电化学水处理技术

合集下载

《2024年电化学水处理技术的研究及应用进展》范文

《2024年电化学水处理技术的研究及应用进展》范文

《电化学水处理技术的研究及应用进展》篇一一、引言随着工业化的快速发展,水资源的污染问题日益严重,传统的水处理方法已经难以满足日益增长的处理需求。

电化学水处理技术作为一种新型的水处理技术,以其独特的优势逐渐受到广泛关注。

本文将详细介绍电化学水处理技术的研究现状、应用进展以及未来发展趋势。

二、电化学水处理技术概述电化学水处理技术是一种利用电化学反应来处理水体的技术。

它主要通过在特定的电场作用下,使水体中的离子发生电解、氧化还原等反应,从而达到去除污染物、消毒杀菌等目的。

电化学水处理技术具有能耗低、处理效率高、环境友好等优点。

三、电化学水处理技术研究进展1. 电解氧化技术:电解氧化技术是电化学水处理技术中的一种重要方法。

通过电解过程,使水体中的有机物在阳极发生氧化反应,达到去除有机物、降低污染的目的。

近年来,研究人员对电解氧化技术的反应机理、影响因素等进行了深入研究,提高了电解效率和处理效果。

2. 电解还原技术:电解还原技术是利用阴极的还原作用去除水体中的重金属离子、硝酸盐等污染物。

研究人员通过优化电极材料、调整电流密度等手段,提高了电解还原技术的处理效果和效率。

3. 电吸附技术:电吸附技术是一种利用电场作用将水体中的离子吸附到电极表面的方法。

近年来,研究人员对电吸附技术的吸附机理、影响因素等进行了深入研究,为电吸附技术的应用提供了理论依据。

四、电化学水处理技术应用进展1. 工业废水处理:电化学水处理技术在工业废水处理中具有广泛应用。

例如,利用电解氧化技术去除有机物、降低COD(化学需氧量);利用电解还原技术去除重金属离子等。

通过电化学水处理技术,可以有效降低工业废水的污染程度,提高废水的可回收利用率。

2. 饮用水处理:电化学水处理技术在饮用水处理中也有重要应用。

例如,利用电吸附技术去除水中的重金属离子、有机物等污染物;利用电解过程产生次氯酸等消毒剂,对水进行消毒杀菌。

通过电化学水处理技术,可以有效保障饮用水的安全性和卫生性。

电化学水处理

电化学水处理

2、酚类
• 目前,国内外对于含酚废水的研究较多,此类废水来源广、 污染重,是芳香化合物的代表。电化学氧化含酚废水的影 响因素有苯酚初始浓度、废水pH值、电流密度、支持电解 质种类等。周明华等[4]以经氟树脂改性的β -PbO2为阳极, 处理含酚模拟废水,在电压为7.0 V,pH值为2.0的条件下, 其COD可降至60 mg/L以下,挥发酚可完全去除。匡少平等 在隔离阴、阳极室条件下进行了电化学法降解含酚废水试 验,苯酚的转化率达95%以上;同时,分别对铅电极和钛 上电沉积二氧化铅的电极作为阳极进行了对比试验,发现 Ti/PbO2电极对苯酚的降解更加彻底。
四、重金属离子废水处理
• 与传统的二维电极相比,电沉积法的三维电极能够增加电 解槽的面体比,且因粒子间距小而增大了物质传质速度, 提高电流效率和处理效果。利用三维电极主要是处理含 Cu2+和Hg2+等的重金属废水,三维电极所提供的特殊表面 和很大的传质速率,能有效地处理稀溶液,这种电极能在 几分钟内将金属质量浓度从100 mg/L降至0.1 mg/L,除去 重金属离子的效率高,需要的空间少。离子交换树脂与铜 粒等比例混合制成的复合三维电极固定床电化学反应器, 用于处理低浓度含铜废水,且无须加入支持电解质(如硫 酸),出口铜质量浓度为0.008 mg/L,达到国家排放标准。
• (3)无污染或少污染性。电化学过程中产生的·无选择地 直接与废水中的有机污染物反应,将其降解为二氧化碳、 水和简单的有机物,没有或很少产生二次污染。电子是电 化学反应的主要反应物,而且电子转移只在电极与废物组 分之间进行,不需添加任何氧化剂、还原剂,避免了由于 添加化学药剂而引起的二次污染,而且还可通过控制电位, 使电极反应具有高度的选择性,防止副反应发生。 • (4)易于控制性。电化学过程一般在常温常压下进行,其 化学过程的主要运行参数是电流和电位,易于控制和测定。 因此,整个过程的可控程度乃至自动控制水平都较高,易 于实现自动控制。 • (5)经济性。电化学系统设备相对简单,设计合理的系统, 其能量效率也比较高,因此,操作与维护费用低。同时, 作为一种清洁的处理工艺,其设备占地面积小,特别适用 于人口拥挤城市的污水处理。

电化学水处理技术介绍及电凝聚.

