2020年浙江省嘉兴市中考数学试卷(含解析)
2020年浙江省嘉兴市中考数学试题(含答案与解析)
4 / 32
19.已知:如图,在△OAB 中,OA=OB,⊙O 与 AB 相切与点 C.求证:AC=BC. 小明同学的证明过程如下框:
停止平移. 【思考】图 2 中的四边形 ABDE 是平行四边形吗?请说明理由. 【发现】当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3).求 AF 的 长. 活动二:在图 3 中,取 AD 的中点 O,再将纸片 DEF 绕点 O 顺时针方向旋转 α 度 (0≤α≤90),连结 OB,OE(如图 4). 【探究】当 EF 平分∠AEO 时,探究 OF 与 BD 的数量关系,并说明理由.
小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程. 20.经过实验获得两个变量 x(x>0),y(y>0)的一组对应值如下表.
x
1
2
3
4
5
6
y
6
2.9
2
1.5 1.2
1
(1)请画出相应函数的图象,并求出函数表达式. (2)点 A(x1,y1),B(x2,y2)在此函数图象上.若 x1<x2,则 y1,y2 有怎样的大小关系? 请说明理由.
7 / 32
(直线传球过程中球运动时间忽略不计).
数学参考答案与解析
一、选择题(本题有 10 小题,每题 3 分,共 30 分.请选出各题中唯一的正确
选项,不选、多选、错选,均不得分)
1.2020 年 3 月 9 日,中国第 54 颗北斗导航卫星成功发射,其轨道高度约为 36000000m.数
2020年浙江省嘉兴市中考数学试卷-含解析
2020年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m .数36000000用科学记数法表示为( ) A .0.36×108B .36×107C .3.6×108D .3.6×1072.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4B .众数是3C .中位数是5D .方差是3.24.(3分)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√38.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( ) A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×39.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2√5B.10C.4D.510.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=.12.(4分)如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:,使▱ABCD是菱形.13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.16.(4分)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+12x;②当x=0时,x2+12x;③当x=﹣2时,x2+12x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,∠ABH=70°,∠ACH=35°.BD=20m,∠ABH=70°,∠BCD=35°.BC=101m,∠ABH=70°,∠ACH=35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C 重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).2020年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A.0.36×108B.36×107C.3.6×108D.3.6×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:36 000 000=3.6×107,故选:D.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.2【分析】根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可.【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=12+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.5[(2﹣4)故选:C .【点评】本题考查方差、众数、中位数、平均数.关键是掌握各种数的定义,熟练记住方差公式是解题的关键.4.(3分)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .【分析】根据一次函数的性质,判断出k 和b 的符号即可解答.【解答】解:由题意知,k =2>0,b =﹣1<0时,函数图象经过一、三、四象限. 故选:B .【点评】本题考查了一次函数y =kx +b 图象所过象限与k ,b 的关系,当k >0,b <0时,函数图象经过一、三、四象限.5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)【分析】根据关于以原点为位似中心的对应点的坐标的关系,把A 点的横纵坐标都乘以−13即可.【解答】解:∵以点O 为位似中心,位似比为13,而A (4,3),∴A 点的对应点C 的坐标为(−43,﹣1). 故选:B .【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k . 6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.【解答】解:去括号,得:3﹣3x >2﹣4x , 移项,得:﹣3x +4x >2﹣3, 合并,得:x >﹣1, 故选:A .【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√3【分析】根据重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解. 【解答】解:作AM ⊥BC 于M ,如图:重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC 是等边三角形,AM ⊥BC ,∴AB =BC =3,BM =CM =12BC =32,∠BAM =30°, ∴AM =√3BM =3√32, ∴△ABC 的面积=12BC ×AM =12×3×3√32=9√34, ∴重叠部分的面积=69△ABC 的面积=69×9√34=3√32; 故选:C .【点评】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O 和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键.8.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( ) A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【分析】方程组利用加减消元法变形即可.【解答】解:A 、①×2﹣②可以消元x ,不符合题意; B 、②×(﹣3)﹣①可以消元y ,不符合题意; C 、①×(﹣2)+②可以消元x ,不符合题意; D 、①﹣②×3无法消元,符合题意. 故选:D .【点评】此题考查了解二元一次方程组,熟练掌握加减消元法是解本题的关键. 9.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆. 则⊙O 的半径为( )A .2√5B .10C .4D .5【分析】如图,设OA 交BC 于T .解直角三角形求出AT ,再在Rt △OCT 中,利用勾股定理构建方程即可解决问题.【解答】解:如图,设OA 交BC 于T .∵AB =AC =2√5,AO 平分∠BAC , ∴AO ⊥BC ,BT =TC =4,∴AT =2−CT 2=√(2√5)2−42=2, 在Rt △OCT 中,则有r 2=(r ﹣2)2+42, 解得r =5,故选:D.【点评】本题考查作图﹣复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【分析】①当b﹣a=1时,先判断出四边形BCDE是矩形,得出BC=DE=b﹣a=1,CD=BE=m,进而得出AC=n﹣m,即tan=n﹣m,再判断出0°≤∠ABC<90°,即可得出n﹣m的范围;②当n﹣m=1时,同①的方法得出NH=PQ=b﹣a,HQ=PN=m,进而得出MH=n﹣m=1,而tan∠MHN=1b−a,再判断出45°≤∠MNH<90°,即可得出结论.【解答】解:①当b﹣a=1时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADD=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC=ACBC=n﹣m,∵点A,B在抛物线y=x2上,∴0°≤∠ABC<90°,∴tan∠ABC≥0,∴n﹣m≥0,即n﹣m无最大值,有最小值,最小值为0,故选项C,D都错误;②当n﹣m=1时,如图2,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHQ中,tan∠MNH=MHNH=1b−a,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴1b−a≥1,∴b﹣a无最小值,有最大值,最大值为1,故选项A错误;故选:B.【点评】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:AD=DC(答案不唯一),使▱ABCD是菱形.【分析】根据菱形的定义得出答案即可.【解答】解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC(答案不唯一).【点评】此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是13.【分析】直接利用概率公式求解. 【解答】解:蚂蚁获得食物的概率=13. 故答案为13.【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 π ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为12.【分析】由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面半径即可. 【解答】解:连接BC ,由∠BAC =90°得BC 为⊙O 的直径, ∴BC =2√2,在Rt △ABC 中,由勾股定理可得:AB =AC =2, ∴S 扇形ABC =90π×4360=π; ∴扇形的弧长为:90π×2180=π,设底面半径为r ,则2πr =π, 解得:r =12, 故答案为:π,12.【点评】本题考查了圆周角定理、扇形的面积计算方法、弧长公式等知识.关键是熟悉圆锥的展开图和底面圆与圆锥的关系.利用所学的勾股定理、弧长公式及扇形面积公式求值.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程10x=40x+6.【分析】根据“第二次每人所得与第一次相同,”列方程即可得到结论. 【解答】解:根据题意得,10x=40x+6,故答案为:10x=40x+6.【点评】本题考查了由实际问题抽象出分式方程,正确的理解题意是解题的关键. 16.(4分)如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.当点B '恰好落在边CD 上时,线段BM 的长为 √5 cm ;在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为 (√5−32) cm .【分析】第一个问题证明BM=MB′=NB′,求出NB即可解决问题.第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可.【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′=√B′C′2+NC′2=√22+12=√5(cm),∴BM=NB′=√5(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=5 2,∴DE=4−52=32(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1−√5=(4−√5)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2−32+2﹣(4−√5)=(√5−32)(cm).故答案为√5,(√5−3 2).【点评】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).【分析】(1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用平方差公式以及单项式乘以多项式计算得出答案.【解答】解:(1)(2020)0−√4+|﹣3|=1﹣2+3=2;(2)(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣4﹣a.【点评】此题主要考查了实数运算以及平方差公式以及单项式乘以多项式,正确掌握相关运算法则是解题关键.18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.【分析】(1)根据代数式求值,可得代数式的值,根据有理数的大小比较,可得答案;(2)根据完全平方公式,可得答案.【解答】解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)x2+1≥2x.证明:∵x2+1﹣2x=(x﹣1)2≥0,∴x2+1≥2x.故答案为:=;>;>.【点评】本题考查了配方法的应用,利用完全平方非负数的性质是解题关键.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.【分析】连结OC,根据切线的性质和等腰三角形的性质即可得到结论.【解答】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.【点评】本题考查了切线的性质,等腰三角形的性质,熟练正确切线的性质是解题的关键.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.【分析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式.(2)根据反比例函数的性质解答即可.【解答】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.【点评】本题考查描点法画函数图象、反比例函数的性质、待定系数法等知识,解题的关键掌握描点法作图,学会利用图象得出函数的性质解决问题,属于中考常考题型.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是B品牌,月平均销售量最稳定的是C品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.【分析】(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,收到广大顾客的青睐.【点评】考查条形统计图、折线统计图、扇形统计图的意义和制作方法,理解统计图中各个数量及数量之间的关系是解决问题的关键.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,∠ABH=70°,∠ACH=35°.BD=20m,∠ABH=70°,∠BCD=35°.BC=101m,∠ABH=70°,∠ACH=35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)【分析】(1)第二个小组的数据无法计算河宽.(2)第一个小组:证明BC=BH=60m,解直角三角形求出AH即可.第二个小组:设AH=xm,则CA=AHtan35°,AB=AHtan70°,根据CA+AB=CB,构建方程求解即可.【解答】解:(1)第二个小组的数据无法计算河宽.(2)第一个小组的解法:∵∠ABH=∠ACH+∠BHC,∠ABH=70°,∠ACH=35°,∴∠BHC=∠BCH=35°,∴BC=BH=60m,∴AH=BH•sin70°=60×0.94≈56.4(m).第二个小组的解法:设AH=xm,则CA=AHtan35°,AB=AHtan70°,∵CA+AB=CB,∴x0.70+x2.75=101,解得x≈56.4.答:河宽为56.4m.【点评】本题考查解直角三角形的应用,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C 重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.【分析】【思考】由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB∥DE,可得出结论;【发现】连接BE交AD于点O,设AF=x(cm),则OA=OE=12(x+4),得出OF=OA﹣AF=2−12x,由勾股定理可得(2−12x)2+32=14(x+4)2,解方程求出x,则AF可求出;【探究】如图2,延长OF交AE于点H,证明△EFO≌△EFH(ASA),得出EO=EH,FO=FH,则∠EHO=∠EOH=∠OBD=∠ODB,可证得△EOH≌△OBD(AAS),得出BD=OH,则结论得证.