航空发动机结构-第四章_压气机

合集下载

航空发动机工作原理

航空发动机工作原理

航空发动机工作原理
航空发动机是现代飞机的核心部件之一,它的工作原理基于热力循环和喷气推进的原理。

下面将阐述航空发动机的工作原理,以及其主要组成部分的功能和作用。

航空发动机通过燃烧内燃机燃料,产生高压高温的气体,并将其排出,产生向后的推力,从而使飞机获得动力。

整个过程可以简要地分为以下几个步骤:
1. 压气机:航空发动机的压气机主要负责将空气压缩,以提高进气量和气体压力。

压气机由多级转子叶片组成,通过转子的旋转来增压。

2. 燃烧室:压缩后的空气经过喷油器喷入燃烧室,与燃料混合并点火燃烧。

燃料燃烧产生的高温高压气体通过增大压力和温度来释放更多能量。

3. 高压涡轮:高温高压气体通过高压涡轮,使其转动,驱动压气机和涡轮扇叶。

4. 喷气扇:喷气扇位于发动机前端,是航空发动机产生推力的重要组成部分。

其主要作用是将一部分空气通过扇叶加速排出喷管,产生向后的推力。

同时,喷气扇还能通过副扇气流提供辅助推力。

5. 喷管:喷管是航空发动机的尾部部分,其形状和尺寸对喷气流产生限制和控制,进一步提高推力效率。

通过以上的工作原理,航空发动机能够在短时间内产生大量的推力,使飞机获得前进的动力。

为了提高效率和性能,航空发动机还采用了涡轮增压器、可变导向喷管、燃油喷嘴等辅助装置。

总之,航空发动机的工作原理基于热力循环和喷气推进的原理,通过压缩空气、燃烧燃料、喷出高速气流,产生向后的推力,为飞机提供动力。

04第四讲 航空发动机核心机――压气机精品PPT课件

04第四讲  航空发动机核心机――压气机精品PPT课件

成都航空职业技术学院
8
航空发动机原理和结构
成都航空职业技术学院
9
航空发动机原理和结构
成都航空职业技术学院
10
航空发动机原理和结构
混合式
在中、小型发动机上,轴流式和离心 式组成混合压气机,发挥了离心压气机单 级增压比高的优点,避免了轴流式压气机 叶片高度很小时损失增大的特点。
成都航空职业技术学院
转子
静子
压气机
成都航空职业技术学院
19
航空发动机原理和结构
成都航空职业技术学院
20
航空发动机原理和结构
转子基本结构
主要特点:转速高 优点:压气机在尺寸小,重量轻的条件 下得到需要的性能
缺点:高负荷,易振动
成都航空职业技术学院
21
航空发动机原理和结构
压气机转子的基本类型
成都航空职业技术学院
22
航空发动机原理和结构
11
航空发动机原理和结构
成都航空职业技术学院
12
航空发动机原理和结构
单转子
成都航空职业技术学院
13
航空发动机原理和结构
双转子
成都航空职业技术学院
14
航空发动机原理和结构
三转子
成都航空职业技术学院
15
航空发动机原理和结构
基元级的加功扩压原理
亚声速基元级
动叶叶栅迫使气流拐弯减速, 实现加功扩压
47
航空发动机原理和结构
轴流式压 气机静子
压气机静子为压 气机中不旋转的 部件,由机匣和 静子叶片(整流 叶片)组成
成都航空职业技术学院
48
航空发动机原理和结构
成都航空职业技术学院
49

