,共15分)6.集合U={2,3,6,8} ,A={2,3} ,B={2,6,8} ,那么(∁U A)∩B=________.解析:(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}7.设全集U=R ,集合A={x|x≥0} ,B={y|y≥1} ,那么∁U A与∁U B的包含关系是______________.解析:∵∁U A={x|x<0} ,∁U B={y|y<1} ,∴∁U A∁U B.如图.答案:∁U A∁U B8.设全集S={1,2,3,4} ,且A={x∈S|x2-5x+m=0} ,假设∁S A={2,3} ,那么m=________.解析:因为S={1,2,3,4} ,∁S A={2,3} ,所以A={1,4} ,即1,4是方程x2-5x+m=0的两根 ,由根与系数的关系可得m=1×4=4.答案:4三、解答题(每题10分 ,共20分)9.全集U={2,3 ,a2-2a-3} ,A={2 ,|a-7|} ,∁U A={5} ,求a的值.解:由|a-7|=3 ,得a=4或a=10.当a=4时 ,a2-2a-3=5 ,当a=10时 ,a2-2a-3=77∉U ,所以a=4.10.集合A={x|3≤x<7} ,B={x|2<x<10} ,C={x|x<a}.(1)求(∁R A)∩B;(2)假设A⊆C ,求a的取值范围.解:(1)∵A={x|3≤x<7} ,∴∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.(2)∵C={x|x<a} ,且A⊆C ,如下图 ,∴a≥7.∴a的取值范围是{a|a≥7}.一、选择题(每题5分 ,共10分)1.全集U=R,集合A={x|-2≤x≤3} ,B={x|x<-2或x>4} ,那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}解析:∵∁U A={x|x<-2或x>3} ,∁U B={x|-2≤x≤4} ,如图 ,∴(∁U A)∩(∁U B)={x|3<x≤4}.应选A.答案:A2.设A ,B ,I均为非空集合 ,且满足A⊆B⊆I ,那么以下各式中错误的选项是( ) A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=IC.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B解析:方法一符合题意的Venn图 ,如图.观察可知选项A ,C ,D 均正确 ,(∁I A )∪(∁I B )=∁I A ,应选项B 错误.方法二 运用特例法 ,如A ={1,2,3} ,B ={1,2,3,4} ,I ={1,2,3,4,5}.逐个检验只有选项B 错误.答案:B二、填空题(每题5分 ,共10分)3.全集U =R ,A ={x |x <-3 ,或x ≥2} ,B ={x |-1<x <5} ,那么集合C ={x |-1<x <2}=______________.(用A ,B 或其补集表示)解析:如下图 ,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ). 答案:B ∩(∁U A )4.某班共50人 ,参加A 项比赛的共有30人 ,参加B 项比赛的共有33人 ,且A ,B 两项都不参加的人数比A ,B 都参加的人数的13多1人 ,那么只参加A 项不参加B 项的有____人.解析:如下图 ,设A ,B 两项都参加的有x 人 ,那么仅参加A 项的共(30-x )人 ,仅参加B 项的共(33-x )人 ,A ,B 两项都不参加的共⎝ ⎛⎭⎪⎫13x +1人 ,根据题意得x +(30-x )+(33-x )+⎝ ⎛⎭⎪⎫13x +1=50 ,解得x =21 ,所以只参加A 项不参加B 项的共有30-21=9(人).故填9.答案:9三、解答题(每题10分 ,共20分)5.设全集是实数集R ,A ={x |2x 2-7x +3≤0} ,B ={x |x 2+a <0}. (1)当a =-4时 ,求A ∩B 和A ∪B ;(2)假设(∁R A )∩B =B ,求实数a 的取值范围.解:(1)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤3,当a =-4时 ,B ={x |-2<x <2} ,∴A ∩B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x <2 ,A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x <12 或x >3 ,当(∁R A )∩B =B 时 ,B ⊆∁R A .①当B =∅ ,即a ≥0时 ,满足B ⊆∁R A ;②当B ≠∅ ,即a <0时 ,B ={x |--a <x <-a }. 要使B ⊆∁R A ,需-a ≤12 ,解得-14≤a <0.综上可得 ,实数a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥-14.6.设全集I =R ,集合M ={x |(x +3)2≤0} ,N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,集合B ={x |a -1≤x ≤5-a ,a ∈R } ,假设B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3} ,N ={x |x 2+x -6=0}={-3,2}.∴∁I M ={x |x ∈R 且x ≠-3}. ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2} , ∵B ∪A =A ,∴B ⊆A . ∴B =∅或B ={2}.当B =∅时 ,a -1>5-a ,∴a >3;当B ={2}时 ,⎩⎪⎨⎪⎧a -1=25-a =2解得a =3.综上所述 ,所求a 的取值范围是{a |a ≥3}.活页作业(六) 函数的概念(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.设f:x→x2是集合A到集合B的函数 ,如果集合B={1} ,那么集合A不可能是( ) A.{1} B.{-1}C.{-1,1} D.{-1,0}解析:假设集合A={-1,0} ,那么0∈A ,但02=0∉B.应选D.答案:D2.各个图形中 ,不可能是函数y=f(x)的图象的是( )解析:因垂直x轴的直线与函数y=f(x)的图象至|多有一个交点.应选A.答案:A3.假设函数y=f(x)的定义域为M={x|-2≤x≤2} ,值域为N={y|0≤y≤2} ,那么函数y=f(x)的图象可能是( )解析:选项A ,定义域为{x|-2≤x≤0} ,不正确.选项C ,当x在(-2,2]取值时 ,y 有两个值和x对应 ,不符合函数的概念.选项D ,值域为[0,1] ,不正确 ,选项B正确.答案:B二、填空题(每题4分 ,共8分)4.假设(2m ,m+1)表示一个开区间 ,那么m的取值范围是________.解析:由2m<m+1 ,解得m<1.答案:(-∞ ,1)5.函数y=f(x)的图象如下图 ,那么f(x)的定义域是________________;其中只与x 的一个值对应的y值的范围是________________.解析:观察函数图象可知f (x )的定义域是[-3,0]∪[2,3]; 只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 答案:[-3,0]∪[2,3] [1,2)∪(4,5] 三、解答题6.(本小题总分值10分)求以下函数的定义域. (1)y =2x +1+3-4x . (2)y =1|x +2|-1.解:由得⎩⎪⎨⎪⎧2x +1≥0⇒x ≥-12 3-4x ≥0⇒x ≤34∴函数的定义域为⎣⎢⎢⎡⎦⎥⎥⎤-1234. (2)由得 ,|x +2|-1≠0 , ∴|xx ≠-3 ,x ≠-1.∴函数的定义域为(-∞ ,-3)∪(-3 ,-1)∪(-1 ,+∞).一、选择题(每题5分 ,共10分)1.四个函数:(1)y =x +1;(2)y =x 3;(3)y =x 2-1; (4)y =1x.其中定义域相同的函数有( )A .(1) ,(2)和(3)B .(1)和(2)C .(2)和(3)D .(2) ,(3)和(4)解析:(1) ,(2)和(3)中函数的定义域均为R ,而(4)函数的定义域为{x |x ≠0}. 答案:A2.函数f (x )=-1 ,那么f (2)的值为( ) A .-2 B .-1 C .0D .不确定解析:∵f (x )=-1 ,∴f (2)=-1. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={1,2,3} ,B ={4,5} ,那么从A 到B 的函数f (x )有________个.解析:抓住函数的 "取元任意性 ,取值唯一性〞 ,利用列表方法确定函数的个数.f (1) 4 4 4 4 5 5 5 5 f (2) 4 4 5 5 4 4 5 5 f (3)45454545由表可知 ,这样的函数有8个 ,故填8. 答案:8 4.函数y =x +26-2x -1的定义域为________.(并用区间表示)解析:要使函数解析式有意义 ,需满足⎩⎪⎨⎪⎧ x +2≥06-2x ≥0 6-2x ≠1⇒⎩⎪⎨⎪⎧x ≥-2x ≤3x ≠52⇒-2≤x ≤3 ,且x ≠52.∴函数的定义域为⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3.答案:⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3三、解答题5.(本小题总分值10分)将长为a 的铁丝折成矩形 ,求矩形面积y 关于边长x 的解析式 ,并写出此函数的定义域.解:设矩形一边长为x ,那么另一边长为12(a -2x ) ,所以y =x ·12(a -2x )=-x 2+12ax .由题意可得⎩⎪⎨⎪⎧0<x <a 2 0<12a -2x <a2解得0<x <a2,即函数定义域为⎝ ⎛⎭⎪⎪⎫0 a 2.活页作业(七) 函数概念的综合应用(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.函数f (x )=x +1x,那么f (1)等于( ) A .1 B .2 C .3D .0解析:f (1)=1+11=2.答案:B2.以下各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1 ,x ∈Z 与y =2x -1 ,x ∈Z解析:A 中两函数定义域不同 ,B 、D 中两函数对应关系不同 ,C 中定义域与对应关系都相同.答案:C3.函数y =x +1的值域为( ) A .[-1 ,+∞) B .[0 ,+∞) C .(-∞ ,0]D .(-∞ ,-1]解析:∵x +1≥0 ,∴y =x +1 ≥0. 答案:B二、填空题(每题4分 ,共8分) 4.函数y =x +1x的定义域为________. 解析:要使函数式有意义 ,需使⎩⎪⎨⎪⎧x +1≥0x ≠0 ,所以函数的定义域为{x |x ≥-1且x ≠0}.答案:{x |x ≥-1且x ≠0}5.函数f (x )=2x -3 ,x ∈{x ∈N |1≤x ≤5} ,那么函数的值域为__________________. 解析:函数的定义域为{1,2,3,4,5}. 故当x =1,2,3,4,5时 ,y =-1,1,3,5,7 ,即函数的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7} 三、解答题6.(本小题总分值10分)假设f (x )=ax 2- 2 ,且f (f (2))=- 2 ,求a 的值. 解:因为f (2)=a (2)2-2=2a - 2 ,所以f (f (2))=a (2a -2)2-2=- 2.于是a (2a -2)2=0,2a -2=0或a =0 ,所以a=22或a =0.一、选择题(每题5分 ,共10分)1.以下函数中 ,值域为(0 ,+∞)的是( ) A .y =x B .y =100x +2C .y =16xD .y =x 2+x +1解析:A 中y =x 的值域为[0 ,+∞); C 中y =16x的值域为(-∞ ,0)∪(0 ,+∞);D 中y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34的值域为⎣⎢⎢⎡⎭⎪⎪⎫34 +∞;B 中函数的值域为(0 ,+∞) ,应选B. 答案:B2.假设函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,那么a 的值是( )A .-1或3B .-1C .3D .不存在解析:由⎩⎪⎨⎪⎧a 2-2a -3=0 a -3≠0得a =-1.答案:B二、填空题(每题5分 ,共10分)3.函数f (x )=x -1.假设f (a )=3 ,那么实数a =________. 解析:因为f (a )=a -1=3 ,所以a -1=9 ,即a =10. 答案:104.给出定义:假设m -12<x ≤m +12(其中m 为整数) ,那么m 叫做离实数x 最|近的整数 ,记作{x } ,即{x }=m .在此根底上给出以下关于函数f (x )=|x -{x }|的四个结论.①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4;③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )的定义域为R ,值域是⎣⎢⎢⎡⎦⎥⎥⎤-1212. 那么其中正确的序号是________.解析:由题意得f ⎝ ⎛⎭⎪⎫-12=-12--12=-12-(-1)=12 ,①正确; f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4 ,②错误; f ⎝ ⎛⎭⎪⎫-14=-14--14=⎪⎪⎪⎪⎪⎪-14-0=14,f ⎝ ⎛⎭⎪⎫14=14-14=⎪⎪⎪⎪⎪⎪14-0=14, ∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14 ,③正确; y =f (x )的定义域为R ,值域为⎝ ⎛⎦⎥⎥⎤-1212 ,④错误.答案:①③ 三、解答题5.(本小题总分值10分)函数f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12 ,f (3)+f ⎝ ⎛⎭⎪⎫13的值. (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x是定值.(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+ f (2 017)+f ⎝⎛⎭⎪⎫12 017的值.(1)解:∵f (x )=x 21+x2 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)解:由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x =1 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1 ,f (3)+f ⎝ ⎛⎭⎪⎫13=1 ,f (4)+f ⎝ ⎛⎭⎪⎫14=1 ,… ,f (2 017)+f ⎝⎛⎭⎪⎫12 017=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017=2 016.活页作业(八) 函数的表示法(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.小明骑车上学 ,开始时匀速行驶 ,途中因交通堵塞停留了一段时间 ,后为了赶时间加快速度行驶.与以上事件吻合得最|好的图象是( )解析:方法一:出发时距学校最|远 ,先排除A ,中途堵塞停留 ,距离不变 ,再排除D ,堵塞停留后比原来骑得快 ,因此排除B ,选C.方法二:由小明的运动规律知 ,小明距学校的距离应逐渐减小 ,由于小明先是匀速运动 ,故前段是直线段 ,途中停留时距离不变 ,后段加速 ,直线段比前段下降得快 ,故应选C.答案:C 2.f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,那么f (x )=( )A.x +1x -1B .1-x 1+x C.1+x1-xD .2x x +1解析:设t =1-x 1+x ,那么x =1-t 1+t ,f (t )=1-t 1+t ,即f (x )=1-x1+x .答案:B3.函数f (x )是一次函数 ,2f (2)-3f (1)=5,2f (0)-f (-1)=1 ,那么f (x )=( ) A .3x +2 B .3x -2 C .2x +3D .2x -3解析:设f (x )=kx +b (k ≠0) ,那么⎩⎨⎧22k +b -3k +b =52b --k +b =1.解得⎩⎪⎨⎪⎧k =3 b =-2∴f (x )=3x -2. 答案:B4.f ⎝ ⎛⎭⎪⎫12x -1=2x +3 ,且f (m )=6 ,那么m 等于( )A .-14B.14C.32D .-32解析:设12x -1=m ,那么x =2m +2 ,∴f (m )=2(2m +2)+3=4m +7=6 ,∴m =-14.答案:A5.函数f (2x +1)=3x +2 ,且f (a )=2 ,那么a 的值等于( ) A .1 B .3 C .5D .-1解析:由f (2x +1)=3x +2 ,令2x +1=t , ∴x =t -12.∴f (t )=3·t -12+2.∴f (x )=3x -12+2.∴f (a )=3a -12+2=2.∴a =1.答案:A二、填空题(每题5分 ,共15分)6.如图 ,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0) ,(1,2) ,(3,1) ,那么f ⎝⎛⎭⎪⎫1f 3的值等于________.解析:∵f (3)=1 ,1f 3=1 ,∴f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2.答案:27.函数f (x ) ,g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321那么f (g (1))=____________. 解析:∵g (1)=3 ,∴f (g (1))=f (3)=1. 又∵x ,f (g (x )) ,g (f (x ))的对应值表为x 1 2 3 f (g (x ))131g (f (x ))3 1 3∴f (g (x ))>g (f (x ))答案:1 28.假设f (x )是一次函数 ,f (f (x ))=4x -1 ,那么f (x )=______.解析:设f (x )=kx +b (k ≠0) ,那么f (f (x ))=kf (x )+b =k (kx +b )+b =k 2x +kb +b =4x ⎩⎪⎨⎪⎧k 2=4 kb +b =-1解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎨⎧k =-2b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:2x -13或-2x +1三、解答题(每题10分 ,共20分) 9.下表表示函数y =f (x ).x0<x <5 5≤x <1010≤x <1515≤x ≤20y =f (x )-46810(1)写出函数的定义域、值域; (2)写出满足f (x )≥x 的整数解的集合.解:(1)从表格中可以看出函数的定义域为(0,5)∪[5,10)∪[10,15)∪[15,20]=(0,20].函数的值域为{-4,6,8,10}.(2)由于当5≤x <10时 ,f (x )=6 ,因此满足f (x )≥x 的x 的取值范围是5≤xx ∈Z ,故x ∈{5,6}.10.函数f (x )=g (x )+h (x ) ,g (x )关于x 2成正比 ,h (x )关于x 成反比 ,且g (1)=2 ,h (1)=-3 ,求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1≠0) ,h (x )=k 2x(k 2≠0) , 由于g (1)=2 ,h (1)=-3 , 所以k 1=2 ,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0 ,+∞). (2)由(1)得f (4)=2×42-34=612.一、选择题(每题5分 ,共10分)1.正方形的周长为x ,它的外接圆的半径为y ,那么y 关于x 的解析式为( )A .y =12xB .y =24xC .y =28x D .y =216x 解析:正方形边长为x4 ,而(2y )2=⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫x 42,∴y 2=x 232.∴y =x 42=28x .答案:C2.以下函数中 ,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:对于A ,f (2x )=|2x |=2|x |=2f (x );对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x );对于C ,f (2x )=2x +1≠2f (x );对于D ,f (2x )=-2x =2f (x ).答案:C二、填空题(每题5分 ,共10分)3.观察以下图形和所给表格中的数据后答复以下问题:梯形个数 1 2 3 4 5 … 图形周长58111417…当梯形个数为. 解析:由表格可推算出两变量的关系 ,或由图形观察周长与梯形个数关系为l =3n +2(n ∈N *).答案:l =3n +2(n ∈N *)4.R 上的函数f (x )满足:(1)f (0)=1;(2)对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,那么f (x )=________.解析:因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,所以令y =x ,有f (0)=f (x )-x (2x -x +1) ,即f (0)=f (x )-x (x +1) ,又f (0)=1 ,所以f (x )=x (x +1)+1=x 2+x +1 ,即f (x )=x 2+x +1.答案:x 2+x +1三、解答题(每题10分 ,共20分)5.画出函数f (x )=-x 2+2x +3的图象 ,并根据图象答复以下问题: (1)比拟f (0) ,f (1) ,f (3)的大小;(2)假设x 1<x 2<1 ,比拟f (x 1)与f (x 2)的大小;(3)求函数f (x )的值域.解:因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…连线 ,描点 ,得函数图象如图:(1)根据图象 ,容易发现f (0)=3 ,f (1)=4 ,f (3)=0 ,所以f (3)<f (0)<f (1). (2)根据图象 ,容易发现当x 1<x 2<1时 ,有f (x 1)<f (x 2).(3)根据图象 ,可以看出函数的图象是以(1,4)为顶点 ,开口向下的抛物线 ,因此 ,函数值域为(-∞ ,4].6.函数f (x )=xax +b(a ,b 为常数 ,且a ≠0)满足f (2)=1 ,方程f (x )=x 有唯一解 ,求函数f (x )的解析式 ,并求f (f (-3))的值.解:由f (x )=x ,得xax +b=x , 即ax 2+(b -1)x =0.因为方程f (x )=x 有唯一解 , 所以Δ=(b -1)2=0 ,即b =1. 又f (2)=1 , 所以22a +1=1 ,a =12.所以f (x )=x 12x +1=2x x +2.所以f (f (-3))=f (6)=128=32.活页作业(九) 分段函数、映射(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合M ={x |0≤x ≤6} ,P ={y |0≤y ≤3} ,那么以下对应关系中 ,不能构成M 到P 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x解析:由映射定义判断 ,选项C 中 ,x =6时 ,y =6∉P . 答案:C2.在给定映射f :A →B ,即f :(x ,y )→(2x +y ,xy )(x ,y ∈R )的条件下 ,与B 中元素⎝ ⎛⎭⎪⎪⎫16 -16对应的A 中元素是( ) A.⎝ ⎛⎭⎪⎪⎫16 -136 B.⎝ ⎛⎭⎪⎪⎫13 -12或⎝ ⎛⎭⎪⎪⎫-14 23 C.⎝ ⎛⎭⎪⎪⎫136 -16 D.⎝ ⎛⎭⎪⎪⎫12 -13或⎝ ⎛⎭⎪⎪⎫-23 14 解析:由⎩⎪⎨⎪⎧ 2x +y =16 xy =-16 得⎩⎪⎨⎪⎧ x =13y =-12或⎩⎪⎨⎪⎧x =-14y =23.应选B.答案:B3.以下图象是函数y =⎩⎪⎨⎪⎧x 2x <0x -1 x ≥0的图象的是( )解析:由于f (0)=0-1=-1 ,所以函数图象过点(0 ,-1);当x <0时 ,y =x 2,那么函数图象是开口向上的抛物线y =x 2在y 轴左侧的局部.因此只有图象C 符合.答案:C4.f (x )=⎩⎨⎧ x -5x ≥6f x +2x <6那么f (3)为( )A .2B .3C .4D .5解析:f (3)=f (5)=f (7)=7-5=2. 答案:A5.f (x )=⎩⎨⎧2xx >0f x +1x ≤0那么f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于( ) A .-2 B .4 C .2D .-4解析:∵f ⎝ ⎛⎭⎪⎫43=2×43=83 ,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=2×23=43 ,∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:B二、填空题(每题5分 ,共15分)6.函数f (x )的图象如下图 ,那么f (x )的解析式是____________________.解析:由图可知 ,图象是由两条线段组成.当-1≤x <0时 ,设f (x )=ax +b ,将(-1,0) ,(0,1)代入解析式 ,那么⎩⎨⎧ -a +b =0 b =1.∴⎩⎨⎧a =1b =1.∴f (x )=x +1.当0≤x ≤1时 ,设f (x )=kx ,将(1 ,-1)代入 ,那么k =-1 ,∴f (x )=-x .。