【解答】解:【思考】四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=12(x+4),∴OF=OA﹣AF=2−12x,在Rt△OFE中,∵OF2+EF2=OE2,∴(2−12x)2+32=14(x+4)2,解得:x=9 4,∴AF=94cm.【探究】BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.【点评】本题是四边形综合题,考查了平行四边形的判定与性质,平移的性质,矩形的性质,全等三角形的判定与性质,勾股定理,角平分线的定义,平行线的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.24.(12分)在篮球比赛中,东东投出的球在点A 处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B . (1)求该抛物线的函数表达式.(2)当球运动到点C 时被东东抢到,CD ⊥x 轴于点D ,CD =2.6m . ①求OD 的长.②东东抢到球后,因遭对方防守无法投篮,他在点D 处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E (4,1.3).东东起跳后所持球离地面高度h 1(m )(传球前)与东东起跳后时间t (s )满足函数关系式h 1=﹣2(t ﹣0.5)2+2.7(0≤t ≤1);小戴在点F (1.5,0)处拦截,他比东东晚0.3s 垂直起跳,其拦截高度h 2(m )与东东起跳后时间t (s )的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E ?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).【分析】(1)设y =a (x ﹣0.4)2+3.32(a ≠0),将A (0,3)代入求解即可得出答案; (2)①把y =2.6代入y =﹣2(x ﹣0.4)2+3.32,解方程求出x ,即可得出OD =1m ; ②东东在点D 跳起传球与小戴在点F 处拦截的示意图如图2,设MD =h 1,NF =h 2,当点M ,N ,E 三点共线时,过点E 作EG ⊥MD 于点G ,交NF 于点H ,过点N 作NP ⊥MD 于点P ,证明△MPN ∽△NEH ,得出MP PN=NH HE,则NH =5MP .分不同情况:(Ⅰ)当0≤t ≤0.3时,(Ⅱ)当0.3<t ≤0.65时,(Ⅲ)当0.65<t ≤1时,分别求出t 的范围可得出答案.【解答】解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.②东东的直线传球能越过小戴的拦截传到点E.由图1可得,当0≤t≤0.3时,h2=2.2.当0.3<t≤1.3时,h2=﹣2(t﹣0.8)2+2.7.当h1﹣h2=0时,t=0.65,东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=h1,NF=h2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD于点P,∴MD∥NF,PN∥EG,∴∠M=∠HEN,∠MNP=∠NEH,31 ∴△MPN ∽△NEH ,∴MP PN =NH HE ,∵PN =0.5,HE =2.5,∴NH =5MP .(Ⅰ)当0≤t ≤0.3时,MP =﹣2(t ﹣0.5)2+2.7﹣2.2=﹣2(t ﹣0.5)2+0.5,NH =2.2﹣1.3=0.9.∴5[﹣2(t ﹣0.5)2+0.5]=0.9,整理得(t ﹣0.5)2=0.16,解得t 1=910(舍去),t 2=110,当0≤t ≤0.3时,MP 随t 的增大而增大,∴110<t ≤310.(Ⅱ)当0.3<t ≤0.65时,MP =MD ﹣NF =﹣2(t ﹣0.5)2+2.7﹣[﹣2(t ﹣0.8)2+2.7]=﹣1.2t +0.78,NH =NF ﹣HF =﹣2(t ﹣0.8)2+2.7﹣1.3=﹣2(t ﹣0.8)2+1.4,∴﹣2(t ﹣0.8)2+1.4=5×(﹣1.2t +0.78),整理得t 2﹣4.6t +1.89=0,解得,t 1=23+2√8510(舍去),t 2=23−2√8510, 当0.3<t ≤0.65时,MP 随t 的增大而减小,∴310<t <23−2√8510. (Ⅲ)当0.65<t ≤1时,h 1<h 2,不可能.给上所述,东东在起跳后传球的时间范围为110<t <23−2√8510. 【点评】本题是二次函数的综合题,主要考查二次函数的性质,待定系数法,二次函数图象上点的坐标特征,二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及能将实际问题转化为二次函数问题求解.。
2020年浙江省嘉兴市中考数学试题附解析
2020年浙江省嘉兴市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( )A .12B .22C .1D .22.如图,半圆 0 的直径AB 与半圆围成一个区域,要使一只蚂蚁 (看成点 C )在这个区域内,则∠ACB 应该是( ) A .小于90B .大于 90°C . 等于120°D . 大于120°3.下列计算正确的是( ) A .235+=B .236=·C .84=D .2(3)3-=-4.下列判断正确的是( ) A .若0m <,则57m m < B .若x 为有理数,则2257x x <- C .若x 为有理数,则250x +> D .若57m m -<,则0m <5.如图,在 Rt △ABC 中,∠ACB = 90°,DE 过点C 且平行于AB. 若∠BCE = 35°,则∠A 等于( ) A . 35°B .45°C . 55°D . 65°6.小强、小亮、小文三位同学玩投硬币游戏,三人同时各投出一枚均匀硬币,若出现3个正面向上或3个反面向上,则小强赢;若出现2个正面向上,1 个反面向上,则小亮赢;若出现 1 个正面向上,2个反面向上,则小文赢. 下面说法正确的是( ) A .小强赢的概率最小 B .小文赢的概率最小 C .亮赢的概率最小 D .三人赢的概率都相等7.钟表的分针匀速转一周需要1小时,经过35分钟,分针旋转的角度是( ) A .180° B .200°C .210°D .220°8.如图,将长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F .若∠BAF=60°,则∠DAE= ( ) A .150B .30°C . 45°D .60°9.若关于x 的方程230m mx m ++-=是一元一次方程,则这个方程的解是( ) A .1B .-lC .-4D .410.如图中有五个正方形,在:其中的A 、B 、C 、D 四个正方形内分别填入适当的数,使得在相邻两个正方形中的数互为相反数,则填入正方形A 、B 、C 、D 内的四个数依次是( )A .1,-1,-1,-1B .1,-1,1,-1C .-1,1,1,1D .-1,-1,1,111.火车票上的车次号有两个意义:(1)数字越小表示车速越快,如 1~98次为特快列车,101~198次直快列车,301~398次为普快列车,401~498次为普客列车;(2)奇数与偶数表示不同的行驶方向,例如:奇数表示从北京开出,偶数表示开往北京. 根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A . 20B .119C .120D .319二、填空题12.扇形的圆心角是60°,半径是3cm ,则扇形的周长是 cm ,扇形的面积是 cm 2. 13.命题“角平分线上的点到角两边的距离相等”的题设是 , 结论是 . 14.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0,有下列四个结论:①AC=BD ,②梯形ABCD 是轴对称图形,③∠ADB=∠DAC ,④△AOD ≌△AB0,其中正确的是 .15.已知四边形的三个内角的度数如图所示,则图中∠α= .16.如图所示,在□ABCD中,AB=3cm,BC=7cm,∠BAC=90°,AC与BD相交于点0,则BD的长为 cm.17.如图所示,已知AB=DE,BE=CF,AC=DF.请说明∠A=∠D的理由,并完成说理过程.解:∵BE=CF( ).∴BE+EC=CF+ ,即 = .在△ABC与△DEF中,AB=DE( ),= (已证), = (已知),∴△ABC≌△DEF( ).∴∠A=∠D( ).18.如图,(1)能用一个大写字母表示的角是;(2)以A为顶点的角是;(3)图中共有个角(小于平角的角),它们分别是.19.“数a的2倍与 10的和”用代数式表示为 .20.若2++-=,则a b= .a b(2)3021.如图,小明想测一块泥地AB的长度,他在AB的垂线BM上分别取C,D两点,使CD=BC,再过D点作出BM的垂线DN,并在DN上找一点E,使A,C,E三点共线,这时这块泥地AB的长度就是线段的长度.三、解答题22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率m n0.650.620.5930.6040.6010.5990.601(1)请估计:当n 很大时,摸到白球的频率将会接近 .(精确到0.1) (2)假如你摸一次,你摸到白球的概率()P =白球 . (3)试估算盒子里黑、白两种颜色的球各有多少只?23.如图所示,施工工地的水平地面上,有三根外径都是lm 的水泥管,两两外切地堆放在一起,求其最高点到地面的距离是多少?24.如图,OA 、OB 是⊙O 的半径,并且OA ⊥OB ,P 是OA 上任意一点,BP 的延长线交⊙O 于Q ,过Q 的切线交OA 的延长线于R .求证:RP =RQ .25.如图,在Rt ABC △中,90C ∠=,30A ∠=,BD 是ABC ∠平分线,20AD =.求AP QOBC 的长.26.如图,已知图中的两个正五边形是位似图形. (1)AE 的对应线段是哪条线段? (2)请在图中画出位似中心 0,并说明画法.27.已知⊙O 的弦AB 长等于⊙O 的半径,求此弦AB 所对的圆周角的度数.28. 已知关于x 的方程(2)(1)40m m x m x -+-+=, (1)当取何值时,此方程是一元二次方程? (2)当m 取何值时,此方程是一元一次方程?29.比较下面 4 个算式结果的大小(在横线上填“>”“<”或“=”). 2245+ 245⨯⨯;22(1)2-+ 2(1)2⨯-⨯;221(3)()3+ 1233;2233+ 233⨯⨯.通过观察归纳,写出反映这种规律的一般结论.30.计算下列各式,并用幂的形式表示结果: (1)22()m m -⋅-; (2) 83(7)7-⨯ (3) 233()()a a a ⋅-⋅- (4)2()()x y x y +⋅+ (5)422()()33-⋅-(6)11n n x x ++⋅【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.C6.A7.C8.A9.C10.A11.C二、填空题 12.(6)π+,32π13.一个点在角的平分线上,这个点到角两边的距离相等14.①②③15.91°16.417.已知,EC ,BC ,EF ,已知,BC ,EF ,AC ,DF ,SSS ,全等三角形对应角相等18.(1)∠C 、∠B (2)∠CAD 、∠DAB 、∠CAB (3)7;∠B 、∠C 、∠l 、∠2、∠CAD 、∠DAB 、∠CAB19.210a +20.-821.DE三、解答题 22.(1)0.6,(2)0.6,(3)白球24个,黑球16个.23.连结三个圆心,构成一个边长为lm m ,则最高点到地面的距离是24.连接OQ ,证明∠RPQ=∠RQP .25.310.26.(1)FG .(2)连结两个对应点的两条线段的交点即为位似中心0.27.解:情形一:如左图所示,连接OA ,OB ,在⊙上任取一点,连接CA ,CB . ∵AB=OA=OB ,∴∠AOB=60°, ∴∠ACB=12∠AOB=30°,即弦AB 所对的圆周角等于30°.情形二:如右图所示,连接OA ,OB ,在劣弧上任取一点D ,连接AD ,OD ,BD ,则∠BAD=12∠BOD ,∠ABD=12∠AOD . ∴∠BAD+∠ABD=12(∠BOD+∠AOD )=12∠AOB .∵AB 的长等于⊙O 的半径,∴△AOB 为等边三角形,∠AOB=60°. ∴∠BAD+∠ABD=30°,∠ADB=180°-(∠BAD+∠ABD )=150°, 即弦AB 所对的圆周角为150°28.(1)-2;(2))2m =或1m =或1m =-29.>,>,>,= 一般结论:设两数为a,b ,则a 2+b 2≥2ab(当a=b 时,等号成立)30.(1)4m -;(2)117;(3)8a ;(4)3()x y +;(5)52()3-;(6)22n x +。
2020年浙江省嘉兴市中考数学试卷(有详细解析)
2020年浙江省嘉兴市中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分)1.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A. 0.36×108B. 36×107C. 3.6×108D. 3.6×1072.如图是由四个相同的小正方体组成的立体图形,它的主视图为()A. B. C.D.3.已知样本数据2,3,5,3,7,下列说法不正确的是()A. 平均数是4B. 众数是3C. 中位数是5D. 方差是3.24.一次函数y=2x−1的图象大致是()A. B.C. D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标()A. (−1,−1)B. (−43,−1) C. (−1,−43) D. (−2,−1)6.不等式3(1−x)>2−4x的解在数轴上表示正确的是()A. B.C. D.7.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A′B′C′,则它们重叠部分的面积是()A. 2√3B. 34√3C. 32√3D. √38.用加减消元法解二元一次方程组{x+3y=4, ①2x−y=1ㅤ ②时,下列方法中无法消元的是()A. ①×2−②B. ②×(−3)−①C. ①×(−2)+②D. ①−②×39.如图,在等腰△ABC中,AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A. 2√5B. 10C. 4D. 510.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A. 当n−m=1时,b−a有最小值B. 当n−m=1时,b−a有最大值C. 当b−a=1时,n−m无最小值D. 当b−a=1时,n−m有最大值二、填空题(本大题共6小题,共24.0分)11.分解因式:x2−9=______.12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:______,使▱ABCD是菱形.13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是______.14.如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为______;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为______.15.数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程______.16.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.当点B′恰好落在边CD上时,线段BM的长为______cm;在点M从点A运动到点B 的过程中,若边MB′与边CD交于点E,则点E相应运动的路径长为______cm.三、解答题(本大题共8小题,共66.0分)17.(1)计算:(2020)0−√4+|−3|;(2)化简:(a+2)(a−2)−a(a+1).18.比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1______2x;②当x=0时,x2+1______2x;③当x=−2时,x2+1______2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是______品牌,月平均销售量最稳定的是______品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,∠ABH=70°,∠ACH=35°.BD=20m,∠ABH=70°,∠BCD=35°.BC=101m,∠ABH=70°,∠ACH=35°.(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC= EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度ℎ1(m)(传球前)与东东起跳后时间t(s)满足函数关系式ℎ1=−2(t−0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度ℎ2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).答案和解析1.