抽象函数的周期123
抽象函数的单调性、奇偶性、周期性
抽象函数的单调性、奇偶性、周期性高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识 一.重难点归纳 函数的周期性(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。
如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ;④||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;⑤||:tan ωπω==T x y ;(3)与周期有关的结论 ①y=f(x)对x ∈R 时,f(x +a)=f(x -a) 或f(x -2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a 的周期函数; ②若y=f(x)是偶函数,其图像又关于直线x=a 对称,则f(x)是周期为2︱a ︱的周期函数;③若y=f(x)奇函数,其图像又关于直线x=a 对称,则f(x)是周期为4︱a ︱的周期函数;④若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2b a -的周期函数;⑤y=f(x)的图象关于直线x=a,x=b(a ≠b)对称,则函数y=f(x)是周期为2b a -的周期函数;⑥y=f(x)对x ∈R 时,f(x+a)=-f(x)(或f(x+a)= )(1x f -,则y=f(x)是周期为2a 的周期函数; 二.例题 例1已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyy x ++1),试证明(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减命题意图 本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力知识依托 奇偶性及单调性定义及判定、赋值法及转化思想错解分析 本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得技巧与方法 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点证明 (1)由f (x )+f (y )=f (xyy x ++1),令x =y =0,得f (0)=0, 令y =-x ,得f (x )+f (-x )=f (21xx x --)=f (0)=0∴f (x )=-f (-x ) ∴f (x )为奇函数 (2)先证f (x )在(0,1)上单调递减令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1)∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0 ∴f (x )在(-1,1)上为减函数例2设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0(1)求f (21)、f (41);(2)证明f (x )是周期函数; (3)记a n =f (2n +n21),求).(ln lim n n a ∞→命题意图 本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力 知识依托 认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)= f (x 1)·f (x 2)找到问题的突破口错解分析 不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形技巧与方法 由f (x 1+x 2)=f (x 1)·f (x 2)变形为()()()()2222x x x x f x f f f =+=⋅是解决问题的关键(1) 解 因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=()()()02222x xx xf f f +=≥, x ∈[0,1] 又因为f (1)=f (21+21)=f (21)·f (21)=[f (21)]2f (21)=f (41+41)=f (41)·f (41)=[f (41)]2又f (1)=a >0 ∴f (21)=a 21, f (41)=a 41(2)证明 依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即 f (x )=f (2-x ),x ∈R又由f (x )是偶函数知 f (-x )=f (x ),x ∈R∴f (-x )=f (2-x ),x ∈R将上式中-x 以x 代换得f (x )=f (x +2),这表明f (x )是R 上的周期函数,且2是它的一个周期(3)解 由(1)知f (x )≥0,x ∈[0,1]∵f (21)=f (n ·n 21)=f (n 21+(n -1) n 21)=f (n 21)·f ((n -1)·n 21)=…… =f (n 21)·f (n 21)·……·f (n 21) =[f (n 21)]n=a 21∴f (n21)=a n 21又∵f (x )的一个周期是2∴f (2n +n 21)=f (n21), ∴a n =f (2n +n 21)=f (n21)=a n 21因此a n =a n 21∴.0)ln 21(lim )(ln lim ==∞→∞→a na n n n三.练习1 下列函数中的奇函数是( )A f (x )=(x -1)xx -+11 B f (x )=2|2|)1lg(22---x xC f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x x D f (x )=x x x x sin cos 1cos sin 1++-+2.(重庆卷6)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是( C )(A)f (x )为奇函数 (B )f (x )为偶函数(C) f (x )+1为奇函数 (D )f (x )+1为偶函数3 函数f (x )=111122+++-++x x x x 的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x =1对称 4 函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是____ 5 若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________6.