高中数学(人教版A版必修一)全册课时练习及期末测试题(含答案)

高中数学(人教版A版必修一)全册课时练习及期末测试题(含答案)

第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4.元素与集合的关系关系概念记法读法元素与集合的关系属于如果________的元素,就说a属于集合Aa∈A a属于集合A 不属于如果________中的元素,就说a不属于集合Aa∉A a不属于集合A名称自然数集正整数集整数集有理数集实数集符号________________________一、选择题1.下列语句能确定是一个集合的是()A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是()A.1B.-2C.6D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有()A.2个元素B.3个元素C.4个元素D.5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2_______R,-3_______Q,-1_______N,π_______Z.三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a.能力提升12.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C[选项A、B、D都因无法确定其构成集合的标准而不能构成集合.] 2.C[由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D[集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C[因A中含有3个元素,即a2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B[由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.]6.A[方法一因为|x|=±x,x2=|x|,-3x3=-x,所以不论x取何值,最多只能写成两种形式:x、-x,故集合中最多含有2个元素.方法二令x=2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.] 7.①④解析①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析当x=0,1,-1时,都有x2∈A,但考虑到集合元素的互异性,x≠0,x≠1,故答案为-1.9.∈∈∉∉10.解(1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解由-3∈A,可得-3=a-2或-3=2a2+5a,∴a=-1或a=-3 2.则当a=-1时,a-2=-3,2a2+5a=-3,不符合集合中元素的互异性,故a=-1应舍去.当a=-32时,a-2=-72,2a2+5a=-3,∴a=-3 2.12.解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3表示成列举法,正确的是()A.{2,3}B.{(2,3)}C.{x=2,y=3}D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有() A.-1∈A B.0∈AC.3∈A D.2∈A6()A.BC.{1,2}D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.14159};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1}B.{y|(y-1)2=0}C.{x=1}D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z } 作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎨⎧ x +y =5,2x -y =1.得⎩⎨⎧x =2,y =3.所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.] 5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2} 解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标; ②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④. 10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1000,n ∈N };③{x|x>8};④{1,2,3,4,5,6}.11.解因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A中代表的元素是x,满足条件y=x2+3中的x∈R,所以A=R;集合B中代表的元素是y,满足条件y=x2+3中y的取值范围是y≥3,所以B={y|y≥3}.集合C中代表的元素是(x,y),这是个点集,这些点在抛物线y=x2+3上,所以C={P|P是抛物线y=x2+3上的点}.12.C[由集合的含义知{x|x=1}={y|(y-1)2=0}={1},而集合{x=1}表示由方程x=1组成的集合,故选C.]13.A[M={x|x=2k+14,k∈Z},N={x|x=k+24,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.]1.1.2集合间的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.1.子集的概念一般地,对于两个集合A、B,如果集合A 中________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作______(或______),读作“__________”(或“__________”).2.Venn图:用平面上______曲线的内部代表集合,这种图称为Venn图.3.集合相等与真子集的概念定义符号表示图形表示集合相等如果__________,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素__________,称集合A是B的真子集A B(或B A)(1)定义:______________的集合叫做空集.(2)用符号表示为:____.(3)规定:空集是任何集合的______.5.子集的有关性质(1)任何一个集合是它本身的子集,即________.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么___________________________.一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是()A.P=Q B.C.Q D.P∩Q=∅2.满足条件M⊆{1,2,3,4,5}的集合M的个数是()A.3B.6C.7D.83.对于集合A、B,“A⊆B不成立”的含义是()A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A,则A≠∅.其中正确的个数是()A.0B.1C.2D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=MC.S P=M D.P=S题号二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若B,则实数a的取值范围是________.9.已知集合{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a 的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含)等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的.1.1.2 集合间的基本关系知识梳理1.任意一个 A ⊆B B ⊇A A 含于B B 包含A 2.封闭 3.A ⊆B 且B ⊆A x ∈B ,且x ∉A 4.(1)不含任何元素 (2)∅ (3)子集 5.(1)A ⊆A (2)A ⊆C 作业设计1.B [∵P ={x |y =x +1}={x |x ≥-1},Q ={y |y ≥0} ∴Q ,∴选B.]2.C [M 中含三个元素的个数为3,M 中含四个元素的个数也是3,M 中含5个元素的个数只有1个,因此符合题意的共7个.] 3.C4.B [只有④正确.] 5.B [由N ={-1,0},知M ,故选B.]6.C [运用整数的性质方便求解.集合M 、P 表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.] 7.①②解析 ①、②显然正确;③中π与M 的关系为元素与集合的关系,不应该用”符号;④中{π}与M 的关系是集合与集合的关系,不应该用“∈”符号. 8.a ≥2解析 在数轴上表示出两个集合,可得a ≥2. 9.6解析 (1)若A 中有且只有1个奇数, 则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅. 10.解 A ={-3,2}.对于x 2+x +a =0, (1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立; (2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;(3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立, 则B ={-3,2}, ∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6. 11.解 ∵B ⊆A ,∴①若B =∅, 则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示.要使B ⊆A ,则⎩⎨⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎨⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3. ∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A ={x |1a <x <2a }. 又∵B ={x |-1<x <1},A ⊆B , ∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a }.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.13.5解析若A中有一个奇数,则A可能为{1},{3},{1,2},{3,2},若A中有2个奇数,则A={1,3}.1.1.3集合的基本运算第1课时并集与交集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.(1)定义:一般地,________________________的元素组成的集合,称为集合A与B的并集,记作________.(2)并集的符号语言表示为A∪B=_________________________________________________________________ _______.(3)并集的图形语言(即Venn图)表示为下图中的阴影部分:(4)性质:A∪B=________,A____,A∪B=A⇔________,A____A∪B.2.交集(1)定义:一般地,由________________________元素组成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=_________________________________________________________________ _______.(3)(4)性质:A∩B=______,A∩____,A∩B=A⇔________,1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于()A.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于()A.{x|x<1}B.{x|-1≤x≤2}C.{x|-1≤x≤1}D.{x|-1≤x<1}3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是()A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N 为()A.x=3,y=-1B.(3,-1)C.{3,-1}D.{(3,-1)}5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于() A.1B.2C.3D.46.集合M={1,2,3,4,5},集合N={1,3,5},则()A.N∈M B.M∪N=MC.M∩N=M D.M>N二、填空题7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B ∪C)={x|a≤x≤b},则a=______,b=______.三、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0B.2C.3D.613.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.1.3 集合的基本运算 第1课时 并集与交集知识梳理一、1.由所有属于集合A 或属于集合B A ∪B 2.{x |x ∈A ,或x ∈B } 4.B ∪A A A B ⊆A ⊆ 二、1.属于集合A 且属于集合B 的所有 A ∩B 2.{x |x ∈A ,且x ∈B } 4.B ∩A A ∅ A ⊆B ⊆ 作业设计 1.A2.D [由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}.]3.D [参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C .] 4.D [M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎨⎧ x +y =2,x -y =4,得⎩⎨⎧x =3,y =-1.] 5.C [依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3,故选C.] 6.B [∵M ,∴M ∪N =M .] 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3① 或t 2-t +1=0② 或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴ (B ∪C ) ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3}, 即方程x 2+px +q =0的两个实根为1,3. ∴⎩⎨⎧ 1+3=-p 1×3=q ,∴⎩⎨⎧p =-4q =3. 11.解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a=0或a=1 2.12.D[x的取值为1,2,y的取值为0,2,∵z=xy,∴z的取值为0,2,4,所以2+4=6,故选D.] 13.解符合条件的理想配集有①M={1,3},N={1,3}.②M={1,3},N={1,2,3}.③M={1,2,3},N={1,3}.共3个.第2课时补集及综合应用课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集自然语言对于一个集合A,由全集U中________________的所有元素组成的集合称为集合A相对于全集U的补集,记作________符号语言∁U A=____________图形语言3.补集与全集的性质(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁UA)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()A.{x|-2<x<2}B.{x|-2≤x≤2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于() A.{2}B.{2,3}C.{3}D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是() A.A=∁U P B.A=PC.A P D.P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是()A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x ∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时补集及综合应用知识梳理1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}3.(1)∅(2)U(3)A(4)U(5)∅作业设计1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]2.C[∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.]3.D[由B={2,5},知∁U B={1,3,4}.A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]4.B[由A=∁U B,得∁U A=B.又∵B=∁U P,∴∁U P=∁U A.即P=A,故选B.]5.C[依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a ∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]6.D[由A∪B={1,3,4,5,6},得∁U(A∪B)={2,7},故选D.]7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8}{7,8}{0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.U9.∁U∁U A解析画Venn图,观察可知∁U∁U A.10.解∵∁U A={5},∴5∈U且5∉A.又b ∈A ,∴b ∈U ,由此得⎩⎨⎧a 2+2a -3=5,b =3.解得⎩⎨⎧ a =2,b =3或⎩⎨⎧a =-4,b =3经检验都符合题意.11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =±3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3}; 当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0}, U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .根据题意有⎩⎨⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.§1.1习题课课时目标 1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1}B.{x|x<3}C.{x|-1<x<3}D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于() A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.A B.a∉AC.{a}∉A D.{a A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁I M)∩(∁I N)等于()A.∅B.{d}C.{b,e}D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a P⊆{a,b,c}的集合P的个数是()A.2B.3C.4D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是()A.M=P B.PC.M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________.9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B 者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于Venn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1习题课双基演练1.C[∵A={x|x>-1},B={x|x<3},∴A∩B={x|-1<x<3},故选C.]2.A[画出数轴,将不等式-3<x≤5,x<-5,x>5在数轴上表示出来,不难看出M∪N={x|x<-5或x>-3}.]3.D4.A[∵∁I M={d,e},∁I N={a,c},∴(∁I M)∩(∁I N)={d,e}∩{a,c}=∅.]5.A=B解析4k-3=4(k-1)+1,k∈Z,可见A=B.6.