电化学水处理技术介绍及电凝聚.
电化学水处理技术介绍及电凝聚 气浮法处理垃圾渗沥液展望
成员:庞长泷、郭旭、李东晨
一、背景
起源于本世纪初的传统污水生物处理技术, 为缓解人类活动造成的水环境污染做出了巨 大贡献。随着工业化的发展,污水成分变得 日渐复杂多样化,这样的污水由于对生物的 毒性和实际应用空间上的限制,使得传统的 污水生物处理方法在应用上面临着许多技术 上难以解决的难题。另外,含有难降解物质 的污水虽然可用化学氧化法处理,但该氧化 法在药剂用量控制上操作复杂,成本高,还 会造成药剂在处理水中的残留。
渗沥液原水及UASB 反应器出水的 有关水质指标
Raw leachate
pH
7. 7±0. 3
COD(mg·L - 1) 15 700±1 700
BOD5(mg·L - 1) TOC(mg·L - 1)
4 200±230 4 600±150
NH3-N(mg·L - 1) 2 260±230
UASB effluent 8. 5±0. 2 1 500±160 75±20 470±140 2 540±250
8) 既可以作为单独处理,又可以与其他处理相结合, 如作为前处理,可以提高废水的可生物降解性;9) 兼 具气浮、絮凝、消毒作用;
10) 作为一种清洁工艺,其设备占地面积小,特别适合 于人口拥挤城市污水处理.
正因为有如此之多的优点,电化学水处理方法 是处理工业废水、生活污水等实现水的零排 放具有开发前景的水处理技术。该技术研究 横跨物理、化学、生物、工程等多门学科, 是典型的学科综合交叉,迄今的研究还很不 够,作为一种高效水处理技术值得进一步开 发研究。此外,电化学水处理技术被称为“环 境友好”技术,在绿色工艺方面极具潜力,可望 得到广泛应用。
3 、电化学反应器的结构。废水常为稀溶液,电导 率太小时,一般可由加入支持电解质或减小阴、阳极 间距来解决;而为使低浓度有机污染物有效地发生降 解,必须改善电化学反应器的结构。目前提出的一种 新技术即三维电极(或三微电极、立体电极、三元

电化学水处理技术

电化学水处理技术

改进——复合金属氧化物电极
3、 内电解法
内电解法又称为微电解法,是基于电 化学反应的氧化还原、电池反应产物的絮 凝、铁屑对絮体的电附集、新生絮体的吸
附以及床层过滤的综合作用。微电解法以
铁屑和炭构成原电池,污染物在正,负极 上生化学反应,加上原电池自身的电附集 、物理吸附及絮凝等作用达到去除污染物 的目的。微电解法不消耗能源,处理费用 低,使用的铁屑多来自切削工业的废料, 具有以废治废的意义。 铁碳内电解填料
电化学水处理技术
电化学水处理技术的分类
直接电解 按作用机理分类 间接电解 阳极过程 阴极过程 可逆过程 不可逆过程
直接电解是指污染物在电极上直接被氧化或还原而从废水中去除。直接电解可 分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小 的物质或易生物降解的物质,从而达到削减、去除污染物的目的。阴极过程就是污 染物在阴极表面还原而得以去除,主要用于卤代烃的还原脱卤和重金属的回收。 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染 物转化成毒性更小的物质。间接电解分为可逆过程和不可逆过程。可逆过程是指氧 化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电化 学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H2O2和O3等氧化有机物 的过程。
目前常采用的电极仍然是石墨、铝板、铁板、不锈钢和一 些不溶性电极如PbO2及一些贵金属电极如Pt等。石墨 电极强度较 差,在电流密度较高时电极损耗较大,电流效率低。而铝板或铁 板为可溶性电极,电极本身材料消耗量大,成本高,因此产生的 污泥量也大。不溶性电极PbO2的氧化能力虽然高于石墨电极,鉴 于目前用于有机废水氧化降解处理中时间长、效率低,而且电极 容易因污染而失活,电极材料种类不多且工作寿命不长。

8种电化学水处理方法

8种电化学水处理方法

8种电化学水处理方法电化学水处理-世间万物,都是有一利就有一弊。

社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。

废水就是其中之一。

随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。

为了处理每天大量排出的工业废水,人们也是蛮拼的。

物、化、生齐用,力、声、光、电、磁结合。

今天笔者为您总结用电’ 来处理废水的电化学水处理技术。

电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。

电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为环境友好’ 技术。

电化学水处理的发展历程1799 年Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源1833 年建立电流和化学反应关系的法拉第定律。