【答案】D【解析】解:36000000=3.6×107,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.2.【答案】A【解析】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】C【解析】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是[(2−4)2+(3−4)2+(5−4)2+(3−4)2+(7−4)2]=3.2.S2=15故选:C.根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可.本题考查方差、众数、中位数、平均数.关键是掌握各种数的定义,熟练记住方差公式是解题的关键.4.【答案】B【解析】解:由题意知,k=2>0,b=−1<0时,函数图象经过一、三、四象限.故选:B.根据一次函数的性质,判断出k和b的符号即可解答.本题考查了一次函数y=kx+b图象所过象限与k,b的关系,当k>0,b<0时,函数图象经过一、三、四象限.5.【答案】B,【解析】解:∵以点O为位似中心,位似比为13而A(4,3),,−1).∴A点的对应点C的坐标为(−43故选:B.即可.根据关于以原点为位似中心的对应点的坐标的关系,把A点的横纵坐标都乘以−13本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.6.【答案】A【解析】解:去括号,得:3−3x>2−4x,移项,得:−3x+4x>2−3,合并,得:x>−1,故选:A.根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.【答案】C【解析】解:作AM⊥BC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC是等边三角形,AM⊥BC,∴AB=BC=3,BM=CM=12BC=32,∠BAM=30°,∴AM=√3BM=3√32,∴△ABC的面积=12BC×AM=12×3×3√32=9√34,∴重叠部分的面积=69△ABC的面积=69×9√34=3√32;故选:C.根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键.8.【答案】D【解析】解:A、①×2−②可以消元x,不符合题意;B、②×(−3)−①可以消元y,不符合题意;C、①×(−2)+②可以消元x,不符合题意;D、①−②×3无法消元,符合题意.故选:D.方程组利用加减消元法变形即可.此题考查了解二元一次方程组,熟练掌握加减消元法是解本题的关键.9.【答案】D【解析】解:如图,设OA交BC于T.∵AB=AC=2√5,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AE=√AC2−CT2=√(2√5)2−42=2,在Rt△OCT中,则有r2=(r−2)2+42,解得r=5,故选:D.如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.本题考查作图−复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】B【解析】解:①当b−a=1时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADD=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b−a=1,CD=BE=m,∴AC=AD−CD=n−m,在Rt△ACB中,tan∠ABC=ACBC=n−m,∵点A,B在抛物线y=x2上,∴0°≤∠ABC<90°,∴tan∠ABC≥0,∴n−m≥0,即n−m无最大值,有最小值,最小值为0,故选项C,D都错误;②当n−m=1时,如图2,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b−a,HQ=PN=m,∴MH=MQ−HQ=n−m=1,在Rt△MHQ中,tan∠MNH=MHNH =1b−a,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴1b−a≥1,∴b−a无最小值,有最大值,最大值为1,故选项A错误;故选:B.①当b−a=1时,先判断出四边形BCDE是矩形,得出BC=DE=b−a=1,CD= BE=m,进而得出AC=n−m,即tan=n−m,再判断出0°≤∠ABC<90°,即可得出n−m的范围;②当n−m=1时,同①的方法得出NH=PQ=b−a,HQ=PN=m,进而得出MH= n−m=1,而tan∠MHN=1b−a,再判断出45°≤∠MNH<90°,即可得出结论.此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.11.【答案】(x+3)(x−3)【解析】解:x2−9=(x+3)(x−3).故答案为:(x+3)(x−3).本题中两个平方项的符号相反,直接运用平方差公式分解因式.主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.【答案】AD=DC(答案不唯一)【解析】解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC(答案不唯一).根据菱形的定义得出答案即可.此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.13.【答案】13【解析】解:蚂蚁获得食物的概率=13.故答案为13.直接利用概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.【答案】π12【解析】解:连接BC,由∠BAC=90°得BC为⊙O的直径,∴BC=2√2,在Rt△ABC中,由勾股定理可得:AB=AC=2,∴S扇形ABC =90π×4360=π;∴扇形的弧长为:90π×2180=π,设底面半径为r,则2πr=π,解得:r=12,故答案为:π,12.由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面半径即可.本题考查了圆周角定理、扇形的面积计算方法、弧长公式等知识.关键是熟悉圆锥的展开图和底面圆与圆锥的关系.利用所学的勾股定理、弧长公式及扇形面积公式求值.15.【答案】10x =40x+6【解析】解:根据题意得,10x =40x+6,故答案为:10x =40x+6.根据“第二次每人所得与第一次相同,”列方程即可得到结论.本题考查了由实际问题抽象出分式方程,正确的理解题意是解题的关键.16.【答案】√5(√5−32)【解析】解:如图1中,∵四边形ABCD是矩形,∴AB//CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′=√B′C′2+NC′2=√22+12=√5(cm),∴BM=NB′=√5(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4−x)2,解得x=52,∴DE=4−52=32(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5−1−2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5−1−√5=(4−√5)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2−32+2−(4−√5)=(√5−32)(cm).).故答案为√5,(√5−32第一个问题证明BM=MB′=NB′,求出NB即可解决问题.第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可.本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.【答案】解:(1)(2020)0−√4+|−3|=1−2+3=2;(2)(a+2)(a−2)−a(a+1)=a2−4−a2−a=−4−a.【解析】(1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用平方差公式以及单项式乘以多项式计算得出答案.此题主要考查了实数运算以及平方差公式以及单项式乘以多项式,正确掌握相关运算法则是解题关键.18.【答案】=>>【解析】解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=−2时,x2+1>2x.(2)x2+1≥2x.证明:∵x2+1−2x=(x−1)2≥0,∴x2+1≥2x.故答案为:=;>;>.(1)根据代数式求值,可得代数式的值,根据有理数的大小比较,可得答案;(2)根据完全平方公式,可得答案.本题考查了配方法的应用,利用完全平方非负数的性质是解题关键.19.【答案】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.【解析】连结OC,根据切线的性质和等腰三角形的性质即可得到结论.本题考查了切线的性质,等腰三角形的性质,熟练正确切线的性质是解题的关键.(k≠0),20.【答案】解:(1)函数图象如图所示,设函数表达式为y=kx把x=1,y=6代入,得k=6,(x>0);∴函数表达式为y=6x(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.【解析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式.(2)根据反比例函数的性质解答即可.本题考查描点法画函数图象、反比例函数的性质、待定系数法等知识,解题的关键掌握描点法作图,学会利用图象得出函数的性质解决问题,属于中考常考题型.21.【答案】B C【解析】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1−25%−29%−34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,收到广大顾客的青睐.(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.考查条形统计图、折线统计图、扇形统计图的意义和制作方法,理解统计图中各个数量及数量之间的关系是解决问题的关键.22.【答案】解:(1)第二个小组的数据无法计算河宽.(2)第一个小组的解法:∵∠ABH=∠ACH+∠BHC,∠ABH=70°,∠ACH=35°,∴∠BHC=∠BCH=35°,∴BC=BH=60m,∴AH=BH⋅sin70°=60×0.94≈56.4(m).第二个小组的解法:设AH=xm,则CA=AHtan35∘,AB=AHtan70∘,∵CA+AB=CB,∴x0.70+x2.75=101,解得x≈56.4.答:河宽为56.4m.【解析】(1)第二个小组的数据无法计算河宽.(2)第一个小组:证明BC=BH=60m,解直角三角形求出AH即可.第二个小组:设AH=xm,则CA=AHtan35∘,AB=AHtan70∘,根据CA+AB=CB,构建方程求解即可.本题考查解直角三角形的应用,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.【答案】解:【思考】四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB//DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=12(x+4),∴OF=OA−AF=2−12x,在Rt△OFE中,∵OF2+EF2=OE2,∴(2−12x)2+32=14(x+4)2,解得:x=94,∴AF=94cm.【探究】BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE//BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.【解析】【思考】由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB//DE,可得出结论;【发现】连接BE交AD于点O,设AF=x(cm),则OA=OE=12(x+4),得出OF=OA−AF=2−12x,由勾股定理可得(2−12x)2+32=14(x+4)2,解方程求出x,则AF可求出;【探究】如图2,延长OF交AE于点H,证明△EFO≌△EFH(ASA),得出EO=EH,FO=FH,则∠EHO=∠EOH=∠OBD=∠ODB,可证得△EOH≌△OBD(AAS),得出BD=OH,则结论得证.本题是四边形综合题,考查了平行四边形的判定与性质,平移的性质,矩形的性质,全等三角形的判定与性质,勾股定理,角平分线的定义,平行线的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.24.【答案】解:(1)设y=a(x−0.4)2+3.32(a≠0),把x=0,y=3代入,解得a=−2,∴抛物线的函数表达式为y=−2(x−0.4)2+3.32.(2)①把y=2.6代入y=−2(x−0.4)2+3.32,化简得(x−0.4)2=0.36,解得x1=−0.2(舍去),x2=1,∴OD=1m.②东东的直线传球能越过小戴的拦截传到点E.由图1可得,当0≤t≤0.3时,ℎ2=2.2.当0.3<t≤1.3时,ℎ2=−2(t−0.8)2+2.7.当ℎ1−ℎ2=0时,t=0.65,东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=ℎ1,NF=ℎ2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD 于点P,∴MD//NF,PN//EG,∴∠M=∠HEN,∠MNP=∠NEH,∴△MPN∽△NEH,∴MPPN =NHHE,∵PN=0.5,HE=2.5,∴NH=5MP.(Ⅰ)当0≤t≤0.3时,MP=−2(t−0.5)2+2.7−2.2=−2(t−0.5)2+0.5,NH=2.2−1.3=0.9.∴5[−2(t−0.5)2+0.5]=0.9,整理得(t−0.5)2=0.16,解得t1=910(舍去),t2=110,当0≤t≤0.3时,MP随t的增大而增大,∴110<t≤310.(Ⅱ)当0.3<t≤0.65时,MP=MD−NF=−2(t−0.5)2+2.7−[−2(t−0.8)2+ 2.7]=−1.2t+0.78,NH=NF−HF=−2(t−0.8)2+2.7−1.3=−2(t−0.8)2+1.4,∴−2(t−0.8)2+1.4=5×(−1.2t+0.78),整理得t2−4.6t+1.89=0,解得,t1=23+2√8510(舍去),t2=23−2√8510,当0.3<t≤0.65时,MP随t的增大而减小,∴310<t<23−2√8510.(Ⅲ)当0.65<t≤1时,ℎ1<ℎ2,不可能.给上所述,东东在起跳后传球的时间范围为110<t<23−2√8510.【解析】(1)设y=a(x−0.4)2+3.32(a≠0),将A(0,3)代入求解即可得出答案;(2)①把y=2.6代入y=−2(x−0.4)2+3.32,解方程求出x,即可得出OD=1m;②东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=ℎ1,NF=ℎ2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD于点P,证明△MPN∽△NEH,得出MPPN =NHHE,则NH=5MP.分不同情况:(Ⅰ)当0≤t≤0.3时,(Ⅱ)当0.3<t≤0.65时,(Ⅲ)当0.65<t≤1时,分别求出t的范围可得出答案.本题是二次函数的综合题,主要考查二次函数的性质,待定系数法,二次函数图象上点的坐标特征,二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及能将实际问题转化为二次函数问题求解.。
2020年浙江省嘉兴市中考数学试卷
2020年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m .数36000000用科学记数法表示为( ) A .0.36×108B .36×107C .3.6×108D .3.6×1072.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4B .众数是3C .中位数是5D .方差是3.24.(3分)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√38.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( ) A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×39.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2√5B.10C.4D.510.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=.12.(4分)如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:,使▱ABCD是菱形.13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.16.(4分)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+12x;②当x=0时,x2+12x;③当x=﹣2时,x2+12x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是 品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A 处测得河北岸的树H 恰好在A 的正北方向.测量方案与数据如下表: 课题 测量河流宽度 测量工具 测量角度的仪器,皮尺等测量小组 第一小组第二小组第三小组测量方案示意图说明 点B ,C 在点A 的正东方向点B ,D 在点A 的正东方向点B 在点A 的正东方向,点C 在点A 的正西方向.测量数据BC =60m , ∠ABH =70°, ∠ACH =35°.BD =20m , ∠ABH =70°, ∠BCD =35°.BC =101m , ∠ABH =70°, ∠ACH =35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m ).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C 重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).。