解∵A={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}(1)又∵B∩C={3},∴A∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)又∵B∪C={1,2,3,4,5,6},∴∁A(B∪C)={-6,-5,-4,-3,-2,-1,0}∴A∩(∁A(B∪C))={-6,-5,-4,-3,-2,-1,0}.作业设计1.B[Q={x|-2<x<2},可知B正确.]2.B[集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.]3.B[∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴P.]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).]5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎨⎧a -1≤3,a +2≥5.解得3≤a ≤4.]6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2. 7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ; 当x =2时,x -1=1∈A ,x +1=3∈A ; 当x =3时,x -1=2∈A ,x +1=4∉A ; 当x =5时,x -1=4∉A ,x +1=6∉A ; 综上可知,A 中只有一个孤立元素5. 8.4解析 ∵A ∪(∁U A )=U , 由∁U A ={5}知,a 2-2a -3=5, ∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2. a =4经验证,符合题意. 9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5}, 故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N ) ={x |x <1或x ≥5}. 10.解 (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.11.解由题意,设全班同学为全集U,画出Venn图,A表示答错A的集合,B 表示答错B的集合,C表示答错C的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A∪B∪C中元素数目为32,从而至少错一题的共32人,因此A,B,C全对的有50-32=18人.12.解依题意可知,“孤立元”必须是没有与k相邻的元素,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解在数轴上表示出集合M与N,可知当m=0且n=1或n-13=0且m+34=1时,M∩N的“长度”最小.当m=0且n=1时,M∩N={x|23≤x≤34},长度为34-23=112;当n=13且m=14时,M∩N={x|14≤x≤13},长度为13-14=112.综上,M∩N的长度的最小值为1 12.§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A 中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y是x的函数②对于不同的x,y的值也不同③f(a)表示当x=a时函数f(x)的值,是一个常量④f(x)一定可以用一个具体的式子表示出来A.1个B.2个C.3个D.4个2.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②3.下列各组函数中,表示同一个函数的是()A.y=x-1和y=x2-1 x+1B.y=x0和y=1C.f(x)=x2和g(x)=(x+1)2D.f(x)=(x)2x和g(x)=x(x)24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x2-1,值域为{1,7}的“孪生函数”共有()A.10个B.9个C.8个D.4个5.函数y=1-x+x的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}6.函数y=x+1的值域为()A.[-1,+∞) B.[0,+∞)C.(-∞,0] D.(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x 1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A中的任一个值,按照对应关系所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.]3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.] 5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2,g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数, 所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010.9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).。

(人教A版)高中数学必修一(全套)课时练习+单元测试卷全集

(人教A版)高中数学必修一(全套)课时练习+单元测试卷全集

(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总第1课时集合的含义第2课时集合的表示(2)当M中只含两个元素时, 其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8}, {1,7}, {2,6}, {3,5}.(3)满足条件的集合M是由集合{4}, {0,8}, {1,7}, {2,6}, {3,5}中的元素组成, 它包括以下情况:①{4}, {0,8}, {1,7}, {2,6}, {3,5}, 共5个;②{4,0,8}, {4,1,7}, {4,2,6}, {4,3,5}, {0,8,1,7}, {0,8,2,6}, {0,8,3,5}, {1,7,2,6}, {1,7,3,5}, {2,6,3,5}, 共10个;③{4,0,8,1,7}, {4,0,8,2,6}, {4,0,8,3,5}, {4,1,7,2,6}, {4,1,7,3,5}, {4,2,6,3,5}, {0,8,1,7,2,6}, {0,8,1,7,3,5}, {1,7,2,6,3,5}, {0,8,2,6,3,5}, 共10个;④{4,0,8,1,7,2,6}, {4,0,8,1,7,3,5}, {4,0,8,2,6,3,5}, {4,1,7,2,6,3,5}, {0,8,1,7,2,6,3,5}, 共5个;⑤{4,0,8,1,7,2,6,3,5}, 共1个.于是满足题设条件的集合M共有5+10+10+5+1=31(个).A BB A且空集的子集只有一个A{3,4,9},A⊆B A=BA B A BZ), 当A B答案:D解析:因为N ={x |x ≤k }, 又M ={x |-1≤x <2}, 所以当M ⊆N 时, k ≥2.6.已知集合P ={x |x 2=1}, 集合Q ={x |ax =1}, 若Q ⊆P , 则a 的值为( ) A .1 B .-1C .1或-1D .0,1或-1 答案:D解析:P ={-1,1}, 当a =0时, Q =∅, 当a ≠0时, Q ={x |x =1a }, ∵Q ⊆P , ∴a =0或a =±1.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.用适当的符号填空. (1)0________{x |x 2=0};(2)∅________{x ∈R |x 2+1=0}; (3){0,1}________N ;(4){0}________{x |x 2=x };(5){2,1}________{x |x 2-3x +2=0}. 答案:(1)∈ (2)= (3) (4) (5)=8.已知集合P ={x |0<x -a ≤2}, Q ={x |-3<x ≤4}, 若P ⊆Q , 则a 的取值范围是________.答案:{a |-3≤a ≤2}解析:依题意, 知P ={x |a <x ≤a +2}, 又Q ={x |-3<x ≤4}, 若P ⊆Q , 则⎩⎪⎨⎪⎧a ≥-3a +2≤4, 解得-3≤a ≤2.9.已知集合M ={-1,3,2m -1}, 集合N ={3, m 2}, 若N ⊆M , 则实数m =________. 答案:1解析:依题意, 知当N ⊆M 时, 只能有m 2=2m -1, 解得m =1, 经检验知满足题意. 三、解答题(本大题共6小题, 共45分)10.(5分)以下各组中两个对象是什么关系, 用适当的符号表示出来: (1)0与{0}; (2)0与∅; (3)∅与{0};(4){0,1}与{(0,1)}; (5){(a , b )}与{(b , a )}. 解:(1)0∈{0}; (2)0∉∅(3)∅与{0}都是集合, 两者的关系是“包含与不包含”的关系, 所以∅{0}; (4){0,1}是含两个无素0,1的集合;而{(0,1)}是以有序数对为元素的集合, 它只含一个元素.所以{0,1}⊆{(0,1)};且{0,1}⊉{(0,1)};(5)当a =b 时, {(a , b )}={(b , a )};当a ≠b 时, {(a , b )} ⊆{(b , a )}, 且{(a , b )}⊉{(b , a )}. 11.(13分)设集合A ={x , x 2, xy }, 集合B ={1, x , y }, 且集合A 与集合B 相等, 求实数x 、y 的值.解:由题意得⎩⎪⎨⎪⎧ x 2=1,xy =y ,①或⎩⎪⎨⎪⎧x 2=y ,xy =1.②解①, 得⎩⎪⎨⎪⎧ x =1,y ∈R ,或⎩⎪⎨⎪⎧ x =-1,y =0.经检验⎩⎪⎨⎪⎧ x =1,y ∈R ,不合题意, 舍去, 则⎩⎪⎨⎪⎧x =-1,y =0.解②, 得⎩⎪⎨⎪⎧x =1,y =1.经检验⎩⎪⎨⎪⎧x =1,y =1,不合题意, 舍去.∅∅12.(9分)已知M ={(x , y )|y =x 2+2x +5}, N ={(x , y )|y =ax +1}. (1)若M ∩N 有两个元素, 求实数a 的取值范围;(2)若M ∩N 至多有一个元素, 求实数a 的取值范围.解:(1)因为M ∩N 有两个元素, 所以方程组⎩⎪⎨⎪⎧ y =x 2+2x +5y =ax +1有两组解,即一元二次方程x 2+(2-a )x +4=0有两个不等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12>0,结合二次函数y =a 2-4a -12的图象, 可得a >6或a <-2. 所以实数a 的取值范围为{a |a >6或a <-2}.(2)因为M ∩N 至多有一个元素, 所以方程组⎩⎪⎨⎪⎧y =x 2+2x +5y =ax +1无解或只有一组解,即一元二次方程x 2+(2-a )x +4=0无实数根或有两个相等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12≤0,结合二次函数y =a 2-4a -12的图象, 可得-2≤a ≤6. 所以实数a 的取值范围为{a |-2≤a ≤6}.能力提升13.(5分)对于集合A , B , 我们把集合{x |x ∈A , 且x ∉B }叫做集合A 与B 的差集, 记作A -B .若A ={1,2,3,4}, B ={3,4,5,6}, 则A -B =________.答案:{1,2}解:A -B ={x |x ∈A 且x ∉B } ={1,2,3,4}-{3,4,5,6} = {1,2 }.14.(13分)已知集合A ={x |x 2-ax +a 2-19=0}, 集合B ={x |x 2-5x +6=0}, 是否存在实数a , 使得集合A , B 同时满足下列三个条件?①A ≠B ;②A ∪B =B ;③∅ (A ∩B ).若存在, 求出这样的实数a 的值;若不存在, 说明理由.解:由已知条件可得B ={2,3}, 因为A ∪B =B , 且A ≠B , 所以A ⊆B , 又A ≠∅, 所以A ={2}或A ={3}.当A ={2}时, 将2代入A 中方程, 得a 2-2a -15=0, 所以a =-3或a =5, 但此时集合A 分别为{2, -5}和{2,3}, 与A ={2}矛盾.所以a ≠-3, 且a ≠5.当A ={3}时, 同上也能导出矛盾.综上所述, 满足题设要求的实数a 不存在.第5课时 补集1.已知全集U={0,1,3,5,6,8}, 集合A={1,5,8}, B={2}, 则集合(∁U A)∪B=()A.{0,2,3,6} B.{0,3,6}C.{1,2,5,8} D.∅答案:A解析:依题意, 知∁U A={0,3,6}, 又B={2}, 所以(∁U A)∪B={0,2,3,6}.故选A.2.设集合U={1,2,3,4,5}, A={1,3,5}, B={2,3,5}, 则∁U(A∩B)等于()A.{1,2,4} B.{4}C.{3,5} D.{∅}答案:A解析:易知:A∩B={3,5}, 则∁U(A∩B)={1,2,4}, 故选A.3.设全集U={1,2,3,4,5,6,7}, 集合A={1,3,5,7}, B={3,5}, 则下列各式正确的是() A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B) D.U=(∁U A)∪(∁U B)答案:C解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U.故选C.4.已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩(∁I M)=∅, 则M∪N=() A.M B.NC.I D.∅答案:A解析:由N∩(∁I M)=∅, 可知N与∁I M没有公共元素, 则N⊆M, 又M≠N, 所以N M, 所以M∪N=M.故选A.5.已知集合A={x|x<a}, B={x|1<x<2}, 且A∪(∁R B)=R, 则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}答案:C解析:由于A∪(∁R B)=R, 则B⊆A, 可知a≥2.故选C.6.如图所示, I是全集, M, P, S是I的3个子集, 则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案:C解析:阴影部分是M与P的公共部分, 且在S的外部, 故选C.7.设集合M ={3,4,7,9}, N ={4,5,7,8,9}, 全集U =M ∪N , 则集合∁U (M ∩N )中的元素共有________个.答案:3解析:因为U =M ∪N ={3,4,5,7,8,9}, M ∩N ={4,7,9}, 则∁U (M ∩N )={3,5,8}, 可知其中的元素有3个.8.已知集合A ={x |-2≤x <3}, B ={x |x <-1}, 则A ∩(∁R B )=________. 答案:{x |-1≤x <3} 解析:因为B ={x |x <-1}, 则∁R B ={x |x ≥-1}, 所以A ∩(∁R B )={x |-2≤x <3}∩{x |x ≥-1}={x |-1≤x <3}.9.高一(1)班共有学生50人, 其中参加诗歌鉴赏兴趣小组的有30人, 参加书法练习兴趣小组的有26人, 同时参加两个兴趣小组的有15人, 则两个兴趣小组都没有参加的学生有________人.答案:9解析:设参加诗歌鉴赏兴趣小组的学生组成集合A , 参加书法练习兴趣小组的学生组成集合B , 如图所示, 依题意card(A )=30, card(B )=26, card(A ∩B )=15, 则card(A ∪B )=30+26-15=41.所以两个兴趣小组都没有参加的学生有50-41=9(人).三、解答题(本大题共4小题, 共45分)10.(12分)已知全集U ={3, a 2-3a -2,2}, A ={3, |a -1|}, ∁U A ={-2}, 求实数a 的值. 解:因为A ∪(∁U A )=U ,所以{3, -2, |a -1|}={3, a 2-3a -2,2},从而⎩⎪⎨⎪⎧a 2-3a -2=-2|a -1|=2, 解得a =3.11.(13分)已知全集U ={x |x ≤4}, 集合A ={x |-2<x <3}, B ={x |-3≤x ≤2}. (1)求(∁U A )∪B ; (2)求A ∩(∁U B ).解:易知∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. 则(1)(∁U A )∪B ={x |x ≤2或3≤x ≤4}. (2)A ∩(∁U B )={x |2<x <3}.能力提升12.(5分)已知全集U ={1,2,3,4,5}, A ={1,5}, B ∁U A , 则集合B 的个数是( ) A .5 B .6 C .7 D .8B∁A.M=N B.M⊆NC.M⊇N D.M, N无公共元素答案:D解析:因为M={(x, y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集, 而N={-3,1}是数集, 所以两个集合没有公共元素, 故选D.6.已知全集U=R, 集合A={x|1<x≤3}, B={x|x>2}, 则A∩(∁U B)等于()A.{x|1<x≤2} B.{x|1≤x<2}C.{x|1≤x≤2} D.{x|1≤x≤3}答案:A解析:U=R, ∴∁U B={x|x≤2}, A∩∁U B={x|1<x≤3}∩{x|x≤2}={x|1<x≤2}.选A.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.已知集合U=R, A={x|-2<x≤5}, B={x|4≤x<6}, 则∁U(A∪B)=________.答案:{x|x≤-2或x≥6}解析:(A∪B)={x|-2<x<6}又U=R, 所以可得∁U(A∪B)={x|x≤-2或x≥6}.8.如图所示, 阴影部分表示的集合为________.答案:∁U(A∪B)∪(A∩B)解析:阴影部分有两类:(1)∁U(A∪B);(2)A∩B.9.设集合M={x|x>1, x∈R}, N={y|y=2x2, x∈R}, P={(x, y)|y=x-1, x∈R, y∈R}, 则(∁R M)∩N=________, M∩P=________.答案:{x|0≤x≤1}∅解析:因为M={x|x>1, x∈R}, 所以∁R M={x|x≤1, x∈R}, 又N={y|y=2x2, x∈R}={y|y≥0}, 所以(∁R M)∩N={x|0≤x≤1}.因为M={x|x>1, x∈R}表达数集, 而P={(x, y)|y=x -1, x∈R, y∈R}表示点集, 所以M∩P=∅.三、解答题(本大题共4小题, 共45分)10.(12分)某班有50名学生, 有36名同学参加学校组织的数学竞赛, 有23名同学参加物理竞赛, 有3名学生两科竞赛均未参加, 问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U, 其中含有50名学生, 设集合A表示参加数学竞赛的学生, B表示参加物理竞赛的学生, 则U中元素个数为50, A中元素个数为36, B中元素个数为23, 全集中A、B 之外的学生有3名, 设数学、物理均参加的学生为x名, 则有(36-x)+(23-x)+x+3=50, 解得x=12.所以, 本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知集合A={x|2<x<7}, B={x|2<x<10}, C={x|5-a<x<a}.(1)求A∪B, (∁R A)∩B;(2)若C⊆B, 求实数a的取值范围.={x|∅满足题设条件, 易知A BA B∅第7课时函数的有关概念第9课时映射与分段函数答案:B解析:因为|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (x ≤0或x ≥2),-x 2+2x (0<x <2),所以所求的图象为B 选项.5.设集合A ={a , b }, B ={0,1}, 从A 到B 的映射共有______个( )A .2B .3C .4D .5 答案:C解析:如图:(2)y =x 2-2|x |-1=⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图所示.11.(13分)已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1x 2-2x ,x ≥1.(1)试比较f (f (-3))与f (f (3))的大小;(2)画出函数f (x )的图象; (3)若f (x )=1, 求x 的值.解:(1)因为-3<1, 所以f (-3)=-2×(-3)+1=7, 又因为7>1, 所以f (f (-3))=f (7)=72-2×7=35. 因为3>1, 所以f (3)=32-2×3=3, 所以f (f (3))=3. 所以f (f (-3))>f (f (3)).(2)函数图象如图实线部分所示.而f(x1)<0, f(x2)<0, ∴f(x1)f(x2)>0. ∴F(x2)-F(x1)<0, 即F(x2)<F(x1).∴F(x)在(0, +∞)上为减函数.。