航空发动机组成

航空发动机组成

航空发动机组成航空发动机是航空器的核心部件,它由许多不同的部件组成,本文将详细介绍航空发动机的组成部分。

1. 压气机(Compressor)压气机是发动机最重要的部分之一,它将大量的空气压缩,使其能够进入燃烧室进行燃烧,并提供发动机所需的能量。

压气机分为多级压缩机和单级压缩机两种,多级压缩机通常用于高涵道比发动机中。

2. 燃烧室(Combustion chamber)燃烧室是发动机的核心部分,燃烧室内的燃料和空气混合后进行燃烧,释放出能量,并将高温高压的燃气推向涡轮。

燃烧室的结构和设计非常重要,它必须能够承受高温高压的燃气冲击,并且不能泄漏燃气。

3. 涡轮(Turbine)涡轮是由燃烧室排放的高温高压燃气驱动的旋转部件,其主要作用是带动压气机和辅助系统。

涡轮组件由高温合金制成,以耐受高温高压燃气的腐蚀和热膨胀。

4. 喷嘴(Nozzle)喷嘴是将高温高压的燃气喷出并加速的部件,喷嘴的设计可以调节排出的燃气速度和方向,以提高发动机效率和推力。

5. 空气滤清器(Air filter)空气滤清器是防止杂质和颗粒进入发动机的部件,它非常重要,因为它可以减少发动机受损的可能性,同时保持发动机的效率。

6. 冷却系统(Cooling system)冷却系统主要是用于防止发动机过热,降温的部件。

发动机需要保持适当的温度,以防止过热和机件熔化。

冷却系统包括油冷却器、气冷器、水冷却器等不同类型的部件。

油系统主要是用于润滑发动机各个部件的部件,以减少磨损和摩擦,保持发动机运转顺畅。

油系统也可以帮助冷却发动机和清除发动机内的杂质和污垢。

燃油系统主要是提供发动机燃料,以支持燃烧室中的燃烧过程。

燃油系统包括供油系统、燃油过滤器、燃油控制阀等部件。

驱动系统是将发动机的动力传递给飞机的部件,这包括传动轴、耦合件、万向节等。

驱动系统必须能够承载发动机的高速旋转和飞机的复杂运动。

辅助系统是支持发动机正常运行的部件,这包括引气系统、启动系统、起飞和着陆制动系统等。

航空发动机原理课后答案

航空发动机原理课后答案

航空发动机原理课后答案1) 燃烧室:燃烧室是航空发动机中的一个关键组件,它是燃料和空气混合物燃烧的场所。

通过燃料喷射系统将燃料喷入燃烧室,并与从压气机提供的空气混合。

在燃烧室中,通过点火将混合物点燃,产生高温高压的燃气。

2) 高压涡轮:高压涡轮是航空发动机中的核心部件之一,它由多个涡轮片组成。

高压涡轮通过从压气机传输过来的高温高压燃气驱动,使涡轮旋转。

涡轮的旋转带动压气机和燃料喷射系统等关键组件的运转。

3) 压气机:压气机是航空发动机中的一个重要组件,它由多个压气级组成。

压气机的主要作用是将空气压缩,提高空气的密度和压力,为燃烧室提供高压空气。

压气机通常分为高压级和低压级,高压级用于压缩空气到较高的压力,低压级用于进一步增加空气的压力。

4) 推力产生:航空发动机通过产生推力推动飞机前进。

推力产生的原理是通过喷出高速高温的排出气流,产生一个与排出气流相反的反作用力,从而推动飞机前进。

推力产生的主要方式有喷气推进和螺旋桨推进。

喷气推进是将排气气流直接喷出高速,而螺旋桨推进是通过螺旋桨叶片的旋转产生气流。

5) 冷却系统:航空发动机中的冷却系统主要用于降低发动机的温度,保持发动机在可靠运行温度范围内。

冷却系统通常采用冷却空气和冷却液来吸收和带走发动机产生的热量。

冷却空气可以通过多个渠道如冷却孔、涡扇中的空气等进入发动机并冷却各个部件。

6) 涡轮增压器:涡轮增压器是航空发动机中的一个关键组件,它位于压气机后方,主要用于增加进入燃烧室的空气压力。

涡轮增压器由涡轮和压缩机组成,涡轮增压器的核心是高压涡轮。

高压涡轮通过高温高压的燃气驱动,使压缩机中的涡轮旋转,进而增压进入燃烧室的空气。

7) 反推力:反推力是航空发动机的一个特殊功能,用于在起飞和着陆等特定时刻减慢飞机的速度。

通过调整发动机喷口的方向,使排气气流的方向反向,产生反向推力,从而减少飞机的速度。

反推力通常通过可逆涡轮发动机或喷气式飞机的扰流板等装置实现。

压气机

压气机

喘振机理 通过压气机的气流反复堵塞又畅通,使的通过压气机的流量大、流速高、
可压缩的空气在本身惯量和压气机给予的巨大能量作用下产生了周期行的震荡。
3、 压气机防喘系统
防喘措施: 1、放气机构 2、旋转一级或数级导流叶片 3、机匣处理 4、采用双轴或三轴结构
防喘措施
1、放气机构——从压气机某一个或数个中间截面放气
• 两面进气,这样可以增大进气量 • 对于平衡作用在轴承上的轴向力也有好处
一、 离心式压气机的组成
工作叶轮
一、离心式压气机的组成
• 3、扩压器
• 位于叶轮的出口处 • 其通道是扩张形的 • 空气在流过它时, 速度下降, 压力和温度都上升
• 密封装置分类
• 接触式:涨圈式密封 • 非接触式:
• 篦齿封严 • 蜂窝封严 • 石墨+篦齿 • 刷式封严
1、 封气装置
1 、 封气装置
各种不同的典型密封装置
1. 封 气 装 置
1. 封 气 装 置
各种不同的典型密封装置
• 蜂窝封严和刷式封严
2 、 间隙控制装置
• 目的:减少叶尖漏气,进一步提高发动机的性能和效率。
• 使气流拐弯并以一定方向均匀进入工作叶轮, 以减小流动损失 • 此过程中气流加速,防止出现拐弯分离流
• 气流参数变化
• 空气在流过它时速度增大,而压力和温度下降
一、 离心式压气机的组成
2、工作叶轮
• 高速旋转的部件 • 工作叶轮上叶片间的通道是扩张形的 • 空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力 • 从结构上叶轮分单面叶轮和双面叶轮两种
29
4、双转子或三转子压气机
为了解决压气机增压比和风扇转速的矛盾,人们很自然的想到了三转 子结构。所谓三转子就是在双转子发动机上又多了一级风扇转子。这样, 风扇、低压压气机和高压压气机都自成一个转子,各自都有各自的转速。 因此,设计师们就可以相对自由地设计发动机风扇转速、风扇直径以及涵 道比。而低压压气机的转速也就可以不再受风扇的掣肘。

航空发动机结构

航空发动机结构

燃烧过程
01
02
03
油气混合
燃油与压缩后的空气混合, 形成油气混合物。
燃烧反应
油气混合物在燃烧室内进 行燃烧反应,释放出大量 的热能和气体。
产生推力
燃烧产生的高温、高压气 体推动涡轮旋转,进而推 动飞机前进。
膨胀过程
燃气膨胀
01
燃烧后的高温、高压气体从燃烧室流出,进入涡轮后的扩压器。
降低压力
02
根据燃料类型,可分为燃油发动机和 燃气涡轮发动机。
根据用途,可分为民用发动机和军用 发动机。
根据工作原理,可分为活塞发动机和 喷气发动机。
02 发动机主要部件叶片对空气进 行压缩,为燃烧室提供高压空气。
压气机的效率直接影响到发动机的性 能和燃油消耗率,因此其设计和制造 要求非常高。
高强度材料
发动机中的转子、叶片等部 件需要承受高负荷,因此需 要使用高强度材料,如镍基 合金和钛合金等。
耐腐蚀材料
发动机在高温、高湿的环境 下工作,需要使用能够耐腐 蚀的材料,如不锈钢和镍基 合金等。
制造工艺流程
01
02
03
04
铸造工艺
用于制造发动机中的涡轮叶片 、导向叶片等部件,通过将熔 融金属倒入模具中冷却成型。
振动问题
如发动机振动过大,需要检查发动机的平衡性、轴承状况 、气动稳定性等,找出振动源并采取相应措施。
保养建议
严格按照制造商提供的维护手册进行保养
按照制造商提供的保养计划,定期进行保养和检查,不要错过任何重 要的维护项目。
使用高品质的油液和耗材
选择高品质的机油、燃油、滑油等油液和耗材,可以减少发动机的磨 损和故障风险。
压气机通常由多级转子组成,每一级 转子都有一定数量的叶片,通过旋转 将空气逐级压缩。