设函数f (x )的定义域关于原点对称且满足(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1 求证 (1)f (x )是奇函数 (2)f (x )是周期函数,且有一个周期是4a参考答案:1 解析 f (-x )=2222(0)() (0) (0)() (0)x x x x x x x x x x x x ⎧⎧->-+<⎪⎪=⎨⎨--<--+>⎪⎪⎩⎩ =-f (x ),故f (x )为奇函数答案 C 3 解析 f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称 答案 C4 解析 令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减答案 (-∞,-1] 5 解析 ∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0 f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0 又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0 答案 (-∞,0) 6 证明 (1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x )∴f (x )是奇函数(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a ) ∵f (x +a )=f [x -(-a )]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ), 故f (x )是以4a 为周期的周期函数四.易错题1、(江苏省启东中学2008年高三综合测试一)函数f(x)在定义域R 上不是常数函数,且f(x)满足条件,对任意x ∈R ,都有f(4+x)= f(4-x),f(x+1)=f(x-1),则f(x)是( ) A 、奇函数但非偶函数 B 、偶函数但非奇函数 C 、奇函数又是偶函数 D 、非奇非偶函数 2、(湖南省十二校2008届高三第一次联考)函数)(x f y =与)(x g y =有相同的定义域,且都不是常数函数,对定义域中任意x ,有f(x)+f(-x)=0,g(x)g(-x)=1,且x ≠0,g(x)≠1,则)(1)()(2)(x f x g x f x F +-=( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数答案:B3、(江苏省启东中学高三综合测试二)已知函数f (x )满足:f (p +q )= f (p ) f (q ),f (1)= 3,则)1()2()1(2f f f ++)3()4()2(2f f f ++)5()6()3(2f f f ++)7()8()4(2f f f ++)9() 10 ()5(2f ff+的值为A.15B.30C.75D.60答案:B4、(四川省巴蜀联盟2008届高三年级第二次联考)设偶函数f(x)对任意x∈R,都有f(x)+f(x+1)=4,当x∈[-3,-2]时,f(x)=4x+12,则f(112.5)的值为A.2 B.3 C.4 D.5答案:A5、(山东省博兴二中高三第三次月考)若奇函数()()f x x R∈满足()()()()22,22f f x f x f=+=+,则()5f的值是A.0 B.1 C.52D.5答案:D6、(广东省五校2008年高三上期末联考)定义在R上的函数()f x的图象关于点3(,0)4-成中心对称,对任意的实数x都有3()()2f x f x=-+,且(1)1,f-=(0)2f=-,则(1)(2)(3)(20f f f f+++鬃?的值为A.2-B.1-C.0 D.1答案:D.解析:本题考查了函数的对称性和周期性.由3()()2f x f x=-+,得(3)()f x f x+=,因此,()f x是周期函数,并且周期是3函数()f x的图象关于点3(,0)4-成中心对称, 因此,()f x=-3()2f x--,所以,(1)1f=(1)(2)(3)0f f f++=,(1)(2)(3)(2008)f f f f+++鬃?=(1)f7、(黑龙江省哈尔滨三中2008年高三上期末)已知)(xf是偶函数,)(,xfRx若将∈的图像向右平移一个单位又得到一个奇函数,)2008()10()9()8(,1)2(fffff++++-=则等于()A.-1004 B.1004 C.-1 D.1答案:D8、(河北衡水中学2008年第四次调考)已知函数)(xfy=的定义域为R,它的反函数为)(1xfy-=,如果)(1axfy+=-与)(axfy+=互为反函数且aaf=)((a为非零常数),则)2(af的值为()A.a-B.0 C.a D.a2答案:B9、(河北省正定中学2008年高三第五次月考)定义在R上的函数y=f(x)满足:f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2 007)的值是()(A)-1 (B)0 (C)1 (D)2答案:A 10、(福建省师大附中2008年高三上期期末考试)定义在R 上的函数()f x满足()(4)f x f x-=-+,当2x>时,()f x单调递增,如果1212124(2)(2)0,()()x x x x f x f x+<--<+且则的值()A.恒小于0 B.恒大于0C.可能为0 D.可正可负答案:A11、(江苏省启东中学高三综合测试四)已知)(xf是定义在R上的函数,且)2()(+=xfxf恒成立,当)0,2(-∈x时,2)(xxf=,则当[]3,2∈x时,函数)(xf的解析式为()A.42-x B.42+x C.2)4(+x D.2)4(-x答案:D12、(陕西长安二中2008届高三第一学期第二次月考)定义在R上的奇函数)(xf满足)3()3(xfxf-=+,若当x ∈(0,3)时,xxf2)(=,则当x∈(- 6,-3)时,)(xf=( ) A.62+x B.-62+x C.62-x D.-62-x答案:B13、(黑龙江省哈师大附中2008届高三上期末)设定义在R 上的函数f(x)的反函数为f-1(x),且对任意的x∈R,都有f(-x)+f(x)=3,则f-1(x-1)+f-1(4-x)等于()A.0 B.—2 C.2 D.2x—4答案:A14、(安徽省淮南市2008届高三第一次模拟考试)设函数f (x)是定义在R上的以5为周期的奇函数,若f(2)>1,f (2008)=33-+aa,则a的取值范围是()A. (-∞, 0)B. (0, 3)C. (0, +∞)D. (-∞, 0)∪(3, +∞) 答案:B15、(山东省济南市2008年2月高三统考)已知()f x是以2为周期的偶函数,当[0,1]x∈时,()f x x=,那么在区间[1,3]-内,关于x的方程()1f x kx k=++(其中k是为不等于l的实数)有四个不同的实根,则k的取值范围是A.