2014-2015高一数学期中试卷人教版必修二

合集下载

2014-2015学年高一下学期期中联考数学试题_Word版含答案]

2014-2015学年高一下学期期中联考数学试题_Word版含答案]

2014-2015学年第二学期高一期中联考数学试卷一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内,每小题5分,共60分).1.)30cos(︒-的值是( )A .21-B .21C .23-D .232. 已知数列{}n a 的前n 项和为n S ,若),(22+∈-=N n a S n n 则=2a ( ) A. 4 B. 2 C. 1 D. 2-3.已知数列{}n a 的前n 项和为n S ,且12+=n S n ,则下列结论正确的是( ) A.n a =21n - B.n a =21n + C.n a = 2 (=1)2 1 (>1)n n n ⎧⎨-⎩D.n a = 2 (=1)2 1 (>1)n n n ⎧⎨+⎩4.在锐角ABC ∆中,角B A 、所对的边分别为,b a 、若b B a 2sin 2=,则角A 等于( )A.6πB.4π C. 3π D. 4π或π435.在ABC ∆中,,8,54cos =⋅=A 则ABC ∆的面积为( )A. 3B. 56C. 512D. 66.设),,1(x =)3,2(-=x ,若当m x =时,//,当n x =时,⊥.则=+n m ( )A. 2-B. 1-C. 0D. 2-或1-7. 数列{}n a 为等差数列, n S 为前n 项和,566778,,S S S S S S <=>,则下列错误的是( )A. 0<dB.07=aC.59S S >D. 6S 和7S 均为n S 的最大值 8.数列{}n a 满足,1,311nn n a a a a -==+则=2015a ( ) A .21B . 3C .21-D .329.在ABC ∆中,角C B A 、、所对的边分别是,c b a 、、若,cos cos sin CcB b A a ==则ABC ∆的形状是( )A .等边三角形B .等腰直角三角形C .直角非等腰三角形D .等腰非直角三角形 10.已知函数)2||,0)(2cos()(πϕωπϕω<>-+=x x f 的部分图象如图所示,则)6(π+=x f y 取得最小值时x 的集合为( )A.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,6ππ B.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,3ππC.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,62ππ D.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,32ππ11.已知2sin 21cos 2αα=+,则tan 2α=( )A .43-B .43C .43或0D .43-或012.已知数列{}n a 满足q q qa a n n (221-+=+为常数, )1||<q , 若{},30,6,2,6,18,,,6543---∈a a a a 则=1a ( )A. 2-B. 2-或126C. 128D. 0或128第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡相应位置上).13.若等比数列{}n a 满足2031=+a a ,4042=+a a ,则公比q = 14.已知等差数列{}n a 的前n 项和为n S ,且满足π2515=S ,则8tan a 的值是15. 已知AC 为平行四边形ABCD 的一条对角线,且),3,1(),4,2(==则=|| 16. ①在ABC ∆中,若,sin sin B A >则B A >;②若满足条件a BC AB C ==︒=,3,60的ABC ∆有两个,则32<<a ; ③在等比数列{}n a 中,若其前n 项和a S nn +=3,则实数a =1-;④若等比数列{}n a 中2a 和10a 是方程016152=++x x 的两根,则,22522108422=++a a a a且.46±=a其中正确的命题序号有 (把你认为正确的命题序号填在横线上).三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分10分)已知函数()()x x x x f 2cos cos sin 2++=(1)求()x f 的最小正周期和单调递增区间; (2)求()x f 的图像的对称中心和对称轴方程.18. (本小题满分12分)在ABC ∆中,角C B A 、、所对的边分别是,c b a 、、已知bc a c b +=+222. (1)求角A 的大小; (2)如果36cos =B ,2=b ,求ABC ∆的面积.19. (本小题满分12分)n S 是等差数列{}n a 的前n 项和,115=a ,355=S . (1)求{}n a 的通项公式;(2)设n an a b =(a 是实常数,且0>a ),求{}n b 的前n 项和n T .20.(本小题满分12分)已知向量)4cos ,4(sinx x =,=4x,cos 4x ),记()x f ⋅=. (1)若()1=x f ,求cos()3x π+的值;(2)若ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足()C b B c a cos cos 2=-,求角B 的大小及函数()A f 的取值范围.21.(本小题满分12分)已知B A 、是海面上位于东西方向(B 在A 东)相距5(3海里的两个观察点,现位于A 点北偏东︒45,B 点北偏西︒60的D 点有一艘轮船发出求救信号,位于B 点南偏西︒60且与B 点相距C 点的救援船立即前往营救,其航行速度为30海里∕小时.(1)在D 点的轮船离B 点有多远?(2)该救援船到达D 点需要多长时间?22.(本小题满分12分)已知数列{}n a 的前n 项和为122,3,111-+==++n n n n a a a S )(+∈N n .(1)求;,32a a (2)求实数,λ使⎭⎬⎫⎩⎨⎧+nn a 2λ为等差数列,并由此求出n a 与n S ; (3)求n 的所有取值,使+∈N a S nn,说明你的理由.2014~2015学年第二学期高一期中联考数学答案二、填空题:(每小题5分,共20分)13._ 2 ; 14. - 15. ;16. ① ③三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.解:(1)∵()x x x x f 2cos cos sin 21++= ……………………………………………1分x x 2cos 2sin 1++= ………………………………………………2分142sin 2+⎪⎭⎫ ⎝⎛+=πx ………………………………3分∴函数()x f 的最小正周期为ππ==22T …………………………………………4分 由πππππk x k 224222+≤+≤+-,(Z k ∈)得()Z k k x k ∈+≤≤+-,883ππππ ………………………………………………5分∴()x f 的单调增区间是⎥⎦⎤⎢⎣⎡++-ππππk k 8,83,()Z k ∈…………………………6分(2)令,42ππk x =+则Z k k x ∈+-=,28ππ…^^^…………………………………7分()x f ∴的图像的对称中心为).1,28(ππk +-…^^^^……………………………8分 令,242πππk x +=+得Z k k x ∈+=,28ππ…^^^……………………………9分 ()x f ∴的图像的对称轴方程为Z k k x ∈+=,28ππ…^^^^…………………10分18.解:(1)因为bc a c b +=+222,所以212cos 222=-+=bc a c b A ,……………………2分又因为()π,0∈A ,所以3π=A …………………………………………………4分(2)因为36cos =B ,()π,0∈B ,所以33cos 1sin 2=-=B B …………5分 由正弦定理B b A a sin sin =,得3sin sin ==BA b a ……………………………………7分因为bc a c b +=+222,所以0522=--c c ……………………………………8分解得61±=c ,因为0>c ,所以16+=c ……………………………………10分故△ABC 的面积2323sin 21+==A bc S …………………………………………12分 19.解:(1)由已知可得:1141=+d a ,3524551=⨯+da 即721=+d a ……………2分 解得,2,31==d a ………………………………………………………………4分 12+=∴n a n ……………………………………………………………………5分 (2)12+=n a n 12+==∴n a n a ab n………………………………………6分∴212321a aa b b n n n n ==+++,……………………………………………………………7分∵0≠a ,∴{}n b 是等比数列,31a b =,2a q =,……………………………8分∴①当1=a 时,n T q b n ===,1,11……………………………………………9分②当0>a 且1≠a 时,()22311aa a T nn --=,………………………………………11分 综上:()⎪⎩⎪⎨⎧≠>--== 1且0,111,223a a a a a a n T n n ……………………………………………12分注:没有讨论1=a 的只扣1分.20.解:(1)4cos 4cos 4sin3)(2xx x x f +⋅=⋅=…………………………………1分 22cos12sin 23x x ++=………………………………………2分 21)62sin(212cos 212sin 23++=++=πx x x ………………3分 1)(=x f 121)62sin(=++∴πx …………………………………………4分 .214121)62(sin 21)3cos(2=⨯-=+-=+∴ππx x …………………………6分 (2) ()C b B c a cos cos 2=-∴由正弦定理得()C B B C A cos sin cos sin sin 2=-……………………8分,cos sin cos sin cos sin 2C B B C B A =-∴),sin(cos sin 2C B B A +=∴………………………………………………9分 ,π=++C B A A C B sin )sin(=+∴ 且,0sin ≠A ,21cos =∴B 又),,0(π∈B 3π=∴B ……………………………………10分 (注:直接由射影定理:a B c C b =+cos cos 得到a B a =cos 2,即21cos =B 的不扣分) ,320π<<∴A ,2626πππ<+<∴A ;1)62sin(21<+<∴πA 又,21)62sin()(++=πx x f ,21)62sin()(++=∴πA A f故函数()A f 的取值范围是).23,1(…………………………………………………12分21.解:(1)由题意知)33(5+=AB 海里,,454590,306090︒=︒-︒=∠︒=︒-︒=∠DAB DBA …………………………1分 ︒=︒+︒-︒=∠∴105)3045(180ADB ………………………………………2分在DAB ∆中,由正弦定理得,sin sin ADBABDAB DB ∠=∠…………………………4分︒︒+︒︒⋅+=⋅+=∠∠⋅=∴︒︒︒60sin 45cos 60cos 45sin 45sin )33(5105sin 45sin )33(5sin sin ADB DAB AB DB 31042622)33(5=+⨯+=(海里)……………………………………6分(2)320,60)6090(30==-+︒=∠+∠=∠︒︒︒BC ABC DBA DBC 海里,……7分 在DBC ∆中,由余弦定理得9002132031021200300cos 2222=⨯⨯⨯-+=∠⨯⨯-+=DBC BC BD BC BD CD …………………………………………………………………………9分30=∴CD (海里)………………………………………………………………………10分则需要的时间13030==t (小时) ……………………………………………………11分 答:在D 点的轮船离B 点310海里,该救援船到达D 点需要1小时.………………………………12分22.解:(1) 据题意可得.25,932==a a ……………………………………………………2分(2)由12211-+=++n n n a a 可得.1212111=---++n n n n a a ……………………………4分 故1-=λ时,⎭⎬⎫⎩⎨⎧+nn a 2λ成等差数列,且首项为1211=-a ,公差为1=d . (注:由前3项列方程求出1-=λ后,没有证明的扣1分)n a nn =-∴21即12+⋅=n n n a . ……………………………………………………5分 此时n n S n n +⨯++⨯+⨯+⨯=)2232221(32 令n n n T 223222132⨯++⨯+⨯+⨯= ,则n T S n n +=又n n n T 223222132⨯++⨯+⨯+⨯= ………………………………① 则143222322212+⨯++⨯+⨯+⨯=n n n T ……………………②①-②得22)1(222221132-⨯-=⨯-++++=-++n n n n n n T22)1(1+⨯-=∴+n n n Tn n n T S n n n ++⨯-=+=∴+22)1(1.……………………………………………8分 (3)12221222)1(11+⋅-+=+⋅++⋅-=++nn n n n n n n n n n a S …………………………………9分 结合xy 2=及x y 21=的图像可知22n n >恒成立 n n >∴+12即021<-+n n 012>+⋅n n 2<∴nna S ……………………………………………………10分当1=n 时,+∈==N a S a S n n 111…………………………………………………11分 当2≥n 时0>n a 且}{n a 为递增数列 0>∴n S 且n n a S > 1>∴n na S 即21<<n n a S ∴当2≥n 时,+∉N a S nn 综上可得1=n …………………………………………………………………12分。