航空发动机压气机结构和故障分析

航空发动机压气机结构和故障分析

航空发动机压气机结构和故障分析发布时间:2022-08-21T01:21:23.959Z 来源:《科技新时代》2022年1月第1期作者:胡文祺[导读] 航空发动机被称作飞机的“心脏”胡文祺空军工程大学陕西省西安市摘要:航空发动机被称作飞机的“心脏”,不仅是飞机飞行的动力,也是促进航空事业发展的动力。

压气机是航空发动机很关键的结构之一,其作用是给燃烧室提供压缩后的高温、高压气体。

风扇叶片是航空发动机的关键转动零件,承担着将空气输送到内、外涵道的重要作用。

在高转速高气压的飞行状态下,压气机主要承受着气动载荷、离心载荷以及温度载荷,常常导致疲劳失效,一旦发生断裂直接危及其它部件的正常运转。

为了保证在飞行过程中发动机稳定、可靠地运行,为了能够全面了解航空发动机,了解压气机的结构、知晓压气机的工作原理、懂得如何减少和排除压气机的故障。

本文将系统地介绍航空发动机的类别、压气机的类别。

简单结合军用和民用层面分析压气机结构和故障,浅析压气机发展趋势,进一步推动我国航空事业的发展。

关键词:航空发动机;压气机;结构分析;故障分析1.现代航空发动机类型1.1活塞型发动机很早在飞机上被应用的航空引擎装置,是用来带动螺旋桨的。

一台活塞式航空发动机功率可达2500千瓦。

后来它被功率大、运行速高的涡轮引擎代替了。

1.2涡轮型发动机该发动机应用最广。

有涡喷式、涡扇式、螺旋桨式和涡轮轴式,都有带压气机、燃烧室及涡轮。

涡桨型应用在飞行时速范围小于800千米的飞机上;涡轴式是用于直升机的驱动力;涡扇式应用在飞行速度快的航空器。

1.3冲压型发动机它的机体构造简单、推动力强,非常适合在高速或者远的任何地方高空飞行。

由于不能自动着陆和低速自行降落,限制了其主要应用领域,只广泛使用在导弹和空中发射靶导弹上。

1.4综述火箭发动机的推进剂(包括氧化物和燃烧剂)全部都是由自己携带,燃料的消耗过多,不能够适合长时间的工作,一般只能用来作为运输火箭的引擎,在飞机上只能被应用于短时内加速。