高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):模块综合检测_word版含解析

高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):模块综合检测_word版含解析

高中人教版数学a版高一必修1(45分钟课时作业与单元测试卷):模块综合检测_word版含解析的大致图象是()=-x(x2-1)=-f(x)D.又0<x<1时,y<0.故选A.上的偶函数,且满足f(x+4)=f(x),当x∈(0,2)时,,结合图象,易知h (+log 416+6lg 12++2-6lg2-lg5==f (x )+x ,所以f (-6.分.解答应写出文字说明、证明过程或演算步骤.-;6×(312)6-[⎝⎛⎭⎫2323]-5log 59②f(1)=1;③当x1,x2∈[0,1],且x1+x2∈[0,1]时,f(x1+x2)≥f(x1)+f(x2)成立.称这样的函数为“友谊函数”.请解答下列各题:(1)已知f(x)为“友谊函数”,求f(0)的值;(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?请给出理由;(3)已知f(x)为“友谊函数”,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0. 解:(1)令x1=1,x2=0,则x1+x2=1∈[0,1].由③,得f(1)≥f(0)+f(1),即f(0)≤0.又由①,得f(0)≥0,所以f(0)=0.(2)g(x)=2x-1是友谊函数.任取x1,x2∈[0,1],x1+x2∈[0,1],有2x1≥1,2x2≥1.则(2x1-1)(2x2-1)≥0.即g(x1+x2)≥g(x1)+g(x2).又g(1)=1,故g(x)在[0,1]上为友谊函数.(3)证明:取0≤x1<x2≤1,则0<x2-x1≤1.因此,f(x2)≥f(x1)+f(x2-x1)≥f(x1).假设f(x0)≠x0,若f(x0)>x0,则f[f(x0)]≥f(x0)>x0.若f(x0)<x0,则f[f(x0)]≤f(x0)<x0.都与题设矛盾,因此f(x0)=x0.。

高中人教A版数学必修1课时作业24 Word版含解析

高中人教A版数学必修1课时作业24 Word版含解析

课时作业(二十四)用二分法求方程的近似解一、选择题.函数()的图象如图所示,能够用二分法求出的函数()的零点个数为( )....答案:解析:由图可知,图象与轴有四个公共点,其中有个变号零点,故选..下列函数中,不能用二分法求零点的是( ).=+.=-.=(-) .=(-)答案:解析:结合函数=(-)的图象可知,该函数在=的左右两侧函数值的符号均为正,故其不能用二分法求零点..在用“二分法”求函数()的零点近似值时,第一次所取的区间是[-],则第三次所取的区间可能是( ).[] .[-]答案:解析:由于第一次所取的区间为[-],∴第二次所取区间为[-]或[],第三次所取区间为,,或..为了求函数()=+-的零点,某同学利用计算器得到自变量和函数()的部分对应值(精确度)如下表所示.....答案:解析:函数()=+-的零点在区间( )内,且-=<,所以方程+=的近似解(精确到)可取为..函数=与函数=的图象的交点的横坐标(精确度)约是( ) ....答案:解析:设()=-,经计算()=-<,()=->,所以方程-=在[]内有解.应用二分法逐步缩小方程实数解所在的区间,可知选项符合要求.二、填空题.若函数()的图象是连续不间断的,根据下面的表格,可以断定()的零点所在的区间为.(填序号)①(-∞,];②[];③[];④[];⑤[];⑥[];⑦[,+∞).正确..用二分法求函数=()在区间()上的近似解,验证()·()<,给定精确度ε=,取区间()的中点==.计算()·()<,则此时零点∈.(填区间)答案:() 解析:∵()·()<,()·()<,故∈()..用二分法求方程-=在区间()内的近似解,经过次“二分”。

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第一章单元检测

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第一章单元检测

第一章单元检测时间:120分钟分值:150分一、选择题:本大题共12题,每题5分,共60分.在以下各题的四个选项中,只有一个选项是切合题目要求的.1.以下各图中,可表示函数y=f(x)的图象的只可能是( )答案:A分析:由函数观点,只有“一对一”或“多对一”对应,才能组成函数关系.2.以下函数中图象同样的是( )A.y=x与y=x2x2-1B.y=x-1与y=x+1C.y=x2与y=2x2D.y=x2-4x+6与y=(x-2)2+2答案:D3.设全集U={1,2,3,4,5},A∩B={1,2},(?U A)∩B={3},A∩(?UB)={5},则A∪B是( )A.{1,2,3}B.{1,2,5}C.{1,2,3,4}D.{1,2,3,5}答案:D分析:A∪B=(A∩B)∪[(?U A)∩B]∪[A∩(?UB)]={1,2,3,5}.4.已知f(x)=x-5,x≥6,则f(3)等于() fx+2,x<6,A.2 B.3C.4 D.5答案:A分析:f(3)=f(5)=f(7)=7-5=2.应选A.5.函数y=1的定义域是() 1-x+x+1A.(-∞,-1)∪(1,+∞)B.(-1,1)C.(-∞,-1)∪(-1,1]D.(-∞,-1)∪(-1,1)答案:C分析:1-x≥0且x+1≠0,∴x<-1或-1<x≤1.6.已知f(x)=2x+3,g(x+2)=f(x),则g(x)的分析式为( )A.g(x)=2x+1 B.g(x)=2x-1C.g(x)=2x-3 D.g(x)=2x+3答案:B分析:令t=x+2,则x=t-2,∴g(x+2)=g(t)=f(t-2),∴g(x)=f(x-2)=2(x-2)+3=2x-1. 7.已知会合M知足{1,2}?M?{1,2,3,4,5},那么这样的会合M的个数为()A.5 B.6C.7D.8答案:C分析:依据题意,M会合必定含有元素1,2,且为会合{1,2,3,4,5}的真子集,因此会合M的个数为23-1=7个。