(1,0)-B.1(,0)2-C.1(,0)3-D.1(,0)4-答案:C16、(安徽省巢湖市2008届高三第二次教学质量检测)函数()f x的定义域为R,对任意实数x满足(1)(3)f x f x-=-,且(1)f x-=(3)f x-,当12x≤≤时,()f x=2x,则()f x的单调减区间是()A.[2k,2k+1](k Z∈) B.[2k-1,2k](k Z∈)C.[2k,2k+2] (k Z∈) D.[2k-2,2k](k Z∈)答案:A17、(东北师大附中高2008届第四次摸底考试)已知定义域为R 的函数()x f 在区间()∞+,4上为减函数,且函数 ()4+=x f y 为偶函数,则( )A .()()32f f >B .()()52f f >C .()()53f f >D .()()63f f > 答案:D18、(湖南省长沙市一中2008届高三第六次月考)若函数)(x f 满足:“对于区间(1,2)上的任意实数)(,2121x x x x ≠,||||)()(1212x x x f x f -<-恒成立,”则称)(x f 为完美函数.在下列四个函数中,完美函数是 A .xx f 1)(=B .||)(x x f =C .x x f 2)(=D .2)(x x f =答案:A。
专题2-7:抽象函数的周期
故函数f ( x)的周期T 2(b a)
例1、设函数f ( x)是R上的奇函数,且 f ( x) y 1 的图象关于直线 对称,则 x 2 f (0) f (1) f (2) f (3) f (4) f (5) 等于
0
2.函数图象有 a, x b(a b)两条对称轴型 x
例3、已知函数f ( x)是R上的偶函数,且 f ( x 2) f ( x) 1, f ( x) 0恒成立, 则f (119)的值等于
1
4.分式递推型,即函数 ( x)满足 f 1 f ( x b) f ( x a) ( a b) 1 f ( x b)
1 f ( x b) 由f ( x a ) (a b), 1 f ( x b) 1 f ( x a b) 则f ( x a a ) (*), 1 f ( x a b) 1 f [( x b) b] f ( x a b) f [( x b) a ] , 1 f [( x b) b] 1 代入(*)式得f ( x 2a ) , f ( x 2b) 即f ( x 2a ) f ( x 2b) 1, 函数f ( x)的周期T 4(b a) 由上面的类型三,求出 ( x)函数的周期T 4b 4a f
(1)非奇非偶函数
(2)802个
3.两个函数值之积等于 1, 即函数值互为倒数或负 倒数型
若f ( x a) f ( x b) 1, 显然f ( x a) 0, 即f [( x a) a] 而f [( x b) a] f [( x b) b] 1 f ( x b) 0, 则f ( x a) , f ( x b) 1 1 , f [( x a) b] f [( x b) a] 1 1 ,因此f [( x a) a] f [( x b) b] f [( x b) a] f [( x 2a) 2b 2a],
对抽象函数周期性的认识
对抽象函数周期性的认识麻城实验高中 阮 晓 锋对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
可见周期函数是一类特殊的函数,下面就谈谈我对抽象函数周期性的认识。
几种特殊的抽象函数的周期:设函数()y f x =对定义域内任一实数x 满足:(1)()(x)f x T f ±=(T ≠0),则T 是函数()y f x =的一个周期,且kT (k єZ)也是其周期 推论:若(+)=(+)f x a f x b ,则T=b-a 是函数()y f x =的一个周期。
(2)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; 推论:若函数)(x f y = 定义域为R ,且满足条件)()(b x f x a f --=+,则)(x f y =是 以)(2b a T +=为周期的周期函数。
(3)()()1f x a fx +=±,则()x f 是以2T a =为周期的周期函数;(4)()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;(5)1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.(6)()+1(+)=()-1f x f x a f x ,则()x f 是以2T a =为周期的周期函数.(7)1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.(8)1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.(9)若函数f(x)有一条对称轴x=a 和一个对称点(b,c),那么该函数一定为周期函数,且 其中一个周期为T =4|a -b|推论:若奇函数()y f x =满足()()f a x f a x +=-(0a >),则其周期为4T a =。
抽象函数的周期性和对称性
抽象函数是一种数学概念,它是一种无限维的函数,用于描述某种连续变化的关系。
抽象函数可以具有周期性和对称性。
周期性是指函数在一段时间内重复出现的性质。
抽象函数可以具有周期性,这意味着在一个固定的时间段内,函数的值会重复出现。
对称性是指函数的形状是对称的。
抽象函数可以具有对称性,这意味着函数的形状具有对称性,即函数的左半部分与右半部分形状相似。
抽象函数的周期性和对称性可以帮助我们了解函数的性质,并为我们的数学建模和解决问题提供帮助。
高考小专题00001抽象函数.doc
高考小专题------------ 抽象函数的周期类型(学生版)抽象函数的周期没有具体公式,它需要掌握一定的规律,记住一些抽象函数的格式。
本文列出几种常见的抽象函 数的周期类型,供大家参考(以下X 取定义域内的任意值且a 、b 、T 为非零常数,a#=b)。
1- fM = f(x+T)型/(x)的周期为 To释义:对x 取定义域内的每一个值时,都有/(x+7) = /(x),则/(x)为周期函数,T 叫函数/(兀)的周期。
2. f\x + °) = /(x + b)型/(x)的周期为\b-a\o释义:/(% + 6f) = /(% + /?) ^> /(x) = f(x + b-a) o3. f(x + d) = -/(x)型/(x)的周期为 2a o释义:f(x + 2a) = f[(x + a) + a] = -f(x + a) = -[-/(x)] = f(x)/(x+2a) = /[(x+o)+al=-启"Jr "小fM/(x + a)丽型/(x)的周期为2a 。
释义:5. f(x + a) = 丽型/(x)的周期为2d 。
释义:m+“)"(5)+亦詁矿十 "6/(X)6. /(X + 6Z)=1 +/(兀)/(X)的周期为4ao释义:如+如〃(十)+无芳册1+1 + /31-/(兀)二 __L_ ]1 +/(兀)/(X)l-/(x)/. f(x + 4a) = f[(x + 2°) + 2a]=] /(x + 2a)=/(x)。