2020年浙江省嘉兴市中考数学试卷-含详细解析
2020年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m .数36000000用科学记数法表示为( ) A .0.36×108B .36×107C .3.6×108D .3.6×1072.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4B .众数是3C .中位数是5D .方差是3.24.(3分)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√38.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( ) A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×39.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2√5B.10C.4D.510.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=.12.(4分)如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:,使▱ABCD是菱形.13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.16.(4分)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+12x;②当x=0时,x2+12x;③当x=﹣2时,x2+12x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明 点B ,C 在点A 的正东方向 点B ,D 在点A 的正东方向点B 在点A 的正东方向,点C 在点A 的正西方向.测量数据BC =60m , ∠ABH =70°, ∠ACH =35°.BD =20m , ∠ABH =70°, ∠BCD =35°.BC =101m , ∠ABH =70°, ∠ACH =35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m ).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC 和DEF 拼在一起,使点A 与点F 重合,点C 与点D 重合(如图1),其中∠ACB =∠DFE =90°,BC =EF =3cm ,AC =DF =4cm ,并进行如下研究活动.活动一:将图1中的纸片DEF 沿AC 方向平移,连结AE ,BD (如图2),当点F 与点C 重合时停止平移.【思考】图2中的四边形ABDE 是平行四边形吗?请说明理由.【发现】当纸片DEF 平移到某一位置时,小兵发现四边形ABDE 为矩形(如图3).求AF 的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).2020年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A.0.36×108B.36×107C.3.6×108D.3.6×107【解答】解:36 000 000=3.6×107,故选:D.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.2【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=12+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.5[(2﹣4)故选:C.4.(3分)一次函数y=2x﹣1的图象大致是()A.B.C .D .【解答】解:由题意知,k =2>0,b =﹣1<0时,函数图象经过一、三、四象限. 故选:B .5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)【解答】解:∵以点O 为位似中心,位似比为13, 而A (4,3),∴A 点的对应点C 的坐标为(−43,﹣1). 故选:B .6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .【解答】解:去括号,得:3﹣3x >2﹣4x , 移项,得:﹣3x +4x >2﹣3, 合并,得:x >﹣1, 故选:A .7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√3【解答】解:作AM ⊥BC 于M ,如图:重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC 是等边三角形,AM ⊥BC ,∴AB =BC =3,BM =CM =12BC =32,∠BAM =30°,∴AM =√3BM =3√32,∴△ABC 的面积=12BC ×AM =12×3×3√32=9√34, ∴重叠部分的面积=69△ABC 的面积=69×9√34=3√32; 故选:C .8.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【解答】解:A 、①×2﹣②可以消元x ,不符合题意;B 、②×(﹣3)﹣①可以消元y ,不符合题意;C 、①×(﹣2)+②可以消元x ,不符合题意;D 、①﹣②×3无法消元,符合题意.故选:D .9.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ; ②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆.则⊙O 的半径为( )A .2√5B .10C .4D .5【解答】解:如图,设OA 交BC 于T .∵AB =AC =2√5,AO 平分∠BAC ,∴AO ⊥BC ,BT =TC =4,∴AT=√AC2−CT2=√(2√5)2−42=2,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.10.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【解答】解:①当b﹣a=1时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADD=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC=ACBC=n﹣m,∵点A,B在抛物线y=x2上,∴0°≤∠ABC<90°,∴tan∠ABC≥0,∴n﹣m≥0,即n﹣m无最大值,有最小值,最小值为0,故选项C,D都错误;②当n﹣m=1时,如图2,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHQ中,tan∠MNH=MHNH=1b−a,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴1b−a≥1,∴b﹣a无最小值,有最大值,最大值为1,故选项A错误;故选:B.二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x 2﹣9=(x +3)(x ﹣3).故答案为:(x +3)(x ﹣3).12.(4分)如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: AD =DC (答案不唯一) ,使▱ABCD 是菱形.【解答】解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:可以为:AD =DC ;故答案为:AD =DC (答案不唯一).13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是 13 .【解答】解:蚂蚁获得食物的概率=13.故答案为13. 14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 π ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为 12 .【解答】解:连接BC ,由∠BAC =90°得BC 为⊙O 的直径,∴BC =2√2,在Rt △ABC 中,由勾股定理可得:AB =AC =2,∴S 扇形ABC =90π×4360=π; ∴扇形的弧长为:90π×2180=π,设底面半径为r ,则2πr =π,解得:r =12,故答案为:π,12.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程10x =40x+6 . 【解答】解:根据题意得,10x =40x+6, 故答案为:10x =40x+6.16.(4分)如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.当点B '恰好落在边CD 上时,线段BM 的长为 √5 cm ;在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为 (√5−32) cm .【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′=√B′C′2+NC′2=√22+12=√5(cm),∴BM=NB′=√5(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=5 2,∴DE=4−52=32(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1−√5=(4−√5)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2−32+2﹣(4−√5)=(√5−32)(cm).故答案为√5,(√5−3 2).三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).【解答】解:(1)(2020)0−√4+|﹣3|=1﹣2+3=2;(2)(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣4﹣a.18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.【解答】解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)x2+1≥2x.证明:∵x2+1﹣2x=(x﹣1)2≥0,∴x2+1≥2x.故答案为:=;>;>.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.【解答】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.【解答】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是B品牌,月平均销售量最稳定的是C品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,收到广大顾客的青睐.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明 点B ,C 在点A 的正东方向 点B ,D 在点A 的正东方向点B 在点A 的正东方向,点C 在点A 的正西方向.测量数据BC =60m , ∠ABH =70°, ∠ACH =35°.BD =20m , ∠ABH =70°, ∠BCD =35°.BC =101m , ∠ABH =70°, ∠ACH =35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m ).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)【解答】解:(1)第二个小组的数据无法计算河宽.(2)第一个小组的解法:∵∠ABH =∠ACH +∠BHC ,∠ABH =70°,∠ACH =35°, ∴∠BHC =∠BCH =35°, ∴BC =BH =60m ,∴AH =BH •sin70°=60×0.94≈56.4(m ). 第二个小组的解法:设AH =xm , 则CA =AH tan35°,AB =AHtan70°, ∵CA +AB =CB , ∴x 0.70+x 2.75=101,解得x ≈56.4. 答:河宽为56.4m .23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC 和DEF 拼在一起,使点A 与点F 重合,点C 与点D 重合(如图1),其中∠ACB =∠DFE =90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C 重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.【解答】解:【思考】四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=12(x+4),∴OF=OA﹣AF=2−12x,在Rt△OFE中,∵OF2+EF2=OE2,∴(2−12x)2+32=14(x+4)2,解得:x=9 4,∴AF=94cm.【探究】BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).【解答】解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.②东东的直线传球能越过小戴的拦截传到点E.由图1可得,当0≤t≤0.3时,h2=2.2.当0.3<t ≤1.3时,h 2=﹣2(t ﹣0.8)2+2.7. 当h 1﹣h 2=0时,t =0.65,东东在点D 跳起传球与小戴在点F 处拦截的示意图如图2, 设MD =h 1,NF =h 2,当点M ,N ,E 三点共线时,过点E 作EG ⊥MD 于点G ,交NF 于点H ,过点N 作NP ⊥MD 于点P ,∴MD ∥NF ,PN ∥EG ,∴∠M =∠HEN ,∠MNP =∠NEH , ∴△MPN ∽△NEH , ∴MP PN=NH HE,∵PN =0.5,HE =2.5, ∴NH =5MP .(Ⅰ)当0≤t ≤0.3时,MP =﹣2(t ﹣0.5)2+2.7﹣2.2=﹣2(t ﹣0.5)2+0.5, NH =2.2﹣1.3=0.9.∴5[﹣2(t ﹣0.5)2+0.5]=0.9, 整理得(t ﹣0.5)2=0.16,解得t1=910(舍去),t2=110,当0≤t≤0.3时,MP随t的增大而增大,∴110<t≤310.(Ⅱ)当0.3<t≤0.65时,MP=MD﹣NF=﹣2(t﹣0.5)2+2.7﹣[﹣2(t﹣0.8)2+2.7]=﹣1.2t+0.78,NH=NF﹣HF=﹣2(t﹣0.8)2+2.7﹣1.3=﹣2(t﹣0.8)2+1.4,∴﹣2(t﹣0.8)2+1.4=5×(﹣1.2t+0.78),整理得t2﹣4.6t+1.89=0,解得,t1=23+2√8510(舍去),t2=23−2√8510,当0.3<t≤0.65时,MP随t的增大而减小,∴310<t<23−2√8510.(Ⅲ)当0.65<t≤1时,h1<h2,不可能.给上所述,东东在起跳后传球的时间范围为110<t<23−2√8510.。
2020年浙江省嘉兴市中考数学试卷(含详细解析)
16.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为_____cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.
(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.
21.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:
根据上述三个统计图,请解答:
(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.
A. B.
C. D.
5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为 的位似图形△OCD,则点C坐标( )
A.(﹣1,﹣1)B.(﹣ ,﹣1)C.(﹣1,﹣ )D.(﹣2,﹣1)
6.不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是( )
A. B.
C. D.
7.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )
A.2 B. C. D.