19世纪70年代Helmholtz提出双电层概念。

任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。

两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。

1887 年Arrhenius提出电离学说。

1889 年Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。

1903 年Morse 和Pierce 把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。

1905年提出Tafel 公式,揭示电流密度和氢过电位之间的关系。

1906年Dietrich 取得一个电絮凝技术的专利,专门有人和公司对电絮凝过程进行改进和修正。

1909年Harries (美国)取得电解法处理废水的专利,它是利用自由离子的作用和铝作为阳极。

1950年Juda首次试制成功了具有高选择性的离子交换膜,这促使电渗析技术进入了实用阶段,奠定了电渗析的实用化基础。

电化学水处理

电化学水处理

四、重金属离子废水处理
• 与传统的二维电极相比,电沉积法的三维电极能够增加电 解槽的面体比,且因粒子间距小而增大了物质传质速度, 提高电流效率和处理效果。利用三维电极主要是处理含 Cu2+和Hg2+等的重金属废水,三维电极所提供的特殊表面 和很大的传质速率,能有效地处理稀溶液,这种电极能在 几分钟内将金属质量浓度从100 mg/L降至0.1 mg/L,除去 重金属离子的效率高,需要的空间少。离子交换树脂与铜 粒等比例混合制成的复合三维电极固定床电化学反应器, 用于处理低浓度含铜废水,且无须加入支持电解质(如硫 酸),出口铜质量浓度为0.008 mg/L,达到国家排放标准。
2、酚类
• 目前,国内外对于含酚废水的研究较多,此类废水来源广、 污染重,是芳香化合物的代表。电化学氧化含酚废水的影 响因素有苯酚初始浓度、废水pH值、电流密度、支持电解 质种类等。周明华等[4]以经氟树脂改性的β -PbO2为阳极, 处理含酚模拟废水,在电压为7.0 V,pH值为2.0的条件下, 其COD可降至60 mg/L以下,挥发酚可完全去除。匡少平等 在隔离阴、阳极室条件下进行了电化学法降解含酚废水试 验,苯酚的转化率达95%以上;同时,分别对铅电极和钛 上电沉积二氧化铅的电极作为阳极进行了对比试验,发现 Ti/PbO2电极对苯酚的降解更加彻底。
6、其他电化学方法
• 电吸附、离子交换辅助电渗析以及电化学膜分离 等技术不仅可以用作清洁生产工艺,预防环境污 染,而且它们也是有效的工业废水处理方法。电 吸附法可以用来分离水中低浓度的有机物和其他 物质;离子交换辅助电渗析法具有可多样化设计、 适用范围广等优点,已成为环保开发应用的热点 技术;电化学膜分离技术是利用膜两侧的电势差 进行物质分离,常用于气态污染物的分离。

电化学水处理技术

电化学水处理技术

一、电化学基本概念
4、电极
一、电化学基本概念
电极
阴极、阳极:按照电荷的流动方向分
一、电化学基本概念
电极
按照电化学体系中的作用分

工作电极(working electrode) 辅助电极(counter electrode) 参比电极(reference electrode)
一、电化学基本概念
二、电化学水处理技术
4、主要技术



电化学氧化 电化学还原 电吸附 电凝聚 电渗析
二、电化学水处理技术
4.1电化学氧化(阳极过程)
利用不溶性阳极的直接电解氧化作用,或阳极反应产物(Cl2、 ClO-、O2)间接的氧化作用,降解消除水中的氰、酚以及COD、 S2-等污染物。

直接氧化
使有机物或还原性无机物氧化为无害物质, 对于难降解有毒有机物转化有意义
一、电化学基本概念
6、原电池与电解池
电解池
(electrolytic cell)
二、电化学水处理技术
1、定义

电化学水处理技术是指在外加电场的 作用下,在特定的电化学反应器内, 通过一定的化学反应、电化学过程或 物理过程,对废水中的污染物进行降 解的过程。
二、电化学水处理技术
2、基本原理 阳极过程:有机物氧化
直 接 电 解 原 理 间 接 电 解
阴极过程:卤代烃、重金属
可逆过程:金属氧化物高低价态 转化 不可逆过程:产生的强氧化性物质 或自由基
二、电化学水处理技术
3、电化学技术的优点
1、 环境兼容性高 电化学技术中使用清洁、有效的电 子作为强氧化还原试剂, 是一种基本对环境无污染的 “绿色”生产技术。 2、多功能性 电化学过程具有直接或间接氧化与还原、 相分离、浓缩与稀释、生物杀伤等功能,能处理到 1 ×10-6L的气、液体和固体污染物。 3、能量高利用率 与其他一些过程相比, 电化学过程可 在较低温度下进行。它不受卡诺循环的限制,能量利 用率高。通过控制电位、合理设计电极与电解池,减 小能量损失。 4、经济实用 设备、操作简单, 费用低。

污水处理电化学处理技术

污水处理电化学处理技术

高级氧化技术普通针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。

第一节电化学处理技术电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或者间接电化学而得到转化,从而达到削减和去除污染物的目的。

根据不同的氧化作用机理,可分为直接电解和间接电解。

直接电解是指污染物在电极上直接被氧化或者还原而从废水中去除今直接电解可分为阳极过程和阴极过程。

阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或者易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。

阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。

直接电解过程伴有着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。

间接电解是指利用电化学产生的氧化还原物质作为反应剂或者催化剂,使污染物转化成毒性小的物质。

间接电解分为可逆过程和不可逆过程。

可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。

不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、 H202 和 O2 等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、 HO、H02/02 等自由基。