4./(兀)7.两线对称型函数/(兀)关于直线x = Q、x = b对称,则/(兀)的周期为|2b-2"。
释义:n f(2a - x) = f(2b 一兀)=> f(x) = f(x + 2方一 2a)。
正弦函数yf 关于直线“誇、“乎对称,则心讼的周期为皆乎仔分2心8. -线一点对称型函数/(兀)关于直线兀二Q 及点(b, 0)对称,则/(兀)的周期为加-知。
抽象函数解题方法与技巧
抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=fx ,满足fx+a=fx -a 或fx -2a=fxa >0恒成立,则y=fx 是周期为2a 的周期函数;2、若y=fx 的图像关于直线x=a 和x=b 对称,则函数y=fx 是周期为2|a -b|的周期函数;3、若y=fx 的图像关于点a,0和b,0对称,则函数y=fx 是周期为2|a -b|的周期函数;4、若y=fx 的图像有一个对称中心Aa,0和一条对称轴x=ba ≠b ,则函数y=fx 是周期为4|a -b|的周期函数;5、若函数y=fx 满足fa+x=fa -x ,其中a>0,且如果y=fx 为奇函数,则其周期为4a ;如果y=fx 为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=fx ,满足fx+a=-fx ()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=fx 是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为2a 的周期函数;7、8应掌握具体推导方法,如7 函数图像的对称性:1、若函数y=fx 满足fa+x=fb -x ,则函数y=fx 的图像关于直线2a b x +=对称;2、若函数y=fx 满足fx=f2a -x 或fx+a=fa -x ,则函数y=fx 的图像关于直线x=a 对称;3、若函数y=fx 满足fa+x+fb -x=c ,则y=fx 的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线fx,y=0关于点a,b 的对称曲线的方程为f2a -x,2b -y=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 ()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=fx 定义在实数集上,则y=fx+a 与y=fb -x 的图像关于直线2b a x -=对称;7、若函数y=fx 有反函数,则y=fa+x 和y=f -1x+a 的图像关于直线y=x+a 对称;一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f1+sinx=2+sinx+cos 2x , 求fx二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题; 例3.已知fx 是二次函数,且fx+1+fx -1=2x 2-4x ,求fx .四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决; 例4.对任意实数x,y ,均满足fx+y 2=fx+2fy 2且f1≠0,则f2001=_______. 例5.已知fx 是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 fab=afb+bfa. 1求f0,f1的值;2判断fx 的奇偶性,并证明你的结论;五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6.设函数fx 对任意实数x,y ,都有fx+y=fx+fy ,若x>0时fx<0,且f1= -2, 求fx 在-3,3上的最大值和最小值;例7.定义在R +上的函数fx 满足: ①对任意实数m ,fx m =mfx ; ②f2=1. 1求证:fxy=fx+fy 对任意正数x,y 都成立; 2证明fx 是R +上的单调增函数; 3若fx+fx -3≤2,求x 的取值范围;六、递推法 对于定义在正整数集N 上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例8.已知fx 是定义在R 上的函数,f1=1,且对任意x ∈R 都有fx+5≥fx+5,fx+1≤fx+1;若gx=fx+1-x ,则g2002=_________.模型法模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法; 应掌握下面常见的特殊模型:=_____________ 例11.设定义在R 上的函数fx ,满足当x>0时,fx>1,且对任意x,y ∈R ,有fx+y=fxfy,f1=2 1解不等式f3x -x 2>4;2解方程fx 2+12fx+3=f2+1 例12.已知函数fx 对任何正数x,y 都有fxy=fxfy ,且fx ≠0,当x>1时,fx<1;试判断fx 在0,+∞上的单调性,并说明理由;函数性质练习1. 已知函数为偶函数,则的值是A. B. C. D.2. 若偶函数在上是增函数,则下列关系式中成立的是)127()2()1()(22+-+-+-=m m x m x m x f m 1234)(x f (]1,-∞-A. B.C. D.3. 如果奇函数在区间 上是增函数且最大值为,那么在区间上是A. 增函数且最小值是B. 增函数且最大值是C. 减函数且最大值是D. 减函数且最小值是4. 设是定义在上的一个函数,则函数在上一定是 A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数5. 下列函数中,在区间上是增函数的是A. B. C. D. 6. 函数是A. 是奇函数又是减函数B. 是奇函数但不是减函数C. 是减函数但不是奇函数D. 不是奇函数也不是减函数7. 设奇函数的定义域为,若当时,的图象如右图,则不等式的解是8. 函数________________.9. 已知,则函数的值域是.10. 若函数是偶函数,则的递减区间是 .11. 下列四个命题 1; 2函数是其定义域到值域的映射;)2()1()23(f f f <-<-)2()23()1(f f f <-<-)23()1()2(-<-<f f f )1()23()2(-<-<f f f )(x f [3,7]5)(x f []3,7--5-5-5-5-)(x f R )()()(x f x f x F --=R ()0,1x y =x y -=3xy 1=42+-=x y )11()(+--=x x x x f )(x f []5,5-[0,5]x ∈)(x f ()0f x <2y x =+[0,1]x ∈y =2()(2)(1)3f x k x k x =-+-+)(x f ()f x =3函数的图象是一直线;4函数的图象是抛物线,其中正确的命题个数是____________.12. 