2014-2015学年高一下学期期中考试数学试卷-Word版含答案

2014-2015学年高一下学期期中考试数学试卷-Word版含答案

2014-2015学年高一下学期期中考试数学试卷-Word版含答案2014——2015学年下学期高一年级期中考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 不等式0121≤+-x x 的解集为( )A.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞) B.⎣⎢⎡⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) D. ⎝ ⎛⎦⎥⎤-12,12. 若0<<b a ,则下列不等式不能成立的是 ( ) A.ba11> B .b a 22> C .b a > D .b a )21()21(> 3. 不等式16)21(1281≤<x 的整数解的个数为 ( )A .10B .11C .12D .134. 等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为( )A .297B .144C .99D .665. 已知直线1l :01)4()3(=+-+-y k x k 与2l :032)3(2=+--y x k 平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或26. 在△ABC 中,80=a ,70=b ,45=A ,则此三角形解的情况是 ( ) A 、一解 B 、两解 C 、一解或两解 D 、无解7. 如果0<⋅C A ,且0<⋅C B ,那么直线0=++C By Ax 不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知点()5,x 关于点),1(y 的对称点为()3,2--,则点()y x p ,到原点的距离为( )A .4B .13C .15D .179. 计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1 101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13,那么将二进制数(11…114个01)2转换成十进制数是( )A .216-1B .216-2C .216-3D .216-4 10. 数列{}n a 满足21=a ,1111+-=++n n n a a a ,其前n 项积为n T ,则=2014T ( ) A.61B .61- C .6 D .6- 11. 已知0,0>>y x ,且112=+yx,若m m y x 222+>+恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-2,4)C .(-∞,-4]∪[2,+∞)D .(-4,2) 12. 设数列{}n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,已知数列50021,,,a a a 的“理想数”为2004,那么数列12,50021,,,a a a 的“理想数”为( ) A .2012 B .2013 C .2014 D .2015第Ⅱ卷(非选择题 共90分)19.(12分) 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求OAB ∆的面积的最小值及此时直线l 的方程.20. (12分) 某观测站C 在城A 的南偏西20˚的方向上,由A 城出发有一条公路,走向是南偏东40˚,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?21. (12分) 在各项均为正数的等差数列{}n a 中,对任意的*N n ∈都有12121+=+++n n n a a a a a . (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足11=b ,na n nb b 21=-+,求证:对任意的*N n ∈都有212++<n n n b b b .22. (12分)设函数())0(132>+=x xx f ,数列{}n a 满足11=a ,)1(1-=n n a f a ,*N n ∈,且2≥n .(1)求数列{}n a 的通项公式; (2)对*N n ∈,设13221111++++=n n n a a a a a a S ,若ntS n 43≥恒成立,求实数t 的取值范围.答案一、选择题:(每题5分,共60分)13、 3 14、349π15、 2 16、 ①②⑤三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)由题意,得⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16.∵公差d>0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n≥2,n ∈N *), ∴b n -b n -1=2n -1(n≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n≥2,n ∈N *),且b 1=a 1=1,∴b n =2n -1+2n -3+…+3+1=n 2(n≥2,n ∈N *). ∴b n =n 2(n ∈N *).题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBCCACDCDDA18. 解析 27(1)4sin cos 2180,:22B C A A B C +-=++=︒由及得 22272[1cos()]2cos 1,4(1cos )4cos 5214cos 4cos 10,cos ,20180,60B C A A A A A A A A -+-+=+-=-+=∴=︒<<︒∴=︒即 22222222(2):cos 211cos ()3.2223123,3: 2 :.221b c a A bcb c a A b c a bc bc b c b b a b c bc bc c c +-=+-=∴=∴+-=+===⎧⎧⎧=+==⎨⎨⎨===⎩⎩⎩由余弦定理得代入上式得由得或 19. 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1.由基本不等式知3a +2b ≥26ab,即ab≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 20. 解 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB 中,由余弦定理得:71202123120212cos 222222-=⨯⨯-+=⋅⋅-+=BD CD BC BD CD β,734cos 1sin 2=-=ββ.()CDA CAD ∠-∠-︒=180sin sin α ()β+︒-︒-︒=18060180sin()143523712173460sin cos 60cos sin 60sin =⨯+⨯=︒-︒=︒-=βββ在△ACD 中得1514352321143560sin 21sin sin =⨯=⋅︒=⋅=αA CD AD . 所以还得走15千米到达A 城. 21. 解:(1)设等差数列{a n }的公差为d.令n =1,得a 1=12a 1a 2.由a 1>0,得a 2=2.令n =2,得a 1+a 2=12a 2a 3,即a 1+2=a 1+2d ,得d =1.从而a 1=a 2-d =1.故a n =1+(n -1)·1=n. (2)证明:因为a n =n ,所以b n +1-b n =2n ,所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1 =2n -1.又b n b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=-2n <0, 所以b n b n +2<b 2n +1.22. 解:(1)由a n =f ⎝⎛⎭⎪⎫1a n -1,可得a n -a n -1=23,n ∈N *,n≥2.所以{a n }是等差数列.又因为a 1=1,所以a n =1+(n -1)×23=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=92n +12n +3=92⎝⎛⎭⎪⎫12n +1-12n +3.所以S n =92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3,n ∈N *. S n ≥3t 4n ,即3n 2n +3≥3t 4n ,得t≤4n 22n +3(n ∈N *)恒成立.令g(n)=4n 22n +3(n ∈N *),则g(n)=4n 22n +3=4n 2-9+92n +3=2n +3+92n +3-6(n ∈N *).令p =2n +3,则p≥5,p ∈N *.g(n)=p +9p -6(n ∈N *),易知p =5时,g(n)min =45.所以t≤45,即实数t 的取值范围是⎝⎛⎦⎥⎤-∞,45.。

2014-2015学年度高一数学期中试卷(含答案解析)

2014-2015学年度高一数学期中试卷(含答案解析)

第1页 共10页 ◎ 第2页 共10页绝密★启用前2014-2015学年度期中卷高一数学考试范围:必修一;考试时间:120分钟;命题人: 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}1,2,3M =,{}2,3,4N =,则 ( ) A .M N ⊆ B .N M ⊆ C .{}1,4MN = D .{}2,3M N =【答案】D【解析】解:因为根据已知 的集合,可以判定集合间的关系,以及集合的运算,那么显然选项D 成立。

2.设集合}1,0,1{-=M ,},{2a a N =,则使M∩N=N 成立的a 的值是( ) A .1 B .0 C .-1 D .1或-1 【答案】C 【解析】试题分析:由于集合中的元素互不相同,所以20,1a a a a ≠⇒≠≠.又因为M∩N=N ,所以1a =-. 考点:集合的特征及集合的基本运算. 3.设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1 【答案】A【解析】因为y=3x在R 上单调递增,又,故﹣2<x <﹣1故选A4.若0.90.48 1.54,8,0.5a b c -===则( )A .c b a >> B. a c b >> C.b a c >> D.b c a >> 【答案】D【解析】0.9 1.80.48 1.44 1.5 1.542,82.(0.5)2.-===函数2x y =是增函数,1.8 1.5 1.44,>>所以.a c b >>故选D5.函数()f x =的定义域是 A. {x ︱34x >} B. {01x x <≤} C. {1x x ≥} D. {x ︱314x <≤} 【答案】D 【解析】略6.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f xf f +=+=则=)5(f ()A.0B .1C .25D .5【答案】C【解析】令x=-1可得(1)(1)(2)(1)(2),(2)2(1)1,f f f f f f f =-+=-+∴==13(3)(1)(2)122f f f ∴=+=+=,35(5)(3)(2)122f f f =+=+=.7.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往旅游,他先前进了a km ,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b <a ), 当他记起诗句“不到长城非好汉”,便调转车头继续前进. 则该同学离起点的距离s 与时间t 的函数关系的图象大致为 ( )【答案】C【解析】分析:本题根据运动变化的规律即可选出答案.依据该同学出门后一系列的动作,匀速前往对应的图象是上升的直线,匀速返回对应的图象是下降的直线,等等,从而选出答案. 解答:解:根据他先前进了akm ,得图象是一段上升的直线,DCBA第3页 共10页 ◎ 第4页 共10页由觉得有点累,就休息了一段时间,得图象是一段平行于t 轴的直线,由想想路途遥远,有些泄气,就沿原路返回骑了bkm (b <a ),得图象是一段下降的直线, 由记起诗句“不到长城非好汉”,便调转车头继续前进,得图象是一段上升的直线, 综合,得图象是C , 故选C .点评:本小题主要考查函数的图象、运动变化的规律等基础知识,考查数形结合思想.属于基础题. 8.函数的单调增区间为( )A .B .(3,+∞)C .D .(﹣∞,2)【答案】D【解析】由题意知,x 2﹣5x+6>0∴函数定义域为(﹣∞,2)∪(3,+∞),排除A 、C , 根据复合函数的单调性知的单调增区间为(﹣∞,2),故选D9.若函数()1(0,1)1x mf x a a a =+>≠-是奇函数,则m 为 A.1- B.2 C.1 D.2-【答案】B 【解析】 试题分析:111111x a(),()()xxxm m mf x f x aaa --=+=+-=-+--- 由于函数是奇函数,()(),f x fx ∴-=-即x a (1)1(1)2111x x x x m m m a a a a -+=-+∴=--- 所以2m =,故选:B.考点:函数的奇偶性10. 下列每组中两个函数是同一函数的组数共有( ) (1)2()1f x x =+和2()1f v v =+(2) y =和y =(3) y=x 和321x xy x +=+ (4) y=和y(A) 1组 (B) 2组 (C) 3组 (D) 4组 【答案】C【解析】根据同意哈函数的定义可知选项A 中定义域和对应关系相同,成立,选项B 中,定义域相同,对应关系相同,选项C 中,相同,选项D 中,定义域不同,故是同一函数的 组数有3组,故选C 11.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )【答案】B【解析】试题分析:因为根据1a >,可知指数函数递增函数,排除C ,D 选项,同时在选项A,B 中,由于对数函数log ()a y x =-的图像与log a y x =的图像关于y 轴堆成,那么可知.排除A.正确的选项为B.考点:本题主要是考查同底的指数函数与对数函数图像之间的关系的运用。

。2014-2015学年高一下学期期中考试数学试题

。2014-2015学年高一下学期期中考试数学试题
13、 已知等差数列 { an} 的前 n 项和为 Sn , a4 8 a6 ,则 S9 _________.
14、若不等式 2 kx 2 kx 3 0 的解集为空集 , 则实数 k 的取值范围是 _________. 8
15、△ ABC 中 , 角 A, B, C 的对边分别为 a, b, c, 已知 b=8, c= 6, A= , ∠ BAC 的角平分线交边 BC 于点 D, 则 3
(2 n 1)2n 1,
∴ 2Tn 1 22 3 2 3
(2n
3) 2n
( 2n
1)2 n
1
因此
Tn 1 2 (2 2 2 2 2 3
2
2n)
(2n
1) 2 n
1
,
即: Tn 1 2 (23 2 4
2 n 1) ( 2n 1)2 n 1 , ∴ Tn (2n 3)2n 1 6 . …… 12 分
22、答案 : ( 1)∵ an
an 1
2n ,∴ an 1
1 2n 1 3
(an 1 2n ) , 3
∵ a1
1 2
1
0,
33
an 1

an
1 2n 1 3 1 2n 3
1,
∴ { an
1
2n} 是首项为
1
,公比为
1 的等比数列。且 an
1 [2 n
( 1)n ]
3
3
3
…… 3 分 [ 来源:Z*xx*]
快乐的学习,快乐的考试!
( 1)求数列 an 的通项公式;
( 2)设 bn
2
n an
, 求数列
2
bn 的前 n项和 Sn .
来源 学*科 *网

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。

后有答案XXX2014-2015学年下学期高一年级期中数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分。

考试时间:120分钟。

卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1.若实数a,b满足a>b,则下列不等式一定成立的是()A。

a^2<b^2B。

1/a<1/bC。

a^2>b^2D。

a^3>b^32.等差数列{an}中,若a2=1,a4=5,则{an}的前5项和S5=()A。

7B。

15C。

20D。

253.不等式(1/x-1)>1的解集为()A。

{x>1}B。

{x<1}C。

{x>2}D。

{x<2}4.△ABC中,三边a,b,c的对角为A,B,C,若B=45°,b=23,c=32,则C=()A。

60°或120°B。

30°或150°C。

60°D。

30°5.已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5=()A。

32B。

31C。

16D。

156.等差数列{an}中,an=6-2n,等比数列{bn}中,b5=a5,b7=a7,则b6=()A。

42B。

-42C。

±42D。

无法确定7.△ABC中,若∠ABC=π/2,AB=2,BC=3,则sin∠BAC=()A。

4/5B。

3/10C。

5/10D。

1/108.计算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×2=13,那么将二进制数(11.1)2转换成十进制数是(){共9位}A。