飞机发动机压气机的原理

飞机发动机压气机的原理

飞机发动机压气机的原理飞机的发动机是由多个组件组成的复杂系统,其中压气机是发动机中的一个重要组成部分。

压气机的主要功能是将外部空气吸入并加压,然后将加压后的空气送往燃烧室,与燃料混合并燃烧,从而产生动力。

下面我将详细介绍飞机发动机压气机的原理。

发动机压气机一般由多级压气机级组成,每级压气机级包括一个叶轮和一个固定的导叶组成。

叶轮是通过发动机燃烧室内高温高压燃烧气体的作用,旋转并将气体压缩,使其压力和温度提高。

导叶则通过控制气流的导向,将气体引导到下一个级别的叶轮上。

压气机的原理可以分为离心式压气机和轴流式压气机两种。

离心式压气机通过叶轮的旋转将来流的气体旋转,使气体的动能转化为压力能。

其工作原理类似于离心泵,气体在叶轮的作用下产生离心力,从而加速向外移动,形成高压气体。

轴流式压气机是通过叶轮和导叶交替排列的方式将来流的气体进行压缩。

当气体通过导叶时,导叶将气体的流向转换,使其与叶轮切向速度匹配。

叶轮通过高速旋转将气体捕获,并将其压缩。

在压缩过程中,气体不仅受到力的作用,还受到叶轮的切向速度的传递,进而提高了气体的压力和能量。

无论是离心式压气机还是轴流式压气机,叶轮都是压气机的核心组件。

叶轮通常由多个叶片组成,叶片的形状和角度是根据气体流动的特性和压缩效率进行设计的。

叶轮的旋转速度和叶片的数量也会影响压气机的性能。

另外,压气机的工作需要大量的能量,并且需要确保空气的流量和压力达到发动机的要求。

为了实现这一点,压气机通常会采用多级结构,每级压气机级都有不同的气流加压效果,并且通过多级压缩来提高气体的压力。

一些大型发动机甚至会采用多级轴流式压气机和离心式压气机的组合。

除了上述的压气机原理,飞机发动机的压气机还包括一些附加的设计和控制元件。

例如,可以通过调整导叶和叶轮的角度来控制气体的流动和压缩效果,以达到不同工况下的需求。

此外,还需要确保压气机的可靠性和稳定性,因此对压气机的飞行性能和工作状态进行监控和控制也是必要的。

飞机发动机原理与结构—压气机

飞机发动机原理与结构—压气机
特点:鼓式转子结构简单,零件数目少,加工方便, 具有较高的抗弯刚性,但 是承受离心载荷能力差,只能在圆周速度较低的条件下使用。
举例:CFM56 发动机低压压气机的转子采用的就是鼓式转子。
一. 轴流式压气机的结构
(1)鼓式转子
CFM56低压压气机的转子
一. 轴流式压气机的结构
(2)盘式转子
结构形式:盘式转子由一根轴和若干个轮盘组成,用轴将各级轮盘联成一体。
2
转子叶片
3
压气机静子
4 轴流式压气机的工作原理
二.转子叶片 1. 叶片叶身特点
特点:数量多,尺寸形状复杂 组成:叶身 + 榫头
二.转子叶片 1. 叶片叶身特点
(1)叶身扭转:叶尖处叶型弯度小,安装角大,叶根处叶型弯度大,安装角小; (2)减振凸台:减振;减小空气流量,效率下降,离心力增加; (3)加强筋:减震的一种形式; (4)宽弦叶片:叶栅通道面积大,喘振裕度大,级效率高,减振效果好;
二. 转子叶片
2. 榫 头
周向燕尾形榫头
——简单,加工费用低,允许单独更换,所以一般用于压气机后几级 (叶片小,相应的离心负荷小)。
周燕尾型榫头叶片
周燕尾型榫槽
二. 转子叶片
3. 叶片的槽向固定
(a)榫头凸块和锁片固定
作用:防止叶片沿槽向
移动。
固定方法:
• 卡圈 • 锁片 • 挡销
(b)挡销和锁片固定 (c)(d)锁片固定 (e)弹簧卡圈固定 (f)锁丝固定
优点:
• 增加刚性,改变叶片的固有频率,降低叶片根部的弯 曲扭转应力。
• 减震凸台结合面上喷涂耐磨合金,当叶片发生振动时, 结合面互相摩擦,可起阻尼减振的作用。
缺点:
• 增加叶片的重量,使叶片的离心负荷加大; • 连接处局部加厚,使流道面积减少2%,减少发动机的

发动机原理-压气机

发动机原理-压气机
备。
汽车发动机中的压气机通常与 发动机曲轴联动,利用发动机
的旋转来驱动压气机工作。
为了提高效率和减少能耗,汽 车发动机中的压气机通常采用 高效的设计,如采用高效的叶 轮和良好的密封措施。
汽车发动机中的压气机也需要 定期维护和检修,以确保其正 常工作和可靠性。
其他领域的应用
01
02
03
04
除了航空和汽车领域,压气机 还广泛应用于工业领域,如压 缩机站、气体分离和液化等。
现代航空发动机通常采用多级轴流式 压气机,这种设计能够提供更高的压 缩效率,同时降低能耗。
压气机的维护和检修对于确保航空发 动机的安全和可靠性至关重要,需要 定期进行清洗、检查和更换损坏的零 件。
汽车发动机中的压气机
在汽车发动机中,压气机通常 被称为空气压缩机,用于压缩 空气以供应制动系统、气瓶、 空调和其他需要压缩空气的设
空气的压缩
总结词
压缩过程是压气机工作的核心,主要通过压气机的旋转叶片实现。
详细描述
吸入的空气在压气机的叶片作用下开始压缩,随着叶片的旋转,空气被逐渐压缩,压力和温度也随之升高。这个 过程中,空气的体积被减小,密度增大,以便于更有效地进行燃烧。
空气的排
总结词
排出过程是压气机工作的最后一步, 主要通过排气口实现。
压气机的种类
离心式压气机
离心式压气机利用旋转叶片的离心力将空气吸入并压缩。其结构简单,可靠性 高,但效率较低。
轴流式压气机
轴流式压气机利用高速旋转的叶片将空气吸入并沿轴向流动,通过叶片的多次 压缩达到高压。其效率较高,但结构复杂,维护成本较高。
压气机的工作原理
01
02
03
空气吸入
压气机通过进气道吸入空 气。

第10次课 压气机 (3)

第10次课 压气机 (3)

航空发动机原理和结构
13
航空发动机原理和结构
喘振机理 当多级轴流式压气机中的某些级产生旋转失速并进一
步发展时,压气机整个通道受阻,阻碍前方气流流入,使 气流拥塞在这些级的前方。与此同时,由于前方气流暂时 堵塞,出口反压不断下降,当出口反压比较低时,压气机 堵塞状况被解除,被拥塞的气流克服了气体惯性一拥而下, 于是进入压气机的空气流量又超过了压气机后方所能排泄 的流量,压气机后方空间里的空气又“堆积”起来,反压 又急剧升高,造成压气机内气流的再次分离堵塞。
航空发动机原理和结构
喘振机理 通过压气机的气流反复堵塞又畅通,使的通过压气机
的流量大、流速高、可压缩的空气在本身惯量和压气机给 予的巨大能量作用下产生了周期行的震荡。
航空发动机原理和结构
3、 压气机防喘系统
防喘措施: 1、放气机构 2、旋转一级或数级导流叶片 3、机匣处理 4、采用双轴或三轴结构
航空发动机原理和结构
航空发动机原理和结构
航空发动机原理和结构
二、喘振的产生
喘振是发动机的一种不正常的工作状态,是由压气 机内的空气流量和压气机转速偏离设计状态过多而引 发的。喘振是发动机的致命故障,严重时可能导致发 动机空中停车甚至发动机损坏。衡量发动机喘振性能 的指标叫做"喘振裕度",就是说发动机的进气口流量 变化多少会引发喘振,这个值一般都要求达到15%甚 至 20%以上。
航空发动机原理和结构
航空发动机核心机 压气机
1
航空发动机原理和结构
主要内容
第一节 概述 第二节 压气机工作原理 第三节 压气机构造 第四节 压气机防喘措施 第五节 压气机气流控制系统 第六节 压气机附属装置 第七节 离心式压气机
2

第四章压气机

第四章压气机

燃气涡轮发动机第4章压气机3第4章压气机压气机功用–对流过它的空气进行压缩,提高空气的压力。

4第4章压气机⏹压气机分类–离心式压气机⏹空气在工作叶轮内沿远离叶轮旋转中心的方向流动–轴流式压气机⏹空气在工作叶轮内基本沿发动机的轴线方向流动–混合式压气机图4-1 离心式压气机64.1 离心式压气机 组成–导流器:使气流以一定的方向进入叶轮,以减小流动损失。