已知函数的定义域为,且同时满足下列条件:1是奇函数;2在定义域上单调递减;3求的取值范围.抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=fx ,满足fx+a=fx -a 或fx -2a=fxa >0恒成立,则y=fx 是周期为2a 的周期函数;2、若y=fx 的图像关于直线x=a 和x=b 对称,则函数y=fx 是周期为2|a -b|的周期函数;3、若y=fx 的图像关于点a,0和b,0对称,则函数y=fx 是周期为2|a -b|的周期函数;4、若y=fx 的图像有一个对称中心Aa,0和一条对称轴x=ba ≠b ,则函数y=fx 是周期为4|a -b|的周期函数;5、若函数y=fx 满足fa+x=fa -x ,其中a>0,且如果y=fx 为奇函数,则其周期为4a ;如果y=fx 为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=fx ,满足fx+a=-fx ()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=fx 是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为2a 的周期函数;7、8应掌握具体推导方法,如7 函数图像的对称性:1、若函数y=fx 满足fa+x=fb -x ,则函数y=fx 的图像关于直线2a b x +=对称;2、若函数y=fx 满足fx=f2a -x 或fx+a=fa -x ,则函数y=fx 的图像关于直线x=a 对称;2()y x x N =∈22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩()f x ()1,1-()f x ()f x 2(1)(1)0,f a f a -+-<a ()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++3、若函数y=fx 满足fa+x+fb -x=c ,则y=fx 的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线fx,y=0关于点a,b 的对称曲线的方程为f2a -x,2b -y=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=fx 定义在实数集上,则y=fx+a 与y=fb -x 的图像关于直线2b a x -=对称;7、若函数y=fx 有反函数,则y=fa+x 和y=f -1x+a 的图像关于直线y=x+a 对称;二、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例2. 已知f1+sinx=2+sinx+cos 2x , 求fx解:令u=1+sinx ,则sinx=u -1 0≤u ≤2,则fu=-u 2+3u+1 0≤u ≤2 故fx=-x 2+3x+1 0≤x ≤2二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设解:xx x f x x f x f x x 323)(,1)(2)1(,1--==-联立方程组,得得代换用三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题; 例3.已知fx 是多项式函数,且fx+1+fx -1=2x 2-4x ,求fx . 解:由已知得fx 是二次多项式,设fx=ax 2+bx+c a≠0 代入fx+1=ax+12+bx+1+c=ax 2+2a+bx+a+b+c fx -1= ax -12+bx -1+c=ax 2+ b -2ax+a -b+c∴fx+1+ fx -1=2ax 2+2bx+2a+2c=2x 2-4x比较系数得:a=1,b= -2,c= -1 , fx=x 2-2x -1.四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决; 例4.对任意实数x,y ,均满足fx+y 2=fx+2fy 2且f1≠0,则f2001=_______. 解:令x=y=0,得:f0=0,令x=0,y=1,得f0+12=f0+2f12,∵f1≠0 ∴f1= . 令x=n,y=1,得fn+1=fn+2f12=fn+ 即fn+1-fn = 12,故fn = 2n ,f2001= 20012例5.已知fx 是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 fab=afb+bfa. 1求f0,f1的值;2判断fx 的奇偶性,并证明你的结论; 3若f2=2,u n =f2n n ∈N ,求证:u n+1>u n n ∈N . 解:1令a=b=0,得f0=0,令a=b=1,得f1=0.2fx 是奇函数;因为:令a=b=-1,得f -1-1=-f -1-f -1,f -1=0, 故f -x=f -1x= -fx+xf -1= -fx ,故fx 为奇函数. 3先用数学归纳法证明:u n =f2n >0 n ∈N 略五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6.设函数fx 对任意实数x,y ,都有fx+y=fx+fy ,若x>0时fx<0,且f1= -2,求fx 在-3,3上的最大值和最小值;解:令x=y=0,得f0=0,令y=-x ,得f -x+fx=f0=0,即fx 为奇函数. 设x 1<x 2,则x 2-x 1>0,由已知得fx 2-x 1<0,故fx 2=fx 2-x 1+x 1=fx 2-x 1+fx 1< fx 1 所以fx 是R 上的减函数,又f3=f1+f2=3f1=-6,f -3=6 故fx 在-3,3上的最大值为6,最小值为-6.例7.定义在R +上的函数fx 满足: ①对任意实数m ,fx m =mfx ; ②f2=1. 1求证:fxy=fx+fy 对任意正数x,y 都成立; 2证明fx 是R +上的单调增函数; 3若fx+fx -3≤2,求x 的取值范围;解:1令x=2m ,y=2n ,其中m,n 为实数,则fxy=f2m+n =m+nf2=m+n .1212又fx+fy=f2m +f2n =mf2+nf2=m+n ,所以fxy=fx+fy 2证明:设0<x 1<x 2,可令m<n 且使x 1=2m ,x 2=2n 由1得fx 1-fx 2=12x f x ⎛⎫ ⎪⎝⎭=f2m -n=m -nf2=m -n<0故fx 1<fx 2,即fx 是R +上的增函数;3由fx+fx -3≤2及fx 的性质,得fxx -3≤2f2=f4 解得 3<x ≤4;六、递推法 对于定义在正整数集N 上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例8.