512B。

511C。

256D。

2559.不等式①x2+3>3x;②a2+b2≥2(a-b-1);③ba+≥2,其中恒成立的是()A。

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。

2014-2015学年高一数学上学期期中试题

2014-2015学年高一数学上学期期中试题

2014—2015学年度上学期高一期中考试试卷数 学本卷共150分,考试时间120分钟.第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂到答题卡的相应位置. 1. 设集合{}1->∈=x Q x A ,则( )A .0A ∉ BA C .{2}A ∈ D.A2.设集合{}02M x x =≤≤,{}02N y y =≤≤,给出如下四个图形,其中能表示从集合M 到集合N 的函数关系的是( )A .B .C .D . 3 计算:324=( )A.2B.6C. 8D. 124.下列函数中,既是单调函数又是奇函数的是 ( ) A. x y 3log = B. xy 3= C. 12y x = D. 3x y =5. 已知镭经过每100年剩留原来质量的95.76%,设质量为1千克的镭经过x 年剩留量为y 千克,则y 与x 的函数关系是 ( )(A)1000.9576x y =. (B)1000.9576xy =. (C)1000.0424x y =. (D)1000.0424xy =.6. 若函数)(x f 为奇函数,且当,10)(,0xx f x =>时则)2(-f 的值是 ( )A .100-B .1001 C .100 D .1001- 7. 二次函数])5,0[(4)(2∈-=x xx x f 的值域为 ( )A.),4[+∞-B.]5,0[C.]5,4[-D.]0,4[-8.函数y =( )A.(2,3)B. (2,3]C. (,2)-∞D. (2,)+∞ 9. 三个数231.0=a ,31.0log 2=b ,31.02=c 之间的大小关系为 ( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a10. 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-,则 ( )A .(3)(2)(1)f f f <-< B. (1)(2)(3)f f f <-< C. (2)(1)(3)f f f -<< D. (3)(1)(2)f f f <<-11、已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) (A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)712、设1a >,实数,x y 满足1log 0ax y-=,则该函数的图像是( )第II 卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写到答题卡的相应位置. 13. 已知幂函数)(x f y =的图象过点=)9(),2,2(f 则 .14. 已知函数()2log (0)3(0)=xx x f x x >⎧⎨≤⎩,则1[()4]f f = . 15. 函数ln y x =的反函数是16.设函数⎪⎩⎪⎨⎧>-≤++=.0,,0,22)(22x x x x x x f 若a a f f 则,2))((== .三、解答题:本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤,请将解答过程填写在答题卡的相应位置.17.(本小题满分10分) 计算化简下列各式 (1 3252525lg10ln1ln log 20log 5log 4e -++++-(2)2(0)a >18.(本题满分12分)已知集合{}{}{}A 36B=b 3b 7,M x 4x 5=-≤-+=-≤x <x ,x <x <<,全集U=R . (1)求A∩M;(2)若B∪(C U M )=R ,求实数b 的取值范围.19.(本小题满分12分)函数(0)()1log (0)9c ax b x f x x x +≤⎧⎪=⎨⎛⎫+≥ ⎪⎪⎝⎭⎩,的图象如右图所示. (1) 求a b c ++的值;(2) 若()1-=m f ,求m 的值.()20.12本小题满分分某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?21.(本小题满分12分)已知函数1212)(+-=x x x f .(Ⅰ)判断函数)(x f 的奇偶性,并证明;(Ⅱ)利用函数单调性的定义证明:)(x f 是其定义域上的增函数.22.(本小题满分12分)定义在R 上的函数)(x f ,满足当0x >时,)(x f >1,且对任意的,x y R ∈,有()()()f x y f x f y +=⋅,(1)2f =.(1)求(0)f 的值;(2)求证:对任意x R ∈,都有)(x f >0; (3)解不等式(32)4f x ->桂林中学2014—2015学年度上学期期中质量检测高一年级数学答题卡一.选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13. 14.15. 16.三.解答题(本大题共6小题,共70分).17. (本小题满分10分)(1)(2)18.(本小题满分12分)19.(本小题满分12分)20.(本小题满分12分)21.(本小题满分12分)22.(本小题满分12分)桂林中学2014—2015学年度上学期高一期中考试试卷数 学 答 案 期中考试数学答案一、选择题:二、填空题:13. 3 14.1915.()xy e x R =∈三、解答题:本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤,请将解答过程填写在答题卡的相应位置.17. (本小题满分10分) 计算化简下列各式 (1 3252525lg10ln1ln log 20log 5log 4e -++++-答案:-1 (2)2(0)a >答案:56a18.(本题满分12分)已知集合{}{}{}A 36B=b 3b 7,M x 4x 5=-≤-+=-≤x <x ,x <x <<,全集U=R . (1)求A∩M;(2)若B∪(C U M )=R ,求实数b 的取值范围.解:(1)因为集合A={x|﹣3<x ≤6},M={x|﹣4≤x <5}, 所以A∩M={x |﹣3<x ≤6}∩{x|﹣4≤x <5} ={x |﹣3<x <5}.…………………..5分(2)因为M={x |﹣4≤x <5},所以C U M={x |x <﹣4或x ≥5},………..8分 又B={x|b ﹣3<x <b +7},B∪(C U M )=R , 则⎩⎨⎧≥+-<-5743b b ,解得12-<≤-b .……………..10分所以实数b 的取值范围是12-<≤-b .即实数b 的取值范围是[)1,2--……………..12分19.(本小题满分12分)函数(0)()1log (0)9c ax b x f x x x +≤⎧⎪=⎨⎛⎫+≥ ⎪⎪⎝⎭⎩,的图象如右图所示. (1) 求a b c ++的值;(2) 若()1-=m f ,求m 的值.解:(1)当0x ≤时,b ax x f +=)(,根据图像2)0(,0)1(==-f f ,所以2==b a . ………… 2分 当0x >时,=)(x f 1log ()9c x +.根据图像,2)0(=f ,即1log (0)9c +=2 ,13c = . ………… 4分 ∴1132233a b c ++=++=. …………… 6分 (2)由(1)知,132 2 (0)()1log () (0).9x x f x x x +≤⎧⎪=⎨+>⎪⎩, ……………………7分 当0≤m 时,由122-=+m 解得 23-=m . ……………………9分当0>m 时,由1)91(log 31-=+m 解得 926=m . ……………………11分综上所述,m 的值为23-或926. ……………………12分()20.12本小题满分分某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?()()()21520400,520400,013,5204020040520200,013x x x x x y x x x x x -=->-><<=--=-+-<<解:根据以上数据知,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x 元,日均销售利润为y 元,而在此情况下的日均销售量就为 480-40桶由于且即于是可得易知,当x=6.5时,y 有最大值.即只须将销售单价定为11.5元,就可以获得最大的利益.21.(本小题满分12分)已知函数1212)(+-=x x x f .(Ⅰ)判断函数)(x f 的奇偶性,并证明;(Ⅱ)利用函数单调性的定义证明:)(x f 是其定义域上的增函数.解. (1))(x f 为奇函数. ………1分,012≠+x ∴)(x f 的定义域为R , ………2分 又)(121221211212)(x f x f x x x x x x -=+--=+-=+-=--- )(x f ∴为奇函数. ………6分(2)1221)(+-=x x f 任取1x 、R x ∈2,设21x x <,)1221()1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x ………9分 022********<-∴<∴<x x x x x x , , 又12210,210x x +>+>,)()(0)()(2121x f x f x f x f <∴<-∴,.)(x f ∴在其定义域R 上是增函数. ………12分22.(本小题满分12分)定义在R 上的函数f (x ),满足当x >0时,f (x )>1,且对任意的x ,y ∈R ,有f (x +y )=f (x )·f (y ),f (1)=2(1)求f (0)的值;(2)求证:对任意x ∈R ,都有f (x )>0;(3)解不等式f(3-2x)>4.22.(1)对任意x,y∈R,f(x+y)=f(x)·f(y).令x=y=0,得f(0)=f(0)·f(0),即f(0)·[f(0)-1]=0.令y=0,得f(x)=f(x)·f(0),对任意x∈R成立,所以f(0)≠0,因此f(0)=1.(2)证明:对任意x∈R,有f(x)=f(x2+x2)=f(x2)·f(x2)=[f(x2)]2≥0.假设存在x0∈R,使f(x0)=0,则对任意x>0,有f(x)=f[(x-x0)+x0]=f(x-x0)·f(x0)=0.这与已知x>0时,f(x)>1矛盾.所以,对任意x∈R,均有f(x)>0成立.。