1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性;2) 普通电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高;3)有的电化学水处理工艺需消耗电能,运行成本大。

电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。

按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。

电化学水处理技术

电化学水处理技术

谢 谢
阳极材料综述
• 由于有机物的氧化降解多发生在阳极,因此,电 极表面化学性质稳定、电化学催化性能优良、电 催化性能不易失活、电极的电势窗口宽的阳极材 料成为目前研究的重点。尽管为数众多的阳极材 料都有氧化有机物的功能,但其处理效果却各有 不同。
1、传统电极
• 传统的电极材料有石墨、铁板、不绣钢、PbO2以及一些贵金属如Pt等。
• 贵金属Pt , Au等电极稳定、耐腐蚀,催化活性良好,但成本高,且极 易被含硫有机物、氧化中间产物、CO等物质毒化而丧失其电催化性能, 导致氧化电流效率急剧下降,难以应用于实际工程中。
2、过渡金属涂层钛电极
• 过渡金属涂层主要包括 Ir 、 Pt 、 Ru 、 Rn 等 金属或合金,它们能与反应物分子作用而 形成特征吸附键,活化分子,因而具有较 好的催化活性,但造价昂贵。
5、活性炭纤维电极
• 活性炭纤维由于具有导电、吸附及催化等综合性能,以它
为电极用电化学氧化法来处理有机废水,可通过吸附作用
使有机物在其表面富集,而吸附物在电催化氧化作用下可 以在吸附过程中进行氧化降解,使吸附表面不断更新 ,从 而实现了吸附、电解脱附过程的连续进行,充分利用了 ACF优异的吸附性能和电催化氧化作用,在处理有机废水 方面很有发展前途。
四、氨氮和氰废水处理
电催化氧化法去除氨氮的原理是:废水进入电 解系统后,在不同条件下,阳极上可能发生两种 氧化反应:一是氨直接被氧化成氮气脱除;二是 氨间接电氧化。即通过电极反应生成氧化性物质, 该物质再与氨反应,使氨降解、脱除。液态化电 极电解法首先将含氰废水中的CN-氧化为氰酸根, 再进一步氧化为CO2和H2O。由于低浓度含氰废水 中的电解质浓度低,电解时极间电压高,电流效 率低,故一般加入NaCl作电解质。采用液态化电 极时,电极反应在膨胀石墨颗粒表面进行,废水 的循环流动和膨胀石墨颗粒的频繁碰撞,使得液 态石墨颗粒间的传质速度加快,浓差极化和电ห้องสมุดไป่ตู้ 学极化现象显著减小,从而加快反应的进行。

电厂化学EDI水处理技术

电厂化学EDI水处理技术
加强对EDI技术应用的管理和监测,制定相应的 操作规程和安全标准,保障水处理过程的安全 和可靠性。
对未来研究的展望
01
未来研究应深入探讨EDI技术 的原理和应用,进一步优化 EDI设备的结构和性能,提高 其处理能力和效率。
02
研究EDI技术与其他水处理技 术的结合应用,形成更为高效 、环保的水处理工艺流程,以 满足不同领域的水质要求。
EDI技术具有操作简便、维护成本低、使用寿命长等优点,但也存在对进水水质要求高、易受污染和结 垢等问题,需要加强预处理和后处理措施。
对电厂化学水处理行业的建议
电厂化学水处理行业应加强技术创新和研发, 推广应用新型的EDI技术和设备,提高水处理效 率和质量。
建立健全的预处理和后处理流程,确保进水水 质稳定、减少污染和结垢等问题,提高EDI设备 的运行效率和稳定性。
02
延长设备使用寿命
03
降低运行成本
EDI技术能够有效地保护设备, 延长其使用寿命,降低维修成本。
由于EDI技术的环保节能特性, 可以降低电厂的运营成本,提高 经济效益。
04
EDI技术的前景展望
EDI技术的发展趋势
技术创新
01
随着科技的不断进步,EDI技术将不断优化,提高产水质量和降
低能耗。
智能化控制
EDI技术的优势与局限性
需要稳定的直流电源以保 证正常运行。
对电源要求高
对进水水质有一定要求, 需进行预处理。
对进水水质要求高
设备成本和运行成本相对 较高。
投资成本高
02
电厂化学水处理现状
电厂化学水处理的意义与重要性
保证电厂安全运行
电厂化学水处理是电厂安全运行的重要保障,通过有效的水处理技术,可以防止水垢、腐蚀和微生物 滋生等问题,确保电厂设备正常运行。