已知fx 是定义在R 上的函数,f1=1,且对任意x ∈R 都有fx+5≥fx+5,fx+1≤fx+1;若gx=fx+1-x ,则g2002=_________.解:由fx+1≤fx+1得fx+5≤fx+4+1≤fx+3+2≤fx+2+3≤fx+1+4 又∵fx+5≥fx+5 ∴fx+5≤fx+1+4 ∴fx+1≤fx+1 又∵fx+1≤fx+1 ∴fx+1=fx+1又∵f1=1 ∴fx=x gx=fx+1-x=1,故g2002=1;模型法模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法; 应掌握下面常见的特殊模型:=_____________ 分析:因为函数fx 恒满足f2+x= f2-x ,方程fx=0有5个实根,可以将该函数看成是类似于二次函数y=kx -22为模型引出解题思路,即函数的对称轴是x=2,并且函数在f2=0,其余的四个实数根关于x=2对称 解:因为实数集上的函数fx 恒满足f2+x= f2-x ,方程fx=0有5个实根,所以函数关于直线x=2对称,所以方程的五个实数根也关于直线x=2对称,其中有一个实数根为2,其它四个实数根位于直线x=2两侧,关于直线x=2对称,则这5个根之和为10;例11.设定义在R 上的函数fx ,满足当x>0时,fx>1,且对任意x,y ∈R ,有fx+y=fxfy,f1=2 1解不等式f3x -x 2>4;2解方程fx 2+12fx+3=f2+1 分析:可联想指数函数fx=a x ;解:1先证fx>0,且单调递增,因为fx=fx+0=fxf0,x>0时fx>1,所以f0=1 对于任意x<0,则-x>0,fxf -x=fx -x=f0=1,∴fx=()1f x - ∵-x>0,f -x>1 ∴0<fx<1 综上所述 fx>0 任取x 1,x 2∈R 且x 1<x 2,则x 2-x 1>0,fx 2-x 1>1, 所以fx 1-fx 2=fx 2-x 1+x 1-fx 1=fx 2-x 1fx 1-fx 1=fx 1fx 2-x 1-1>0 所以x ∈R 时,fx 为增函数;不等式f3x -x 2>4可化为3x -x 2>2 解得:{x|1<x<2}2f1=2,f2=4,f3=8,原方程可化为:fx 2+4fx -5=0,解得fx=1或fx=-5舍 由1得x=0;例12.已知函数fx 对任何正数x,y 都有fxy=fxfy ,且fx ≠0,当x>1时,fx<1;试判断fx 在0,+∞上的单调性,并说明理由;分析:可联想幂函数 fx=x n 解:对x ∈R +,有fx=20ff =≥,又fx ≠0,故fx>0设x 1,x 2∈R +,且x 1<x 2,则211x x >,则()()()()()2211211211111x x f x f f x f x x x x f f x f x f x x ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭===< ⎪⎝⎭所以fx 1>fx 2,故fx 在R +上为减函数;函数性质答案1. B 奇次项系数为2. D3. A 奇函数关于原点对称,左右两边有相同的单调性4. A5. A 在上递减,在上递减,在上递减,6. A为奇函数,而为减函数. 7. 奇函数关于原点对称,补足左边的图象8. 是的增函数,当时,9. 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大10.11. 1,不存在;2函数是特殊的映射;3该图象是由离散的点组成的;4两个不同的抛物线的两部分组成的,不是抛物线.12. 解:,则,0,20,2m m -==3(2)(2),212f f =--<-<-()()()()F x f x f x F x -=--=-3y x =-R 1y x=(0,)+∞24y x =-+(0,)+∞()(11)(11)()f x x x x x x x f x -=----+=+--=-222,12,01(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩(](2,0)2,5-[2,)-+∞1,x y ≥-x 1x =-min 2y =-[)0,+∞210,1,()3k k f x x -===-+121x x ≥≤且22(1)(1)(1)f a f a f a -<--=-2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩∴01a <<。
抽象函数的对称性与周期性
抽象函数的对称性、奇偶性与周期性常用结论抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较 困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力。
一、函数)(x f y =图象本身的对称性(自身对称)1、函数的轴对称:推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称特殊地,函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称。
2、 函数的点对称:推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称特殊地,若()x f y =满足()()0=-++x a f x a f ,则()x f y =的图象关于点()0,a 对称。
特殊地,若()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称。
二、函数的周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
抽象函数与周期函数
函数周期性和抽象函数常见函数周期:①y=sinx ,最小正周期T =2π; ②y=cosx ,最小正周期T =2π; ③y=tanx ,最小正周期T =π; ④y=cotx ,最小正周期T =π.周期函数f(x) 最小正周期为T,则y=Af(ωx+φ)+k 的最小正周期为T/|ω|.2.几种特殊的抽象函数的周期:函数()y f x =满足对定义域内任一实数x (其中a 为大于0的常数)(二)主要方法:1.判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的x 恒有()()f x T f x +=;二是能找到适合这一等式的非零常数T ,一般来说,周期函数的定义域均为无限集.2.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值。
练习:1.设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。