8.用加减消元法解二元一次方程组 时,下列方法中无法消元的是( )
2020年浙江省嘉兴市中考数学试卷解析版
2020年浙江省嘉兴市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A. 0.36×108B. 36×107C. 3.6×108D. 3.6×1072.如图是由四个相同的小正方体组成的立体图形,它的主视图为()A. B. C.D.3.已知样本数据2,3,5,3,7,下列说法不正确的是()A. 平均数是4B. 众数是3C. 中位数是5D. 方差是3.24.一次函数y=2x-1的图象大致是()A. B.C. D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C 坐标()A. (-1,-1)B. (-,-1)C. (-1,-)D. (-2,-1)6.不等式3(1-x)>2-4x的解在数轴上表示正确的是()A. B.C. D.7.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是()A. 2B.C.D.8.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A. ①×2-②B. ②×(-3)-①C. ①×(-2)+②D. ①-②×39.如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A. 2B. 10C. 4D. 510.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A. 当n-m=1时,b-a有最小值B. 当n-m=1时,b-a有最大值C. 当b-a=1时,n-m无最小值D. 当b-a=1时,n-m有最大值二、填空题(本大题共6小题,共24.0分)11.分解因式:x2-9=______.12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:______,使▱ABCD是菱形.13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是______.14.如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为______;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为______.15.数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程______.16.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为______cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为______cm.三、解答题(本大题共8小题,共66.0分)17.(1)计算:(2020)0-+|-3|;(2)化简:(a+2)(a-2)-a(a+1).18.比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1______2x;②当x=0时,x2+1______2x;③当x=-2时,x2+1______2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是______品牌,月平均销售量最稳定的是______品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,∠ABH=70°,∠ACH=35°.BD=20m,∠ABH=70°,∠BCD=35°.BC=101m,∠ABH=70°,∠ACH=35°.(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F 与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=-2(t-0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).答案和解析1.【答案】D【解析】解:36 000000=3.6×107,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.2.【答案】A【解析】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】C【解析】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=[(2-4)2+(3-4)2+(5-4)2+(3-4)2+(7-4)2]=3.2.故选:C.根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可.本题考查方差、众数、中位数、平均数.关键是掌握各种数的定义,熟练记住方差公式是解题的关键.4.【答案】B【解析】解:由题意知,k=2>0,b=-1<0时,函数图象经过一、三、四象限.故选:B.根据一次函数的性质,判断出k和b的符号即可解答.本题考查了一次函数y=kx+b图象所过象限与k,b的关系,当k>0,b<0时,函数图象经过一、三、四象限.5.【答案】B【解析】解:∵以点O为位似中心,位似比为,而A(4,3),∴A点的对应点C的坐标为(-,-1).故选:B.根据关于以原点为位似中心的对应点的坐标的关系,把A点的横纵坐标都乘以-即可.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.6.【答案】A【解析】解:去括号,得:3-3x>2-4x,移项,得:-3x+4x>2-3,合并,得:x>-1,故选:A.根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.【答案】C【解析】解:作AM⊥BC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC是等边三角形,AM⊥BC,∴AB=BC=3,BM=CM=BC=,∠BAM=30°,∴AM=BM=,∴△ABC的面积=BC×AM=×3×=,∴重叠部分的面积=△ABC的面积=×=;故选:C.根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键.8.【答案】D【解析】解:A、①×2-②可以消元x,不符合题意;B、②×(-3)-①可以消元y,不符合题意;C、①×(-2)+②可以消元x,不符合题意;D、①-②×3无法消元,符合题意.故选:D.方程组利用加减消元法变形即可.此题考查了解二元一次方程组,熟练掌握加减消元法是解本题的关键.9.【答案】D【解析】解:如图,设OA交BC于T.∵AB=AC=2,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AE===2,在Rt△OCT中,则有r2=(r-2)2+42,解得r=5,故选:D.如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】B【解析】解:①当b-a=1时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADD=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b-a=1,CD=BE=m,∴AC=AD-CD=n-m,在Rt△ACB中,tan∠ABC==n-m,∵点A,B在抛物线y=x2上,∴0°≤∠ABC<90°,∴tan∠ABC≥0,∴n-m≥0,即n-m无最大值,有最小值,最小值为0,故选项C,D都错误;②当n-m=1时,如图2,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b-a,HQ=PN=m,∴MH=MQ-HQ=n-m=1,在Rt△MHQ中,tan∠MNH==,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴≥1,∴b-a无最小值,有最大值,最大值为1,故选项A错误;故选:B.①当b-a=1时,先判断出四边形BCDE是矩形,得出BC=DE=b-a=1,CD=BE=m,进而得出AC=n-m,即tan=n-m,再判断出0°≤∠ABC<90°,即可得出n-m的范围;②当n-m=1时,同①的方法得出NH=PQ=b-a,HQ=PN=m,进而得出MH=n-m=1,而tan∠MHN=,再判断出45°≤∠MNH<90°,即可得出结论.此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.11.【答案】(x+3)(x-3)【解析】解:x2-9=(x+3)(x-3).故答案为:(x+3)(x-3).本题中两个平方项的符号相反,直接运用平方差公式分解因式.主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.【答案】AD=DC(答案不唯一)【解析】解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC(答案不唯一).根据菱形的定义得出答案即可.此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.13.【答案】【解析】解:蚂蚁获得食物的概率=.故答案为.直接利用概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.【答案】π【解析】解:连接BC,由∠BAC=90°得BC为⊙O的直径,∴BC=2,在Rt△ABC中,由勾股定理可得:AB=AC=2,∴S扇形ABC==π;∴扇形的弧长为:=π,设底面半径为r,则2πr=π,解得:r=,故答案为:π,.由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面半径即可.本题考查了圆周角定理、扇形的面积计算方法、弧长公式等知识.关键是熟悉圆锥的展开图和底面圆与圆锥的关系.利用所学的勾股定理、弧长公式及扇形面积公式求值.15.【答案】=【解析】解:根据题意得,=,故答案为:=.根据“第二次每人所得与第一次相同,”列方程即可得到结论.本题考查了由实际问题抽象出分式方程,正确的理解题意是解题的关键.16.【答案】(-)【解析】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′===(cm),∴BM=NB′=(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4-x)2,解得x=,∴DE=4-=(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5-1-2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5-1-=(4-)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2-+2-(4-)=(-)(cm).故答案为,(-).第一个问题证明BM=MB′=NB′,求出NB即可解决问题.第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可.本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.【答案】解:(1)(2020)0-+|-3|=1-2+3=2;(2)(a+2)(a-2)-a(a+1)=a2-4-a2-a=-4-a.【解析】(1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用平方差公式以及单项式乘以多项式计算得出答案.此题主要考查了实数运算以及平方差公式以及单项式乘以多项式,正确掌握相关运算法则是解题关键.18.【答案】= >>【解析】解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=-2时,x2+1>2x.(2)x2+1≥2x.证明:∵x2+1-2x=(x-1)2≥0,∴x2+1≥2x.故答案为:=;>;>.(1)根据代数式求值,可得代数式的值,根据有理数的大小比较,可得答案;(2)根据完全平方公式,可得答案.本题考查了配方法的应用,利用完全平方非负数的性质是解题关键.19.【答案】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.【解析】连结OC,根据切线的性质和等腰三角形的性质即可得到结论.本题考查了切线的性质,等腰三角形的性质,熟练正确切线的性质是解题的关键.20.【答案】解:(1)函数图象如图所示,设函数表达式为,把x=1,y=6代入,得k=6,∴函数表达式为;(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.【解析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式.(2)根据反比例函数的性质解答即可.本题考查描点法画函数图象、反比例函数的性质、待定系数法等知识,解题的关键掌握描点法作图,学会利用图象得出函数的性质解决问题,属于中考常考题型.21.【答案】B C【解析】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1-25%-29%-34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,收到广大顾客的青睐.(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.考查条形统计图、折线统计图、扇形统计图的意义和制作方法,理解统计图中各个数量及数量之间的关系是解决问题的关键.22.【答案】解:(1)第二个小组的数据无法计算河宽.(2)第一个小组的解法:∵∠ABH=∠ACH+∠BHC,∠ABH=70°,∠ACH=35°,∴∠BHC=∠BCH=35°,∴BC=BH=60m,∴AH=BH•sin70°=60×0.94≈56.4(m).第二个小组的解法:设AH=xm,则CA=,AB=,∵CA+AB=CB,∴+=101,解得x≈56.4.答:河宽为56.4m.【解析】(1)第二个小组的数据无法计算河宽.(2)第一个小组:证明BC=BH=60m,解直角三角形求出AH即可.第二个小组:设AH=xm,则CA=,AB=,根据CA+AB=CB,构建方程求解即可.本题考查解直角三角形的应用,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.【答案】解:【思考】四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=(x+4),∴OF=OA-AF=2-x,在Rt△OFE中,∵OF2+EF2=OE2,∴,解得:x=,∴AF=cm.【探究】BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.【解析】【思考】由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB∥DE,可得出结论;【发现】连接BE交AD于点O,设AF=x(cm),则OA=OE=(x+4),得出OF=OA-AF=2-x,由勾股定理可得,解方程求出x,则AF可求出;【探究】如图2,延长OF交AE于点H,证明△EFO≌△EFH(ASA),得出EO=EH,FO=FH,则∠EHO=∠EOH=∠OBD=∠ODB,可证得△EOH≌△OBD(AAS),得出BD=OH,则结论得证.本题是四边形综合题,考查了平行四边形的判定与性质,平移的性质,矩形的性质,全等三角形的判定与性质,勾股定理,角平分线的定义,平行线的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.24.【答案】解:(1)设y=a(x-0.4)2+3.32(a≠0),把x=0,y=3代入,解得a=-2,∴抛物线的函数表达式为y=-2(x-0.4)2+3.32.(2)①把y=2.6代入y=-2(x-0.4)2+3.32,化简得(x-0.4)2=0.36,解得x1=-0.2(舍去),x2=1,∴OD=1m.②东东的直线传球能越过小戴的拦截传到点E.由图1可得,当0≤t≤0.3时,h2=2.2.当0.3<t≤1.3时,h2=-2(t-0.8)2+2.7.当h1-h2=0时,t=0.65,东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=h1,NF=h2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD 于点P,∴MD∥NF,PN∥EG,∴∠M=∠HEN,∠MNP=∠NEH,∴△MPN∽△NEH,∴,∵PN=0.5,HE=2.5,∴NH=5MP.(Ⅰ)当0≤t≤0.3时,MP=-2(t-0.5)2+2.7-2.2=-2(t-0.5)2+0.5,NH=2.2-1.3=0.9.∴5[-2(t-0.5)2+0.5]=0.9,整理得(t-0.5)2=0.16,解得(舍去),,当0≤t≤0.3时,MP随t的增大而增大,∴.(Ⅱ)当0.3<t≤0.65时,MP=MD-NF=-2(t-0.5)2+2.7-[-2(t-0.8)2+2.7]=-1.2t+0.78,NH=NF-HF=-2(t-0.8)2+2.7-1.3=-2(t-0.8)2+1.4,∴-2(t-0.8)2+1.4=5×(-1.2t+0.78),整理得t2-4.6t+1.89=0,解得,(舍去),,当0.3<t≤0.65时,MP随t的增大而减小,∴.(Ⅲ)当0.65<t≤1时,h1<h2,不可能.给上所述,东东在起跳后传球的时间范围为.【解析】(1)设y=a(x-0.4)2+3.32(a≠0),将A(0,3)代入求解即可得出答案;(2)①把y=2.6代入y=-2(x-0.4)2+3.32,解方程求出x,即可得出OD=1m;②东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=h1,NF=h2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD于点P,证明△MPN∽△NEH,得出,则NH=5MP.分不同情况:(Ⅰ)当0≤t≤0.3时,(Ⅱ)当0.3<t≤0.65时,(Ⅲ)当0.65<t≤1时,分别求出t的范围可得出答案.本题是二次函数的综合题,主要考查二次函数的性质,待定系数法,二次函数图象上点的坐标特征,二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及能将实际问题转化为二次函数问题求解.。
