2018宁夏教师招聘笔试备考:“电磁感应规律与自感”知识点
电磁感应知识点总结
电磁感应知识点总结电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。
电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。
下面我们将对电磁感应的相关知识点进行总结。
1. 法拉第电磁感应定律。
法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应电动势的现象。
定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。
这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。
2. 感应电动势的方向。
根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。
当磁通量增加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。
这一规律在电磁感应现象的分析和应用中具有重要的指导意义。
3. 感应电动势的大小。
感应电动势的大小与磁通量的变化率成正比,即。
ε = -dΦ/dt。
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。
这一关系式说明了磁通量的变化越快,感应电动势的大小就越大。
这一规律在电磁感应现象的定量分析中起着重要的作用。
4. 涡旋电场。
当磁场发生变化时,会在空间中产生涡旋电场。
这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。
涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。
5. 涡旋电流。
涡旋电场的存在导致了涡旋电流的产生。
涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。
涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。
通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。
电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。
希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。
电磁感应中的自感与互感知识点总结
电磁感应中的自感与互感知识点总结电磁感应是研究磁场和电流之间相互作用的重要内容,其中自感与互感是电磁感应过程中的核心概念。
本文将对自感与互感这两个知识点进行总结,以便更好地理解电磁感应的原理和应用。
一、自感的概念与特点自感是指一个导体中的电流通过自身的磁场与其自身的磁场相互作用产生电动势的现象。
它的概念可以用法拉第电磁感应定律来描述:当一个电流变化时,它所产生的磁场会穿过自身,从而引起自感电动势的产生。
自感的特点如下:1. 自感电动势的方向与电流变化方向相反,符合楞次定律。
2. 自感电动势的大小与电流变化速率成正比,即ξ = -L(di/dt),其中ξ表示自感电动势,L表示自感系数,di/dt表示电流变化的速率。
3. 自感系数L与导体的几何形状和材料特性有关,通常用亨利(H)表示。
二、互感的概念与特点互感是指两个或多个线圈中的电流通过它们产生的磁场相互作用,使得电流发生变化,从而产生电动势的现象。
互感也可以用法拉第电磁感应定律来描述:当一个线圈中的电流变化时,它所产生的磁场会穿过其他线圈,从而引起互感电动势的产生。
互感的特点如下:1. 互感电动势的方向与电流变化方向相反,符合楞次定律。
2. 互感电动势的大小与线圈的匝数、电流变化速率以及两个线圈之间的磁链有关,即ξ = -M(di/dt),其中ξ表示互感电动势,M表示互感系数,di/dt表示电流变化的速率。
3. 互感系数M与线圈的几何形状和材料特性有关,通常用亨利(H)表示。
三、自感与互感的区别与联系自感和互感都是电磁感应的重要概念,它们之间既有区别,又有联系。
区别:1. 自感是指一个导体中的电流通过自身的磁场与其自身的磁场相互作用产生电动势,而互感是指两个或多个线圈中的电流通过它们产生的磁场相互作用,使得电流发生变化,从而产生电动势。
2. 自感主要考虑的是一个导体自身的磁场对自身所产生的影响,而互感主要考虑的是线圈之间的相互作用。
联系:1. 自感和互感都符合楞次定律,即电动势的方向与电流变化方向相反。
电磁感应基础知识点