2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f 3.已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=4.()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()212f =-则f(2009)=5.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)=6. 已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x ) =1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为( )7 .已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是() 8.f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0在区间(0,6)内解的个数的最小值是( )9.设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B )()()()3.5 1.5 6.5f f f <<;(C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<例1 :设f(x)是定义在R 上的偶函数,其图象关于直线x=1对称 对任意x1,x2∈[021],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0.(Ⅰ)求f)41(),21(f ; (Ⅱ)证明f(x)是周期函数; (Ⅲ)记n a =f(2n+n 21),求n a .例2: 已知函数f (x )在(-1,1)上有定义,f (12)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明: (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减。
抽象函数的性质
抽象函数的性质函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+=⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()11f x f x a fx -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()()()11f x f x a fx -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。
函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2a b x+=对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法d ad ada xb ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x-=对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。
抽象函数周期的求法函数模型法
抽象函数周期的求法函数模型法抽象函数的周期是指函数在一个周期内重复的最小单位长度。
对于周期函数,它的周期可以通过函数模型法来求解。
本文将详细介绍函数模型法,并以具体的例子进行解释。
函数模型法是一种求解函数周期的常用方法,它的核心思想是通过构建函数模型来寻找函数的周期性规律。
具体而言,可以通过观察函数的图像、函数的性质以及函数的定义域和值域等来构建函数模型,从而求解函数的周期。
在使用函数模型法求解函数周期时,可以按照以下步骤进行:Step 1: 寻找函数的周期性规律首先,我们需要观察函数的图像,尝试发现函数的周期性规律。
在观察图像时,可以注意函数的重复部分,例如曲线的形状是否相同、峰值或谷值是否重复出现等。
对于一些简单的函数,周期性规律可能比较明显,但对于一些复杂的函数,可能需要借助额外的方法来寻找周期性规律。
Step 2: 构建函数模型在寻找到函数的周期性规律之后,我们可以尝试构建函数模型。
函数模型可以描述函数的周期性特点,并且可以通过函数模型来预测函数在其他区间的表现。
函数模型可以是一个数学式子或者一个函数图像。
具体而言,如果函数的周期是T,则可以构建函数模型为:f(x+T)=f(x)。
即函数在周期T内的任意两个点的函数值相等。
通过构建函数模型,我们可以利用函数的周期性规律来简化函数的计算和分析。
Step 3: 求解函数的周期一旦构建了函数模型,我们可以通过函数模型来推导函数的周期。
具体而言,我们可以将函数模型中的变量替换为特定的数值,来找到满足函数模型的周期T。
对于一些简单的函数,可以直接观察函数模型的形式来求解周期。
例如,对于正弦函数sin(x),它的函数模型为sin(x + 2π) = sin(x),因此它的周期是2π。
但是对于一些复杂的函数,可能需要借助一些数学方法来求解周期。
例如,对于幂函数f(x) = ax^b,其中a、b为常数,可以通过求解函数的导数或者利用对数函数的性质来求解周期。
抽象函数奇偶性对称性周期性总结
例4:已知f(x)是定义在R上的函数,且满足f(x+999)= ,f(999+x)=f(999-x), 试判断函数f(x)的奇偶性.
例5:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当 时,f(x)是减函数,求证当 时f(x)为增函数
A. B.- C. D.-()
3、设f(x)是定义在(-∞,+∞)上的函数,且满足f(10+x)=f(10-x),f(20-x)=-f(20+x),则f(x)是( )
A.偶函数又是周期函数B.偶函数但不是周期函数
C.奇函数又是周期函数D.奇函数但不是周期函数
4、f(x)是定义在R上的偶函数,图象关于x=1对称,证明f(x)是周期函数。
把 沿 轴平移 个单位,即按向量 平移即得 在其他周期的图像: 。:Leabharlann 2、奇偶函数:设 或
① ;
② 。
分段函数的奇偶性(略)
3、函数的对称性:
(1)中心对称(即:点对称)
:
①
②
③
④
⑤
(2)轴对称(对称轴方程为 )
,
二、函数对称性的几个重要结论
(一)函数 图象本身的对称性(自身对称)
若 ,则 具有周期性;
例3.若 是以2为周期的偶函数,当 时 试比较 、 、 的大小.
解:∵ 是以2为周期的偶函数,
又∵ 在 上是增函数且 ,
|
∴
3、求函数解析式
例4.(1989年高考题)
设 是定义在区间 上且以2为周期的函数,对于 ,用 表示区间 已知当 时, 求 在 上的解析式.