–叶轮:叶轮是高速旋转的部件,对空气作功,提高空气的压力。

–扩压器:通道是扩张形的,空气在流过它时,速度下降,压力上升。

–导气管:使气流变为轴向,将空气引入燃烧室。

74.1 离心式压气机⏹组成–叶轮:从结构上叶轮分单面叶轮和双面叶轮两种。

⏹单面叶轮是在轮盘的一侧安装有叶片,从一面进气;⏹双面叶轮是指在轮盘的两侧都安装有叶片,从两面进气。

–可以增大进气量,–对于平衡作用在轴承上的轴向力也有好处。

图4-2 单面叶轮和双面叶轮94.1 离心式压气机 增压原理–扩散增压原理:通道是扩张形的,空气流过时,速度下降,压力提高。

–离心增压原理:气体流过叶轮时,由于气体随叶轮一起作圆周运动,气体微团受惯性离心力的作用,圆周速度越大,气体微团所受的离心力也越大,因此,叶轮外径处的压力远比内径处压力高。

104.1 离心式压气机 离心式压气机的优缺点–单级增压比高,一级的增压比可达4:1-7:1 ,甚至更高;稳定的工作范围宽;结构简单可靠;重量轻;所需要的起动功率小。

–流动损失大,尤其是级间损失更大,最多两级;效率较低,最高只有83%-85%,甚至不到80%;单位面积的流通能力低,迎风面积大,阻力大。

图4-3 两级离心式压气机124.2 轴流式压气机⏹组成–转子⏹对空气作功,压缩空气,提高空气的压力⏹由工作叶轮构成–静子⏹使空气扩压, 继续提高空气的压力⏹由整流器(整流环)构成⏹1级=1个工作叶轮+1个整流器⏹工作叶轮与整流环交错排列就形成了多级轴流式压气机。

⏹为了保证压气机工作稳定,在第一级工作叶轮前还有一排不动的叶片叫进气导向器。

航空发动机结构-第四章_压气机

航空发动机结构-第四章_压气机

1. 转子的基本结构
❖ 一、结构分类
鼓式转子
❖结构简单弯曲刚性好 ❖转速受到限制(低于200米/秒)。 ❖大流量比发动机增压级多采用。
鼓式转子—斯贝MK-202
❖鼓式转子
鼓式转子—CFM56
1. 转子的基本结构
❖ 一、结构分类
盘式转子
❖盘的强度好 ❖弯曲刚性差 ❖盘易产生振动
盘式转子—PW4000
❖ 2.出口导向叶片:
距离---噪音
❖ 3.包容环:
防止叶片飞出
❖ 4.吸音衬套:
声学衬套。
风扇机匣的包容性
2. 压气机机匣
❖ 分类
使用材料:
❖镁合金、铝合金、钛合金、合金钢.
加工工艺:
❖ 铸造、锻造、板料焊接、轧等.
2. 压气机机匣
❖ 形状
分半机匣
❖简单易安装、刚性不均。
分段整环机匣
❖刚性好、不易安装。
❖ 措施:
热空气; 热滑油; 防冰涂层; 进气锥形状
3.防外来物打伤(FOD)
❖ 大涵道比风扇及涡轮轴发动机尤为重要
3.防外来物打(FOD)
❖ 防止外物打伤的措施:
叶片上加凸台,带冠; 小展弦比叶片 进气锥及增压级气路形状 中介机匣位置 防尘网 粒子分离器
3.防外来物打伤(FOD)
3.防外来物打伤(FOD)
❖ 设计中要保证前缘具 有较小振动应力和较 高的抗外物打伤能力
风扇盘结构
4.转子平衡
❖ 静不平衡量:单位:牛顿 * 米
4.转子平衡
❖ 动不平衡:单位:牛顿 * 米*米
第三节 轴流压气机静子
❖1. 风扇机匣结构 ❖2. 压气机机匣结构 ❖3. 整流器
1.风扇静子机匣

航空发动机核心机 ppt课件

航空发动机核心机 ppt课件
坐舱增压、涡轮散热和其他发动机的起动提供压
缩空气。
1、评价指标
增压比、效率、外廓尺寸和重量、工作可靠 性、制造和维修费用。
3
航空发动机原理和结构
2、对压气机设计的基本要求:
1)满足发动机性能的各项要求,性能稳定, 稳定工作范围宽; 2)具有足够的强度、适宜的刚度和更小的 振动; 3)结构简单,尺寸小,重量轻; 4)工作可靠,寿命长; 5)维修性、检测性好,性能制造成本比高。
9
航空发动机原理和结构
轴流式
具有增压比高,效率高,单位面积空气质 量流量大,迎风面积小等优点,在相同的 外廓尺寸下可获得更大的推力。
10
航空发动机原理和结构
11
航空发动机原理和结构
12
航空发动机原理和结构
混合式
在中、小型发动机上,轴流式和离心式组 成混合压气机,发挥了离心压气机单级增压比 高的优点,避免了轴流式压气机叶片高度很小 时损失增大的特点。
航空发动机原理和结构
1)空气在工作叶栅内的流动情形
在压气机中,气流进入叶轮的三个 速度组成的三角型叫做叶轮“进口速度 三角型”,夹角β①叫气流进口角。在 设计工作状态下,w①方向应与叶片前 缘方向(即叶片的中弧线前缘切线方向 )一致。空气以相对速度w①进入叶轮 后,经过由叶片组成的弯曲扩张型通道 ,流动方向逐渐改变,相对速度逐渐减 小,最后顺着弯曲的叶片通道以相对速 度w②自叶轮流出。
本课程主要研究轴流式压气机结构,对离心式和 混合式只做一般介绍。
航空发动机原理和结构
离心式
优点: 具有结构简单、工作可靠、稳 定工作范围较宽、单级增压比高;
缺点: 迎风面积大,难以获得更高的 总增压比。
应用于教练机,导弹、靶机等的小型动力装置 和飞机辅助动力装置中。