电磁感应·知识点精析一、感应电流方向的判断产生感应电流的现象称为电磁感应现象.实验总结出产生感应电流的条件为:(1)电路为闭合电路;(2)回路中磁通量发生变化.感应电流方向的判断一般有两种方法:1.右手定则.这种方法适于回路中一部分导体切割磁感线产生感应电流的情况.注意与左手定则的差别.2.楞次定律.楞次定律内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.可见,楞次定律描述了感应电流的磁场方向与引起感应电流的磁场(原磁场)方向的关系.当回路中磁通量增加时,感应电流磁场方向与“原磁场”方向相反;当回路中磁通量减少时,感应电流磁场方向与“原磁场”方向相同.楞次定律的实质反映了电磁感应现象中能量转化与守恒.应用楞次定律判断感应电流的方向的步骤:(1)明确“原磁场”方向;(2)确定回路中ΔΦ的情况;(3)应用楞次定律确定感应电流的磁场方向;(4)应用安培定律确定感应电流方向.ε=BLv描述导体切割磁感线运动产生的感应电动势大小与有关因素.计算时,要注意:磁感强度B、导线(体)长L、导体运动的速度v三者必须相互垂直.当B和L一定时,ε=BLv用于计算即时感应电动势.于求某一段时间(Δt)内的平均感应电动势.当导体棒切割磁感线运动产生的感应电动势恒定时,也可应用割磁感线的条数.感应电动势是标量,但是,为了处理问题方便,我们可以将其规定一方向:电势升高的方向为感应电动势方向(内电路中感应电流的方向).这样判断感应电动势方向自然与感应电流方向的判断相同.三、自感电动势的作用自感现象是电磁感应现象中一种特殊情况:由于导体(自感线圈)中电流变化而引起的电磁感应现象.自感现象中产生的感应电动势称自感电动势,其大小为圈形状、长短、匝数、有无铁芯等)决定.根据“楞次定律”不难得出自感电动势的作用:阻碍它(自感线圈)所在电路中的电流变化.即:若电路中电流增加,则自感电动势方向与电流方向相反;若电路中电流减少,则自感电动势方向与电流方向相同.通电自感现象、断电自感现象等都是由于自感电动势的作用产生的.四、通电导体在磁场中的运动这里只研究导体初速度为零、在匀强磁场中运动情况.从理论上可导出图12-1(甲)、(乙)两种情况,(光滑导轨)导体棒的运动性质相同:初速度为零、加速度越来越小的加速直线运动,最后为匀速直线运动.运动规律可由下列方程描述:五、电磁感应现象中的能量转化情况电磁感应现象实质是能量转化与守恒.图12-1甲中能量转化情况为W F=ΔE K+ΔE电式中W F为拉力所做的功——等于消耗其它形式的能.这种情况相当于发电机中能量转化情况.图12-1(乙)中能量转化情况为ΔE电=ΔE K+ΔE内上式相当电动机中能量转化情况.可见,处理物理问题时,如发生能量转化,则其中一种能量的减少必然等于另(或一些)一种能量的增加.应用这种能量的观点处理问题极为简单.。
电磁感应与自感现象
电磁感应与自感现象导言电磁感应与自感现象是电学中重要的基础概念,它们揭示了电与磁之间的密切联系。
本文将对电磁感应和自感现象进行探讨,并深入研究它们的原理和应用。
一、电磁感应电磁感应是指电场变化或磁场相对运动所引起感应电流的现象。
当导体中的电场发生变化时,或导体与磁场相对运动时,就会产生感应电动势和感应电流。
1.法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本定律。
它指出,感应电动势的大小与导体中的磁通量变化率成正比。
数学表达式为:ε = -dφ/dt其中,ε为感应电动势,dφ/dt为磁通量的变化率。
负号表示感应电动势的方向与磁通量变化的方向相反。
2.楞次定律楞次定律是描述感应电流的方向的定律。
根据楞次定律,感应电流的方向总是使其产生的磁场与导致感应电流的磁场的变化趋势相反。
3.电磁感应的应用电磁感应现象广泛应用于发电机、变压器、感应加热器等电器设备中。
通过电磁感应,我们可以将机械能转化为电能,并实现能量的传输和转换。
二、自感现象自感现象是指当电流通过导体时,导线自身会产生磁场,进而改变导电线路中电流的现象。
它是由于磁通量的变化而导致感应电势的产生。
1.自感系数自感系数L是描述自感现象的物理量。
它定义为单位电流通过导线时所产生的磁通量与该导线上的电流之比。
数学表达式为:L = Φ/I其中,L为自感系数,Φ为磁通量,I为电流。
2.自感现象的应用自感现象被广泛应用于电磁继电器、电感等电子元件中。
通过自感,我们可以实现电路的开闭控制和信号的放大与传递。
结论电磁感应与自感现象是电学中重要的基础概念,它们揭示了电与磁之间的密切联系。
电磁感应描述了电场变化或磁场相对运动所引起的感应电动势和感应电流。
自感现象则是电流通过导线时导线自身产生的磁场所引起的电势变化。
这两个现象在电子工程和电路设计中起着至关重要的作用。
通过深入研究和应用电磁感应与自感现象,我们可以实现能量的转化、信号的传递以及电路的控制。