高中数学课时作业(人教A版必修第一册)课时作业 45

高中数学课时作业(人教A版必修第一册)课时作业 45

课时作业45任意角基础强化1.若α是第二象限角,则-α一定是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.已知α=30°,则下列四个角中与角α终边相同的是()A.390° B.210°C.150° D.330°3.与-460°角终边相同的角可以表示成()A.460°+k·360°,k∈ZB.100°+k·360°,k∈ZC.260°+k·360°,k∈ZD.-260°+k·360°,k∈Z4.已知集合{α|45°+k·360°≤α≤90°+k·360°,k∈Z},则角α的终边落在阴影处(包括边界)的区域是()5.[2022·广东韶关高一期末](多选)下列四个角为第二象限角的是()A.-200° B.100°C.220° D.420°6.(多选)下列说法,不正确的是()A.三角形的内角必是第一、二象限角B.始边相同而终边不同的角一定不相等C.钝角比第三象限角小D.小于180°的角是钝角、直角或锐角7.如图,花样滑冰是冰上运动项目之一.运动员通过冰刀在冰面上划出图形,并表演跳跃、旋转等高难度动作.运动员在原地转身的动作中,仅仅几秒内就能旋转十几圈,甚至二十几圈,因此,花样滑冰美丽而危险.运动员顺时针旋转两圈半所得角的度数是________,逆时针旋转两圈半所得角的度数是________.8.终边在第一或第三象限的角的集合是________.9.已知角α=2 100°.(1)将α改写成β+k·360°(k∈Z,β∈(0°,360°))的形式,并指出α是第几象限的角;(2)在区间[-1 800°,0°)上找出与α终边相同的角.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域.能力提升11.与-390°角的终边相同的最小正角是()A.10° B.30°C.60° D.330°12.若α=k·180°+45°,k∈Z,则α的终边在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限13.终边落在直线y =3 x 上的角α的集合为( )A .{α|α=k ·180°+30°,k ∈Z }B .{α|α=k ·180°+60°,k ∈Z }C .{α|α=k ·360°+30°,k ∈Z }D .{α|α=k ·360°+60°,k ∈Z }14.(多选)已知α是锐角,则( )A .180°+α是第三象限角B .2α是小于180°的正角C .2α是第一或第二象限角D .α2是锐角 15.若角α与角β的终边相同,则α-β=________.16.若α是第二象限角,试分别确定2α,α2 ,α3 的终边所在位置.。

人教A版高中数学第一册(必修1)课时作业2:4.4.1 对数函数的概念

人教A版高中数学第一册(必修1)课时作业2:4.4.1 对数函数的概念

4.4 对数函数 4.4.1 对数函数的概念1.给出下列函数:①y =223log x ;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A .1个B .2个C .3个D .4个 考点 对数函数的概念 题点 对数函数的概念 『答 案』 A『解 析』 ①②不是对数函数,因为对数的真数不是仅有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数. 2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( ) A .{x |x >-1} B .{x |x <1} C .{x |-1<x <1}D .∅考点 对数函数的定义域 题点 对数函数的定义域 『答 案』 C『解 析』 ∵M ={x |1-x >0}={x |x <1}, N ={x |1+x >0}={x |x >-1}, ∴M ∩N ={x |-1<x <1}.3.下列函数中,与函数y =x 相等的是( ) A .y =(x )2 B .y =x 2C .y =2log 2xD .y =log 22x『答 案』 D『解 析』 因为y =log 22x 的定义域为R ,且根据对数恒等式知y =x . 4.对数函数的图象过点M (16,4),则此对数函数的『解 析』式为( ) A .y =log 4x B .y =14log xC .y =12log xD .y =log 2x『答 案』 D『解 析』 由于对数函数的图象过点M (16,4), 所以4=log a 16,得a =2.所以对数函数的『解 析』式为y =log 2x ,故选D.5.已知函数f (x )=log a (x +2),若图象过点(6,3),则f (2)的值为( ) A .-2B .2C.12D .-12考点 对数函数的性质 题点 对数函数图象过定点问题 『答 案』 B『解 析』 代入(6,3),得3=log a (6+2)=log a 8, 即a 3=8,∴a =2.∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.6.若f (x )=log a x +a 2-4a -5是对数函数,则a =________. 『答 案』 5『解 析』 由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.7.函数y =()12log 3x a -的定义域是⎝⎛⎭⎫23,+∞,则a =________. 『答 案』 2『解 析』 由y =()12log 3x a -知,3x -a >0,即x >a3.∴a 3=23,即a =2.8.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为x 万元时,奖励y 万元.若公司拟定的奖励方案为y =2log 4x -2,某业务员要得到5万元奖励,则他的销售额应为________万元. 『答 案』 128『解 析』 由题意得5=2log 4x -2, 即7=log 2x ,得x =128. 9.求下列函数的定义域: (1)f (x )=log (x -1)(3-x ); (2)f (x )=2x +3x -1+log 2(3x -1). 解 (1)由题意知⎩⎪⎨⎪⎧3-x >0,x -1>0,x -1≠1,解得1<x <3,且x ≠2,故f (x )的定义域是(1,2)∪(2,3). (2)由题意知⎩⎪⎨⎪⎧2x +3≥0,x -1≠0,3x -1>0,解得x >13,且x ≠1.故f (x )的定义域是⎝⎛⎭⎫13,1∪(1,+∞).10.20世纪70年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0.其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.(1)假设在一次地震中,一个距离震中1000千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.002,计算这次地震的震级;(2)5级地震给人的震感已比较明显,我国发生在汶川的8级地震的最大振幅是5级地震的最大振幅的多少倍?解 (1)M =lg A -lg A 0=lg A A 0=lg 200.002=lg104=4.即这次地震的震级为4级.(2)由题意得⎩⎪⎨⎪⎧5=lg A 5-lg A 0,8=lg A 8-lg A 0,所以lg A 8-lg A 5=3, 即lg A 8A 5=3.所以A 8A 5=103=1000.即8级地震的最大振幅是5级地震的最大振幅的1000倍.11.函数y =log 2(x -1)2-x的定义域是( )A .(1,2』B .(1,2)C .(2,+∞)D .(-∞,2) 『答 案』 B『解 析』 由⎩⎪⎨⎪⎧ x -1>0,2-x >0,得⎩⎪⎨⎪⎧x >1,x <2,∴1<x <2.∴函数的定义域为(1,2).12.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y (只)与引入时间x (年)的关系为y =a log 2(x +1),若该动物在引入一年后的数量为100只,则7年后它们发展到( ) A .300只B .400只C .600只D .700只 『答 案』 A『解 析』 将x =1,y =100代入y =a log 2(x +1)得, 100=a log 2(1+1),解得a =100, 所以x =7时,y =100log 2(7+1)=300.13.若函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =________. 『答 案』 1『解 析』 由a 2-a +1=1, 解得a =0或a =1. 又底数a +1>0,且a +1≠1,所以a =1.14.函数f (x )=lg ⎝⎛⎭⎫2kx 2-kx +38的定义域为R ,则实数k 的取值范围是________. 『答 案』 『0,3)『解 析』 依题意,2kx 2-kx +38>0的解集为R ,即不等式2kx 2-kx +38>0恒成立,当k =0时,38>0恒成立,∴k =0满足条件.当k ≠0时,则⎩⎪⎨⎪⎧k >0,Δ=k 2-4×2k ×38<0,解得0<k <3. 综上,k 的取值范围是『0,3).15.函数f (x )=a -lg x 的定义域为(0,10』,则实数a 的值为( ) A .0B .10C .1D.110『答 案』 C『解 析』 由已知,得a -lg x ≥0的解集为(0,10』, 由a -lg x ≥0,得lg x ≤a , 又当0<x ≤10时,lg x ≤1, 所以a =1,故选C.16.国际视力表值(又叫小数视力值,用V 表示,范围是『0.1,1.5』)和我国现行视力表值(又叫对数视力值,由缪天容创立,用L 表示,范围是『4.0,5.2』)的换算关系式为L =5.0+lg V . (1)请根据此关系式将下面视力对照表补充完整;V 1.5 ② 0.4 ④ L①5.0③4.0(2)甲、乙两位同学检查视力,其中甲的对数视力值为4.5,乙的小数视力值是甲的2倍,求乙的对数视力值.(所求值均精确到小数点后面一位数,参考数据:lg2≈0.3010,lg3≈0.4771) 解 (1)因为5.0+lg1.5=5.0+lg 1510=5.0+lg3=5.0+lg3-lg22≈5.0+0.4771-0.3010≈5.2,所以①应填5.2;因为5.0=5.0+lg V,所以V=1,②处应填1.0;=5.0+lg4-1因为5.0+lg0.4=5.0+lg410=5.0+2lg2-1≈5.0+2×0.3010-1≈4.6,所以③处应填4.6;因为4.0=5.0+lg V,所以lg V=-1.所以V=0.1.所以④处应填0.1.对照表补充完整如下:(2)先将甲的对数视力值换算成小数视力值,则有4.5=5.0+lg V甲,所以V甲=10-0.5,则V乙=2×10-0.5.所以乙的对数视力值L乙=5.0+lg(2×10-0.5) =5.0+lg2-0.5≈5.0+0.3010-0.5≈4.8.。

2017-2018学年人教A版高中数学必修1课时作业:作业24 2.1.2-3对数与对数运算(第3课时) Word版含解析

2017-2018学年人教A版高中数学必修1课时作业:作业24 2.1.2-3对数与对数运算(第3课时) Word版含解析

课时作业(二十四)1.函数f(x)=23-x 在区间(-∞,0)上的单调性是( ) A.增函数B.减函数C.常数D.有时是增函数有时是减函数 答案 B2.函数y =3x 2-1的递减区间为( )A.(-∞,0]B.[0,+∞)C.(-∞,-1]D.[1,+∞) 答案 A3.函数y =(12)(x +3)2的递减区间为( ) A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞) 答案 B4.要得到函数y =8·2-x 的图像,只需将函数y =(12)x 的图像( ) A.向右平移3个单位 B.向左平移3个单位C.向右平移8个单位D.向左平移8个单位 答案 A5.函数y =-(12)x 的图像( ) A.与函数y =(12)x 的图像关于y 轴对称 B.与函数y =(12)x 的图像关于坐标原点对称 C.与函数y =(12)-x 的图像关于y 轴对称 D.与函数y =(12)-x 的图像关于坐标原点对称 答案 D6.函数y =a |x|(a>1)的图像是( )答案 A7.把函数y =f(x)的图像向左,向下分别平移2个单位,得到y =2x 的图像,则f(x)的解析式是( )A.f(x)=2x +2+2B.f(x)=2x +2-2 C.f(x)=2x -2+2 D.f(x)=2x -2-2 答案 C解析 y =2x 向上,向右分别平移2个单位得f(x)的图像,所以f(x)=2x -2+2.8.若0<a<1,则函数y =a x 和y =(a -1)x 2的图像可能是( )答案 D9.函数y =(12)x +1的图像关于直线y =x 对称的图像大致是( )答案 A解析 函数y =(12)x +1的图像如图所示,关于y =x 对称的图像大致为A 选项对应图像. 10.若函数y =a x +m -1(a >0)的图像在第一、三、四象限,则( )A.a >1B.a >1且m <0C.0<a <1且m >0D.0<a <1答案 B解析 y =a x 的图像在一、二象限内,欲使图像在第一、三、四象限内,必须将y =a x 向下移动,而当0<a <1时,图像向下移动,只能经过第二、三、四象限.只有当a >1时,图像向下移动才能经过第一、三、四象限,于是可画出y =f(x)=a x +m -1(a >1)的草图(右图). ∴f(0)=a 0+m -1<0,即m <0.11.函数y =(12)-3+4x -x 2的单调增区间是( ) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞) 答案 D解析 t =-3+4x -x 2的减区间为[2,+∞),∴y =(12)t(x)的增区间为[2,+∞). 12.将函数f(x)=2x 的图像向________平移________个单位,就可以得到函数g(x)=2x -2的图像.答案 右 213.若函数f(x)=(12)|x -1|,则f(x)的增区间是________. 答案 (-∞,1]14.若直线y =2a 与函数y =|a x -1|(a >0,且a ≠1)的图像有两个公共点,则a 的取值范围是________.答案 0<a <1215.设a 是实数,f(x)=a -22x +1(x ∈R ). (1)试证明:对于任意实数a ,f(x)在R 上为增函数;(2)试确定a 的值,使f(x)为奇函数.解析 (1)设x 1,x 2∈R ,x 1<x 2,则f(x 1)-f(x 2)=(a -22x 1+1)-(a -22x 2+1)=22x 2+1-22x 1+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1). 由于指数函数y =2x 在R 上是增函数,且x 1<x 2,所以2x 1<2x 2,即2x 1-2x 2<0.又由2x >0,得2x 1+1>0,2x 2+1>0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).因为此结论与a 的取值无关,所以对于a 取任意实数,f(x)在R 上为增函数.(2)若f(x)为奇函数,则f(-x)=-f(x),即a -22-x +1=-(a -22x +1),变形,得2a =2·2x (2-x +1)·2x +22x +1=2(2x +1)2x +1=2,解得a =1,所以,当a =1时,f(x)为奇函数. 16.已知函数f(x)=2x -12x +1. (1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.解析 (1)f(x)的定义域是R ,令y =2x -12x +1,得2x =-y +1y -1. ∵2x>0,∴-y +1y -1>0,解得-1<y<1. ∴f(x)的值域为{y|-1<y<1}.(2)∵f(-x)=2-x -12-x +1=1-2x1+2x=-f(x), ∴f(x)是奇函数.(3)f(x)=(2x +1)-22x +1=1-22x +1, 设x 1,x 2是在R 上任意两个实数,且x 1<x 2,f(x 1)-f(x 2)=22x 2+1-22x 1+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1), ∵x 1<x 2,2x 2>2x 1>0,从而2x 1+1>0,2x 2+1>0,2x 1-2x 2<0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).∴f(x)为R 上的增函数.1.若a>1,-1<b<0,则函数y =a x +b 的图像一定在( )A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限 答案 A2.函数y =2x +1的图像是( )答案 A3.设-1<a<-12,则下列关系式中正确的是( ) A.2a >(12)a >(0.2)a B.2a >(0.2)a >(12)a C.(12)a >(0.2)a >2a D.(0.2)a >(12)a >2a 答案 D4.已知实数a ,b 满足等式(12)a =(13)b ,给出下列五个关系式:①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b.其中不可能成立的有( )A.1个B.2个C.3个D.4个答案 B解析 作出y =(12)x 与y =(13)x 的图像比较可知.③,④不可能成立. 5.已知x ,y ∈R ,且2x +3y >2-y +3-x ,则下列各式中正确的是( ) A.x +y>0B.x +y<0C.x -y>0D.x -y<0答案 A解析 令f(x)=2x -3-x . 因为y =2x 为增函数,由y =3-x =(13)x 为减函数,知y =-3-x 也是增函数,从而f(x)为增函数.由2x -3-x >2-y -3y =2-y -3-(-y),可知f(x)>f(-y).又f(x)为增函数,所以x>-y ,故x +y>0.故选A.6.函数f(x)=a x +b 的图像过点(1,3),且在y 轴上的截距为2,则f(x)的解析式为________. 答案 f(x)=2x +17.已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=a x (a >0且a ≠1),求证:f(2x)=2f(x)·g(x). 证明 ∵f(x)+g(x)=a x ,① ∴f(-x)+g(-x)=a -x .∵f(x),g(x)分别为奇函数、偶函数,∴f(-x)=-f(x),g(-x)=g(x).∴-f(x)+g(x)=a -x .② 解由①,②所组成的方程组,得f(x)=a x -a -x 2,g(x)=a x +a -x 2. f(x)·g(x)=a x -a -x 2·a x +a -x 2=a 2x -a -2x 4=12f(2x),即f(2x)=2f(x)·g(x),故原结论成立. 8.已知x ∈[-3,2],求f(x)=14x -12x +1的最小值与最大值. 解析 令12x =t ,则y =t 2-t +1. 又∵-3≤x ≤2,∴-2≤-x ≤3.∴14≤2-x ≤8,即t ∈[14,8]. 又∵y =t 2-t +1的对称轴t =12, ∴f(x)max =64-8+1=57,此时x =-3;f(x)min =14-12+1=34,此时x =1.。