2020年浙江省嘉兴市中考数学试卷
2020年浙江省嘉兴市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A. 0.36×108B. 36×107C. 3.6×108D. 3.6×1072.如图是由四个相同的小正方体组成的立体图形,它的主视图为()A. B. C. D.3.已知样本数据2,3,5,3,7,下列说法不正确的是()A. 平均数是4B. 众数是3C. 中位数是5D. 方差是3.24.一次函数y=2x−1的图象大致是()A. B. C. D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标()A. (−1,−1)B. (−43,−1) C. (−1,−43) D. (−2,−1)6.不等式3(1−x)>2−4x的解在数轴上表示正确的是()A. B. C. D.7.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A′B′C′,则它们重叠部分的面积是()A.2√3B. 34√3 C. 32√3 D. √38.用加减消元法解二元一次方程组{x+3y=4, ①2x−y=1ㅤ ②时,下列方法中无法消元的是()A. ①×2−②B. ②×(−3)−①C. ①×(−2)+②D. ①−②×39.如图,在等腰△ABC中,AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A. 2√5B. 10C. 4D. 510.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A. 当n−m=1时,b−a有最小值B. 当n−m=1时,b−a有最大值C. 当b−a=1时,n−m无最小值D. 当b−a=1时,n−m有最大值二、填空题(本大题共6小题,共24.0分)11.分解因式:x2−9=______.12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:______,使▱ABCD是菱形.13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是______.14.如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为______;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为______.15.数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程______.16.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.当点B′恰好落在边CD上时,线段BM 的长为______cm;在点M从点A运动到点B的过程中,若边MB′与边CD交于点E,则点E相应运动的路径长为______cm.三、解答题(本大题共8小题,共66.0分)17.(1)计算:(2020)0−√4+|−3|;(2)化简:(a+2)(a−2)−a(a+1).18.比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1______2x;②当x=0时,x2+1______2x;③当x=−2时,x2+1______2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.x(x>0)y(y>0)x123456y6 2.92 1.5 1.21(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是______品牌,月平均销售量最稳定的是______品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,∠ABH=70°,∠ACH=35°.BD=20m,∠ABH=70°,∠BCD=35°.BC=101m,∠ABH=70°,∠ACH=35°.(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度ℎ1(m)(传球前)与东东起跳后时间t(s)满足函数关系式ℎ1=−2(t−0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度ℎ2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).(若需完整答案,请加微信:suitaerqi)。
2020年浙江省嘉兴市中考数学测评考试试卷附解析
2020年浙江省嘉兴市中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m2.如图,AB 是⊙O 直径,130AOC ∠=,则D ∠=( )A .65B .25C .15D .353.如图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 3<S 1<S 2D .S 1=S 2=S 34.对于反比例函数y =2x,下列说法不正确...的是( ) A .点(―2,―1)在它的图象上B .它的图象在第三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 5.若方程20ax bx c ++=(0a ≠)中,a ,b ,c 满足0a b c ++=,0a b c -+=,则方程的根是( )A .1,0B . -1,0C .1, -1D . 无法确定 6.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( ) A .4B .0或2C .1D .1- 7.不等式4(2)2(35)x x -≥-的正整数解的个数为( )A .0个B .1个C .2 个D .3 个 8.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( )A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′9.若2x <,则2|2|x x --的值为( ) A .-1B .0C .1D . 2 10.据国家商务部消息,2005年一季度,我国进口总额达2952亿美元.用科学记数法表示这个数是( )A .2.952×102亿美元B .0.2952×103亿美元C .2.952×103亿美元D .0.2952×104亿美元11.计算11731()(36)361249-++⨯-运用哪种运算律可避免通分( ) A .加法交换律 B .加法结合律 C .乘法交换律 D .乘法分配律二、填空题12. 请画出正四棱锥的俯视图.13.在一个布袋里装有红、自、黑三种颜色的玻璃球各一个,它们除颜色外没有其它区别. 先从袋中取出一个,然后再放回袋中,并搅匀,再取出一个,则两次取出的都是红色玻璃的概率为 .14.若函数2(1)21y a x x =--+的图象与x 轴只有一个交点,则a= . 15.若直线 y= 一2x+1与双曲线k y x=的一个交点为(2,n),则n= ,k= . 16.如图所示,指出两对同位角: ,三对内错角: ,五对同旁内角:.17.若(2x-5)0有意义,则x 应满足条件 .18.已知二元一次方程x=35y+4,用含x 的代数式表示y________. 5203x - 19.自钝角的顶点引角的一边的垂线,把这个钝角分成两个角的度数之比是3∶1,则这个钝角的度数是_________.20.买 5 斤桔子需5a 元钱,则字母a 表示 .三、解答题21. 如图,已知⊙O 1和⊙O 2相交于A 、B 两点,过点A 的直线和两圆相交于C 、D ,过点 B 的直线和两圆相交于点E 、F ,求证:DF ∥CE.22.铁道口的栏杆如图,短臂OD 长1.25 m ,长臂OE 长 16.5 m ,当短臂端点下降0.85m (AD 长) 时,求长臂端点升高多少m (BE 的长)? (不计杆的高度)23.如图,在直角梯形ABCD 中,AD ∥BC ,∠C= 90°,BC=16,DC= 12,AD=21. 动点P 从点D 出发,沿射线DA 的方向以每秒 2个单位长度的速度运动,动点 Q 从点C 出发,在线段CB 上以每秒 1个单位长度的速度向点 B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动. 设运动的时间为t (s).(1)当 t =2s 时,求△BPQ 的面积;(2)若点A ,B ,Q ,P 构成的四边形为平行四边形,求运动时间 t ;(3)当 t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?24. 春秋旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:某单位组织员工去该风景区旅游, 共支付给春秋旅行社旅游费用27000元:,请问该单位这次共有多少员工去该风景区旅游?O DA E B25.化简:=-2)3(π .26.某市自来水公司为限制单位用水,每月只给某单位计划内用水2500m 3,计划内用水每立方米收费0.9元,超计划部分每立方米按1.5元收费.(1)写出该单位水费y(元)与每月用水量x(m 3)之间的函数解析式;①用水量x ≤2500时,y= ;②用水量x>2500时,y= ;(2)某月该单位用水2000 m 3,应付水费 元;若用水3000m 3,应付水费 元;(3)若某月该单位付水费3300元,则该单位用水多少?27.解下列方程组:(1)⎩⎨⎧=+-=11232y x x y (2) ⎩⎨⎧=--=+894132t s t s28.A 、B 两地相距36千米.甲从A 地出发步行到B 地,乙从B 地出发步行到A 地.两人同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍,求两人的速度.29.如图,在△ABC 内找一点 P ,使得 PB=PC ,且P 到 AB 、BC 的距离相等.30.在社会实践活动中,某校甲、乙、丙三位同学共同调查了高峰时段宁波二环路十三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下.甲同学说:“二环路的车流量为每小时10000辆.”乙同学:“四环路比三环路每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流晕各是多少.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.D4.C5.C6.C7.B8.B9.A10.C11.D二、填空题12.13. 1914. 215.一3,一616.∠7与∠l ,∠9与∠3;∠2与∠7,∠5与∠6,∠4与∠8;∠2与∠9,∠5与∠8,∠4与∠7,∠4与∠6,∠6与∠717.25≠x 18. 19.120°20.桔子的单价三、解答题21.连结 AB.∠ACE=∠ABE,∠ABE=∠ADF ,∴∠ACE=∠ADF ,∴ DF ∥CE.22.∵∠DAO=∠EBO=90°,∠AOD=∠BOE ,∴△AOD ∽△BOE.∴DO AD EO BE =,即1.250.8516.5BE=, ∴BE=11.22.答:长臂端点升高 11.22 m .23.(1)84 (2)5s 或373s (3)163s 或72s 24.30人25.3-π 26.(1)①y=0.9x ;②y=2250+1.5(x-2500);(2)1800,3000;(3)3200 m 327.(1)⎩⎨⎧==13y x ,(2) ⎪⎩⎪⎨⎧-==3221t s 28.设甲的速度为x 千米每小时,乙的速度为y 千米每小时.根据题意得:⎩⎨⎧-=-=+)636(26363644y x y x ,解得:⎩⎨⎧==54y x . 29.BC 的垂直平分线与∠AEC 的角平分线的交点30.设高峰时段三环路,的车流量为每小时x 辆,则高峰时段四环路的车流量为每小时(2000x +)辆.根据题意,得3(2000)210000x x -+=⨯,解得11000x =, ∴200013000x +=辆.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13 000辆.。
2020年浙江省嘉兴市中考数学试卷(含答案)-
(参考数据: )
23.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.
活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.
16.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为_____cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.
方程组利用加减消元法变形即可.
解:A、①×2﹣②可以消元x,不符合题意;
B、②×(﹣3)﹣①可以消元y,不符合题意;
C、①×(﹣2)+②可以消元x,不符合题意;
D、①﹣②×3无法消元,符合题意.
故选:D.
【点睛】
本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元.
∴AM= BM= ,
∴△ABC的面积= BC×AM= ×3× = ,
∴重叠部分的面积= △ABC的面积= ;
故选:C.
【点睛】
本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键.
8.D
【分析】
根据各选项分别计算,即可解答.
2020年浙江省嘉兴市中考数学试卷(解析版)
2020年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A.0.36×108B.36×107C.3.6×108D.3.6×107【解答】解:36 000 000=3.6×107,故选:D.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.2【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=12+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.5[(2﹣4)故选:C.4.(3分)一次函数y=2x﹣1的图象大致是()A.B.C .D .【解答】解:由题意知,k =2>0,b =﹣1<0时,函数图象经过一、三、四象限. 故选:B .5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)【解答】解:∵以点O 为位似中心,位似比为13, 而A (4,3),∴A 点的对应点C 的坐标为(−43,﹣1). 故选:B .6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .【解答】解:去括号,得:3﹣3x >2﹣4x , 移项,得:﹣3x +4x >2﹣3, 合并,得:x >﹣1, 故选:A .7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√3【解答】解:作AM ⊥BC 于M ,如图:重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC 是等边三角形,AM ⊥BC ,∴AB =BC =3,BM =CM =12BC =32,∠BAM =30°, ∴AM =√3BM =3√32, ∴△ABC 的面积=12BC ×AM =12×3×3√32=9√34, ∴重叠部分的面积=69△ABC 的面积=69×9√34=3√32; 故选:C .8.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( ) A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【解答】解:A 、①×2﹣②可以消元x ,不符合题意; B 、②×(﹣3)﹣①可以消元y ,不符合题意; C 、①×(﹣2)+②可以消元x ,不符合题意; D 、①﹣②×3无法消元,符合题意. 故选:D .9.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆. 则⊙O 的半径为( )A .2√5B .10C .4D .5【解答】解:如图,设OA 交BC 于T .∵AB =AC =2√5,AO 平分∠BAC , ∴AO ⊥BC ,BT =TC =4,∴AT=√AC2−CT2=√(2√5)2−42=2,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.10.