电化学水处理技术的应用及效果评估

电化学水处理技术的应用及效果评估

电化学水处理技术的应用及效果评估一、引言近年来,随着工业和城市建设的迅速发展,水资源短缺、水污染等问题越来越严重,给人民生产和生活带来了很大的困扰。

其中,电化学水处理技术越来越受到人们的重视,并得到了广泛的应用。

二、电化学水处理技术的概述电化学水处理技术是指利用电化学原理将电能转化为化学能和电化学能,使水中的污染物发生氧化、还原、析出等反应来净化水的方法。

按其作用原理分为离子交换、电渗析、电吸附、电解、电膜等多种类型。

(一)离子交换离子交换是指利用具有亲合性的树脂或其他吸附剂将水中的离子吸附,并释放出相应的离子。

当水中有害物质与树脂表面上的离子发生吸附反应时,原先吸附在树脂上的交换阴、阳离子被释放出来,而树脂表面吸附的有害物则被替代吸附,从而达到净化水的效果。

(二)电渗析电渗析是指利用离子在均匀电场中的迁移来对水进行电化学分离的过程。

具体来说,电场使得离子在基质液中发生向阴、阳极方向的迁移,电荷对应的正离子向阴离子迁移,而负离子则向阳离子迁移以达到离子平衡。

当有害离子不能通过离子交换互换树脂吸附出来时,可以采用电渗析技术对水进行净化。

(三)电吸附电吸附是指利用电场使具有催化性能的材料产生表面上的正、负电荷,从而对水中的离子进行吸附分离。

通过引入正、负电极,使得水中的正、负离子向电极迁移,被电极表面上的对应电荷吸附,从而达到净化水的目的。

(四)电解电解是指利用电能将水中的分子分解为正、负离子,然后以正、负电极吸附分离,去除水中的杂质。

在电解过程中,正离子向阴电极迁移,在电极表面接受电子,还原成原子或低价离子,从而净化水的效果。

(五)电膜电膜是指利用电场引起离子迁移,从而膜上组成的离子产生电动势,在膜上产生差异进而完成对离子、分子的分离。

电膜技术可以净化含油废水、富营养化水体、半导体工业废水和电镀工业废水等。

三、电化学水处理技术的优缺点(一)优点:1.处理效果好:电化学水处理技术能够对水中主要成分进行有效处理,去除水中的有害物质。

电化学水处理技术共74页

电化学水处理技术共74页
电化学水处理技术

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
Hale Waihona Puke •10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

电化学工业水处理技术

电化学工业水处理技术

精品整理
电化学工业水处理技术
一、技术概述
采用金属铁或铝及合金材料作为电极,通过对极板加电,使极板电解消耗析出Fe3+或Al3+进入水中,与水中溶解的OH-结合生成Fe(OH)3或Al(OH)3以及其他各类聚合物,所形成的聚合物作为一种高活性的吸附基团,有着极强的吸附性,吸附水中的胶体颗粒、悬浮物、高分子有机物等杂质共同沉降。

通过电活性絮凝作用,可以有效降低水中的浊度、悬浮物胶体等。

二、技术优势
(1)该技术集絮凝、微气浮、氧化还原等多种作用为一体
(2)进水指标宽泛,抗冲击能力强,出水水质稳定,不产生二次污染
(3)水回收率高,可达98%以上
(4)设备投资低,工艺单元模块化灵活组合,标准化设计,采用一体化的结构形式,投资远远低于传统的工艺流程组合所需的总体投资
(5)运行成本低,根据水质不同一般吨水运行成本在0.1-0.3元/吨水
(6)设备占地面积小,集成度高,运行可靠,操作维护简单
(7)全流程自动化控制,便于规范管理,无需增加人工成本
三、适用范围
主要适用于具有高硬度、高浊度以及重金属污染物的循环水排污水,达标排放污水,RO浓水再处理,电脱盐含油污水,难降解COD污水,焦化废水等工业污水的处理,可以作为脱盐设备的预处理装置,与脱盐设备组合作为污水深度处理回用成套装置。

四、治理效率
浊度、悬浮物及胶体的去除率在90%以上;总硬度、总碱度的去除率为60%以上;Fe、Mn等重金属的去除率在90%以上;COD的去除率在20%~40%;总磷的去除率可达90%以上;水中的油类去除率可达90%;水中的胶体硅去除率可达60%以上。

电化学水处理技术

电化学水处理技术

电化学水处理技术作者:荣福林介绍随着科学技术的迅速发展,工业污染和生态破坏以前所未有的速度显现出来,逐渐的影响着人类的生活,于是人类开始意识到应该保护环境、拯救人类赖以生存的地球,实现可持续发展已成为人类共同的选择。

目前世界各国对工业废水的处理研究甚多,其中电化学法设备占地面积小,操作灵活,排污量小,不仅可以处理无机污染物,也可以处理有机污染物,甚至连一些无法生物降解的有毒有机物与某些含重金属污水都可用此方法进行处理; 再加上风力、核电等新兴发电技术的大力发展和推广应用带来的电能成本降低,使得电化学方法在治理废水方面具有更大的优势。

由于水平有限,文中有不当之处,恳请各位同仁指正。

1电化学法的分类电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学转化,即直接电解和间接电解。

1)直接电解直接电解是指污染物在电极上直接被氧化或还原而从废水中去除。

直接电解可分为阳极过程和阴极过程。

阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。

阴极过程就是污染物在阴极表面还原而得以去除,主要用于卤代烃的还原脱卤和重金属的回收。

2)间接电解间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性更小的物质。

间接电解分为可逆过程和不可逆过程。

可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。

不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H2O2和O3等氧化有机物的过程。

[1]电化学法处理废水的工艺有很多种,其中以微电解技术、电催化技术应用的最为广泛,这里简单介绍一下微电解技术和电催化技术的原理及应用。

2微电解技术原理:微电解技术是目前处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低COD和色度,还可大大提高废水的可生化性。