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。

XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。

$\{2\}$。

B。

$\{1,2\}$。

C。

$\{0,1,2\}$。

D。

$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。

$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。

2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。

利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。

3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。

$(1,+\infty)$。

B。

$[1,+\infty)$。

C。

$(0,+\infty)$。

D。

$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。

由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。

4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。

$y=-|x|$。

B。

$y=x$。

C。

$y=|x|$。

山东省泰安一中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

山东省泰安一中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

某某省某某一中2014-2015学年高一下学期期中数学试卷一、选择题(每小题5分,共50分)1.计算sin(﹣960°)的值为()A.﹣B.C.D.﹣2.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60 D.13.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限4.设向量=(1,2),=(﹣2,1),则下列结论中不正确的是()A.|﹣|=|+| B.(﹣)⊥(+) C.||=|| D.∥5.将函数y=sin(2x﹣)的图象向右平移个单位,然后纵坐标不变横坐标伸长为原来的2倍,得到函数解析式为()A.y=sin(x﹣)B.y=cosx C.y=﹣cosx D.y=﹣sinx6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.cos42°sin12°﹣sin42°cos12°D.7.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=,=,则=()A.B.C.D.8.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1C.φ=D.B=49.对于,下列选项中正确的是()A.f(x)关于直线对称B.f(x)是偶函数C.f(x)的最小正周期为2πD.f(x)的最大值为110.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形二、填空题(每小题5分,共25分,请在答题纸上作答)11.已知是夹角为的两个单位向量,向量,若,则实数k的值为.12.求值:=.13.若α∈(,π),cos2α=sin(﹣α),则sin2α的值为.14.有下列说法:①已知α为第二象限角,则为第一或第三象限角;②已知λ为实数,为平面内任一向量,则的模为;③△ABC中,若tanA•tanC>1,则△ABC为锐角三角形;④已知O为△ABC所在平面内一点,且,则点O是△ABC的重心.则正确的序号是.15.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.若,则AB的长为.三、解答题(共75分,请在答题纸上作答)16.已知向量.(Ⅰ)若四边形ABCD为平行四边形,求D点坐标;(Ⅱ)若,某某数的值.17.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.18.已知,,且.求:(Ⅰ) cos(2α﹣β)的值.(Ⅱ)β的值.19.已知A,B,C是△ABC的三个内角.(Ⅰ)已知,,且,求∠C的大小;(Ⅱ)若向量,且||=,求证:tanAtanB为定值,并求这个定值.20.如图,已知OPQ是半径为圆心角为的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.(Ⅰ)若Rt△CBO的周长为,求的值.(Ⅱ)求的最大值,并求此时α的值.21.已知函数ωx﹣2,(ω>0),其图象与x轴相邻两个交点的距离为.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求使得f(x)≥﹣的x的取值集合;(Ⅲ)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),当m取得最小值时,求g(x)在上的单调递增区间.某某省某某一中2014-2015学年高一下学期期中数学试卷一、选择题(每小题5分,共50分)1.计算sin(﹣960°)的值为()A.﹣B.C.D.﹣考点:运用诱导公式化简求值.专题:三角函数的求值.分析:把要求的式子利用诱导公式化为sin60°,从而求得结果.解答:解:sin(﹣960°)=﹣sin960°=﹣sin(360°×2+240°)=﹣sin240°=sin60°=;故选:C.点评:本题主要考查利用诱导公式进行化简求值,属于基础题.2.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60 D.1考点:弧长公式.专题:计算题.分析:根据题意可以利用扇形弧长公式l扇形直接计算.解答:解:根据题意得出:60°=l扇形=1×=,半径为1,60°的圆心角所对弧的长度为.故选A.点评:此题主要考查了扇形弧长的计算,注意掌握扇形的弧长公式是解题关键.3.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限考点:象限角、轴线角;二倍角的正弦.专题:计算题.分析:由sin2α<0,确定2α的象限,确定α的象限X围,根据cosα﹣sinα<0,判定α的具体象限.解答:解:∵sin2α<0,∴2α在第三、四象限或y的负半轴.2kπ+π<2α<2kπ+2π,k∈Z,∴kπ+<α<kπ+π,k∈Z∴α在第二、四象限.又∵cosα﹣sinα<0,∴α在第二象限.故选:B.点评:本题考查象限角、轴线角,二倍角的正弦,考查分析问题解决问题的能力,是基础题.4.设向量=(1,2),=(﹣2,1),则下列结论中不正确的是()A.|﹣|=|+| B.(﹣)⊥(+) C.||=|| D.∥考点:平面向量数量积的运算.专题:平面向量及应用.分析:由于已知给出了向量的坐标,所以可以利用坐标运算进行选择.解答:解:由已知﹣=(3,1),+=(﹣1,3),所以|﹣|=|+|=;故A正确;并且3×(﹣1)+1×3=0,所以(﹣)⊥(+)正确;||==||,故C正确;故:选D点评:本题考查了向量的坐标运算,包括加减运算、模的计算.5.将函数y=sin(2x﹣)的图象向右平移个单位,然后纵坐标不变横坐标伸长为原来的2倍,得到函数解析式为()A.y=sin(x﹣)B.y=cosx C.y=﹣cosx D.y=﹣sinx考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据三角函数图象变换的公式,结合诱导公式进行化简,可得两次变换后所得到的图象对应函数解析式.解答:解:设f(x)=sin(2x﹣),可得y=f(x)的图象向右平移,得到f(x﹣)=sin[2(x﹣)﹣]=sin(2x﹣)的图象,再将所得的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得f(x﹣)=sin (x﹣)=﹣cosx的图象.∴函数y=sin(2x﹣)的图象按题中的两步变换,最终得到的图象对应函数解析式为y=﹣cosx,故选:C.点评:本题给出三角函数图象的平移和伸缩变换,求得到的图象对应的函数解析式.着重考查了三角函数图象的变换公式和诱导公式等知识,属于基础题.6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.cos42°sin12°﹣sin42°cos12°D.考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦.专题:计算题;三角函数的求值.分析:利用两角和与差的三角函数公式,分别计算,即可得出结论.解答:解:sin15°cos15°=sin30°=;cos2﹣sin2=cos=;cos42°sin12°﹣sin42°cos12°=﹣sin30°=﹣;=tan45°=.故选:D.点评:本题考查两角和与差的三角函数公式,考查学生的计算能力,正确运用公式是关键.7.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=,=,则=()A.B.C.D.考点:平面向量的基本定理及其意义.专题:计算题;压轴题.分析:根据两个三角形相似对应边成比例,得到DF与FC之比,做FG平行BD交AC于点G,使用已知向量表示出要求的向量,得到结果.解答:解:∵由题意可得△DEF∽△BEA,∴==,再由AB=CD可得=,∴=.作FG平行BD交AC于点G,∴=,∴===.∵=+=+=+==,∴=+=+,故选B.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的,本题属于中档题.8.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1C.φ=D.B=4考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.解答:解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力.9.对于,下列选项中正确的是()A.f(x)关于直线对称B.f(x)是偶函数C.f(x)的最小正周期为2πD.f(x)的最大值为1考点:三角函数的最值;余弦定理.专题:三角函数的求值.分析:利用三角恒等变换化简函数的解析式,再利用余弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.解答:解:对于=+﹣1=cos(2x﹣)﹣cos(2x+)=cos(2x﹣)+cos(2x﹣)=cos(2x﹣),令x=,求得f(x)=0,不是最值,故f(x)的图象不关于直线对称,故A不正确.由于不满足f(﹣x)=f(x),故函数不是偶函数,故B不正确.函数的最小正周期为=π,故C不正确.函数的最大值为1,故D正确,故选:D.点评:本题主要考查三角恒等变换,余弦函数的图象和性质,属于基础题.10.在△A BC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形考点:三角形的形状判断.专题:解三角形;平面向量及应用.分析:将转化为以与为基底的关系,即可得到答案.解答:解:.设||=c,||=a,||=b,则,即有:c+a+b=,∵=﹣,=﹣,∴c+a+b=c﹣a+b(﹣)=即c+b﹣(a+b)=,∵P是BC边中点,∴=(+),∴c+b﹣(a+b)(+)=,∴c﹣(a+b)=0且b﹣(a+b)=0,∴a=b=c.故选:A.点评:本题考查三角形的形状判断,突出考查向量的运算,考查化归思想与分析能力,属于中档题.二、填空题(每小题5分,共25分,请在答题纸上作答)11.已知是夹角为的两个单位向量,向量,若,则实数k的值为.考点:数量积表示两个向量的夹角;平行向量与共线向量.专题:平面向量及应用.分析:由题意可得是平面向量的一个基底,再由平面内两个向量共线的条件可得,由此解得k的值.解答:解:由题意可得=0,且是平面向量的一个基底.∵向量,且,∴,解得 k=﹣,故答案为﹣.点评:本题主要考查平面内两个向量共线的条件,基底的定义,属于中档题.12.求值:=1.考点:两角和与差的正弦函数;三角函数的化简求值.专题:三角函数的求值.分析:由条件利用三角函数的恒等变换化简可得结果.解答:解:=sin40°•=sin40°•===1,故答案为:1.点评:本题主要考查三角函数的恒等变换及化简求值,属于基础题.13.若α∈(,π),cos2α=sin(﹣α),则sin2α的值为﹣.考点:二倍角的正弦;二倍角的余弦.专题:三角函数的求值.分析:由条件利用两角和的正弦公式、二倍角公式求得,cosα﹣sinα,或cosα+sinα的值,由此求得sin2α的值.解答:解:∵α∈(,π),且cos2α=sin(﹣α),∴cos2α﹣sin2α=(sinα﹣cosα),∴cosα+sinα=﹣,或者sinα﹣cosα=0(因α∈(,π),舍去)∴两边平方,可得:1+sin2α=,∴从而可解得:sin2α=﹣.故答案为:﹣.点评:本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式的应用,属于中档题.14.有下列说法:①已知α为第二象限角,则为第一或第三象限角;②已知λ为实数,为平面内任一向量,则的模为;③△ABC中,若tanA•tanC>1,则△ABC为锐角三角形;④已知O为△ABC所在平面内一点,且,则点O是△ABC的重心.则正确的序号是①③.考点:命题的真假判断与应用.专题:综合题;简易逻辑.分析:对四个选项分别进行判断,即可得出结论.解答:解:①∵角α的终边在第二象限,∴2kπ+<α<2kπ+π,k∈Z,∴kπ+<<kπ+,当k为偶数时,2nπ+<<2nπ+,n∈Z,得是第一象限角;当k为奇数时,(2n+1)π+<<(2n+1)π+,n∈Z,得是第三象限角,故正确;②已知λ为实数,为平面内任一向量,则的模为||,故不正确;③△ABC中,若tanA•tanC>1,则cos(A+C)<0,∴B为锐角,tanA•tanC>1,∴A,C为锐角,∴△ABC为锐角三角形,故不正确;④已知O为△ABC所在平面内一点,且,则点O是△ABC的垂心,故不正确.故答案为:①③.点评:本题考查命题的真假判断,考查学生分析解决问题的能力,知识综合性强.15.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.若,则AB的长为6.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知将所求利用平行四边形的边对应的向量表示,得到关于AB 的方程解之.解答:解:因为平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.===4+=1,解得AB=6;故答案为:6.点评:本题考查了平面向量的平行四边形法则以及数量积的运算;注意向量的夹角与平行四边形内角关系;属于基础题三、解答题(共75分,请在答题纸上作答)16.已知向量.(Ⅰ)若四边形ABCD为平行四边形,求D点坐标;(Ⅱ)若,某某数的值.考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6﹣3,﹣3+4)=(2﹣m,﹣6﹣n),求出m,n,可得D点坐标;(Ⅱ)利用,可得(3,﹣4)=x(6,﹣3)+y(2,﹣6),所以,求出x,y,即可某某数的值.解答:解:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6﹣3,﹣3+4)=(2﹣m,﹣6﹣n),所以2﹣m=3,﹣6﹣n=1,所以m=﹣1,n=﹣7,所以D(﹣1,﹣7);(Ⅱ)因为,所以(3,﹣4)=x(6,﹣3)+y(2,﹣6),所以,所以x=,y=,所以=.点评:本题考查向量的线性运算,考查平面向量基本定理,考查学生分析解决问题的能力,属于中档题.17.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.考点:平面向量数量积的运算;数量积表示两个向量的夹角.专题:平面向量及应用.分析:(Ⅰ)将已知等式展开转化为两个向量的模压机数量积的计算问题,利用数量积公式求θ;(Ⅱ)根据投影的定义,利用数量积公式解答.解答:解:(Ⅰ)因为,,.所以,即16﹣8cosθ﹣3=9,所以cosθ=,因为θ∈[0,π],所以;(Ⅱ)由(Ⅰ)可知,所以==5,||=,所以向量在方向上的投影为:.点评:本题考查了平面向量的数量积公式的运用求向量的夹角以及一个向量在另一个向量的投影;关键是熟练掌握数量积公式以及几何意义.18.已知,,且.求:(Ⅰ) cos(2α﹣β)的值.(Ⅱ)β的值.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)由α,β的X围求出α﹣β的X围,由题意和平方关系求出sinα和cos (α﹣β),由两角和的余弦公式求出cos(2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cosβ=cos[α﹣(α﹣β)]的值,再由β的X围求出β的值.解答:解:(Ⅰ)解:∵,∴α﹣β∈(,),∵,,∴sinα==,cos(α﹣β)==,∴cos(2α﹣β)=cos[(α﹣β)+α]=cos(α﹣β)cosα﹣sin(α﹣β)sinα=×﹣×=,(Ⅱ)由(Ⅰ)得,cosβ=cos[α﹣(α﹣β)]=cos(α﹣β)cosα+sin(α﹣β)sinα=×+×=,又∵,∴β=.点评:本题考查两角和与差的余弦公式,同角三角函数的基本关系的应用,注意角之间的关系以及三角函数值的符号,属于中档题.19.已知A,B,C是△ABC的三个内角.(Ⅰ)已知,,且,求∠C的大小;(Ⅱ)若向量,且||=,求证:tanAtanB为定值,并求这个定值.考点:三角形中的几何计算.专题:平面向量及应用.分析:(Ⅰ)由已知,,且,可得=0,进而由两角和的正切公式和诱导公式可得tanC=,进而得到∠C的大小;(Ⅱ)由向量,且||=,可得|2==,利用倍角公式和两角和与差的余弦公式,可得cosAcosB=3sinAsinB,再由同角三角函数的基本关系公式,可得tanAtanB=.解答:解:(Ⅰ)∵,,且,∴==0,即,即=tan(A+B)=﹣,即tanC=tan[π﹣(A+B)]=﹣tan(A+B)=,又由C为△ABC的内角.∴C=60°证明:(Ⅱ)∵向量,∴||2===1+cos(A+B)+﹣cos(A﹣B),即cos(A+B)﹣cos(A﹣B)=0,即2cos(A+B)=cos(A﹣B),即2(cosAcosB﹣sinAsinB)=cosAcosB+sinAsinB,即cosAcosB=3sinAsinB,即tanAtanB=点评:本题考查的知识点是向量的数量积公式,两角和与差三角函数公式,同角三角函数的基本关系公式,是三角函数与向量的综合应用,难度中档.20.如图,已知OPQ是半径为圆心角为的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.(Ⅰ)若Rt△CBO的周长为,求的值.(Ⅱ)求的最大值,并求此时α的值.考点:扇形面积公式;平面向量数量积的运算.专题:三角函数的求值.分析:(Ⅰ)由条件利用直角三角形中的边角关系求出三角形的周长,利用三角函数的倍角公式进行化简进行求解.(Ⅱ)结合向量的数量积公式,结合三角函数的带动下进行求解.解答:解:(Ⅰ)BC=OCsinα=sinα,OB=OCcosα=cosα,则若Rt△CBO的周长为,则+sinα+cosα=,sinα+cosα=,平方得2sinαcosα=,即==,解得tanα=3(舍)或tanα=.则====.(Ⅱ)在Rt△OBC中,BC=OCsinα=sinα,OB=OCcosα=cosα,在Rt△ODA中,OA=DAtan=BC=si nα,∴AB=OB﹣OA=(cosα﹣cosα),则=(cosα﹣cosα)•sinα=∵,∴,∴当,即时,有最大值.点评:本题主要考查两个向量的数量积的定义,三角恒等变换,正弦函数的定义域和值域,考察学生的运算和推理能力.21.已知函数ωx﹣2,(ω>0),其图象与x轴相邻两个交点的距离为.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求使得f(x)≥﹣的x的取值集合;(Ⅲ)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),当m取得最小值时,求g(x)在上的单调递增区间.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数线;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)由三角函数恒等变换化简函数解析式可得f(x)=sin(2ωx+),由题意可得函数y=f(x)的周期T,利用周期公式可求ω,即可得解.(Ⅱ)由已知求得sin(2x+),利用正弦函数的图象和性质可得2kπ≤2x+≤2kπ+,或2kπ+≤2x+≤2kπ+2π,k∈Z,从而解得x的取值集合.(Ⅲ)先由题意求得g(x)=sin(2x+2m+),由图象经过点(﹣,0),可得sin[2(﹣)+2m+]=0,求得当k=0时,m取得最小值,g(x)=sin(2x+),由﹣≤x≤,求得≤2x+≤,利用正弦函数的单调性即可得解.解答:(本题满分14分)解:(Ⅰ)由已知ωx﹣2=sin2ωx﹣cos2ωx﹣4×+2==sin(2ωx+),由题意可得函数y=f(x)的周期T=π=,解得:ω=1.∴f(x)=sin(2x+)…4分(Ⅱ)∵f(x)=sin(2x+)≥﹣,可得:sin(2x+),∴2kπ≤2x+≤2kπ+,或2kπ+≤2x+≤2kπ+2π,k∈Z,∴可解得x的取值集合为:{x/k≤x≤kπ}∪{x/k≤x≤k},k∈Z…6分(Ⅲ)将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象,则g(x)=sin(2x+2m+),∵图象经过点(﹣,0),∴sin[2(﹣)+2m+]=0,即sin(2m﹣)=0,∴2m﹣=kπ(k∈Z),m=,∵m>0,∴当k=0时,m取得最小值,此时最小值为,此时g(x)=sin(2x+),若﹣≤x≤,则≤2x+≤,当≤2x+≤,即﹣≤x≤﹣时,g(x)单调递增;当≤2x+≤,即≤x≤时,g(x)单调递增;∴g(x)在上的单调递增区间为:[﹣,﹣]和[,]…12分点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,三角函数恒等变换的应用,属于基本知识的考查.。

15学年高一年级下学期期中考试数学试题(附答案)

15学年高一年级下学期期中考试数学试题(附答案)

2014-2015学年度第二学期中联考试题高一数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至6页。

2. 答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将答题卡交回。

第Ⅰ卷(选择题 共60分)一、选择题(本题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1 ( ) A. 输出a=10 B. 赋值a=10 C. 判断a=10 D. 输入a=12. 0600cos 的值为 ( )A.23 B.23- C.21 D 21- 3. 一个扇形的圆心角为︒120,半径为3,则此扇形的面积为 ( ) A.π B.45πC. 33π D.2932π 4.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数是 ( ) A .15,16,19 B .15,17,18 C .14,17,19 D .14,16,205.某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,则这射手在一次射击中不够9环的概率是( )A.0.48B.0.52C.0.71D.0.296.阅读右边的程序框图,运行相应的程序,则输出s 的值为 ( )A .-1B .0C .1D .3 7.将二进制数10001(2)化为十进制数为( )A .17B .18C .16D .19 8.设角θ的终边经过点P (-3,4),那么sin θ+2cos θ=( )A .15 B .15- C .25- D .259.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是( )A. 函数)(x f 的最小正周期为2πB. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数10.函数)20)(sin()(πϕϕω<>+=,A x A x f 其中的图象如图所示,为了得到xx g 2sin )(=的图象,则只需将)(x f 的图象( )A.向右平移6π个长度单位B.向右平移3π个长度单位C.向左平移6π个长度单位D.向左平移3π个长度单位11.函数()1f x kx =+,实数k 随机选自区间[-2,1].对[0,1],()0x f x ∀∈≥的概率是( ) A .13B .12C .23D .3412. 定义在R 上的函数()f x ,既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π02x ⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为 ( )A.12-C. D.12第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4题,每小题5分,共20分)13..图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________ .08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)14..函数tan()3y x π=-的单调递减区间为15.已知正边形ABCD 边长为2,在正边形ABCD 内随机取一点P ,则点P 满足||1PA ≤的概率是16.已知sin (0),()(1)1(0),x x f x f x x π⎧=⎨--⎩<> 则111166f f ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭= 三.解答题:(本大题共6个小题.共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(1)化简()fα。