法拉第电磁感应定律、自感和互感知识点
法拉第电磁感应定律、自感和互感知识点法拉第电磁感应定律、自感和互感一、考纲要求1.能应用法拉第电磁感应定律E=n和导线切割磁感线产生电动势公式E=Blv计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.二、知识梳理1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=n.3.导体切割磁感线的情形(1)一般情况:运动速度v和磁感线方向夹角为θ,则E=Blvsin_θ.(2)常用情况:运动速度v和磁感线方向垂直,则E=Blv.(3)导体棒在磁场中转动:导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E=Bl4.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=L.(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.5.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水中的旋涡,所以叫涡流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力的作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.三、要点精析1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B引起时,则E=n;当ΔΦ仅由S引起时,则E=n;当ΔΦ由B、S的变化同时引起,则E=n≠n.2.磁通量的变化率是Φ-t图象上某点切线的斜率.3.应用E=n时应注意的几个问题(1)由于磁通量有正负之分,计算磁通量的变化时一定要规定磁通量的正方向.正向的磁通量增加与反向的磁通量减少产生的感应电流的方向相同.(2)公式E=n是求解回路某段时间内平均电动势的最佳选择.若为恒量,则平均电动势等于瞬时电动势.(3)用公式E=nS求感应电动势时,S为线圈在磁场范围内垂直磁场方向的有效面积.(4)一个结论:通过回路截面的电荷量q仅与n、ΔΦ和回路总电阻R总有关,与时间长短无关.推导如下:q=Δt=4.导体棒切割磁感线产生感应电动势的计算(1)导体平动切割磁感线①一般情况:运动速度v和磁感线方向夹角为θ,则E=Blvsinθ.②常用情况:运动速度v和磁感线方向垂直,则E=Blv.③若导体棒不是直的,则E=Blv中的l为切割磁感线的导体棒的有效长度.下图中,棒的有效长度均为ab间的距离.(2)导体转动切割磁感线导体棒以端点为轴,在垂直于磁感线的平面内以角速度ω匀速转动产生的感应电动势E=Bωl2(导体棒的长度为l).5.导体棒切割磁感线类问题要注意以下几点(1)确定切割磁感线的导体棒是平动切割还是转动切割.若是平动切割,注意切割的有效长度;若是转动切割,导体各部分切割速度不同,应用E=BLvsinθ计算电动势时,v应是导体棒切割的平均速度.(2)导体棒切割磁感线相当于电源,要注意感应电动势的方向及电路的结构.7.自感现象分析的基本方法(1)在分析自感现象问题时,应注意电路的结构,弄清楚自感线圈L与用电器的串、并联关系.(2)明确原电流的方向,再判断自感电流的方向及大小变化.(3)注意L的自身电阻是不是能忽略不计及断开开关时,线圈和用电器能否形成回路.8.对的“两点理解”(1)磁通量变化率描述的是磁通量变化的快慢,即单位时间内变化量或磁通量变化与所需时间的比值.(2)在磁通量与时间关系图线中,某时刻的变化率为该时刻图线切线的斜率,显然和该时刻的磁通量无关.9.“解析法”巧解电磁感应的动态分析问题[方法概述]“解析式法”是指根据题目条件写出要分析的物理量的数学表达式,进行分析和推断的方法.[方法应用](1)公式选择:一般选用E=Blv或E=n的瞬时值表达式(即Δt→0时的平均电动势).(2)准确写出每一个时刻(或位置)的磁通量变化率、导体棒切割磁感线的有效长度、回路总电阻等物理量随时间变化的函数表达式.(3)正确分析解析式中变量和不变量的函数关系.。
电磁感应知识点总结
电磁感应知识点总结电磁感应是指通过磁场或电场的作用产生电流或电动势的现象。
它是电磁学的重要内容,应用广泛。
下面将从电磁感应的基本原理、应用和影响等方面进行总结。
一、电磁感应的基本原理1. 法拉第电磁感应定律:当磁场的变化穿过闭合回路时,回路中会产生感应电流。
这个定律描述了磁场变化对电流的影响。
2. 楞次定律:感应电流的方向会使得其磁场的改变抵消原来磁场变化的效果。
此定律描述了感应电流对磁场的反作用。
3. 磁通量:磁力线通过单位面积的数量。