电化学水处理技术原理

电化学水处理技术原理

电化学水处理技术原理引言水是人类生活中不可或缺的资源,然而,随着人口的增加以及工业化进程的加快,水资源的污染问题愈发突出。

传统的水处理方法难以有效去除水中的有机物、重金属离子等污染物,而电化学水处理技术作为一种新兴的水处理方法,具有高效、环保等优势,逐渐引起了人们的广泛关注。

一、电化学水处理技术的定义和分类电化学水处理技术是利用电化学原理和方法进行水处理的一种技术。

根据其处理过程的不同,电化学水处理技术可分为电解法、电吸附法和电化学氧化法三种。

1. 电解法电解法是利用电流通过水中的污染物,使其发生氧化还原反应,从而达到净化水质的目的。

电解法的主要装置包括阳极、阴极和电解槽。

阳极上的氧化反应产生氧气和化学氧化剂,如次氯酸钠;阴极上的还原反应产生氢气和还原剂,如氢氧化钠。

通过调整电流密度和电解时间等参数,可以实现对水中有机物、重金属离子等污染物的高效去除。

2. 电吸附法电吸附法是利用电化学原理,在电解槽的电极表面上形成电化学双层或电化学吸附层,从而吸附和去除水中的污染物。

电吸附法的主要装置包括电极和电解槽。

电极表面的电化学吸附层具有高比表面积和高吸附能力,能够有效吸附水中的有机物、重金属离子等污染物。

通过调整电极材料、电流密度和电解时间等参数,可以实现对不同污染物的选择性吸附和去除。

3. 电化学氧化法电化学氧化法是利用电流通过水中的污染物,使其发生氧化反应,从而将其转化为无害的物质。

电化学氧化法的主要装置也包括阳极、阴极和电解槽。

阳极上的氧化反应产生氧气和氧化剂,如高价态金属离子;阴极上的还原反应产生氢气和还原剂,如氢氧化钠。

通过调整电流密度和电解时间等参数,可以实现对水中有机物、重金属离子等污染物的高效氧化和去除。

二、电化学水处理技术的优势和应用电化学水处理技术相对于传统的水处理方法,具有以下优势:1. 高效性:电化学水处理技术能够在较短的时间内去除水中的污染物,处理效率高。

2. 环保性:电化学水处理技术无需添加化学药剂,减少了化学药剂对环境的污染。

电化学水处理技术

电化学水处理技术

电化学水处理技术
总结
在废水净化的几种电化学方法中,微电解技术主要用于对难降解的废水进行预处理,提高生化性。

只靠单一的微电解技术,废水难以达到排放标准,还需要配合后续的其它工艺进行深度处理。

填料的研究开发是微电解技术发展的关键;多维电催化设备电极的面积比大大增加,且粒子间距小,因而液相传质效率高,大大提高了电流效率、单位时空效率、污水处理效率和有机物降解效果,同时对电导率低的废水也有良好的适应性。

该技术方法是当今废水处理的技术热点,是高浓度有机废水处理的新潮流、新工艺。

总之,电化学是一门古老而又年轻的学科。

电化学科学的发展和成就举世瞩目,无论是基础研究还是技术应用,从理论到方法,都有许多重大突破。

电化学科学的发展,推动了世界科学的进步,促进了社会经济的发展,对解决人类社会面临的能源、交通、材料、环保、信息、生命等方面,已经出并正在作出巨大的贡献,电化学的未来是灿烂而神奇的。

电化学的发展和突破是难以估量的。

第 1 页共 1 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学水处理技术作者:荣福林来源:《世界家苑·学术》2018年第04期摘要:目前世界各国对工业废水的处理研究甚多,其中电化学法设备占地面积小,操作灵活,排污量小,不仅可以处理无机污染物,也可以处理有机污染物,甚至连一些无法生物降解的有毒有机物与某些含重金属污水都可用此方法进行处理;再加上风力、核电等新兴发电技术的大力发展和推广应用带来的电能成本降低,使得电化学方法在治理废水方面具有更大的优势。

关键词:电化学法;水处理;技术1电化学法的分类电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学转化,即直接电解和间接电解。

1)直接电解直接电解是指污染物在电极上直接被氧化或还原而从废水中去除。

直接电解可分为阳极过程和阴极过程。

阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。

阴极过程就是污染物在阴极表面还原而得以去除,主要用于卤代烃的还原脱卤和重金属的回收。

2)间接电解间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性更小的物质。

间接电解分为可逆过程和不可逆过程。

可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。

不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H2O2和O3等氧化有机物的过程。

[1]电化学法处理废水的工艺有很多种,其中以微电解技术、电催化技术应用的最为广泛,这里简单介绍一下微电解技术和电催化技术的原理及应用。

2微电解技术原理:微电解技术是目前处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低COD和色度,还可大大提高废水的可生化性。