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【解答】解:①当b﹣a=1时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADD=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC=ACBC=n﹣m,∵点A,B在抛物线y=x2上,∴0°≤∠ABC<90°,∴tan∠ABC≥0,∴n﹣m≥0,即n﹣m无最大值,有最小值,最小值为0,故选项C,D都错误;②当n﹣m=1时,如图2,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHQ中,tan∠MNH=MHNH=1b−a,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴1b−a≥1,∴b﹣a无最小值,有最大值,最大值为1,故选项A错误;故选:B.二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x 2﹣9=(x +3)(x ﹣3). 故答案为:(x +3)(x ﹣3).12.(4分)如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: AD =DC (答案不唯一) ,使▱ABCD 是菱形.【解答】解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:可以为:AD =DC ; 故答案为:AD =DC (答案不唯一).13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是13.【解答】解:蚂蚁获得食物的概率=13. 故答案为13.14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 π ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为12.【解答】解:连接BC ,由∠BAC =90°得BC 为⊙O 的直径, ∴BC =2√2,在Rt △ABC 中,由勾股定理可得:AB =AC =2, ∴S 扇形ABC =90π×4360=π; ∴扇形的弧长为:90π×2180=π,设底面半径为r ,则2πr =π, 解得:r =12, 故答案为:π,12.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 10x=40x+6.【解答】解:根据题意得,10x=40x+6,故答案为:10x=40x+6.16.(4分)如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.当点B '恰好落在边CD 上时,线段BM 的长为 √5 cm ;在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为 (√5−32) cm .【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′=√B′C′2+NC′2=√22+12=√5(cm),∴BM=NB′=√5(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=5 2,∴DE=4−52=32(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1−√5=(4−√5)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2−32+2﹣(4−√5)=(√5−32)(cm).故答案为√5,(√5−3 2).三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).【解答】解:(1)(2020)0−√4+|﹣3|=1﹣2+3=2;(2)(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣4﹣a.18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.【解答】解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)x2+1≥2x.证明:∵x2+1﹣2x=(x﹣1)2≥0,∴x2+1≥2x.故答案为:=;>;>.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.【解答】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.【解答】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是B品牌,月平均销售量最稳定的是C品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C 品牌,比较稳定,极差最小; 故答案为:B ,C ;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%, ∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C 品牌,因为C 品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B 品牌,因为B 品牌的销售总量最多,收到广大顾客的青睐.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A 处测得河北岸的树H 恰好在A 的正北方向.测量方案与数据如下表: 课题 测量河流宽度 测量工具 测量角度的仪器,皮尺等测量小组 第一小组 第二小组 第三小组测量方案示意图说明 点B ,C 在点A 的正东方向点B ,D 在点A 的正东方向点B 在点A 的正东方向,点C 在点A 的正西方向.测量数据BC =60m , ∠ABH =70°, ∠ACH =35°.BD =20m ,∠ABH =70°, ∠BCD =35°.BC =101m , ∠ABH =70°, ∠ACH =35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)【解答】解:(1)第二个小组的数据无法计算河宽.(2)第一个小组的解法:∵∠ABH=∠ACH+∠BHC,∠ABH=70°,∠ACH=35°,∴∠BHC=∠BCH=35°,∴BC=BH=60m,∴AH=BH•sin70°=60×0.94≈56.4(m).第二个小组的解法:设AH=xm,则CA=AHtan35°,AB=AHtan70°,∵CA+AB=CB,∴x0.70+x2.75=101,解得x≈56.4.答:河宽为56.4m.23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C 重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.【解答】解:【思考】四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=12(x+4),∴OF=OA﹣AF=2−12x,在Rt△OFE中,∵OF2+EF2=OE2,∴(2−12x)2+32=14(x+4)2,解得:x=9 4,∴AF=94cm.【探究】BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).【解答】解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.②东东的直线传球能越过小戴的拦截传到点E.由图1可得,当0≤t≤0.3时,h2=2.2.当0.3<t≤1.3时,h2=﹣2(t﹣0.8)2+2.7.当h1﹣h2=0时,t=0.65,东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=h1,NF=h2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD 于点P ,∴MD ∥NF ,PN ∥EG ,∴∠M =∠HEN ,∠MNP =∠NEH , ∴△MPN ∽△NEH , ∴MP PN=NH HE,∵PN =0.5,HE =2.5, ∴NH =5MP .(Ⅰ)当0≤t ≤0.3时,MP =﹣2(t ﹣0.5)2+2.7﹣2.2=﹣2(t ﹣0.5)2+0.5, NH =2.2﹣1.3=0.9.∴5[﹣2(t ﹣0.5)2+0.5]=0.9, 整理得(t ﹣0.5)2=0.16, 解得t 1=910(舍去),t 2=110,当0≤t ≤0.3时,MP 随t 的增大而增大, ∴110<t ≤310.(Ⅱ)当0.3<t ≤0.65时,MP =MD ﹣NF =﹣2(t ﹣0.5)2+2.7﹣[﹣2(t ﹣0.8)2+2.7]=﹣1.2t +0.78,NH =NF ﹣HF =﹣2(t ﹣0.8)2+2.7﹣1.3=﹣2(t ﹣0.8)2+1.4, ∴﹣2(t ﹣0.8)2+1.4=5×(﹣1.2t +0.78), 整理得t 2﹣4.6t +1.89=0, 解得,t 1=23+2√8510(舍去),t 2=23−2√8510, 当0.3<t ≤0.65时,MP 随t 的增大而减小,∴310<t<23−2√8510.(Ⅲ)当0.65<t≤1时,h1<h2,不可能.给上所述,东东在起跳后传球的时间范围为110<t<23−2√8510.。
2020年浙江省嘉兴市中考数学原题试卷附解析
2020年浙江省嘉兴市中考数学原题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是()A.12B.14C.16D.182.把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形中,较长的边与较短的边之比是()A.5:2 B.(13):2+C.(15):2+D.(16):2+3.下列四个点中,可能在反比例函数y=kx(k>0)的图象上的点是()A.(2,-3)B.(-4,-5)C.(-3,2)D.(2,0)4.用反证法证明“在同一平面内,若a⊥b,b⊥c,则a∥c”时,应假设()A.a不垂直于c B.a,c都不垂直b C.a⊥c D.a与c相交5.如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360° B.α-β+γ=180°C.α+β+γ=180° D.α+β-γ=180°6.如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P(甲)表示小球停在甲中黑色三角形上的概率,P (乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是()A.P(甲)>P(乙)B. P(甲)= P(乙)C. P(甲)< P(乙)D. P(甲)与P(乙)的大小关系无法确定7.为了了解全世界每天婴儿出生的情况,应选择的调查方式是( )A .普查B .抽样调查C .普查,抽样调查都可以D .普查,抽样调查都不可以8.小王照镜子时,发现T 恤衫上英文为“”,则T 恤衫上的英文实际是( )A .APPLEB .AqqELC .ELqqAD .ELPPA 9.如图,数轴上表示1,2的对应点A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A .22-B .22-C .21-D .12-10.下列命题中①带根号的数是无理数;②无理数是开不尽方的数;③无论x 取什么值,21x +④绝对值最小的实数是零.正确的命题有( )A .1 个B .2 个C .3 个D . 4 个 11.近似数36.0是由四舍五入得到的近似数,在下列关于其精确度的叙述中正确的是 ( )A .36.0与36精确度相同B .36.0精确到个数C .36.0有三个有效数字D .36.0有两个有效数字 12.下列四个算式中,误用分配律的是( )A .111112(2)12212123636⨯-+=⨯-⨯+⨯ B .1111(2)1221212123636-+⨯=⨯-⨯+⨯ C .111112(2)12212123636÷-+=÷-÷+÷ D .1111(2)1221212123636-+÷=÷-÷+÷ 13.若0b <,则a ,a b -,a b +中,最大的是( )A .aB .a b -C .a b +D .不能确定二、填空题14.如图是引拉线固定电线杆的示意图.已知:CD ⊥AB ,CD 33=m ,∠CAD=∠DBD=60°,则拉线AC 的长是 m .15.如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是 .16.如图,60APB ∠=,半径为a 的⊙O 切PB 于P 点.若将⊙O 在PB 上向右滚动,则当滚动到⊙O 与PA 也相切时,圆心O 移动的水平距离是 .17.计算:0sin 60cos 60o= ,22sin 44cos 44o o += . 18.Rt △ABC 中, 4cos 2A-3=0,那么∠A=________.19.若关于x 的方程240x x a ++=有两个相等的实数根,则a= .20.洋洋有5位好朋友,他们的年龄(单位:岁)分别为15,l5,16,l7,17,其方差为0.8,则三年后,这五位好朋友年龄的方差为 .21.根据题意列出方程:(1)x 比y 的15小4;(2)如果有 4 辆小卡车,每辆可载货物a(t),有3辆大卡车,每辆可载货物b(t),这7 辆卡车共载了27t 货物. .22.如图中标有相同字母的物体的质量相同,若A 的质量为20克,当天平处于平衡状态时,B 的质量为 克.23.根据“二十四点”游戏规则,3,4,—6,10每个数用且只能用一次,用有理数的混合运算方法(加、减、乖、除、乘方)写出一个算式:_______ ______________,使其结果等于24.三、解答题24.如图,杭州某公园入口处原有三级台阶,每级台阶高为 20 cm ,深为 30 cm .为方便残疾人士,现拟将台阶改为斜坡,设台阶的起点为 A ,斜坡的起点为 C .现将斜坡的坡角∠BCA 设为 12°,求 AC 的长度. (精确到1cm)25.如图,这两个四边形相似吗?请说明理由.26.如图,已知□ABCD.(1)写出□ABCD四个顶点的坐标;(2)画出□A1B1C1D1,使□A1B1C1D1与□ABCD关于y轴对称,并写出□A1B1C1D1四个顶点的坐标;(3)画出□A2B2C2D2,使□A2B2C2D2与□ABCD关于原点中心对称,并写出□A2B2C2D2的四个顶点的坐标;(4)□A1B1C1D1与□A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.27.不解方程,判别下列方程的根的情况:(1)2+-=;x x2340(2)2+=;16924y y(32x x+=;3220(4)2t-=;33620(5)2+-=;x x5(1)7028.下图是一机器人的部分示意图.(1)在同一坐标系中画出将此图形先向右平移7个单位,再向下平移1个单位的图形;(2)你能画出平移后的图形关于x轴对称的图形吗?29.某班团员外出参加夏令营活动,导游预定了房间,在住宿时,若 6 个人一个房间,则有 4个床位空,若 4 个人一个房间,则有 2人没房间住,问共有多少个团员参加夏令营,导游预定了几个房间?30.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:视力情况差中良优合计人数(人)7203百分比(%)14100【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.D5.D6.B7.B8.A9.A10.B11.C12.C13.B二、填空题14.615.15π416.17.118.30°19.420.0.821. (1)145x y -=-;(2)4327a b += 22.1023.3×(4-6+10)(答案不惟一)三、解答题24.过B 点作 BD ⊥CA ,垂足为 D 点,由已知得 BD= 20×3 =60 cm,AD=30×2=60 cm,60tan tan12o BD BCD CD CD∠===,∴CD= 282 cm, AC= 282- 60 = 222 (cm)答:AC 的长度为 222 cm.25.不相似,因为对应边不成比例.26.(1)A(-1,3),B(-3,2),C(-2,1),D(0,2);(2)A l(1,3),B l(3,2),C l(2,1),D l(0,2);(3)A2(1,-3),B2(3,-2),C2(2,-l),D2(0,-2)(4)关于x轴对称27.( 1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根;(5)无实数根28.图略29.14 个团员,预定了 3 个房间30.表中依次填:20,50;40,40,6。
2020年浙江省嘉兴市中考数学试题卷及答案
(C)(-1,- 4 ). 3
(D)(-2,-1).
6.不等式 3(1-x)>2-4x 的解在数轴上表示正确的是( ▲ )
y A
D O Bx
C
(第 5 题)
-1 0 1 (A)
-1 0 1 (B)
-1 0 1 (C)
数学试题卷(JX) 第1页(共 6 页)
-1 0 1 (D)
7.如图,正三角形 ABC 的边长为 3,将△ABC 绕它的外心 O 逆时针
蚂蚁 (第 13 题)
(第 14 题)
数学试题卷(JX) 第2页(共 6 页)
16.如图,有一张矩形纸条 ABCD,AB=5cm,BC=2cm,点 M,
N 分别在边 AB,CD 上,CN=1cm.现将四边形 BCNM 沿
D B´
MN 折叠,使点 B,C 分别落在点 B´,C´上.当点 B´恰好落
E
17.(1)计算: (2020)0 − 4 + −3 ;(2)化简: (a + 2)(a − 2) − a (a +1) .
18.比较 x2+1 与 2x 的大小. (1)尝试(用“<”,“=”或“>”填空):
①当 x=1 时,x2+1 ▲ 2x; ②当 x=0 时,x2+1 ▲ 2x; ③当 x=-2 时,x2+1 ▲ 2x. (2)归纳:若 x 取任意实数,x2+1 与 2x 有怎样的大小关系?试说明理由.
x
1
2
3
4
5
6
y
6 2.9 2 1.5 1.2 1
y
(1)请画出相应函数的图象,并求出函数表达式.