湖南省娄底市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

湖南省娄底市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

某某省某某市2014-2015学年高一下学期期中数学试卷一、选择题(每小题4分,每小题只有一个正确选项)1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为()A.2 B.5 C.15 D.802.某校高中生共有900人,其中2014-2015学年高一年级有300人,2014-2015学年高二年级有200人,2015届高三年级有400人,现采用分层抽样方法抽取一个容量为45的样本,则2014-2015学年高一、2014-2015学年高二、2015届高三年级抽取的人数分别为()A.10,15,20 B.15,15,15 C.20,5,20 D.15,10,203.下列给出的赋值语句中正确的是()A.3=A B.M=﹣M C.B=A=2 D.x+y=04.把77化成四进制数的末位数字为()A.4 B.3 C.2 D.15.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有一个白球;都是红球6.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与307.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时,v3的值为()A.27 B.86 C.262 D.7898.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x 1 2 4 5y 1 1.5 5.5 8若由资料可知y对x呈线性相关关系,则y与x的线性回归方程=bx+a必过的点是()A.(2,2)B.(1,2)C.(3,4)D.(4,5)9.阅读如图所示的程序框图,若输入的a,b,c分别为21,32,75,则输出的a,b,c分别是()A.75,21,32 B.21,32,75 C.32,21,75 D.75,32,2110.在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6X卡片,今从每个袋中各取一X卡片,则两数之和等于9的概率为()A.B.C.D.二、填空题(每小题4分)11.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.12.已知{x1,x2,x3,…x n}的平均数为a,方差为b,则3x1+2,3x2+2,…,3x n+2的平均数是.13.如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为.14.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有条鱼.15.已知样本9,10,11,x,y的平均数是10,标准差是,则xy=.三、解答题16.用辗转相除法求884与1071的最大公约数(写出过程)17.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:甲27 38 30 37 35 31乙33 29 38 34 28 36请判断:谁参加这项重大比赛更合适,并阐述理由.18.某校从参加2014-2015学年高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.19.假设你家订了一份报纸,送报人可能在早上6点﹣8点之间把报纸送到你家,你每天离家去工作的时间在早上7点﹣9点之间,求你离家前不能看到报纸(称事件A)的概率是多少?20.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若由资料知y对x呈线性相关关系.(1)请画出上表数据的散点图;(2)请根据最小二乘法求出线性回归方程=bx+a的回归系数a,b;(3)估计使用年限为10年时,维修费用是多少?21.甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率.(1)取出的2个球都是白球;(2)取出的2个球中至少有1个白球.某某省某某市2014-2015学年高一下学期期中数学试卷一、选择题(每小题4分,每小题只有一个正确选项)1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为()A.2 B.5 C.15 D.80考点:频率分布直方图.专题:计算题.分析:由样本容量是20,某组的频率为0.25,由此直接计算能求出该组的频数.解答:解:由题设知该组的频数:20×0.25=5.故选B.点评:本题考查频数的性质和应用,解题时要注意样本容量、频数和频率之间相互关系的灵活运用.2.某校高中生共有900人,其中2014-2015学年高一年级有300人,2014-2015学年高二年级有200人,2015届高三年级有400人,现采用分层抽样方法抽取一个容量为45的样本,则2014-2015学年高一、2014-2015学年高二、2015届高三年级抽取的人数分别为()A.10,15,20 B.15,15,15 C.20,5,20 D.15,10,20考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.解答:解:根据题意得,用分层抽样在各层中的抽样比为=,则在2014-2015学年高一年级抽取的人数是300×=15人,2014-2015学年高二年级抽取的人数是200×=10人,2015届高三年级抽取的人数是400×==20人,故选:D.点评:本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.3.下列给出的赋值语句中正确的是()A.3=A B.M=﹣M C.B=A=2 D.x+y=0考点:赋值语句.专题:阅读型.分析:本题根据赋值语句的定义直接进行判断.解答:解:根据题意,A:左侧为数字,故不是赋值语句B:赋值语句,把﹣M的值赋给MC:连等,不是赋值语句D:不是赋值语句,是等式,左侧为两个字母的和.点评:本题考查赋值语句,通过对赋值语句定义的把握直接进行判断即可.属于基础题.4.把77化成四进制数的末位数字为()A.4 B.3 C.2 D.1考点:排序问题与算法的多样性.专题:计算题.分析:利用“除k取余法”是将十进制数除以5,然后将商继续除以4,直到商为0,然后将依次所得的余数倒序排列即可得到答案.解答:解:∵77÷4=19 (1)19÷4=4 (3)4÷4=1 01÷4=0 (1)故77(10)=1031(4)末位数字为1.故选D.点评:本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.5.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有一个白球;都是红球考点:互斥事件与对立事件.分析:由题意知所有的实验结果为:“都是白球”,“1个白球,1个红球”,“都是红球”,再根据互斥事件的定义判断.解答:解:A、“至少有1个白球”包含“1个白球,1个红球”和“都是白球”,故A不对;B、“至少有1个红球”包含“1个白球,1个红球”和“都是红球”,故B不对;C、“恰有1个白球”发生时,“恰有2个白球”不会发生,且在一次实验中不可能必有一个发生,故C对;D、“至少有1个白球”包含“1个白球,1个红球”和“都是白球”,与都是红球,是对立事件,故D不对;故选C.点评:本题考查了互斥事件和对立事件的定义的应用,一般的做法是找出每个时间包含的试验结果再进行判断,是基础题.6.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与30考点:众数、中位数、平均数;茎叶图.专题:图表型.分析:由茎叶图写出所有的数据从小到大排起,找出出现次数最多的数即为众数;找出中间的数即为中位数.解答:解:由茎叶图得到所有的数据从小到大排为:12,14,20,23,25,26,30,31,31,41,42∴众数和中位数分别为31,26故选B点评:解决茎叶图问题,关键是将图中的数列出;求数据的中位数时,中间若是两个数时,要求其平均数.7.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时,v3的值为()A.27 B.86 C.262 D.789考点:算法思想的历程.专题:计算题.分析:根据秦九韶算法求多项式的规则变化其形式,得出结果即可解答:解:f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x=(((((7x+6)x+5)x+4)x+3)x+2)x+1)x故v3=((7x+6)x+5)x+4当x=3时,v3=((7×3+6)×3+5)×3+4=262故选C.点评:本题考查排序问题与算法的多样性,正确理解秦九韶算法求多项式的原理是解题的关键8.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x 1 2 4 5y 1 1.5 5.5 8若由资料可知y对x呈线性相关关系,则y与x的线性回归方程=bx+a必过的点是()A.(2,2)B.(1,2)C.(3,4)D.(4,5)考点:线性回归方程.专题:计算题.分析:根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标.解答:解:∵,==4,∴这组数据的样本中心点是(3,4)∵线性回归方程过样本中心点,∴线性回归方程一定过点(3,4)故选C点评:本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.9.阅读如图所示的程序框图,若输入的a,b,c分别为21,32,75,则输出的a,b,c分别是()A.75,21,32 B.21,32,75 C.32,21,75 D.75,32,21考点:设计程序框图解决实际问题.专题:操作型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是按顺序交换变量a,b,c的值.模拟程序的执行过程,易得答案.解答:解:由流程图知,a赋给x,x赋给b,所以a的值赋给b,即输出b为21,c的值赋给a,即输出a为75.b的值赋给a,即输出c为32.故输出的a,b,c的值为75,21,32故选A点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6X卡片,今从每个袋中各取一X卡片,则两数之和等于9的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题.分析:首先计算从两个袋中各取一X卡片的取法数目,再列举其中和为9的情况,可得其数目,由等可能事件的概率公式,计算可得答案.解答:解:从两个袋中各取一X卡片,每个袋中有6X卡片,即有6种取法,则2X卡片的取法有6×6=36种,其中和为9的情况有(3,6),(6,3),(4,5),(5,4),共4种情况,则两数之和等于9的概率为=,故选C.点评:本题考查等可能事件的概率的计算,解题时注意取出的卡片有顺序,即(3,6)与(6,3)是不同的取法.二、填空题(每小题4分)11.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号785,667,199,507,175(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.考点:简单随机抽样.分析:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.解答:解:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916它大于800要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.故答案为:785、667、199、507、175点评:抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.12.已知{x1,x2,x3,…x n}的平均数为a,方差为b,则3x1+2,3x2+2,…,3x n+2的平均数是3a+2.考点:众数、中位数、平均数.专题:计算题.分析:根据所给的这组数据的平均数,写出求平均数的公式形式,把要求平均数的数据,代入求平均数的公式,根据上面写出的式子,得到结果.解答:解:∵x1,x2,x3,…x n的平均数为a,∴∴==3a+2∴3x1+2,3x2+2,…,3x n+2的平均数是3a+2,故答案为:3a+2点评:本题考查平均数的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.13.如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为.考点:几何概型;扇形面积公式.分析:先令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=,从而结合几何概型的计算公式即可求得黄豆落在阴影区域内的概率.解答:解:令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=则黄豆落在阴影区域外的概率P=1﹣=.故答案为:.点评:本小题主要考查扇形面积公式、几何概型等基础知识,考查运算求解能力,考查数形结合思想.关键是要求出阴影部分的面积及正方形的面积.属于基础题.14.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有750条鱼.考点:收集数据的方法.专题:计算题.分析:由题意可得:池塘中有标记的鱼的概率为.因为池塘内具有标记的鱼一共有30条鱼,所有可以估计该池塘内共有750条鱼.解答:解:由题意可得:从池塘内捞出50条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:.又因为池塘内具有标记的鱼一共有30条鱼,所有可以估计该池塘内共有条鱼.故答案为750.点评:解决此类问题的关键是正确的把实际问题转化为数学问题,利用概率的知识解决问题.15.已知样本9,10,11,x,y的平均数是10,标准差是,则xy=96.考点:众数、中位数、平均数.分析:标准差是,则方差是2,根据方差和平均数,列出方程解出x、y的值.注意运算正确.解答:解:∵标准差是,则方差是2,平均数是10,∴(9+10+11+x+y)÷5=10 ①[1+0+1+(x﹣10)2+(y﹣10)2]=2 ②由两式可得:x=8,y=12∴xy=96,故答案为:96.点评:这个知识点是初中学过的,它和高中所学的有密切关系,区别随机变量的期望与相应数值的算术平均数.期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数.三、解答题16.用辗转相除法求884与1071的最大公约数(写出过程)考点:用辗转相除计算最大公约数.专题:简易逻辑.分析:用辗转相除法求884与1071的最大公约数,写出1071=884×1+187,…34=17×2,得到两个数字的最大公约数.解答:(本题满分8分)解:1071=884×1+187,884=187×4+136,187=136×1+51,136=51×2+3451=34×1+17,34=17×2,∴884与1071的最大公约数为17.点评:本题考查辗转相除法,这是算法案例中的一种题目,本题解题的关键是解题时需要有耐心,认真计算,不要在数字运算上出错,本题是一个基础题.17.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:甲27 38 30 37 35 31乙33 29 38 34 28 36请判断:谁参加这项重大比赛更合适,并阐述理由.考点:众数、中位数、平均数;极差、方差与标准差.专题:计算题.分析:先做出甲和乙的速度的平均数,甲和乙的速度的平均数相同,需要再比较两组数据的方差,选方差较小运动员参加比赛比较好.解答:解:S甲=,( 4分)S乙=,S甲>S乙乙参加更合适点评:本题考查两组数据的平均数和方差,对于两组数据,通常要求的是这组数据的方差和平均数,用这两个特征数来表示分别表示两组数据的特征.18.某校从参加2014-2015学年高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.考点:频率分布直方图.专题:计算题;图表型.分析:(1)在频率分直方图中,小矩形的面积等于这一组的频率,根据频率的和等于1建立等式解之即可;(2)60及以上的分数所在的第三、四、五、六组,从而求出抽样学生成绩的合格率,再利用组中值估算抽样学生的平均分即可.解答:解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:f4=1﹣(0.025+0.015*2+0.01+0.005)*10=0.3(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75%利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71.点评:本题主要考查了频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.19.假设你家订了一份报纸,送报人可能在早上6点﹣8点之间把报纸送到你家,你每天离家去工作的时间在早上7点﹣9点之间,求你离家前不能看到报纸(称事件A)的概率是多少?考点:几何概型.分析:根据题意,设送报人到达的时间为X,小王离家去工作的时间为Y;则(X,Y)可以看成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件A所构成的区域及其面积,由几何概型公式,计算可得答案.解答:解:如图,设送报人到达的时间为X,小王离家去工作的时间为Y,记小王离家前不能看到报纸为事件A;则(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(X,Y)|6≤X≤8,7≤Y≤9}一个正方形区域,面积为SΩ=4,事件A所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}即图中的阴影部分,面积为S A=0.5.这是一个几何概型,所以P(A)===0.125.答:小王离家前不能看到报纸的概率是0.125.点评:本题考查几何概型的计算,解题的关键在于设出X、Y,将(X,Y)以及事件A在平面直角坐标系中表示出来.20.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若由资料知y对x呈线性相关关系.(1)请画出上表数据的散点图;(2)请根据最小二乘法求出线性回归方程=bx+a的回归系数a,b;(3)估计使用年限为10年时,维修费用是多少?考点:线性回归方程.专题:数系的扩充和复数.分析:(1)根据表格中的数据画出散点图即可;(2)求出x与y的平均数,表示出,,求出ξ,根据=﹣ξ,计算即可得到结果;(3)把x=10代入(2)中结果计算即可得到结果.解答:解:(1)做出图象,如图所示:;(2)由上表得:==4,==5,=2×2.2+3×3.8+4×5.5+5×6.5+6×7=112.3,=22+32+42+52+62=90,∴ξ===1.23,则=﹣ξ=1.23x+0.08;(3)由(2)得:=1.23x+0.08,把x=10代入得:ξ=1.23×10+0.08=12.38,则使用年限为10年时,维修费用是大概为12.38万元.点评:此题考查了线性回归方程,弄清线性回归方程的意义是解本题的关键.21.甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率.(1)取出的2个球都是白球;(2)取出的2个球中至少有1个白球.考点:等可能事件的概率.专题:计算题.分析:用列举法列举出符合题意的各种情况的个数,再根据概率公式解答,比较即可.解答:解:(1)设红色球为1,两个白色球分别为2,3,列举所有等可能的结果:(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,3),(3,1),(3,2)共9种;取出的2个球都是白球有:4种,故取出的2个球都是白球的概率为;(2)取出的2个球中至少有1个白球有:8种,故取出的2个球中至少有1个白球的概率为:.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。