抽象函数解题方法与技巧
抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x -a)(或f(x -2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a -b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a -b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a -b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a -x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。
(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b -x),则函数y=f(x)的图像关于直线2a b x +=对称;2、若函数y=f(x)满足f(x)=f(2a -x)或f(x+a)=f(a -x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b -x)=c ,则y=f(x)的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a -x,2b -y)=0;()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b -x)的图像关于直线2b a x -=对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。
例析抽象型周期函数的周期求法
例析抽象型周期函数的周期求法
抽象型周期函数是在线性代数、几何等领域的基本概念,是指由其他种类的有限长度无穷循环复制而成的函数。
在这里,我们来谈谈抽象型周期函数的周期求法。
通常,在线性代数中有把多项式表示为域上相同的形式。
那么,抽象型周期函数的周期就可以从多项式的系数和步长来求得。
具体的求法如下:
1、首先,要用基向量(也就是把多项式的系数用v1、v
2、v3……表示)来表示多项式形式的抽象型周期函数;
2、把所有v1、v2、v3……的向量的夹角的最小值求出来,他就是该抽象函数的周期;
3、最后,将求出的最小值乘以多项式的步长,就是抽象型周期函数的周期。
以上就是抽象型周期函数的周期求法,它首先要用基向量来表示多项式形式的抽象函数,然后求出向量夹角的最小值,最后再乘以多项式的步长,就可以得到抽象型周期函数的周期了。
由此可见,抽象型周期函数的周期是一种很有用的求法,有助于我们研究和解决线性代数以及几何等领域的问题。
抽象函数解题方法与技巧
抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。
(7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2a b x +=对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。
高中数学:抽象函数周期性总结(压轴题必备基础知识)
高中数学:抽象函数周期性总结(压轴题必备基础知识)
抽象函数的周期性,并不是一个非常难的知识点,但是在解大题时,如果一时没有想到周期性,会对解答造成很大的影响,所以我们有必要熟悉一下常用的抽象函数的周期性结论,提高解题速度。
定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期。
定义域:对于任何函数,都需要明确其定义域,对于周期函数来说,其定义域必为至少一端无界的集合。
理由:设周期为T,由周期函数的定义知f(x T)=f(x),易得f(x nT)=f(x) (其中n是整数)即x nT也在定义域内,故周期函数定义域必是无界集。
抽象函数解题方法与技巧
抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=- ⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。
()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2a b x +=对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,22a b c +⎛⎫ ⎪⎝⎭成中心对称图形;4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0;5、形如()0,ax b y c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。
抽象函数奇偶性对称性周期性归纳
.抽象函数的对称性、奇偶性与周期性常用结论一.观点: 抽象函数是指没有给出详细的函数分析式或图像,只给出一些函数符号及其知足的条件的函数 ,如函数的定义域 ,分析递推式 ,特定点的函数值 ,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个连接点,因为抽象函数没有详细的分析表达式作为载体,所以理解研究起来比较困难,所以做抽象函数的题目需要有谨慎的逻辑思想能力、丰富的想象力以及函数知识灵巧运用的能力1、周期函数的定义:对于 f ( x) 定义域内的每一个x ,都存在非零常数T ,使得 f ( x T ) f (x) 恒建立,则称函数 f ( x) 拥有周期性,T叫做 f ( x) 的一个周期,则kT( k Z ,k0 )也是 f (x) 的周期,全部周期中的最小正数叫 f ( x) 的最小正周期。
分段函数的周期:设 y f( x) 是周期函数,在随意一个周期内的图像为C: y f ( x),x a,b ,T b a 。
把 y f( x)沿 x轴平移 KT K (b a) 个单位即按向量a(kT,0)平移,即得 y f ( x) 在其余周期的图像:y f ( x kT ), x kT a, kT b 。
f ( x)x a,bf (x)kT )x kT a,kT bf ( x2、奇偶函数:设 y ①若②若f ( x), xf (x)f (x)a,b 或 xf (x), 则称 yf (x)则称 yb, a a,bf ( x)为奇函数;f ( x)为偶函数。
分段函数的奇偶性3、函数的对称性:(1 )中心对称即点对称:①点 A( x, y)与 B( 2a x,2b y)对于点 (a,b)对称;②点 A(a x, b y)与 B(a x, b y)对于 (a,b)对称;③函数 y f (x)与 2b y f (2a x)对于点 (a, b)成中心对称;④函数 b y f (a x)与 b y f ( a x)对于点 (a,b)成中心对称;⑤函数 F( x, y) 0与 F(2a x,2b y) 0对于点 (a,b)成中心对称。
例析抽象函数周期的求法word精品
例析抽象函数周期的求法抽象函数周期问题是近年来高考及各地模拟试题中高频出现的问题,其周期求法能有效考查学生的逻辑思维能力和代数推理能力,对培养学生思维品质大有帮助。
下面举例说明求周期的常用方法及技巧。
、仅含抽象关系式的周期函数例1若存在常数m>0使函数f(x)满足一—,则心的一个正周期是。
解:设,则,依题意有F(t 十扣f(t)由周期函数的定义, •是工的一个周期所以茁1—:期例2已知函数、^满足,求证:函数y = F(E为周期函数。
证明:因为对:;二厲有f (x) = f (x - a) + f (x + a) (1)所以f(H_aQ 二f[(x - a) -a]+f[(x -a) + a] 即f(s- a) = f(x - 2a) + f(x) (2)(2)代入(1)得:一「十;:—"所以f仗4- a) = -f(x - 2a)上式中,我换成x-a有迫)=-F(x - %)这样: ............... 1 ... 亠 "一—「一一一- 1所以' ^为周期函数,且「J为它的一个周期例3设函数「-的定义域关于原点对称,且对定义域内任意 -■ ' 有_F(靭疋(衍)+ 1:,且存在常数-■ -1,使」1。
试证:'-是周期函数,且有一个周期为4a。
证明:设= ^: ' ,则 i =^':- 由心心—有f(-£)= -f(x), BPfCx)为奇函数又因为迪十勿二叶-(-洞」aE十1二-f■㈤+1二史口-l-f(x) f(x) + l 所页仗+ 2罠)=f[〔x + Q +罠]二1f(x + a) + 1f(x)这样F仪+4a) = - =心)t (梵十2a)所以y=f(x)为周期函数,且有一个周期为4a。
说明:从以上几例可见,适当的赋值和变量代换,是探求抽象函数周期的关键。
下面再给一个探求周期来计算函数值的例子。
拭、/(x+1) = — +例4设’-是定义在R上的函数,且对任意_ ',都有::皿)5)『,又斤求建o⑪的值。