航空发动机压气机工作温度_概述及解释说明

航空发动机压气机工作温度_概述及解释说明

航空发动机压气机工作温度概述及解释说明1. 引言1.1 概述航空发动机是现代飞行器的核心部件,其中压气机作为发动机的关键组成部分,在提供必要的气流压缩与推进力方面发挥着重要的作用。

而在压气机正常运行中,其工作温度是一个重要的影响因素。

本篇文章将对航空发动机压气机工作温度进行全面概述与解释说明。

1.2 文章结构本文将按照以下结构展开对航空发动机压气机工作温度的讨论:- 引言:对文章目的、内容和结构进行概述。

- 航空发动机压气机工作温度的重要性:探讨压气机在航空发动机中的作用,以及温度对其性能的影响及相关限制因素。

- 航空发动机压气机工作温度的测量与监控方法:介绍不同类型和原理的温度传感器,以及设计和实施压气机温度监控系统所需考虑的问题和应急措施。

- 对航空发动机压气机工作温度限制的解释:详细说明制造商规定和技术标准指南对压气机温度限制的要求和依据,以及飞行员操作手册中关于压气机温度限制的说明。

同时还探讨在维修和维护中如何监控和调整压气机温度的方法和程序。

- 结论:对航空发动机压气机工作温度进行总结,并提出对于压气机温度控制和监控的建议与展望。

1.3 目的本文旨在全面介绍航空发动机压气机工作温度这一重要方面,并深入阐述其对发动机性能的影响以及相应的监控和调整方法。

通过本文,读者可了解到航空发动机压气机工作温度相关知识,并为实际生产、运营与维护提供参考与指导。

2. 航空发动机压气机工作温度的重要性2.1 压气机在航空发动机中的作用压气机是航空发动机的核心组件之一,它负责将大量的气体吸入发动机并通过压缩提高气体的密度,从而产生更大的推力。

压气机可以分为低压和高压两个部分,并通过复杂的转子和定子构造实现高效率的工作。

它起着将外界空气往后排送、为燃烧室提供所需进口条件和增加末级推力等关键功能。

2.2 温度对压气机性能的影响航空发动机中,良好的工作温度对于保证压气机性能至关重要。

具体来说,适宜的工作温度可以确保良好的动力输出、有效地吸取外界空气并进行良好的压缩,从而提供足够强大且稳定的推力。

航空发动机原理

航空发动机原理

航空发动机原理简介航空发动机是飞机的核心部件之一,它的工作原理决定了飞机的飞行性能。

航空发动机的主要任务是将燃料的化学能转化为动力,推动飞机前进。

本文将介绍航空发动机的工作原理和主要组成部分。

工作原理航空发动机的工作原理基于热力学循环原理,它通过燃烧产生的高温高压气体推动涡轮转动,进而驱动飞机飞行。

一般来说,航空发动机根据工作原理可以分为喷气式发动机和涡轮螺旋桨发动机。

喷气式发动机原理喷气式发动机是目前大多数商用飞机所采用的发动机类型。

它的工作原理基于Joule-Brayton循环原理。

主要的组成部件包括压气机、燃烧室和涡轮。

1.压气机:压气机负责压缩进入发动机的空气,提高其压力和温度。

压缩空气被分为高压和低压两个级别,分别通过不同的压气机级实现压缩。

2.燃烧室:燃烧室是将燃料与压缩空气混合燃烧的地方。

燃料在燃烧室中燃烧产生高温高压气体,驱动涡轮旋转。

3.涡轮:涡轮由高温高压气体驱动,并通过轴将动力传递给压气机和其他系统。

涡轮旋转产生的动力推动了发动机的工作。

涡轮螺旋桨发动机原理涡轮螺旋桨发动机主要应用在小型飞机和直升机上。

它的工作原理基于Brayton循环原理。

主要的组成部件包括涡轮、燃烧室和螺旋桨。

1.涡轮:涡轮由燃烧室中的燃料燃烧产生的高温高压气体驱动。

涡轮旋转产生的动力推动飞机前进。

2.燃烧室:燃烧室是将燃料与压缩空气混合燃烧的地方。

燃料在燃烧室中燃烧产生高温高压气体,驱动涡轮旋转,进而推动飞机前进。

3.螺旋桨:涡轮螺旋桨发动机通过螺旋桨来提供推力。

螺旋桨通过轴与发动机的涡轮相连,涡轮驱动螺旋桨旋转,产生推力。

主要组成部分不论是喷气式发动机还是涡轮螺旋桨发动机,它们都包括以下几个主要的组成部分:1.压气机:负责压缩进入发动机的空气,提高其压力和温度。

2.燃烧室:将燃料与压缩空气混合燃烧,产生高温高压气体。

3.涡轮:由高温高压气体驱动,并通过轴将动力传递给压气机和其他系统。

4.出口喷管:将高温高压气体排出,产生推力。

第四章压气机

第四章压气机

进口速度 三角形
出口速度 三角形
出口速度三角形:
c2u
w2u
c2
w2
u2
➢ 滑差系数
当工作轮叶片数目无限多时,工作轮内的 气流被分成无限薄的流速。这时气流的运动与 叶片形状保持一致,气流出口的相对速度方向 与叶片安装角一致,称理论流动。
实际叶片是有数目的。所工作轮通道中的 气流不可能沿着叶片方向与安装角一致,而是 偏向于旋转的相反方向。这是由于惯性旋流的 产生而引起的。
气 流 转 折 角 : 2 1
叶 型 转 折 角 : 2A 1A
4、叶片扭转规律
基元级的研究只是沿 叶高某一半径截面上气流的 工作情况。但一个级是由无 数不同半径处的基元级叠加 而成。而气体在同一个环形 叶栅中,在不同半径上,其 参数是不同的(即气流沿叶 高是变化的)。所以还必须 研究气流参数沿径向的变化 规律。
c
h 3t h1 h3 h1
C p ( T3t T1 ) C p ( T3 T1 )
滞止等熵效率:
* c
h
* 3t
h
* 1
h
* 3
h
* 1
C
p
(
T
* 3t
T
* 1
)
C
p
(
T
* 3
T
* 1
)
多变效率只与压缩过程的平均多变指数有关。
多变效率:
采用多变效率主要是为了区分基元级内 内的流动损失。
p
随后,由动叶栅流出的高速气流进入静叶栅中 逐渐减速,使气流绝对速度的动能转换为气体的 压力能,使气体的压力进一步提高。
性能参数:
压气机进口参数:
T1 P1 C1 T1* P1* w1 动叶出口参数:

航空发动机压气机

航空发动机压气机
24
2.4 鼓盘式转子
25
2.4 鼓盘式转子
26
2.5 工作叶片
工作叶片是轴流式压气机重要零件之一,它直接影响压气机的气动 性能、工作可靠性、重量及成本等。由于它不仅受较高的离心负荷、气 动负荷、大气温差负荷及振动的交变负荷影响.同时还受到发动机进气 道外来物的冲击,受风沙、潮湿的侵蚀等、因而在使用中压气机工作叶 片比压气机的其他零部件故障要多得多。因此,无论在设计、制造,还 是使用维修中,在叶片方面耗费的劳动较多,成本也高。
优点
单级增压比高,一级的增压比可达4:1—5:1,甚至 更高;同时离心式压气机稳定的工作范围宽;结构简单 可靠;重量轻,所需的启动功率小,多用于小型燃气涡 轮发动机。
缺点
流动损失大,尤其是级间损失更大,不适于用多级, 最多两级,正因为这样,离心式压气机的效率较低。一 般离心式压气机的效率最高只有83%—85%,甚至不到 80%。另外,离心式压气机单位面积的流通能力低,故 迎风面积大,阻力也大。
11
2.3 轴流式压气机转子的基本结构
12
鼓式转子
2.3 轴流式压气机转子的基本结构
盘式转子由一根轴和若干个轮盘组成,用轴将各级轮 盘联成一体。盘缘有不同形式的榫槽用来安装转子叶片。 盘心加工成不同的形式.即用补同的方法在共同的铀上定 心和传扭。转子叶片和轮盘的离心力由轮盘承受.转子的 抗弯刚性由轴保证。盘式转子的优点是承受离心载荷能力 强.但是抗弯刚性差。为了提高转于的抗弯刚性.在盘式 转于中,盘缘间增添了定距环,并将轴的直径加租,称为 加强的盘式转子。
1.不可拆却的鼓盘式转子 不可拆卸的鼓盘式转子的级间联接常用圆柱面紧度配合加径
向销钉联接和焊接两种方法.这两种方法在完成装配后都不可能 再进行无损分解。在先进的F119发动机上是直接整体加上成型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 大涵道比风扇及涡轮轴发动机尤为重要
3.防外来物打伤(FOD)
❖ 防止外物打伤的措施:
叶片上加凸台,带冠; 小展弦比叶片 进气锥及增压级气路形状 中介机匣位置 防尘网 粒子分离器
3.防外来物打伤(FOD)
3.防外来物打伤(FOD)
RB211-535E4
GE90
3.防外来物打伤(FOD)
CFM56-2
航空发动机结构
第四章 风扇/压气机的结构
第四章 风扇/压气机结构
❖ 第一节 概 述 ❖ 第二节 转子系统 ❖ 第三节 静子系统 ❖ 第四节 辅助系统
防冰装置、防喘装置等
第一节 概 述
❖1. 组成及分类
组成;
❖进气道、静子、转子、防喘/防冰系统。
分类:
❖轴流、离心、混合压气机。
气动特征,结构特征
第一节 概 述
风扇叶片的槽向固定
❖CFM56-5B 风扇连接
3.压气机轮盘结构
❖ 作用
固定叶片并使叶片对 气体作功。
负荷很大是重要零件。
❖ 剖面形状
外缘:视叶片尺寸定 内部:由强度而定。 中心:开孔大加厚。
3.压气机轮盘结构
❖ 盘~轴作成一体简化结构
❖ 盘~叶片做成一体
(Blade+Disk=Blisk)
❖ 鼓加强盘:
盘的变形大于鼓的变形。
混合式转子
1. 转子的基本结构
❖二、转子的连结形式:
短螺栓连接 焊接的盘鼓混合式转子 销钉连接转子 长螺栓连接转子
短螺栓连接转子
二、转子的连结形式
❖发动机转子应力分布
焊接的盘鼓混合式转子
销钉连接 转子
长螺栓连接转子
长螺栓连接转子
❖AL-31F
2.压气机工作叶片结构