2014-2015高一数学期中试卷人教版必修二

2014-2015高一数学期中试卷人教版必修二

福安三中2014-2015年高一数学第二学期半期考试卷人教A 版--必修二(总分150分,时间:120分钟)第I 卷(选择题 共50分)一、选择题(本题共10 小题,每小题5 分,共50 分。

每小题只有一个选项符合题意,请将正确答案填入答题卷中)1.若直线l 的方程为x=2,则该直线的倾斜角是:( )(A )600 (B )450 (C )900 (D )18002.若点A (3,3),B (2,4),C (a ,10)三点共线,则a 的值为:( )(A )4- (B )3- (C )2- (D )43.已知直线:1l 053=+-y x ,:2l 016=++ay x ,若21//l l ,则=a ( )(A )2 (B )21 (C )21- (D )2- 4、已知圆221:1O x y +=与圆()()222:3416O x x -++=,则圆1O 与圆2O 的位置关系为( )A 、相交B 、内切C 、外切D 、相离5.若已知A (1,1,1),B (-3,-3,-3),则线段AB 的长为( )(A )43 (B )23 (C )42 (D )326.在空间中下列结论中正确的个数是 ( )①平行于同一直线的两直线平行 ②垂直于同一直线的两直线平行③平行于同一平面的两直线平行 ④垂直于同一平面的两直线平行(A )1 (B )2 (C )3 (D )47.正方体1111ABCD A B C D -中,则异面直线1AB 与1BC 所成的角是-( )A .30°B .60°C .45°D .90°8.已知直线m,平面α和β,下列结论中正确的是( )(A ) m ∥α,α∥β=>m ∥β (B )m ⊥α,α∥β=>m ⊥β(C )m ∥α,α⊥β=>m ⊥β (D )m ⊥α,α⊥β=>m ∥β9.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a = ( )(A ) 2 (B ) 22- (C ) 12- (D ) 12+10.若圆222)5()3(r y x =++-上有且只有两个点到直线234=-y x 的距离为1,则半径r 的取值范围是( )A.)6,4(B.)6,4[C.]6,4(D.]6,4[第Ⅱ卷(非选择题100分)二、填空题(本题共5 小题,每小题4分,共20 分)11. 已知直线a ∥平面α,直线b 在平面α内,则直线a 与直线b 的位置关系为12.圆x 2+y 2-2x-2y+1=0上的动点Q 到直线3x+4y+8=0距离的最小值为______.13.已知两直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于_ __ ___14.已知直线l 经过点P (2,3),且在两坐标轴上截距相等,则直线l 的方程为_______________15.下列命题中,①一条直线和两条直线平行线中的一条垂直,则它也和另一条垂直;②空间四点A 、B 、C 、D ,若直线AB 和直线CD 是异面直线,那么直线AC 和直线BD 也是异面直线;③空间四点若不在同一个平面内,则其中任意三点不在同一条直线上;④若一条直线l 与平面α内的两条直线垂直,则α⊥l .所有正确的命题的序号是 .三.解答题(本题共6 小题,共80 分)16.(本小题满分13分).已知两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,求满足下列条件的直线方程.(1)过点P 且过原点的直线方程;(2)过点P 且垂直于直线3l :210x y --=的直线l 的方程;17. (本小题满分13分)如图, 在三棱柱ABC -A 1B 1C 1中,侧棱A 1A 垂直于底面ABC, AC =3,BC =4,AB=5,点D 是AB 的中点, (I )求证: AC 1//平面CDB 1;(II )求证:AC ⊥BC 1;18.(本小题满分13分)已知直线L 过定点A (0,3),且与圆C :x-3()2+y+3()2=9相切,求该1A直线L 的方程.19. (本小题满分13分)如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,M 、N 分别是AB 、PC的中点,且MN PC MN AB ⊥⊥,.(1) 证明: MN ⊥面PDC .(2) 证明:平面P AD ⊥平面PDC .20.(本小题满分14分)已知曲线C :x 2+y 2-2x-4y+m=0(1)当m 为何值时,曲线C 表示圆;(2)若曲线C 与直线x+2y-4=0交于M 、N 两点,且CM ⊥CN(C 为圆心),求m 的值。

河北省正定中学2014-2015学年高一下学期期中考试数学Word版含答案

河北省正定中学2014-2015学年高一下学期期中考试数学Word版含答案

2014-2015学年度第二学期高一期中考试数学试题第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.) 1.设,,a b c R ∈,且a b >,则( ).A ac bc > .B 11a b < .C 22a b > .D 33a b > 2.等比数列{}n a 中,若33,2a =前3项和392S =,则数列{}n a 的公比为( ).A 1 .B 12- .C 1或12 .D 1或12-3.已知函数()sin cos 1f x x x =+,将()f x 的图像向左平移6π个单位得到函数()g x 的图像,则函数()g x 的单调减区间为( ).A 7[2,2],1212k k k Z ππππ++∈ .B 7[,],1212k k k Z ππππ++∈.C 2[,],63k k k Z ππππ++∈ .D 2[2,2],63k k k Z ππππ++∈4.如图1,正方体''''ABCD A B C D -中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥'A EFGH -的侧视图为( )5. 实数,x y 满足条件40,220,0,0,x y x y z x y x y +-≤⎧⎪-+≥=-⎨⎪≥≥⎩则的最大值为( ).A 1- .B 0 .C 2 .D 46.已知sin cos αα-=1tan tan αα+的值为 ( ) .A -4 .B 4 .C -8 .D 87.设等差数列{}n a 的前n 项和为n S ,若111a =-, 466a a +=-,则当n S 取最小值时,n = ( ).A 6 .B 7 .C 8 .D 9 8.若cos c a B =,sin b a C =,则ABC ∆是( ).A 等腰三角形 .B 等腰直角三角形 .C 直角三角形 .D 等边三角形9.已知0,0a b >>则4a b +的最小值为( ) .A 2 .B .C 4 .D 510.设三棱柱111ABC A B C -的体积为V ,P Q 、分别是侧棱11,AA CC 上的点,且1PA QC =,则四棱锥B APQC -的体积为( ).A 16V .B 14V .C 13V .D 12V12.在ABC △中,E 、F 分别为,AB AC 中点.P 为EF 上任一点,实数,x y 满足0PA xPB yPC ++=.设ABC △,PBC △, PCA △,PAB△的面积分别为123,,,,S S S S 记11S S λ=,22SS λ=,33S Sλ=,则23λλ取最大值时,2x y +的值为( ).A -1 .B 1 .C -32 .D 32第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知(1,2),(,4)10,_____.a b x a b a b ==⋅=-=且则14.设常数0a >,若241a x a x+≥+对一切正实数x 成立,则a 的取值范围为________.15.已知函数2,0()21,0x x f x x x x ⎧>⎪=⎨--+≤⎪⎩若函数()()2g x fx m =+有三个零点,则实数m 的取值范围是 . 16.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和为n S ,则30S 为_______. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,(Ⅰ)若21=a ,求B A ⋂; (Ⅱ)若A B =∅,求实数a 的取值范围.18.(本小题满分12分)已知正方体1111ABCD A B C D -的棱长为a ,,M N 分别是棱11,AA CC 的中点, (Ⅰ)求正方体1111ABCD A B C D -的内切球的半径与外接球的半径之比;(Ⅱ)求四棱锥1A MB ND -的体积.19.(本小题满分12分)已知等差数列{}n a 的公差0d ≠,该数列的前n 项和为n S ,且满足2352S a a ==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设11b a =,*12()n an n b b n +-=∈N ,求数列{}n b 的通项公式. 20.(本小题满分12分)已知函数21()2cos ,2f x x x x R =--∈. (Ⅰ)求函数()f x 的最小值,及取最小值时x 的值;(Ⅱ)设ABC △的内角,,A B C 的对边分别为,,a b c 且c =,()0f C =,若sin 2sin B A =,求,a b 的值.21.(本小题满分12分)设数列{}n a 的各项均为正数,它的前n 项的和为n S ,且2111822n n n S a a =++,数列{}n b 满足1111,()n n n n b a b a a b ++=-=.其中n N *∈.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设n n na cb =,求证:数列{}n c 的前n 项的和59n T >(n N *∈).22.(本小题满分12分) 已知2(),f x ax x a a R =+-∈.(Ⅰ)若不等式13)12()1()(2--++->a x a x a x f 对任意实数]1,1[-∈x 恒成立,求实数a的取值范围;(Ⅱ)若0a <,解不等式()1f x >.高一第二学期期中考试数学试题答案一.1-5 DDBCD 6-10 CABCC 11-12 DD 二14.13a ≥ 15. ⎥⎦⎤ ⎝⎛--21,1 16.470 17.(1)………4分(2)当A =∅时,需满足121,a a -≥+解得:2a ≤-;………6分当A ≠∅时,需满足121121,21011a a a a a a -<+-<+⎧⎧⎨⎨+≤-≥⎩⎩或解得:1222a a -<≤-≥或;综上,的取值范围为1(,][2,)2-∞-⋃+∞. ………10分18.(1)内切球半径12r a =,外接球半径R = ,内切球与外接球半径之比为;………6分(2)法一:连MN,则11A MB NDA MB N A MNDV V V ---=+1111,3A MB N N AMB AMB V V a S --∆==⋅⋅12111111,2224AMB S AM B A a a a ∆=⋅⋅=⋅⋅=123111,3412A MB N V a a a -∴=⋅⋅=1.1,3A MND N AMD AMD V V a S --∆==⋅⋅121111,2224AMB S AM AD a a a ∆=⋅⋅=⋅⋅=23111,3412A MND V a a a -∴=⋅⋅=综上,1131.6A MB ND A MB N A MND V V V a ---=+=………12分法二:连MN,则11A MB ND A MB N A MNDV V V ---=+又1S S ,MB N MND ∆∆=故1,A MB N A MND V V --=112A MB ND A MB N V V --∴=111311,312A MB N N AMB AMB V V a S a --∆==⋅⋅=11312.6A MB ND A MB N V V a --∴==19.解:(Ⅰ)因为35232S a S a =⎧⎨=⎩ 所以112123()43()a d a d a d a +=+⎧⎨+=⎩,即122223a da a =⎧⎨=⎩. 因为252a a =,0d ≠, 所以20a ≠. 所以112a d =⎧⎨=⎩ .所以21n a n =-. ………6分 (Ⅱ)因为*12()n an n b b n N +-=∈,所以1212ab b -=,2322a b b -=,……112n a n n b b ---=. 相加得1121222n a a a n b b --=+++=1323222n -+++=12(41)3n -- 即21213n n b -+=.…12分20解:,则()f x 的最小值是2-,当且仅当,6x k k Z ππ=-∈,则,,,,,由正弦定理,得由余弦定理,得,即,由解得..21解:(I )2111822n n n S a a =++, ① 当2n ≥时,2111111822n n n S a a ---=++, ②① -②得:221111()()82n n n n n a a a a a --=-+-,即1111()()4n n n n n n a a a a a a ---+=+-,∵数列{}n a 的各项均为正数,∴14n n a a --=(2n ≥),又12a =,∴42n a n =-;∵1111,()n n n n b a b a a b ++=-=,∴1112,4n n b b b +==,∴112()4n n b -=⋅;(II )∵1(21)4n nn na c nb -==-, ∴22113454(23)4(21)4n n n T n n --=+⋅+⋅++-⋅+-⋅,2214434(25)4(23)4(21)4n n n n T n n n --=+⋅++-⋅+-⋅+-⋅L ∴,两式相减得21555312(444)(21)4(2)4333n n n n T n n --=++++--=---⋅<-,∴59n T >. 22、解:(1)原不等式等价于01222>++-a ax x 对任意的实数]1,1[-∈x 恒成立, 设12)(122)(222++--=++-=a a a x a ax x x g○1当1-<a 时,01221)1()(min >+++=-=a a g x g ,得Φ∈a ; ○2当11≤≤-a 时,012)()(2min >++-==a a a g x g ,得121≤<--a ;○3当1>a 时,01221)1()(min >++-==a a g x g ,得1>a ; 综上21->a(3)210ax x a +-->,即(1)(1)0x ax a -++>因为0a <,所以1(1)()0a x x a +-+<,因为 1211()a a a a++--=所以当102a -<<时,11a a +<-, 解集为{x|11a x a +<<-};当12a =-时,2(1)0x -<,解集为φ;当12a <-时,11a a +>-, 解集为{x|11a x a+-<<}。

2014-2015学年度高一下学期期中考试数学试题_Word版含答案

2014-2015学年度高一下学期期中考试数学试题_Word版含答案

2014-2015学年第二学期期中考试高一数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为1-10题,共50分,第Ⅱ卷为11-20题,共100分。