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第一、二章_滚动性检测

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第一、二章_滚动性检测

第一、二章滚动性检测时间:120分钟 分值:150分一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.全集U ={1,2,3,4,5,6},A ={x |3≤x ≤6,x ∈Z },则∁U A 等于( )A .{1,2}B .{3,4,5,6}C .{1,2,3}D .{4,5,6}答案:A解析:∁U A ={1,2}.2.函数y =(13)1x-的值域是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)答案:A解析:由题意得0<(13)1x -≤(13)0=1.3.函数f (x )=x +|x |x 的图象是( )答案:C 解析:由题意可知f (x )=⎩⎪⎨⎪⎧ x +1 x >0x -1 x <04.若函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤1log 2x ,x >1,则f [f (-3)]等于( ) A .1 B .2C .0D .3答案:D解析:f (-3)=(-3)2-1=8,所以f [f (-3)]=f (8)=log 28=3.5.定义在R 上的偶函数f (x ),在x >0时是增函数,则( )A .f (3)<f (-4)<f (-π)B .f (-π)<f (-4)<f (3)C .f (3)<f (-π)<f (-4)D .f (-4)<f (-π)<f (3)答案:C解析:∵f (x )在R 上是偶函数,∴f (-π)=f (π),f (-4)=f (4),而3<π<4且f (x )在(0,+∞)上是增函数.∴f (3)<f (π)<f (4),即f (3)<f (-π)<f (-4).6.已知函数f (x )是定义在R 上的偶函数,当x >0时,f (x )=x 2(1-x ),则当x <0时,f (x )=() A .-x 3-x 2 B .x 3+x 2C .-x 3+x 2D .x 3-x 2答案:B解析:令x <0,则-x >0,∴f (-x )=x 2(1+x ),又f (-x )=f (x ),∴f (x )=x 2(1+x )=x 3+x 2.7.已知函数f (x )=⎩⎪⎨⎪⎧e x -1 (x ≤1),ln x (x >1),)那么f (ln2)的值是( ) A .0 B .1C .ln(ln2)D .2答案:B解析:∵ln2<1,∴f (ln2)=e ln2-1=2-1=1.8.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( )A .0.015克B .(1-0.5%)3克C .0.925克 D.1000.125克答案:D 解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =⎝⎛⎭⎫121100, 可得放射性元素满足y ==⎝⎛⎭⎫12100x . 当x =3时,y =⎝⎛⎭⎫123100=100⎝⎛⎭⎫123=1000.125.9.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围为( )A.⎝⎛⎭⎫0,12 B .(0,1) C.⎝⎛⎭⎫12,+∞ D .(0,+∞)答案:A解析:由x ∈(-1,0),得x +1∈(0,1),又对数函数f (x )=log 2a (x +1)的函数值为正值,所以0<2a <1,即0<a <12. 10.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( ) A.12 B .-12C .-2D .2答案:B解析:因为f (-x )=lg 1+x 1-x =-lg 1-x 1+x=-f (x ) 所以f (-a )=-f (a )=-12. 11.已知0<x <y <a <1,m =log a x +log a y ,则有( )A .m <0B .0<m <1C .1<m <2D .m >2答案:D解析:由题意得m =log a xy ,∵0<x <y <a <1,∴0<xy <a 2<1,∴m >log a a 2=2.12.已知函数,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案:C 解析:由题意可得或解得⎩⎪⎨⎪⎧ a >0,a >1或⎩⎪⎨⎪⎧a <0-1<a <0⇒a >1或-1<a <0.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},集合B ={y |y =f (x )},则图中阴影部分表示的集合为________.答案:(-∞,-1]∪(0,1)解析:因为A ={x |-1<x <1},B ={y |y ≤0},所以A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).14.已知lg3=a ,lg7=b ,用a 、b 表示lg 79=________. 答案:b -2a解析:lg 79=lg7-lg9=lg7-2lg3=b -2a . 15.若直线y =2a 与函数y =|a x -1|的图象有两个公共点,则a 的取值范围是________.答案:⎝⎛⎭⎫0,12 解析:函数y =|a x -1|(a >0且a ≠1)的图象如图所示.由图可知: 当a >1时,要使直线y =2a 与函数y =|a x -1|的图象有两个公共点,须满足0<2a <1,即0<a <12,故a ∈∅;当0<a <1时,要使直线y =2a 与函数y =|a x -1|的图象有两个公共点,须满足0<2a <1,即0<a <12,故0<a <12.综上所述,a 的取值范围为⎝⎛⎭⎫0,12 16.关于函数y =2223x x --有以下4个结论:①定义域为(-∞,-1)∪(3,+∞);②递增区间为[1,+∞);③是非奇非偶函数;④值域是⎝⎛⎭⎫116,+∞. 则正确的结论是________(填序号即可).答案:②③解析:①不正确,因为y =2223x x --的定义域为R ;④不正确,因为x 2-2x -3=(x -1)2-4≥-4,∴2x 2-2x -3≥2-4=116,即值域为⎣⎡⎭⎫116,+∞. ②正确,因为y =2u 是增函数,u =x 2-2x -3在(-∞,1]上是减函数,在[1,+∞)上是增函数,所以y =2223x x --的递增区间为[1,+∞);③正确,因为f (-x )≠f (x ),且f (-x )≠-f (x ).三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)若A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},B ⊆A ,求实数m 的取值范围.解:∵B ⊆A ,当B =∅时,得2m -1>m +1,m >2,当B ≠∅时,得⎩⎪⎨⎪⎧ 2m -1≤m +1,2m -1≥-3,m +1≤4.解得-1≤m ≤2.综上所述,m 的取值范围为m ≥-1.18.(12分)已知函数f (x )=log 2(ax 2+4x +5).(1)若f (1)<3,求a 的取值范围;(2)若a =1,求函数f (x )的值域.解:(1)∵f (1)=log 2(a +9),∴log 2(a +9)<3=log 28,∴0<a +9<8,∴-9<a <-1.(2)当a =1时,f (x )=log 2(x 2+4x +5),令t =x 2+4x +5,则t =(x +2)2+1≥1,又y =log 2t 在[1,+∞)上递增,∴log 2t ≥log 21=0,∴函数f (x )的值域为[0,+∞).19.(12分)设0<a <1,x ,y 满足log a x +3log x a -log x y =3,如果y 有最大值24,求此时a 和x 的值. 解:利用换底公式,可得log a x +3log a x -log a y log a x=3, 即log a y =(log a x )2-3log a x +3=⎝⎛⎭⎫log a x -322+34, 所以,当log a x =32时,log a y 有最小值34. 因为0<a <1,所以y 有最大值a 34,由题意,得a 34=24=232-=⎝⎛⎭⎫1232=⎝⎛⎭⎫1434. 所以a =14,此时x =a 32=⎝⎛⎭⎫1432=18. 20.(12分)已知函数f (x )=mx +n x 2+2是定义在(-1,1)上的奇函数,且f (1)=23. (1)确定函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数.解:∵函数f (x )=mx +n x 2+2是定义在(-1,1)上的奇函数, ∴f (0)=n 2=0,∴n =0 又∵f (1)=m 3=23,∴m =2, ∴f (x )=2x x 2+2. (2)证明:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=2x 1x 21+2-2x 2x 22+2=2(x 2-x 1)(x 1x 2-2)(x 21+2)(x 22+2)<0, ∴f (x )在(-1,1)上为增函数.21.(12分)某人定制了一批地砖.每块地砖(如图左所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,且EC =CF ,△CFE 、△ABE 和四边形AEFD 分别由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格之比依次为3:2:1.若将此种地砖按右图所示的形式铺设,能使中间的深色阴影部分成四边形EFGH .(1)求证:四边形EFGH 是正方形;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1)证明:图2是由四块图1所示的地砖绕点C 按顺时针铺设得到,△CFE 为等腰直角三角形.。

(人教A版)数学高中必修一课时练习+单元测试卷 (全书完整版)

(人教A版)数学高中必修一课时练习+单元测试卷 (全书完整版)