1.进口导向器叶片
❖ 组成:
内外环 进口导向器叶片
❖ 进口导流叶片
正预旋 反预旋
2.防冰系统
2.防冰系统
❖ 防冰条件:
水分和温度。
❖ 结冰后果:
进气流量降低 涡轮前温度提高 冰脱落打伤叶片
❖ 措施:
热空气; 热滑油; 防冰涂层; 进气锥形状
3.防外来物打伤(FOD)
❖ 螺栓的选取
机匣刚度 机匣气封性
2. 压气机机匣
高压压气机机匣
3.整流器
❖ 1 叶片
叶型为亚音、有带冠、底座
❖ 2 外环、内环
加强叶片强度,提高自振频率; 内环有封严装置防止级间漏气;
❖可无内环
外环与机匣连接:
❖焊接、机匣内开槽、螺母连接;
ห้องสมุดไป่ตู้四节 防冰、防喘装置等
❖ 1.进气机匣 ❖ 2.防冰系统 ❖ 3.防外来物打
鼓式转子—斯贝MK-202
❖鼓式转子
鼓式转子—CFM56
1. 转子的基本结构
❖ 一、结构分类
盘式转子
❖盘的强度好 ❖弯曲刚性差 ❖盘易产生振动
盘式转子—PW4000
加强盘式转子
• SPEY 低压压气机转子
混合式转子
❖ 恰当半径:
盘的变形等于鼓的变形。
❖ 盘加强鼓:
盘的变形小于鼓的变形。
❖销钉连接
2.压气机工作叶片结构
❖ 根部 (榫头) ❖锁片槽向固定
2.压气机工作叶片结构
❖ 根部 (榫头) ❖锁片、销钉槽向固定
2.压气机工作叶片结构
❖ 根部 (榫头) ❖凸台、钢丝槽向固定
2.压气机工作叶片结构
❖ 根部 (榫头) ❖卡环槽向固定
2.压气机工作叶片结构
❖ 环型燕尾榫头
加工简单 安装方便 承受负荷小 零件数目减少
第一节 概 述
❖ 3.要求解决的问题
转子要有足够的刚性和强度;
❖基本原则是等强度,等刚度设计
抗外物打伤能力和包容能力强;
❖采用结构措施提高可靠性
防喘、减缓振动,避免共振; 效率提高、工作稳定可靠; 重量轻、寿命长、成本低。
转子在横向力作用下的变形
高压转子沿轴向弯曲刚性基本上为等刚度
第一节 概 述
❖ 整体叶环
(Blade+Ring=Bling)
3.压气机轮盘结构
❖ 整体叶盘结构 ❖ 减少榫头的漏气量提 高效率
❖ 避免由榫头的磨蚀、 裂纹及锁片的损坏带 来的故障
❖ 要考虑叶片被外物打 伤后的维修问题
❖ 设计中要保证前缘具 有较小振动应力和较 高的抗外物打伤能力
风扇盘结构
4.转子平衡
❖ 静不平衡量:单位:牛顿 * 米
❖大涵道比涡轮风扇发动机
第一节 概 述
❖小涵道比涡轮风扇发动机
第一节 概 述
❖涡轮螺桨发动机
第一节 概 述
❖涡轮轴发动机
第一节 概 述
❖ 2.特 点
进口处:
❖外物易打伤、结冰、腐蚀。
转速高:
❖叶片根部、轮盘承受负荷极大,平衡要求高。
对空气做功:
❖要求效率高、叶型设计。
叶片高而薄:
❖易振动、高频疲劳。
❖ 叶身
叶型:
❖ 亚音、超音
叶尖切速:
❖ 决定叶片的加功量
宽弦:
❖ 提高抗外物打伤能力,减振
2.压气机工作叶片结构
端弯叶片
2.压气机工作叶片结构
❖带凸肩叶片
❖宽弦叶片
2.压气机工作叶片结构
2.压气机工作叶片结构
2.压气机工作叶片结构
❖ 带蜂窝结构
❖ 带波纹片结构
❖RR公司的空心叶片设计
CFM56-5C高压压气机
❖等内径气流通道设计
第二节 轴流压气机转子
❖1. 转子的基本结构 ❖2. 压气机工作叶片结构 ❖3. 压气机轮盘结构 ❖4. 转子平衡技术
1. 转子的基本结构
❖ 一、结构分类
鼓式转子
❖结构简单弯曲刚性好 ❖转速受到限制(低于200米/秒)。 ❖大流量比发动机增压级多采用。
4.转子平衡
❖ 动不平衡:单位:牛顿 * 米*米
第三节 轴流压气机静子
❖1. 风扇机匣结构 ❖2. 压气机机匣结构 ❖3. 整流器
1.风扇静子机匣
❖ 1.承力机匣框架:
铸焊组合
❖ 2.出口导向叶片:
距离---噪音
❖ 3.包容环:
防止叶片飞出
❖ 4.吸音衬套:
声学衬套。
风扇机匣的包容性
2. 压气机机匣
CFM56-3
CFM56-5 CFM56-7
4. 防喘装置
❖ 1.喘振原因
进气畸变,吞烟,进气道堵塞。
❖ 2.防喘措施
放气机构 可调进口导向器叶片 可调静子叶片 处理机匣 多转子。
放气机构
可调静子叶片
处理机匣
❖PD-33发动机处理机匣
❖ 4. 气流通道形式
等外径设计
❖能充分提高叶片切向速度,加大加工量。 ❖以减少压气机级数。 ❖切向速度受到强度的限制。 ❖多在压气机前面几级使用。
F404低压风扇
❖等外径气流通道设计
第一节 概 述
等内径设计
❖优点:提高末级叶片效率。 ❖缺点:对气体加功量小,级数多。
等中径设计
❖介于两者之间,一般均混合采用。
❖ 分类
使用材料:
❖镁合金、铝合金、钛合金、合金钢.
加工工艺:
❖ 铸造、锻造、板料焊接、轧等.
2. 压气机机匣
❖ 形状
分半机匣
❖简单易安装、刚性不均。
分段整环机匣
❖刚性好、不易安装。
双层机匣
❖机匣受力和保持气流通道机匣分开,可便于 间隙控制以提高压气机效率。
2. 压气机机匣
❖ 机匣间的连接
螺钉、螺栓 精密螺栓 自锁螺栓
2.压气机工作叶片结构
2.压气机工作叶片结构
❖ 根部 (榫头)
叶片和盘的连接部分并将叶片的离心力均匀加在 盘缘上。
轴向燕尾型--广泛采用于风扇、压气机中。 环形燕尾槽--用于高压后几级中。 榫树型榫头--在压气机中较少使用。
❖ 叶片在轮盘槽内的固定
卡圈、锁片、锁板、销钉
2.压气机工作叶片结构
❖ 根部 (榫头)
相关文档
最新文档