微电解法,又称内电解法、铁还原法、铁碳法、零价铁法等。

该方法处理废水的原理是:利用铁屑中的铁合碳组分构成微小原电池的正极和负极,以充入的废水为电解质溶液,发生氧化-还原反应,形成原电池。

新生态的电极产物活性极高,能与废水中的有机污染物发生氧化还原反应,使其结构、形态发生变化,完成难处理到易处理、由有色到无色的转变。

[2]还原作用:铁屑内电解法处理废水过程中,发生如下反应:电极反应生成的产物具有很高的化学还原活性。

在偏酸性废水中,电极反应产生的新生态H能与废水中的有机物和无机物组分发生氧化还原反应,能使废水中的发色基团破坏甚至使高分子断链,从而达到脱色的目的。

同时,铁是活泼金属,在酸性条件下可把某些硝基化合物还原成可生物降解的胺基化合物,提高BOD5/COD比值,即增强可生化性。

反应式如下:电解生成的铁离子、亚铁离子经水解、聚合而形成的氢氧化铁、氢氧化亚铁聚合体,以胶体形式存在,具有沉淀、絮凝和吸附作用,与污染物一起絮凝产生沉淀,可以去除水中的有机物。

同时在原电池周围的电场作用下,废水中带电胶粒和杂质通过静电引力和表面能的作用附集、凝聚,也可以使废水得到净化。

总之,铁碳内电解法处理废水是絮凝、吸附、架桥、卷扫、电沉积、电化学还原等综合效应的结果。

特点:1.反应速率快,一般工业废水只需要数分钟至数小时;2.作用有机污染物质范围广,如:含有偶氮、碳双键、硝基、卤代基结构的难降解有机物质;3.运行成本极低,只消耗少量的单质铁(最理想并且价廉易得的是金属加工废料铁刨花);4.使用寿命长,操作维护方便,微电解塔只要定期的添加铁屑便可,惰性电极不用更换,腐蚀电极每年补充投入两次;5.具有良好的混凝效果,COD去除率高;6.该方法既可以作为单独的处理方法,又可作为生物法的预处理工艺,除废水的生化性得到提高外,有利于活性污泥的沉降性能和生物膜法的挂膜性能;7.该方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属。

应用:染料、印染废水;焦化废水;石油化工废水;----上述废水在脱色的同时,处理水中的BOD/COD值显著提高。

石油废水;皮革废水;造纸废水、木材加工废水;----上述废水处理水后的BOD/COD值大幅度提高。

电镀废水;印刷废水;采矿废水;其他含有重金属的废水;----可以从上述废水中去除重金属。

有机磷农业废水;有机氯农业废水;----大大提高上述废水的可生化性,且可除磷,除硫化物。

3电催化技术原理:所谓的电催化,是指在电场作用下,存在于电极表面或溶液相中的修饰物能促进或抑制在电极上发生的电子转移反应,而电极表面或溶液相中的修饰物本身并不发生变化的一类化学作用。