全卷共计150分。

考试时间为120分钟。

第Ⅰ卷 (本卷共计50 分)一.选择题:(每小题只有一个选项,每小题5分,共计50分)1.化简0015tan 115tan 1-+等于 ( ) A. 3 B.23C. 3D. 1 2. 在中,下列三角式ABC ∆ ①sin(A+B)+sinC;②cos(B+C)+cosA;③2tan 2tanCB A + ④cos 2sec 2AC B +,其中恒为定值的是 ( ) A .①② B ②③ C ②④D ③④3. 已知函数f(x)=sin(x+2π),g(x)=cos(x -2π),则下列结论中正确的是( ) A .函数y=f(x)·g(x)的最小正周期为2π B .函数y=f(x)·g(x)的最大值为1C .将函数y=f(x)的图象向左平移2π单位后得g(x)的图象D .将函数y=f(x)的图象向右平移2π单位后得g(x)的图象4.圆:0y 6x 4y x 22=+-+和圆:0x 6y x 22=-+交于A 、B 两点,则AB 的垂直平分线的方程是( ).A .03y x =++B .05y x 2=--C . 09y x 3=--D .07y 3x 4=+- 5.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ). A.14 B .4 C .32 D .23x图4-3-17.下列命题正确的是( ).A .a//b, a⊥α⇒a⊥bB .a⊥α, b⊥α⇒a//bC .a⊥α, a⊥b ⇒b//αD .a//α,a⊥b ⇒b⊥α8.圆:02y 2x 2y x 22=---+上的点到直线2y x =-的距离最小值是( ). A .0 B .21+ C .222- D .22- 9. 曲线0y 4x 4y x 22=-++关于( )A .直线4x =对称B .直线0y x =+对称C .直线0y x =-对称D .直线)4,4(-对称10.已知在四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角为( ). A .︒90 B .︒45 C .︒60D .︒30第Ⅱ卷 (本卷共计100分)二.填空题:(每小题5分,共计20分)11. 使函数f(x)=sin(2x+θ)+)2cos(3θ+x 是奇函数,且在[0,4π]上是减函数的θ的一个值____________.12.一个圆锥的母线长为4,中截面面积为π,则圆锥的全面积为____________.13.已知z ,y ,x 满足方程C :22(3)(2)4x y ++-=,的最大值是___________.14.在三棱锥A B C P -中,已知2PC PB PA ===,︒=∠=∠=∠30CPA BPC BPA , 一绳子从A 点绕三棱锥侧面一圈回到点A 的距离中,绳子最短距离是_____________.三.解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)15. (本小题满分12分)已知π2 <α<π,0<β<π2 ,tan α=- 34 ,cos(β-α)= 513,求sinβ的值.ABCPDC 1A 1B 1CBA16.(本小题满分12分)已知平行四边形ABCD 的两条邻边AB 、AD 所在的直线方程为02y 4x 3=-+;02y x 2=++,它的中心为M )3,0(,求平行四边形另外两条边CB 、CD 所在的直线方程及平行四边形的面积.17.(本小题满分14分)正三棱柱111C B A ABC -中,2BC =,6AA 1=,D、E分别是1AA 、11C B 的中点, (Ⅰ)求证:面E AA 1⊥面BCD ; (Ⅱ)求直线11B A 与平面BCD 所成的角.18.(本小题满分14分)直线L 经过点)2,1(P ,且被两直线L 1:02y x 3=+-和 L 2:01y 2x =+-截得的线段AB 中点恰好是点P ,求直线L 的方程.19.(本小题满分14分)如图,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点,12A A AB ==,3BC =. (1)求证:1//AB 平面1BC D ; (2) 求四棱锥11-B AAC D 的体积.20.(本小题满分14分)设关于x 函数a x a x x f 2cos 42cos )(+-= 其中02π≤≤x(1) 将f(x)的最小值m 表示成a 的函数m=g(a); (2) 是否存在实数a,使f(x)>0在]2,0[π∈x 上恒成立?(3) 是否存在实数a ,使函数f(x) 在]2,0[π∈x 上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由。

人教A版高中必修二试题上学期高一年级期中考试.doc

人教A版高中必修二试题上学期高一年级期中考试.doc

高中数学学习材料马鸣风萧萧*整理制作2013——2014学年上学期高一年级期中考试数学试卷考生注意:1、 试卷所有答案都必须写在答题卷上。

2、 答题卷与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。

3、 考试时间为120分钟,试卷满分为150分。

一、选择题:(本大题共有10 题,每 题5分,共50分)1.函数21log (3)y x x=++的定义域为( ) A. R B.(3,)-+∞ C. (,3)-∞- D.(3,0)(0,)-+∞ 2.函数2()2f x x x =-,[0,3]x ∈的值域是( )A. RB.[1,)-+∞C.[0,3]D.[1,3]- 3. 设集合A 和B 都是自然数集合,映射f:A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,像20的原像是( )A .2B .3C .4D .54. 如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A .(M∩P)∩S B.(M∩P)∪SC .(M∩P)∩∁I SD .(M∩P)∪∁I S5 已知偶函数f (x )在区间[0,+∞)单调增加,则满足f (2x -1)< f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( ).A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 6. 函数f (x )=ln (x 2+1)的图象大致是( ) A .B .C .D .7. 已知a =5l o g 23.4,b =5l o g 43.6,c =(15)l o g 30.3,则( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >b8. 若由函数y=(12)x 的图象平移得到函数y=2-x+1+2的图象,则平移过程可以是( ) A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位9. 若存在 x ∈(-∞,0)使得方程2x - 1x -1-a =0成立,则实数a 的取值范围是( ) (A)(2,+∞) (B)(0,+∞) (C)(0,2) (D)(0,1)10. 已知函数f (x )定义域为{x ∈R|x≠0),对于定义域内任意x 、y 都有f (x )+f (y ) = f (xy ),且x >1时f (x )>0,则( )A .f (x )在(-∞,0)上 递减 ,在( 0,+∞)上递增B .f (x ) 在(-∞,0)上 递增,在( 0,+∞)上递减C .f (x ) 在(-∞,0)上 递增,在( 0,+∞)上递增D .f (x ) 在(-∞,0)上 递减,在( 0,+∞)上递减二、填空题:(本大题共有5 题,每 题5分,共25分)11. 函数y =log 3( | x |-1)的单调减区间是________.12. 若函数f (x )=In(2x+a)与g(x)=be x +1的图像关于直线y=x 对称,则a+2b=13. 函数f (x )=log 2(x+1)-x 2的零点个数为14. 2008年某小城市人口总数为14万,如果人口的自然年增长率控制为1.25%,则从20______年开始,该城市人口超过20万.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1)15. 对于函数f (x )= ⎩⎪⎨⎪⎧ e -x -2,x ≤0,2ax -1,x >0(a 是常数 ),给出下列结论 :①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22< f(x 1)+f(x 2)2 . 其中正确结论的序号是__________(写出所有正确 结论的序号).三、解答题 (本大题共有6 题,共75 分)16(12分).已知全集U =R ,A ={x|y =()2log 1x -},B ={y|y =(12)x + 1,−2 ≤ x≤−1},C ={x | x <a −1}(1)求A∩ B;(2)若C ∁U A ,求实数a 的取值范围. 17 (12分) .已知点( 12,16)在幂函数y =f(x) 的图像上. (1)求f(x) 的解析式;(2)写出f(x) 的单调区间;(3)求不等式 f(2x-1)< f(x)的解集18 (12分). 设 M={ x ∈R | y =lg(3- 4x +x 2) } ,当x∈M 时,求f(x)=2x +2-3×4x的最大值及相应的x 的值.19(12分).已知函数f (x )=ax 2-2ax +2+b ,若f (x )在区间[2,3]上有最大值5和最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求实数m 的取值范围.20 (13分) .某学校要建造一个面积为10 000平方米的运动场.如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.(1)设半圆的半径OA =r (米),求塑胶跑道面积S 与r 的函数关系S (r );(2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?最低造价为多少?21 (14分) . 对于定义在D 上的函数f(x),如果存在常数M 和N ,使得对于任意x∈D,都有M ≤ f(x) ≤N 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的一个下界,N 称为函数f(x)的一个上界.(1)判断函数f (x )=log 2 x −x 2在(0 ,+∞)上是否为有界函数,不必说明理由;(2)判断函数f (x )=1+(12)x +(14)x 在 [0,+∞)上是否为有界函数,请说明理由 (3) 若函数 f (x )=1+a(12)x +(14)x 在 [0,+∞)上是有界函数,且3是f(x) 的一个上界,-3是f(x) 的一个下界,求实数a 的取值范围.。

人教A版高中必修二试题第二学期期中考试.doc

人教A版高中必修二试题第二学期期中考试.doc

2014学年第二学期期中考试高一数学试卷考生须知:1.本卷满分150分,考试时间120分钟。

2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。

3.所有答案必须写在答题卷相应区域内,写在试卷上无效。

4.考试结束后,只需上交答题卷。

一.选择题(本题共8小题,每小题5分,共40分){}{}{}()(){}{}{}{}43210.410.40.0.4132143210.1,,,, ,, , 则,,集合,,,集合,,,,设全集D C B A B A C B A I I ===={}()()1.1.2.21.,211,21.2201511-=≥-==+D C B A a n a a a a nn n 则中,已知数列()()()()()()()1,3.2,6.1,3.5,1.21,6,4,4,2.3--==-=D C B A BC AC AB 则已知()等腰直角三角形.直角三角形 .等边三角形 .等腰三角形 .  为求,c o s c o s 的对边,且,,是角,,中,.4D C B A ABC B c C b C B A c b a ABC ∆=∆()zx y D x y z C y x z B x z y A e z y x <<<<<<<<===- 则已知 ....,2log ,ln .5215π()()()个单位向左平移个单位 向左平移个单位向右平移个单位 向右平移得到的。

通过 的图像是由函数 函数6.3.6.3.2sin 32sin .6πππππD C B A x x g x x f =⎪⎭⎫ ⎝⎛-=()()()()()()()ba b a D b a b a C b a B b a A b a -⊥+-+⊥==.//..//.,sin ,cos ,sin ,cos .7 则 若向量ββαα()()[]()5.4.3.2.01,0,log 0,1.82D C B A x f f x x x x x f 的零点个数 则函数设函数=+⎩⎨⎧>≤+=二.填空题(本题共7小题,9--12题每题6分,13--15题每题4分,共36分){}===96411,7.9S a a n a S n n ,则项和,的前等差数列已知 , =n a 通项=⎪⎪⎭⎫⎝⎛-ααtan 2321.10终边上一点,则是角,已知点P()()=+-⎪⎭⎫ ⎝⎛--απαπαπc o s 2c o s s i n{}()=∈+=1*2,,14,.11a N n a S S a n a S n n n n n n 则满足项和,且的前正项数列设 =n S的取值范围求中,已知角锐角baB A ABC ,2.12=∆的取值范围的两边求,中,在c b ABC a A ABC +∆==∆,2600=⋅=∆λλ取最小值时,求当边上的动点,是中,的等边在边长为PC PA BC PC BC P ABC ,2.13=<<=⎪⎭⎫ ⎝⎛+απαππαcos ,2,536sin .14则且已知的取值范围成等比数列,则中,三边在CB B CA A c b a ABC tan cos sin tan cos sin ,,.15++∆三.解答题(本大题共5小题,共74分.解答应在相应的答题框内写出文字说明、证明过程或演算步骤.)(){}()(){}。

高一数学下学期第二次月考(期中)试题 文-人教版高一全册数学试题

高一数学下学期第二次月考(期中)试题 文-人教版高一全册数学试题

2014—2015学年满城中学高一第二学期第二次月考数学试题(文科生卷)(时间120分钟,满分150分)一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请把答案涂在客观题答题卡上。

1、已知(1,2),(1,0),(3,)A B C a -三点在同一条直线上, 则a 的值为( )A 、2-B 、4-C 、4D 、22、设,,l m n 是不同的直线,,,αβγ是不重合的平面,则下列命题不正确...的是( ) A 、若//,//,m n m n ββ⊄,则//n βB 、若,,l αβγβαγ⊥⊥⋂=,则l β⊥ C 、//,,,l m αβαγβγ⋂=⋂=则//l mD 、若,,,,A C B D ααββ∈∈∈∈,AB CD ‖且AB CD =,则//αβ3、已知,,l m n 是不同的直线,,,αβγ是不重合的平面,下列命题中正确的个数..为( ) ①若,,m m αβ⊥⊥则αβ‖②若,,αγβγ⊥⊥则αβ‖ ③若//,//,m m αβ则αβ‖④//,,lm αα⊂则//l mA 、1B 、2C 、3D 、44、若图4T -,直线123,,l l l 的斜率分别为123,,k k k ,则( )A 、321k k k <<B 、123k k k <<C 、312k k k <<D 、213k k k <<5、已知,αβ是不重合的平面,,,l m n 是不同的直线,则下列命题不正确的个数是( )①若//,//lm m n ,则//l n ②若,,m n αα⊥⊥则//m n③若//,,a l αβαβ⊂⊂,则//a l ④若,m m αβ⊥⊂,则αβ⊥A 、0B 、1C 、2D 、36、设,αβ是不重合的平面,,,l m n 是不同的直线,下列命题不能..推导出线面垂直的是( ) A .若//,l αββ⊥,则l α⊥B .若//,m n m α⊥,则n α⊥ C .若,,,l m m l αβαβα⊥⋂=⊂⊥,则m β⊥ D .若,,,l m l n m n ββ⊥⊥⊂⊂,则l β⊥7、平面α截球O 所得截面的面积为4π,球心O) Aπ B、π C、π D、π 8、下列命题正确的是( )①过平面外一点有且只有一条直线和已知平面垂直 ②过直线外一点有且只有一个平面和已知直线垂直 ③过平面外一点有且只有一条直线与已知平面平行 ④过平面外一点有且只有一个平面与已知平面垂直A.①②③B.①②C. ①④D.②③④9、一个几何体的三视图如图9T -所示,则该几何体的体积为( )A .14+πB .134+πC .834+πD .84+πB F AMD CEN 10、直线l 经过点(2,),(3,3)A y B -,且倾斜角X 围是2[,]33ππ, 则y 的X 围是( )A 、[23,0]-B 、(,0][23,)-∞⋃+∞C 、(,23][0,)-∞-⋃+∞D 、[0,23]11、已知(1,2),(1,0),(2,1),A B C --若平面ABC 内存在一点D 满足:,CD AB ⊥且//CB AD ,则D 点坐标为( )A 、(2,3)-B 、(2,3)-C 、(2,3)--D 、(2,3)12、如图12T -,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则 该多面体的各面中,面积最小的是( )A .4B .8C .45D .12二、填空题:本大题共4个小题,每小题5分。