(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总第1课时集合的含义第2课时集合的表示(2)当M中只含两个元素时, 其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8}, {1,7}, {2,6}, {3,5}.(3)满足条件的集合M是由集合{4}, {0,8}, {1,7}, {2,6}, {3,5}中的元素组成, 它包括以下情况:①{4}, {0,8}, {1,7}, {2,6}, {3,5}, 共5个;②{4,0,8}, {4,1,7}, {4,2,6}, {4,3,5}, {0,8,1,7}, {0,8,2,6}, {0,8,3,5}, {1,7,2,6}, {1,7,3,5}, {2,6,3,5}, 共10个;③{4,0,8,1,7}, {4,0,8,2,6}, {4,0,8,3,5}, {4,1,7,2,6}, {4,1,7,3,5}, {4,2,6,3,5}, {0,8,1,7,2,6}, {0,8,1,7,3,5}, {1,7,2,6,3,5}, {0,8,2,6,3,5}, 共10个;④{4,0,8,1,7,2,6}, {4,0,8,1,7,3,5}, {4,0,8,2,6,3,5}, {4,1,7,2,6,3,5}, {0,8,1,7,2,6,3,5}, 共5个;⑤{4,0,8,1,7,2,6,3,5}, 共1个.于是满足题设条件的集合M共有5+10+10+5+1=31(个).A BB A且空集的子集只有一个A{3,4,9},A⊆B A=BA B A BZ), 当A B答案:D解析:因为N ={x |x ≤k }, 又M ={x |-1≤x <2}, 所以当M ⊆N 时, k ≥2.6.已知集合P ={x |x 2=1}, 集合Q ={x |ax =1}, 若Q ⊆P , 则a 的值为( ) A .1 B .-1C .1或-1D .0,1或-1 答案:D解析:P ={-1,1}, 当a =0时, Q =∅, 当a ≠0时, Q ={x |x =1a }, ∵Q ⊆P , ∴a =0或a =±1.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.用适当的符号填空. (1)0________{x |x 2=0};(2)∅________{x ∈R |x 2+1=0}; (3){0,1}________N ;(4){0}________{x |x 2=x };(5){2,1}________{x |x 2-3x +2=0}. 答案:(1)∈ (2)= (3) (4) (5)=8.已知集合P ={x |0<x -a ≤2}, Q ={x |-3<x ≤4}, 若P ⊆Q , 则a 的取值范围是________.答案:{a |-3≤a ≤2}解析:依题意, 知P ={x |a <x ≤a +2}, 又Q ={x |-3<x ≤4}, 若P ⊆Q , 则⎩⎪⎨⎪⎧a ≥-3a +2≤4, 解得-3≤a ≤2.9.已知集合M ={-1,3,2m -1}, 集合N ={3, m 2}, 若N ⊆M , 则实数m =________. 答案:1解析:依题意, 知当N ⊆M 时, 只能有m 2=2m -1, 解得m =1, 经检验知满足题意. 三、解答题(本大题共6小题, 共45分)10.(5分)以下各组中两个对象是什么关系, 用适当的符号表示出来: (1)0与{0}; (2)0与∅; (3)∅与{0};(4){0,1}与{(0,1)}; (5){(a , b )}与{(b , a )}. 解:(1)0∈{0}; (2)0∉∅(3)∅与{0}都是集合, 两者的关系是“包含与不包含”的关系, 所以∅{0}; (4){0,1}是含两个无素0,1的集合;而{(0,1)}是以有序数对为元素的集合, 它只含一个元素.所以{0,1}⊆{(0,1)};且{0,1}⊉{(0,1)};(5)当a =b 时, {(a , b )}={(b , a )};当a ≠b 时, {(a , b )} ⊆{(b , a )}, 且{(a , b )}⊉{(b , a )}. 11.(13分)设集合A ={x , x 2, xy }, 集合B ={1, x , y }, 且集合A 与集合B 相等, 求实数x 、y 的值.解:由题意得⎩⎪⎨⎪⎧ x 2=1,xy =y ,①或⎩⎪⎨⎪⎧x 2=y ,xy =1.②解①, 得⎩⎪⎨⎪⎧ x =1,y ∈R ,或⎩⎪⎨⎪⎧ x =-1,y =0.经检验⎩⎪⎨⎪⎧ x =1,y ∈R ,不合题意, 舍去, 则⎩⎪⎨⎪⎧x =-1,y =0.解②, 得⎩⎪⎨⎪⎧x =1,y =1.经检验⎩⎪⎨⎪⎧x =1,y =1,不合题意, 舍去.∅∅12.(9分)已知M ={(x , y )|y =x 2+2x +5}, N ={(x , y )|y =ax +1}. (1)若M ∩N 有两个元素, 求实数a 的取值范围;(2)若M ∩N 至多有一个元素, 求实数a 的取值范围.解:(1)因为M ∩N 有两个元素, 所以方程组⎩⎪⎨⎪⎧ y =x 2+2x +5y =ax +1有两组解,即一元二次方程x 2+(2-a )x +4=0有两个不等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12>0,结合二次函数y =a 2-4a -12的图象, 可得a >6或a <-2. 所以实数a 的取值范围为{a |a >6或a <-2}.(2)因为M ∩N 至多有一个元素, 所以方程组⎩⎪⎨⎪⎧y =x 2+2x +5y =ax +1无解或只有一组解,即一元二次方程x 2+(2-a )x +4=0无实数根或有两个相等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12≤0,结合二次函数y =a 2-4a -12的图象, 可得-2≤a ≤6. 所以实数a 的取值范围为{a |-2≤a ≤6}.能力提升13.(5分)对于集合A , B , 我们把集合{x |x ∈A , 且x ∉B }叫做集合A 与B 的差集, 记作A -B .若A ={1,2,3,4}, B ={3,4,5,6}, 则A -B =________.答案:{1,2}解:A -B ={x |x ∈A 且x ∉B } ={1,2,3,4}-{3,4,5,6} = {1,2 }.14.(13分)已知集合A ={x |x 2-ax +a 2-19=0}, 集合B ={x |x 2-5x +6=0}, 是否存在实数a , 使得集合A , B 同时满足下列三个条件?①A ≠B ;②A ∪B =B ;③∅ (A ∩B ).若存在, 求出这样的实数a 的值;若不存在, 说明理由.解:由已知条件可得B ={2,3}, 因为A ∪B =B , 且A ≠B , 所以A ⊆B , 又A ≠∅, 所以A ={2}或A ={3}.当A ={2}时, 将2代入A 中方程, 得a 2-2a -15=0, 所以a =-3或a =5, 但此时集合A 分别为{2, -5}和{2,3}, 与A ={2}矛盾.所以a ≠-3, 且a ≠5.当A ={3}时, 同上也能导出矛盾.综上所述, 满足题设要求的实数a 不存在.第5课时 补集1.已知全集U={0,1,3,5,6,8}, 集合A={1,5,8}, B={2}, 则集合(∁U A)∪B=()A.{0,2,3,6} B.{0,3,6}C.{1,2,5,8} D.∅答案:A解析:依题意, 知∁U A={0,3,6}, 又B={2}, 所以(∁U A)∪B={0,2,3,6}.故选A.2.设集合U={1,2,3,4,5}, A={1,3,5}, B={2,3,5}, 则∁U(A∩B)等于()A.{1,2,4} B.{4}C.{3,5} D.{∅}答案:A解析:易知:A∩B={3,5}, 则∁U(A∩B)={1,2,4}, 故选A.3.设全集U={1,2,3,4,5,6,7}, 集合A={1,3,5,7}, B={3,5}, 则下列各式正确的是() A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B) D.U=(∁U A)∪(∁U B)答案:C解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U.故选C.4.已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩(∁I M)=∅, 则M∪N=() A.M B.NC.I D.∅答案:A解析:由N∩(∁I M)=∅, 可知N与∁I M没有公共元素, 则N⊆M, 又M≠N, 所以N M, 所以M∪N=M.故选A.5.已知集合A={x|x<a}, B={x|1<x<2}, 且A∪(∁R B)=R, 则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}答案:C解析:由于A∪(∁R B)=R, 则B⊆A, 可知a≥2.故选C.6.如图所示, I是全集, M, P, S是I的3个子集, 则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案:C解析:阴影部分是M与P的公共部分, 且在S的外部, 故选C.7.设集合M ={3,4,7,9}, N ={4,5,7,8,9}, 全集U =M ∪N , 则集合∁U (M ∩N )中的元素共有________个.答案:3解析:因为U =M ∪N ={3,4,5,7,8,9}, M ∩N ={4,7,9}, 则∁U (M ∩N )={3,5,8}, 可知其中的元素有3个.8.已知集合A ={x |-2≤x <3}, B ={x |x <-1}, 则A ∩(∁R B )=________. 答案:{x |-1≤x <3} 解析:因为B ={x |x <-1}, 则∁R B ={x |x ≥-1}, 所以A ∩(∁R B )={x |-2≤x <3}∩{x |x ≥-1}={x |-1≤x <3}.9.高一(1)班共有学生50人, 其中参加诗歌鉴赏兴趣小组的有30人, 参加书法练习兴趣小组的有26人, 同时参加两个兴趣小组的有15人, 则两个兴趣小组都没有参加的学生有________人.答案:9解析:设参加诗歌鉴赏兴趣小组的学生组成集合A , 参加书法练习兴趣小组的学生组成集合B , 如图所示, 依题意card(A )=30, card(B )=26, card(A ∩B )=15, 则card(A ∪B )=30+26-15=41.所以两个兴趣小组都没有参加的学生有50-41=9(人).三、解答题(本大题共4小题, 共45分)10.(12分)已知全集U ={3, a 2-3a -2,2}, A ={3, |a -1|}, ∁U A ={-2}, 求实数a 的值. 解:因为A ∪(∁U A )=U ,所以{3, -2, |a -1|}={3, a 2-3a -2,2},从而⎩⎪⎨⎪⎧a 2-3a -2=-2|a -1|=2, 解得a =3.11.(13分)已知全集U ={x |x ≤4}, 集合A ={x |-2<x <3}, B ={x |-3≤x ≤2}. (1)求(∁U A )∪B ; (2)求A ∩(∁U B ).解:易知∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. 则(1)(∁U A )∪B ={x |x ≤2或3≤x ≤4}. (2)A ∩(∁U B )={x |2<x <3}.能力提升12.(5分)已知全集U ={1,2,3,4,5}, A ={1,5}, B ∁U A , 则集合B 的个数是( ) A .5 B .6 C .7 D .8B∁A.M=N B.M⊆NC.M⊇N D.M, N无公共元素答案:D解析:因为M={(x, y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集, 而N={-3,1}是数集, 所以两个集合没有公共元素, 故选D.6.已知全集U=R, 集合A={x|1<x≤3}, B={x|x>2}, 则A∩(∁U B)等于()A.{x|1<x≤2} B.{x|1≤x<2}C.{x|1≤x≤2} D.{x|1≤x≤3}答案:A解析:U=R, ∴∁U B={x|x≤2}, A∩∁U B={x|1<x≤3}∩{x|x≤2}={x|1<x≤2}.选A.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.已知集合U=R, A={x|-2<x≤5}, B={x|4≤x<6}, 则∁U(A∪B)=________.答案:{x|x≤-2或x≥6}解析:(A∪B)={x|-2<x<6}又U=R, 所以可得∁U(A∪B)={x|x≤-2或x≥6}.8.如图所示, 阴影部分表示的集合为________.答案:∁U(A∪B)∪(A∩B)解析:阴影部分有两类:(1)∁U(A∪B);(2)A∩B.9.设集合M={x|x>1, x∈R}, N={y|y=2x2, x∈R}, P={(x, y)|y=x-1, x∈R, y∈R}, 则(∁R M)∩N=________, M∩P=________.答案:{x|0≤x≤1}∅解析:因为M={x|x>1, x∈R}, 所以∁R M={x|x≤1, x∈R}, 又N={y|y=2x2, x∈R}={y|y≥0}, 所以(∁R M)∩N={x|0≤x≤1}.因为M={x|x>1, x∈R}表达数集, 而P={(x, y)|y=x -1, x∈R, y∈R}表示点集, 所以M∩P=∅.三、解答题(本大题共4小题, 共45分)10.(12分)某班有50名学生, 有36名同学参加学校组织的数学竞赛, 有23名同学参加物理竞赛, 有3名学生两科竞赛均未参加, 问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U, 其中含有50名学生, 设集合A表示参加数学竞赛的学生, B表示参加物理竞赛的学生, 则U中元素个数为50, A中元素个数为36, B中元素个数为23, 全集中A、B 之外的学生有3名, 设数学、物理均参加的学生为x名, 则有(36-x)+(23-x)+x+3=50, 解得x=12.所以, 本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知集合A={x|2<x<7}, B={x|2<x<10}, C={x|5-a<x<a}.(1)求A∪B, (∁R A)∩B;(2)若C⊆B, 求实数a的取值范围.={x|∅满足题设条件, 易知A BA B∅第7课时函数的有关概念第9课时映射与分段函数答案:B解析:因为|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (x ≤0或x ≥2),-x 2+2x (0<x <2),所以所求的图象为B 选项.5.设集合A ={a , b }, B ={0,1}, 从A 到B 的映射共有______个( )A .2B .3C .4D .5 答案:C解析:如图:(2)y =x 2-2|x |-1=⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图所示.11.(13分)已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1x 2-2x ,x ≥1.(1)试比较f (f (-3))与f (f (3))的大小;(2)画出函数f (x )的图象; (3)若f (x )=1, 求x 的值.解:(1)因为-3<1, 所以f (-3)=-2×(-3)+1=7, 又因为7>1, 所以f (f (-3))=f (7)=72-2×7=35. 因为3>1, 所以f (3)=32-2×3=3, 所以f (f (3))=3. 所以f (f (-3))>f (f (3)).(2)函数图象如图实线部分所示.而f(x1)<0, f(x2)<0, ∴f(x1)f(x2)>0. ∴F(x2)-F(x1)<0, 即F(x2)<F(x1).∴F(x)在(0, +∞)上为减函数.。

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第二、三章_滚动性检测

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第二、三章_滚动性检测

第二、三章滚动性检测 时间:120分钟 分值:150分一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.已知集合A ={y |y =log 3x ,x >1},B =⎝⎛⎭⎬⎫y ⎪⎪y =⎝⎛⎭⎫13x ,x >1,则A ∩B =( ) A.⎩⎨⎧⎭⎬⎫y ⎪⎪0<y <13 B .{y |0<y <1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪13<y <1 D .∅ 答案:A解析:由x >1可得y =log 3x >log 31=0,y =⎝⎛⎭⎫13x <⎝⎛⎭⎫131=13,因此A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y ⎪⎪0<y <13,所以A ∩B =⎩⎨⎧⎭⎬⎫y ⎪⎪0<y <13,选A. 2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),3x (x ≤0),)则f ⎣⎡⎦⎤f ⎝⎛⎭⎫14的值是( ) A .9 B.19C .-9D .-19答案:B解析:f ⎣⎡⎦⎤f ⎝⎛⎭⎫14=f ⎝⎛⎭⎫log 214=f (log 22-2)=f (-2)=3-2=19,故选B. 3.函数的定义域是( ) A.⎝⎛⎭⎫34,+∞ B .(-∞,1] C.⎝⎛⎦⎤34,1 D .[1,+∞) 答案:C 解析:由对数的真数大于0且根号内非负可知4x -3>0且log 12(4x -3)≥0,即4x -3>0且0<4x -3≤1,解得34<x ≤1,选C.4.若a =20.5,b =log π3,c =log 20.3,则( ) A .b >c >a B .b >a >c C .c >a >b D .a >b >c 答案:D解析:显然a =20.5=2>1,0=log π1<log π3<log ππ=1,即0<b <1,c =log 20.3<log 21=0,因此a >b >c ,选D.5.一种商品连续两次降价10%后,欲通过两次连续提价(每次提价幅度相同)恢复原价,则每次应提价( )A .10%B .20%C .5%D .11.1% 答案:D解析:设原价为a ,则两次降价后价格为0.81a =81100a .设每次提价x ,则81100a (1+x )2=a ,于是1+x =109.即x =19≈11.1%6.某农村在2003年年底共有人口1500人,全年工农业生产总值为3000万元,从2004年起该村的总产值每年增加50万元,人口每年净增25人.设从2004年起的第x 年年底(2004年为第一年,x ∈N *)该村人均产值为y 万元.则到2014年底该村人均产值y 是( )A .1万元B .1.5万元C .2万元D .2.5万元 答案:C解析:由题意得,第x 年总产值为3000+50x 万元,人口数为1500+25x ,则x =f (x )=3000+5x1500+25x,x ∈[1,10],x ∈N *.当x =11时,y =2(万元).7.已知函数f (x )的定义域为R ,f (x )在R 上是减函数,若f (x )的一个零点为1,则不等式f (2x -1)>0的解集为( )A.⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-∞,12 C .(1,+∞) D .(-∞,1) 答案:D解析:由f (x )是定义在R 上的减函数且f (x )的一个零点为1,易知当x <1时f (x )>0,所以f (2x -1)>0等价于2x -1<1,解得x <1,因此选D.8.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为( )A .-1,1,3B .-1,1C .-1,3D .1,3 答案:D解析:当α=-1时,y =1x ,此时x 不能为0,因此不符合;当α=1时,y =x ,显然定义域为R 且为奇函数,因此符合;当α=12时,y =x ,此时x 不能为负数,因此不符合;当α=3时,y =x 3,显然定义域为R 且为奇函数,因此符合,所以所有符合条件的α值包括1,3,选D.9.已知函数f (x )=a x 在(0,2)内的值域是(a 2,1),则函数y =f (x )的图象是( )答案:A 解析:由f (x )=a x 在(0,2)内的值域是(a 2,1)可知函数必为减函数,而且是指数函数,因此显然只有A 符合. 10.已知函数f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,且当x >0时,f (x )=x 2-x +a ,若函数g (x )=f (x )-x 的零点恰有两个,则实数a 的取值范围是( )A .a <0B .a ≤0C .a ≤1D .a ≤0或a =1 答案:D解析:由于f (x )为奇函数,且y =x 是奇函数,所以g (x )=f (x )-x 也应为奇函数,所以由函数g (x )=f (x )-x 的零点恰有两个,可见两零点必定分别在(-∞,0)和(0,+∞)内,由此得到函数g (x )=x 2-2x +a 在(0,+∞)上仅有一个零点,即函数y =-(x -1)2+1与直线y =a 在(0,+∞)上仅有一个公共点,数形结合易知应为a ≤0或a =1,选D.11.已知函数f (x )唯一的零点在区间(1,4)和(2,5)内,那么下列说法正确的是( ) A .函数f (x )在(1,2)内有零点 B .函数f (x )在(4,5)内有零点 C .函数f (x )在(2,4)内有零点D .函数f (x )的零点以上都有可能 答案:C解析:因为函数f (x )唯一的零点在区间(1,4),(2,5)内,所以必在(2,4)内.12.若方程2ax 2-x -1=0在(0,1)内恰有一个实数解,则实数a 的取值范围是( ) A .(-∞,-1) B .(1,+∞)。