由于电场强度很高,对参加电化学反应的分子或离子具有明显的活性作用,使反应所需的活化能大大降低,所以大部分电化学反应可以在远比通常化学反应低得多的温度下进行。

在电催化反应中,由于电极催化剂的作用发生了电极反应,使化学能直接转变成电能,最终输出电流。

[4]电催化反应的共同特点是反应过程包含两个以上的连续步骤,且在电极表面上生成化学吸附中间物。

许多由离子生成分子或使分子降解的重要电极反应均属于此类反应。

有人将它们分为两类:1.离子或分子通过电子传递步骤在电极表面上产生化学吸附中间物,随后吸附中间物经过异相化学步骤或电化学脱附步骤生成稳定的分子。

如酸性溶液中的氢析出反应:式中,M-H表示电极表面上氢的化学吸附物种。

2.反应物首先在电极上进行解离式(dissociative)或缔合式(associative)化学吸附,随后吸附中间物或吸附反应物进行电子传递或表面化学反应。

2)电催化与常规化学催化及电化学反应的区别电催化反应与常规化学催化反应本质的区别在于反应时,在它们各自的反应界面上电子的传递过程是根本不同的。

在常规的化学催化作用中,反应物和催化剂之间的电子传递是在限定区域内进行的。

因此,在反应过程中,既不能从外电路中送入电子,也不能从反应体系导出电子或获得电流。

另外,在常规化学催化反应中,电子的转移过程也无法从外部加以控制。

而在电极催化反应中电子的传递过程与此不同,有纯电子的转移。

电极作为一种非均相催化剂既是反应场所,又是电子的供-受场所,即电催化反应同时具有催化化学反应和使电子迁移的双重功能。

在电催化反应过程中可以利用外部回路来控制超电压,从而使反应条件、反应速度比较容易控制,并可以实现一些剧烈的电解和氧化-还原反应的条件。

电催化反应输出的电流则可以用来作为测定反应速度快慢的依据。

在电催化反应中,反应前后的自由电能变化幅度相当大。

在大多数场合下,由反应的种类和反应条件就可以对反应进行的方向预先估出。

因此对于电解反应来说,通过改变电极电位,就可以控制氧化反应和还原反应的方向。

常规化学催化反应主要是以反应的焓变化为目的,而电催化反应则以自由能变化为目的。

由于自由能的变化和电极电位的变化直接对应,因此可根据电极电位的变化直接测定自由能的变化,由此判断电催化反应的程度。

而对电催化和电化学反应,电催化反应是在电化学反应的基础上,在电极上修饰表面材料及催化材料来产生有强氧化性的活性物种从而提高了降解有机物的能力,而对电化学反应其只是简单的电极反应,其处理效率明显比电催化反应低。

[7]3)多维电催化设备多维电催化设备基于电化学技术原理,利用电解催化反应过程中生成的强氧化粒子(·OH、·O2、H2O2等),与废水中的有机污染物无选择地快速发生链式反应,进行氧化降解。

设备结构是在传统的二维电解电极间装填粒状工作电极,形成多维电极结构。

其主要特点是:阳极采用钛基涂层电极(DSA阳极),极板表面担载有多种催化物质涂层,具有高效、长寿命特点。

在阴、阳极间充填了附载有多种催化材料的导电粒子和不导电粒子,形成复极性粒子电极,提高了液相传质效率和电流效率。

与传统二维电极相比,多维电极的面积比大大增加,且粒子间距小,因而液相传质效率高,大大提高了电流效率、单位时空效率、污水处理效率和有机物降解效果,同时对电导率低的废水也有良好的适应性。

该技术方法是当今废水处理的技术热点,是高浓度有机废水处理的新潮流、新工艺。

[8]多维电催化设备特点:1、多维电极结构,高效催化物质,传质效果好,有机污染物去除率高(COD去除率30-90%),可无选择地将废水中难降解的有毒有机物降解为二氧化碳、水和矿物质,将不可生化的高分子有机物转化为可生化处理的小分子化合物,提高B/C比;2、处理过程中电子转移只在电极与废水组份间进行,氧化反应依靠体系自己产生的羟基自由基进行,不需要添加药液,无二次污染;3、进水污染物浓度无限制,COD浓度可高达数十万mg/L;脱色、去毒效果显著,脱色率50-80%以上;有机污染物降解处理的反应过程迅速,废水停留时间短(30-60min),所需的设备体积小;4、可同时高效去除废水中的氨氮、总磷及色度;5、反应条件温和,常温常压下进行,操作简单、灵活,可通过改变电压、电流、随时调节反应条件,可控性好;6、占地面积小,建设工期短,运行成本低,处理费用省;7、非溶出型DSA阳极,无电极腐蚀、钝化问题,具有高效、长寿命特点;8、环境友好型技术。

9、管理操作科学。

由于化工废水进水参数控制难的特点,选配无线远程监控设备,对进水参数远程监测,提供现场进水超标(pH、电导)报警功能。

4总结在废水净化的几种电化学方法中,微电解技术主要用于对难降解的废水进行预处理,提高生化性。

只靠单一的微电解技术,废水难以达到排放标准,还需要配合后续的其它工艺进行深度处理。

填料的研究开发是微电解技术发展的关键;多维电催化设备电极的面积比大大增加,且粒子间距小,因而液相传质效率高,大大提高了电流效率、单位时空效率、污水处理效率和有机物降解效果,同时对电导率低的废水也有良好的适应性。

该技术方法是当今废水处理的技术热点,是高浓度有机废水处理的新潮流、新工艺。

总之,电化学是一门古老而又年轻的学科。

电化学科学的发展和成就举世瞩目,无论是基础研究还是技术应用,从理论到方法,都有许多重大突破。

电化学科学的发展,推动了世界科学的进步,促进了社会经济的发展,对解决人类社会面临的能源、交通、材料、环保、信息、生命等方面,已经出并正在作出巨大的贡献,电化学的未来是灿烂而神奇的。

电化学的发展和突破是难以估量的。

参考文献[1]曲久辉水处理电化学原理与技术科学出版社北京 2007[2]M.J.Alan著,章学清译.有机电解过程[M].北京:中国工业出版社,1965[3]张婉如,三废处理技术手册废水卷.北京,化学工业出版社,2000[4] 景长勇张新生电催化氧化技术的研究进展[J].化学工程与设备.2010[5]Abruna H D(ed).Electrochemiscal Interfaces-Modern techniques for in-situ characterization,NewYork:VCH,1991[6]别继艳陈建孟王家德电催化氧化技术处理难降解有机废水浙江工业大学 2002[7]刘占孟,向速林,张琦等.染料废水电催化氧化及降解动力学研究[J].环境科学与技术.2006[8]应传友.电催化氧化技术的研究进展[J].化学工程设备2010(作者单位:辽宁绿港科技有限公司)。

相关文档
最新文档