7
(2)点 A(x1,y1),B(x2,y2)在此函数图象上.若
2020年浙江省嘉兴市中考数学试卷甲卷附解析
2020年浙江省嘉兴市中考数学试卷甲卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 在△ABC 中,∠C=900,若∠B=2∠A ,则tanA =( )A .3B . 33C .21D . 12.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )3.如图所示,草地上一根长5米的绳子,一端拴在墙角的木桩上,加一端栓着一只小羊R .那么,小羊在草地上的最大活动区域的面积是( )A .m 2213πB .m 2427πC .m 2213πD .m 2427π4.反比例函数k y x=的自变量x 的取值从1增加到3时,函数值减少 4,则k 为 ( ) A .6 B .16C .-6D . 16- 5.样本频数分布反映了( )A .样本数据的多少B .样本数据的平均水平C .样本数据的离散程度D .样本数据在各个小范围内数量的多少6.下列多边形中不能够镶嵌平面的是( )A .矩形B .正三角形C .正五边形D .正方形7.△ABC 和△A ′B ′C ′中,条件①AB=A ′B ′; ②BC=B ′C ′;③AC=A ′C ′;④∠A=∠A ′; ⑤∠B=∠8′;⑥∠C=∠C ′,则下列各组中不能保证△ABC ≌△A ′B ′C ′的是 ( )A .①②③B .①②⑤C .①③⑤D .②⑤⑥8.-5<x <5的非正整数x 是( )A.-1 B.0 C.-2,-1,0 D.1,-1,09.若a<b,有下列不等式:①a m b m+<+;②a m b m-<-;③ma mb>;④a b m m >(0m<).其中恒成立的不等式的个数为()A.1 B.2 C.3 D. 410.在等式(-a-b)()=a2-b2中,括号里应填的多项式是()A.a-b B.a+b C.-a-b D.b-a11.如图,AC=AD,BC=BD,则图中全等三角形的对数是()A.6对 B.3对 C.2对D.1对12.下列计算中,正确的是()A.23523x x x+=B.223(3)x x-=-C.236(2)6x x-=D.2224()ay a y=13.下列图案,能通过某基本图形旋转得到,但不能通过平移得到的是()14.数轴上表示-2.2的点在()A.-1与-2之间B.-3与-2之间C. 2与3之间D.1 与2之间15.如图是气象工作者绘制的某地元旦这一天的气温变化图,某同学根据该图给出了下列四个结论:①零点时的气温是+2℃;②4点时气温最低,l4点时气温最高;③气温为0。
2020年浙江省嘉兴市中考数学优质试题附解析
2020年浙江省嘉兴市中考数学优质试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.图中,福娃“迎迎”所骑的自行车的两个车轮(即两个圆)的位置关系是()A.内含B.外离C.相切D.相交2.若△ABC∽△DEF,△ABC与△DEF的相似比为2︰3,则S△ABC︰S△DEF为()A.2∶3 B.4∶9 C.2∶3D.3∶23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE的长为()A.10 B.8 C.6 D.44.用反证法证明“2是无理数”时,最恰当的假设是()A.2是分数B.2是整数C.2是有理数D.2是实数5.已知24221x y kx y k+=⎧⎨+=+⎩,且10x y-<-<,则k的取值范围为()A.112k-<<-B.12k<<C.01k<<D.112k<<6.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或l50°D.60°或l20°7.如图,已知 AB∥CD,∠A = 70°,则∠1 的度数为()A. 70°B. 100°C.110°D. 130°8.33422232481632a bc abc a b c+-在分解因式时,应提取的公因式是()A.316s a bc B.2228a b c C.228a bc D.2216a bc 9.下列方程属于二元一次方程的是()A.2360x y z-+=B.73x y-=C.150xy+=D.111 x y+=10.如图,将长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F .若∠BAF=60°,则∠DAE= ( )A .150B .30°C . 45°D .60°11.由图,可知销售量最大的一年是( )A . 2005年B . 2006年C .2007年D .无法确定12.下列各几何体的表面中,没有曲面的是( )A .圆柱B .圆锥C .棱柱D .球二、填空题13.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 (填 “相同”、“不一定相同”、“不相同”之一).14.若函数2y ax bx c =++是二次函数,则系数应满足条件 .15.一个样本有20个数据,分组以后落在20.5~22.5内的频数是4,则这一小组的频率是 .16.若方程x 2-4x+m=0有两个相等的实数根,则m 的值是____ ___.17.将一副直角三角板按图示方法放置(直角顶点重合),则∠AOB+∠DOC=__ __.18.若关于x 的方程230m mx m ++-=是一元一次方程,则m = .19.-5的相反数是 ,122-的绝对值是 .20.535353⨯⨯写成乘方的形式为 . 33()5三、解答题21.已知⊙O 的半径为10cm ,弦MN ∥EF ,且MN= 12cm ,EF=16cm ,求弦 MN 和EF 之间的距离.22.写出“等腰三角形的顶角平分线垂直于底边”的逆命题,若逆命题为真,请给出证明, 若为假,请举反例说明理由.23.如图,在△ABD 和△ACE 中,有下列四个论断:①AB=AC ;②AD=AE ;③∠B=∠C ;④BD=CE .请以其中三个论断作为条件,余下一个论断作为结论,写出所有真命题.(用序号⊗⊗⊗⇒⊗的形式写出)24. 22432()||3553---. 11525.解不等式(组),并将解集在数轴上表示出来:(1)2(3)3(2)x x -+>+(2)3122109162x x x x -≤-⎧⎪⎨-<+⎪⎩26.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF ,∠1=40°,求∠2的度数.27.先阅读,再解答问题: 例:解不等式211x x >-. 解:把不等式211x x >-进行整理,得2101x x ->-,即101x x +>-. 则有(1)1010x x +>⎧⎨->⎩或(2)1010x x +<⎧⎨-<⎩, 解不等式组(1)得1x >,解不等式组(2)得1x <-,∴原不等式的解集为1x >或1x <-. 请根据以上解不等式的思想方法解不等式:231x x >-. 1235x <<28.用简便方法计算:57.6×1.6+28.8×36.8-14.4×80.29.计算: (1)233x xy y -⋅;(2)2233a ab b -÷;(3)2211a a a a -⋅+;(4)21(1)1x x x +÷--; (5) 23225106321x y y x y x ⋅÷;(6) 2237843244a a a a a a +--⋅+-30.为调动销售人员的积极性,A 、B 两公司采取如下工资支付方式:A 公司每月2000元基本工资,另加销售额的2%作为奖金;B 公司每月l600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售员小李、小张l~6月份的销售额如下表:(1)请问小李与小张3月份的工资各是多少?(2)小李l~6月份的销售额y1与月份x的函数解析式是y1=l200x+10400,小张1~6月份的销售额y2也是月份x的一次函数,请求出y2与x的函数解析式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.C5.D6.D7.C8.D9.B10.A11.C12.C二、填空题13.相同14.a≠015.0.2 16.417.18018.-119.5,1 2 220.三、解答题21.如解图所示,过点O作OA⊥MN于点 A,作OB⊥EF于点B.∵MN∥EF,∴.A、O、B 三点在一直线上.连结OM、OE,∵MN=12 cm,EF= 16 cm,∴AM= 6 cm,BE= 8 cm,∴.Rt△AOM 和 Rt△BOE 中,221068OA=-=,22086OB l=-=∴ AB=8+6= 14 cm 或 AB=8—6=2 cm22.逆命题:若一个三角形的一个角的平分线垂直于这个角的对边,则这个三角形是等腰三角形,命题为真命题,证略23.①③④⇒②或①②④⇒③24.11525. (1)12x <-,在数轴上表示略 (2)22x -<≤,在数轴上表示略 26.∠2=100°27.1235x <<28. 029. (1)2x y -;(2)229a b-;(3)1a a -;(4)21(1)x --;(5)3376x y ;(6)13a a -- 30.(1)2280元,2040元;(2)y 2=1800x+5600;(3)9月份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年浙江省嘉兴市中考数学试卷(考试时间:110分钟满分:120分)一、选择题(本题有10小题,每题3分,共30分)1.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A.0.36×108B.36×107C.3.6×108D.3.6×1072.如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.3.已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4 B.众数是3 C.中位数是5 D.方差是3.24.一次函数y=2x﹣1的图象大致是()A.B.C.D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C坐标()A.(﹣1,﹣1)B.(﹣,﹣1)C.(﹣1,﹣)D.(﹣2,﹣1)6.不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是()A.B.C.D.7.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是()A.2B.C.D.8.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×39.如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF 的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2B.10 C.4 D.510.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值二、填空题(本题有6小题,每题4分,共24分)11.分解因式:x2﹣9=.12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:,使▱ABCD是菱形.13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.14.如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为.15.数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.16.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.三、解答题(本题有8小题,共66分)17.(6分)(1)计算:(2020)0﹣+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1 2x;②当x=0时,x2+1 2x;③当x=﹣2时,x2+1 2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x 1 2 3 4 5 6y 6 2.9 2 1.5 1.2 1(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,∠ABH=70°,∠ACH=35°.BD=20m,∠ABH=70°,∠BCD=35°.BC=101m,∠ABH=70°,∠ACH=35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE (如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).参考答案与试题解析1.【解答】解:36 000 000=3.6×107,故选:D.2.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.3.【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.故选:C.4.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.5.【解答】解:∵以点O为位似中心,位似比为,而A (4,3),∴A点的对应点C的坐标为(﹣,﹣1).故选:B.6.【解答】解:去括号,得:3﹣3x>2﹣4x,移项,得:﹣3x+4x>2﹣3,合并,得:x>﹣1,故选:A.7.【解答】解:作AM⊥BC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC是等边三角形,AM⊥BC,∴AB=BC=3,BM=CM=BC=,∠BAM=30°,∴AM=BM=,∴△ABC的面积=BC×AM=×3×=,∴重叠部分的面积=△ABC的面积=×=;故选:C.8.【解答】解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.9.【解答】解:如图,设OA交BC于T.∵AB=AC=2,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AE===2,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.10.【解答】解:①当b﹣a=1时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADD=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC==n﹣m,∵点A,B在抛物线y=x2上,∴0°≤∠ABC<90°,∴tan∠ABC≥0,∴n﹣m≥0,即n﹣m无最大值,有最小值,最小值为0,故选项C,D都错误;②当n﹣m=1时,如图2,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHQ中,tan∠MNH==,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴≥1,∴b﹣a无最小值,有最大值,最大值为1,故选项A错误;故选:B.11.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).12.【解答】解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC(答案不唯一).13.【解答】解:蚂蚁获得食物的概率=.故答案为.14.【解答】解:连接BC,由∠BAC=90°得BC为⊙O的直径,∴BC=2,在Rt△ABC中,由勾股定理可得:AB=AC=2,∴S扇形ABC==π;∴扇形的弧长为:=π,设底面半径为r,则2πr=π,解得:r=,故答案为:π,.15.【解答】解:根据题意得,=,故答案为:=.16.【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′===(cm),∴BM=NB′=(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=,∴DE=4﹣=(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1﹣=(4﹣)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2﹣+2﹣(4﹣)=(﹣)(cm).故答案为,(﹣).17.【解答】解:(1)(2020)0﹣+|﹣3|=1﹣2+3=2;(2)(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣4﹣a.18.【解答】解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)x2+1≥2x.证明:∵x2+1﹣2x=(x﹣1)2≥0,∴x2+1≥2x.故答案为:=;>;>.19.【解答】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.20.【解答】解:(1)函数图象如图所示,设函数表达式为,把x=1,y=6代入,得k=6,∴函数表达式为;(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.21.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,收到广大顾客的青睐.22.【解答】解:(1)第二个小组的数据无法计算河宽.(2)第一个小组的解法:∵∠ABH=∠ACH+∠BHC,∠ABH=70°,∠ACH=35°,∴∠BHC=∠BCH=35°,∴BC=BH=60m,∴AH=BH•sin70°=60×0.94≈56.4(m).第二个小组的解法:设AH=xm,则CA=,AB=,∵CA+AB=CB,∴+=101,解得x≈56.4.答:河宽为56.4m.23.【解答】解:【思考】四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=(x+4),∴OF=OA﹣AF=2﹣x,在Rt△OFE中,∵OF2+EF2=OE2,∴,解得:x=,∴AF=cm.【探究】BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.24.【解答】解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.②东东的直线传球能越过小戴的拦截传到点E.由图1可得,当0≤t≤0.3时,h2=2.2.当0.3<t≤1.3时,h2=﹣2(t﹣0.8)2+2.7.当h1﹣h2=0时,t=0.65,东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=h1,NF=h2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD于点P,∴MD∥NF,PN∥EG,∴∠M=∠HEN,∠MNP=∠NEH,∴△MPN∽△NEH,∴,∵PN=0.5,HE=2.5,∴NH=5MP.(Ⅰ)当0≤t≤0.3时,MP=﹣2(t﹣0.5)2+2.7﹣2.2=﹣2(t﹣0.5)2+0.5,NH=2.2﹣1.3=0.9.∴5[﹣2(t﹣0.5)2+0.5]=0.9,整理得(t﹣0.5)2=0.16,解得(舍去),,当0≤t≤0.3时,MP随t的增大而增大,∴.(Ⅱ)当0.3<t≤0.65时,MP=MD﹣NF=﹣2(t﹣0.5)2+2.7﹣[﹣2(t﹣0.8)2+2.7]=﹣1.2t+0.78,NH=NF﹣HF=﹣2(t﹣0.8)2+2.7﹣1.3=﹣2(t﹣0.8)2+1.4,∴﹣2(t﹣0.8)2+1.4=5×(﹣1.2t+0.78),整理得t2﹣4.6t+1.89=0,解得,(舍去),,当0.3<t≤0.65时,MP随t的增大而减小,∴.(Ⅲ)当0.65<t≤1时,h1<h2,不可能.给上所述,东东在起跳后传球的时间范围为.。