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第三章_单元检测

人教版数学a版高一必修1(45分钟课时作业与单元测试卷):第三章_单元检测

第三章单元检测时间:120分钟 分值:150分一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.某细胞分裂时,由1个分裂成2个,2个分裂成4个,…,这样细胞分裂x 次后,得到细胞总数y 与x 的函数关系是( )A .y =2x +1-1(x ∈N *)B .y =2x (x ∈N *)C .y =2x -1(x ∈N *)D .y =2x +1(x ∈N *)答案:B解析:由于1个细胞分裂成2个,2个分裂成4个,经过x 次后应分裂为2x 个,故函数关系为y =2x ,x ∈N *,故选B.2.函数y =2x -3的零点是( )A .log 23 B.12C.32D .log 32 答案:A3.固定电话市话收费规定:前三分钟0.22元(不满三分钟按三分钟计算),以后每分钟0.11元(不满一分钟按一分钟计算),那么某人打市话550秒,应该收费( )A .1.10元B .0.99元C .1.21元D .0.88元答案:B解析:由题意可得0.22+7×0.11=0.994.二次函数y =ax 2+bx +c 中,ac <0,则函数的零点个数是( )A .1个B .2个C .0个D .无法确定答案:B解析:∵ac <0,∴Δ=b 2-4ac >0,故二次函数y =ax 2+bx +c 有两个零点.5.下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( )答案:C解析:能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )·f (b )<0.A 、B 选项中不存在f (x )<0,D 选项中函数不连续.故选C.6.函数f (x )=e x -1x的零点所在的区间是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,2 答案:B解析:计算得f ⎝⎛⎭⎫12= e -2<0,f (1)=e -1>0,则有f ⎝⎛⎭⎫12f (1)<0,故选B. 7.某企业生产的一种电子产品的成本是每件500元,计划在今后的3年内,使成本降低到每件256元,则平均每年成本应降低( )A .10%B .15%C .20%D .25%答案:C解析:设平均每年降低百分比为x ,则500(1-x )3=256,解得x =20%.8.某种植物生长发育的数量y 与时间x 的关系如下表:x 1 2 3 …y 1 3 8 …下面的函数关系式中,能表达这种关系的是( )A .y =2x -1B .y =x 2-1C .y =2x -1D .y =1.5x 2-2.5x +2答案:D解析:代入数据验证即可知道选项D 正确.9.已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1答案:A解析:令f (x )=x +2x =0,因为2x 恒大于零,所以要使得x +2x =0,x 必须小于零,即x 1小于零;令g (x )=x +ln x =0,要使得ln x 有意义,则x 必须大于零,又x +ln x =0,所以ln x <0,解得0<x <1,即0<x 2<1;令h (x )=x -x -1=0,得x =x +1>1,即x 3>1,从而可知x 1<x 2<x 3.10.已知f (x )=2ax -1+3a ,f (0)<f (1)且在(1,2)内存在零点,则实数a 的取值范围是( )A .(15,13)B .(16,14) C .(17,15) D .(18,16) 答案:C解析:由⎩⎪⎨⎪⎧f (1)<0f (2)>0得17<a <15. 11.如果已知0<a <1,则方程a |x |=|log a x |的实根个数为( )A .2B .3C .4D .与a 的值有关答案:A解析:设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示:由图可知有两个交点,故选A.12.某企业2012年12月份的产值是这年1月份产值的P 倍,则该企业2012年度产值的月平均增长率为( )A.P P -1B.11P -1C. 11PD.P -111答案:B解析:设月平均增长率为r ,1月份产值为1,则2012年12月的产值为:P =1×(1+r )11,所以(1+r )11=P ,即r =11P -1,故选B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若f (x )为R 上的奇函数,且1是该函数的一个零点,则f (0)+f (-1)=________.。

高中北师版数学A版必修1(45分钟课时作业与单元测试卷):3.4.2对数(二)

高中北师版数学A版必修1(45分钟课时作业与单元测试卷):3.4.2对数(二)
A. B.9
C.18D.27
答案:B
解析:原式可化为 · · =log442=2,所以lgm=2lg3=lg9,所以m=9.
5.若x=60,则 + + 的值为()
A.1B.
C.2D.-1
答案:A
解析: + + =log603+log604+log605=log60(3×4×5)=1.
6.设a,b,c都是正数,且3a=4b=6c,那么()
A.1B.
C.2D.3
答案:C
解析:log34·log45·log58·log89= · · · = =2.
3. , ,log ,loga bn, (a,b均为不等于1的正数且ab≠1,n∈N+),其中与logab相等的有()
A.4个B.3个
C.2个D.1个
答案:B
4.设log34·log48·log8m=log416,则m的值是()
∵a,b是这个方程的根,∴
∴lg(ab)·(lgab+logba)=(lga+lgb)·( + )
=2·
=2· =4·(22-2× )=12.
9.计算( + ) =________.
答案:
解析:原式=( - ) =( - ) = .
三、解答题:(共35分,11+12+12)
10.求下列各式的值:
(1)log535+2log5 -log5 -log514;
(2)[(1-log63)2+log62·log618]÷log64.
解:(1)原式=log535+log52-log5 -log514=log5 =log5 =log525=2.
(2)原式= ÷log64=[(log62)2+log62(log636-log62)]÷log64=[(log62)2+2log62-(log62)2]÷log64=2log62÷log64=log64÷log64=1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第24课时 对数函数的性质及其应用
课时目标
1.深刻理解对数函数的图象与性质,能够利用这些性质解决一些较为复杂的问题.
2.理解互为反函数的概念.
识记强化
1.y =log a x (a >0,a ≠1),定义域为(0,+∞),a >1时为增函数,0<a <1时为减函数.
2.互为反函数的两个函数图象关于y =x 对称.
课时作业
(时间:45分钟,满分:90分)
一、选择题(本大题共6小题,每小题5分,共30分)
1.若y =-3log (2a -3)x 在(0,+∞)上是减函数,则实数a 的取值范围为( )
A .(0,1)
B .(0,1)∪(1,+∞)
C.⎝⎛⎭⎫32,2 D .(2,+∞)
答案:D
解析:由已知,得y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2,故选D.
2.设a =log 43,b =ln 3,c =10
12-,则( )
A .a <b <c
B .b <c <a
C .c <a <b
D .c <b <a
答案:C 解析:log 43=1log 34,ln 3=1log 3e ,1012-=110.因为10>3>log 34>log 3e>0,所以0<110<1log 34<1log 3e
,即c <a <b .故选C.
3.若a >0,且log 0.25(a 2+1)>log 0.25(a 3+1),则实数a 的取值范围是( )
A .(0,1)∪(1,+∞)
B .(0,1)
C .(1,+∞)
D .[1,+∞)
答案:C
解析:∵log 0.25(a 2+1)>log 0.25(a 3+1),∴a 2<a 3,即a 2(1-a )<0,∴a >1,故选C.
4.若函数f (x )=⎩⎪⎨⎪⎧
⎝⎛⎭⎫14x ,x ∈[-1,0)4x ,x ∈[0,1],则f (log 43)=( ) A.13
B .3 C.14
D .4 答案:B
解析:由0<log 43<1,得f (log 43)=44log 3
=3.
5.函数f (x )=log 2|2x -4|的图象为( )
答案:A
解析:函数f (x )=log 2|2x -4|的图象可以看作是将函数y =log 2|2x |的图象向右平移2个单位得到的,故选
A.
6.已知函数f (x )=log a x ,在[2,+∞)上恒有|f (x )|>1,则实数a 的取值范围是( )
A .0<a <12或1<a <2
B .0<a <12
或a >2 C.12<a <2且a ≠1 D.12
<a <1或a >2 答案:C
解析:|f (x )|>1在[2,+∞)上恒成立.
当a >1时,由log a x >1⇒x >a ,
由log a x <-1⇒x <1a
,得a <2,所以1<a <2. 当0<a <1时,由log a x >1⇒x <a ,
由log a x <-1⇒x >1a ,得12
<a <1. 综上可知12
<a <2且a ≠1. 二、填空题(本大题共3个小题,每小题5分,共15分)
7.三个数0.76,60.7,log 0.76的大小关系为________.
答案:log 0.76<0.76<60.7
解析:因为60.7>60=1,0<0.76<0.70=1.又因为log 0.76<0,所以log 0.76<0.76<60.7.
8.函数y =log 12|x -3|的单调递减区间是________.
答案:(3,+∞)
解析:令t =|x -3|,则在(-∞,3)上t 为x 的减函数,在(3,+∞)上t 为x 的增函数,又∵0<12
<1,∴在区间(3,+∞)上y 为x 的减函数.
9.函数f (x )=log 13
(mx +6)在(1,3)上是增函数,则实数m 的取值范围是________.
答案:[-2,0)
解析:∵f (x )=log 13
(mx +6)在(1,3)上是增函数,∴y =mx +6在(1,3)上是减函数,并且在(1,3)上恒有mx
+6>0,∴⎩⎪⎨⎪⎧
m <03m +6≥0,解得-2≤m <0,即实数m 的取值范围是[-2,0). 三、解答题(本大题共4小题,共45分)
10.(12分)已知函数f (x )=lg (2+x )+lg (2-x ).
(1)求函数y =f (x )的定义域;
(2)判断函数y =f (x )的奇偶性.
解:(1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧
2+x >02-x >0,解得-2<x <2.
∴函数y=f(x)的定义域为{x|-2<x<2}.
(2)由(1),可知函数y=f(x)的定义域为{x|-2<x<2},关于原点对称,对任意x∈(-2,2),有-x∈(-2,2).
∵f(-x)=lg (2-x)+lg (2+x)=lg (2+x)+lg (2-x)=f(x),
∴函数y=f(x)为偶函数.
11.(13分)已知y=log a(2-a x)在[0,1]上是x的减函数,求a的取值范围.
解:因为a>0且a≠1.
(1)当a>1时,函数t=2-a x>0是减函数,
由y=log a(2-a x)在[0,1]上是关于x的减函数,知y=log a t是增函数,∴a>1.
由x∈[0,1]时,2-a x≥2-a>0,得a<2.
∴1<a<2.
(2)当0<a<1时,函数t=2-a x>0是增函数,
由y=log a(2-a x)在[0,1]上是关于x的减函数,知y=log a t是减函数,∴0<a<1,
由x∈[0,1]时,2-a x≥2-1>0.
∴0<a<1.
综上,0<a<1或1<a<2.
能力提升
12.(5分)设函数f(x)=log a x(a>0,且a≠1),若f(x1·x2·…·x2013)=8,则f(x21)+f(x22)+…+f(x22013)的值等于()
A.4 B.8
C.16 D.2log a8
答案:C
解析:∵f(x)=log a x,f(x1·x2·…·x2013)=8,
∴由对数的运算性质,得f(x21)+f(x22)+…+f(x22013)=f(x21·x22·…·x22013)=f[(x1·x2·…·x2013)2]=log a(x1·x2·…·x2013)2=2log a(x1·x2·…·x2013)=2×8=16.
13.(15分)如图所示,在函数f(x)=log a x(0<a<1,x≥1)的图象上有A,B,C三点,它们的横坐标分别是t,t+2,t+4.
(1)若△ABC的面积为S,求S=f(t);
(2)判断S=f(t)的单调性;
(3)求S=f(t)的最大值.
解:(1)设A,B,C三点的坐标分别为A(t,log a t),B(t+2,log a(t+2)),C(t+4,log a(t+4)),S△ABC=S 梯形AA′B′B
+S梯形BB′C′C-S梯形AA′C′C=2|log a(t+2)|-(|log a t|+|log a(t+4)|).∵t≥1,∴t+2>1,t+4>1.
∵0<a<1,∴由对数的性质,得S=-2log a(t+2)+log a t+log a(t+4)=log a t(t+4)
(t+2)2
.
(2)由(1)知S=log a t(t+4)
(t+2)2=log a[1-
4
(t+2)2
].当t≥1时,(t+2)2单调递增,
4
(t+2)2
单调递减,1-
4
(t+2)2

调递增.∵0<a<1,∴S=f(t)=log a[1-4
(t+2)2
]为递减函数.
(3)∵t≥1,∴(t+2)2≥9,1-
4
(t+2)2

5
9,∵S=f(t)是减函数,∴函数有最大值log a
5
9.。

相关文档
最新文档