高一第二学期期中数学卷(含答案)

高一第二学期期中数学卷(含答案)

4.sin α = 2 5 , < α < π , tg α =D.-A .{ - } B.{ } C.{ α │ α = 2k π + k ∈ Z } D.{ α | α = 2k π + k ∈ Z}5π π 7π 5π 7π π π2014-2015 学年度第二学期高一年级期中考试数学试卷说明:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

全卷共150 分。

考试用时 120 分钟2.试题全部答在“答题纸”上,答在试卷上无效。

第Ⅰ卷 选择题一、 选择题(每小题 5 分,共 60 分)1.等差数列{ a }中,a = 2, a = 7, 则a =n357A .10B.20C.16D.122.把一条射线绕端点按顺时针方向旋转 2400 所形成的角是A. 120 0B.- 120 0C. 2400D.- 24003.已知 a>0, 0<b<1, 则下列不等式成立的是A . a > ab > ab 2B. ab 2 > ab > aC. ab > a > ab 2D. ab > ab 2 > aπ5 2A.2B.-2C. 1 1 2 25. 与-13π 终边相同的角的集合是3π 5π π 5π 3 3 3 36.函数 y=sin(2x+π3)在区间[0, π ]内的一个单调减区间是A .[0, ] B. [ , ] C.[ , ] D.[ , ]12 12 12 12 12 6 27. ∆ ABC 中, 已知 tg A + B=sinC,则 ∆ ABC 的形状为2个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度+++=AB,BF=BC,设AB=(a,0),AD=(0,b),当EF⊥A.(0,π) B.(,) C.(,) D.(,)A.钝角三角形 B.锐角三角形 C.直角三角形D。

等腰直角三角形8.已知正项等差数列{a}中,a+a=10,则a a的最大值为n516516A.100 B.75 C.50 D.259.为了得到函数y=sin(3x-点π4)的图像,只需把函数y=sin3x的图像上所有的A.向左平移ππ44ππ121210.在等比数列{a}中,若a+a+a+a=2,a a=-2,则n4567110A.-1 B.1 C.-2 D.21111 a a a a456711.在矩形ABCD中,AE=11 22DE时,求得|a||b|的值为A.3B.2C.3D.212.在∆ABC中,角A,B,C的对边分别为a,b,c,若b2+c2-a2=2bc,sin B cos C>2,则角C的取值范围是πππππ3π4423224二.填空题(每小题5分,共20分)13.求函数y=3cosx-sinx的最大值________14.等差数列{a}的前n项和为S,S<0,S>0,则此数列前n项和中,n n910n=__时取得最小值.18.(12 分)已知向量 a = (sin θ ,cos θ ), b = (1,-2), 满足a ⊥ b ,其中θ ∈(0, ) 415.在 ∆ ABC 中, ∠ A= 60 0,b=1, S∆ABC = 3, 则a cos A=_______ 16.已 知 平 面 上 三 个 向 量 , 满足 OA = 1, OB = 3, OC = 2, O A ⋅ O B = 0, 则CA ⋅ C B 的最大值是_______三.解答题 (共 6 题,满分 70 分)17.(10 分)已知角 α 的终边在直线 y=-2x 上,用三角函数的定义求 sinα ,cos α ,tg α 的值π 2π2 sin(θ + )(sin θ + 2cos θ )(1)求 tg θ 的值(2)求 的值cos 2θ19.(12 分)若等差数列{ a }的项数是奇数, a =1, { a }的奇数项的和n1 n是 175,偶数项的和是 150,求这个等差数列的公差 d.20.(12 分)如图所示,A ,B 是海平面上的两个小岛,为测量 A ,B 两岛间的距离,测量船以 15 海里/小时的速度沿既定直线 CD 航行,在 t 时刻航行1到 C 处,测得 ∠ACB = 750 , ∠ACD = 120o , 1 小时后,测量船到达 D 处,测得∠ADC = 300 , ∠ADB = 450 , 求 A ,B 两岛间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福安三中2014-2015年高一数学第二学期半期考试卷人教A 版--必修二(总分150分,时间:120分钟)第I 卷(选择题 共50分) 2015.04.22一、选择题(本题共10 小题,每小题5 分,共50 分。

每小题只有一个选项符合题意,请将正确答案填入答题卷中)1.若直线l 的方程为x=2,则该直线的倾斜角是:( )(A )600(B )450(C )900(D )1802.若点A (3,3),B (2,4),C (a ,10)三点共线,则a 的值为:( ) (A )4- (B )3- (C )2- (D )4 3.已知直线:1l 053=+-y x ,:2l 016=++ay x ,若21//l l ,则=a ( ) (A )2 (B )21 (C )21- (D )2-4、已知圆221:1O x y +=与圆()()222:3416O x x -++=,则圆1O 与圆2O 的位置关系为( ) A 、相交 B 、内切 C 、外切 D 、相离5.若已知A (1,1,1),B (-3,-3,-3),则线段AB 的长为( )(A )(B )(C )(D )6.在空间中下列结论中正确的个数是 ( )①平行于同一直线的两直线平行 ②垂直于同一直线的两直线平行 ③平行于同一平面的两直线平行 ④垂直于同一平面的两直线平行 (A )1 (B )2 (C )3 (D )4 7.正方体1111ABCD A B C D -中,则异面直线1AB 与1BC 所成的角是-( )A .30°B .60°C .45°D .90°8.已知直线m,平面α和β,下列结论中正确的是( )(A ) m ∥α,α∥β=>m ∥β (B )m ⊥α,α∥β=>m ⊥β (C )m ∥α,α⊥β=>m ⊥β (D )m ⊥α,α⊥β=>m ∥β9.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a = ( )(A ) 2 (B ) 22- (C ) 12- (D ) 12+10.若圆222)5()3(r y x =++-上有且只有两个点到直线234=-y x 的距离为1,则半径r 的取值范围是( ) A.)6,4( B.)6,4[ C.]6,4( D.]6,4[第Ⅱ卷(非选择题100分)二、填空题(本题共5 小题,每小题4分,共20 分)11. 已知直线a ∥平面α,直线b 在平面α内,则直线a 与直线b 的位置关系为 12.圆x2+y 2-2x-2y+1=0上的动点Q 到直线3x+4y+8=0距离的最小值为______.13.已知两直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于_ __ ___ 14.已知直线l 经过点P (2,3),且在两坐标轴上截距相等,则直线l 的方程为_______________ 15.下列命题中,①一条直线和两条直线平行线中的一条垂直,则它也和另一条垂直;②空间四点A 、B 、C 、D ,若直线AB 和直线CD 是异面直线,那么直线AC 和直线BD 也是异面直线;③空间四点若不在同一个平面内,则其中任意三点不在同一条直线上; ④若一条直线l 与平面α内的两条直线垂直,则α⊥l . 所有正确的命题的序号是 .三.解答题(本题共6 小题,共80 分)16.(本小题满分13分).已知两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,求满足下列条件的直线方程. (1)过点P 且过原点的直线方程;(2)过点P 且垂直于直线3l :210x y --=的直线l 的方程;17. (本小题满分13分)如图, 在三棱柱ABC -A 1B 1C 1中, 侧棱A 1A 垂直于底面ABC, AC =3,BC =4,AB=5,点D 是 AB 的中点, (I )求证: AC 1//平面CDB 1;(II )求证:AC ⊥BC 1;18.(本小题满分13分)已知直线L 过定点A (0,3),且与圆C :x-3()2+y+3()2=9相切,求该直线L 的方程.19. (本小题满分13分)如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,M 、N 分别是AB 、PC 的中点,且MN PC MN AB ⊥⊥,. (1) 证明: MN ⊥面PDC .(2) 证明:平面P AD ⊥平面PDC.20.(本小题满分14分)已知曲线C :x 2+y 2-2x-4y+m=0(1)当m 为何值时,曲线C 表示圆;(2)若曲线C 与直线x+2y-4=0交于M 、N 两点,且CM ⊥CN(C 为圆心),求m 的值。

21.(本题满分14分)如图,三棱锥A-OBC 中,,OA OB OA OC ⊥⊥,30OAB ︒∠=, 4=AB ,OB OC =,且二面角C AO B --是直二面角,动点D 在斜边AB 上。

(1)求证: ⊥CO 平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值; (3)求CD 与平面AOB 所成的角最大时的正切值.1A即得:k=-34福安三中2014-2015年高一数学第二学期半期考试卷答案一、 选择题1—12 CADCA BBBCA 二、填空题11 . 平行或异面 12. 213. -1、 14.05023.=-+=-y x y x 或 15. ①②三.解答题16.解(1):由3420220x y x y +-=⎧⎨++=⎩ 解得22x y =-⎧⎨=⎩∴ 点P 的坐标是(2-,2)------------------------------------------4分 所求直线为y=-x ---------------------------------------7分(2)解法一: 由3l : 210x y --= 得k 3=21---------------9分 又直线l 与3l 垂直,∴k=-2 -----------------------11分 ∴y-2=-2(x+2) 即2x+y+2=0 --------------------14分解法二:∵ 所求直线l 与3l 垂直,∴ 设直线l 的方程为 20x y C ++= ---------------------10分把点P 的坐标代入得 ()2220C ⨯-++= ,得2C = ----------12分 ∴ 所求直线l 的方程为 220x y ++= -----14分17. (1)设CB 1与C 1B 的交点为E ,连结DE ,-----1分∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,------------------------------3分 ∵ DE ⊂平面CDB 1,AC 1⊄平面CDB 1, -------5分 ∴ AC 1//平面CDB 1---------------------------6分(2)三棱柱ABC -A 1B 1C 1中,底面三边长AC=3,BC=4,AB=5,∴ AC 2+BC 2=AB2∴ AC ⊥BC ,--------------①------------7分 又侧棱垂直于底面ABC,∴CC 1⊥AC---------------② -------------8分又BC ∩CC 1=C--------------③由①②③得∴AC ⊥面BCC 1-----------------------10分 又BC 1⊂平面BCC 1, ∴AC ⊥BC 1;-------------12分18.解:由于圆C 的圆心坐标为(3,-3),半径r=3(1)当直线L 垂直于x 轴时,即L 的方程为x=0时,圆心到直线的距离为3恰好与圆相切,符合题意。

(2)当直线L 不垂直于x 轴时,可设直线L 的方程为y=kx+3 由于直线与圆相切故有d=r即综上(1)(2)得直线的方程为:x=0或3x+4y-12=0 19. 【证明】因为//MN AB DC AB ⊥,, 故MN DC ⊥,又MN PC PC DC C ⊥=,,故MN ⊥平面PCD(2)设PD 中点为H ,连接NH 、AH ,则NH 是三角形PCD 的中位线,NH =//12CD ,而MA =//12CD ,故MA =//NH ,四边形AMNH 为平行四边形,//AH MN .由(1)知MN ⊥平面PCD ,而//AH MN , 故AH ⊥平面PCD ,又AH ⊂平面P AD ,故平面P AD ⊥平面PDC .20.(12分)已知曲线C :x 2+y 2-2x-4y+m=0(1)当m 为何值时,曲线C 表示圆;(2)若曲线C 与直线x+2y-4=0交于M 、N 两点,且CM ⊥CN(C 为圆心),求m 的值。

解:20.已知曲线C :x 2+y 2-2x-4y+m=0(1)当m 为何值时,曲线C 表示圆;(2)若曲线C 与直线x+2y-4=0交于M 、N 两点,且OM ⊥ON(O 为坐标原点),求m 的值。

.解 (1)由D 2+E 2-4F=4+16-4m=20-4m>0,得m<5。

(2)设M(x 1,y 1),N(x 2,y 2),由OM ⊥ON 得x 1x 2+ y 1y 2=0。

将直线方程x+2y-4=0与曲线C :x 2+y 2-2x-4y+m=0联立并消去y 得5x 2-8x+4m-16=0,由韦达定理得x 1+x 2=58①,x 1x 2=5164 m ②,又由x+2y-4=0得y=21(4-x),∴x 1x 2+y 1y 2=x 1x 2+21(4-x 1)·21 (4-x 2)=45 x 1x 2-( x 1+x 2)+4=0。

将①、②代入得m=58.22.(1)由题意,,,是二面角是二面角的平面--------------------1又二面角是直二面角,,又,平面--------------4 (2)作,垂足为,连结,在平面AOB 中,则,是异面直线与所成的角.------6在中,,,.又---------------------------------------------8在中,.异面直线与所成角的正切值为315-----------------------------9 (3)由(I )知,平面,是与平面所成的角,且-----------11当最小时,最大,---------------------------------------12这时,,垂足为,,,与平面所成的角最大时的正切值为332.---------------------14。

相关文档
最新文档