磁通量的变化是电磁感应的直接原因。
二、电磁感应的应用1. 发电机:利用电磁感应原理将机械能转化为电能,广泛应用于发电行业。
2. 变压器:利用电磁感应原理实现电压的升降。
3. 感应电炉:利用电磁感应原理将电能转化为热能,用于熔炼金属等工业领域。
4. 电磁感应传感器:利用电磁感应原理测量物理量,如温度、压力等。
5. 电磁制动器和离合器:利用电磁感应原理实现制动和离合的功能。
三、电磁感应的影响1. 电磁辐射:由于电磁感应产生的电流会产生电磁辐射,对人体健康和电子设备产生一定的影响。
2. 电磁波干扰:电磁感应产生的电磁场有可能干扰无线通信、雷达等设备的正常工作。
3. 电磁感应对电路的影响:电磁感应会在电路中引入干扰电压和电流,影响电路的稳定性和性能。
电磁感应作为电磁学的重要内容,其基本原理和应用在现实生活中有着广泛的应用。
了解电磁感应的原理和应用,有助于我们更好地理解和应用电磁学知识,推动科学技术的发展。
同时,我们也需要关注电磁辐射和电磁干扰等问题,合理利用电磁感应技术,保护环境和人类健康。
电磁感应重难点知识点总结
● 电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。
这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。
● 电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。
电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。
● 电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。
③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。
● 对电磁感应的理解:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。
引起电流的原因概括为五类:①变化的电流。
②变化的磁场。
③运动的恒定电流。
④运动的磁场。
⑤在磁场中运动的导体。
● 磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。
对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。
● 产生感应电流的条件:一是电路闭合。
二是磁通量变化。
● 楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
● 楞次定律的理解:①感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。
② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。
理解电磁感应中的楞次定律和自感现象
理解电磁感应中的楞次定律和自感现象电磁感应是电磁学中的一个重要概念,描述了磁场的变化引起的电场现象,以及电流的变化引起的磁场现象。
电磁感应中的两个基本定律是楞次定律和自感现象。
本文将详细探讨这两个定律的含义和应用。
楞次定律是描述电磁感应中电场的产生和变化的定律。
它由法国物理学家楞次于1831年提出,被公认为电磁学的基础定律之一。
楞次定律可以表达为:当一个磁场的变化穿过一个闭合回路时,该回路中会产生一个电动势。
楞次定律可以通过一个简单的实验来观察和验证。
首先,我们将一个螺线管连接到一个示波器上,然后将一个强磁铁快速移动进入螺线管内。
在磁铁移动的过程中,示波器会显示一个电压信号的变化,这就说明了楞次定律的实际效应。
楞次定律的实质是电磁感应现象,也就是磁场变化会引起电场的产生和变化。
这是因为磁场的变化会导致电磁场的旋度产生涡旋电场,从而在闭合回路上产生电流。
这个电流的大小和方向与磁场变化的速率和方向有关。
楞次定律实际上是法拉第定律的特例,它描述了磁场变化引起的电场现象。
自感是电磁感应中的另一个重要现象,它描述了电流变化引起的磁场现象。
当电流通过一个线圈时,它会产生一个磁场。
这个磁场会影响线圈本身,使得线圈中的电流随着时间变化而改变。
自感的物理机制可以通过电磁感应实验来观察和验证。
在一个闭合回路中,我们将一个螺线管连接到一个电源和一个开关上。
当开关打开或关闭时,螺线管内的电流会随之变化。
这个变化的电流会产生一个磁场,然后又作用在螺线管内,使得电流再次发生变化。
这种现象称为自感。
自感的强度取决于线圈的几何形状、匝数和电流的变化速率。
自感现象是电路电感的基础,也是各种电感元件的重要特性。
电感元件常用来稳定电流、滤波、存储和传递能量。
在通信领域中,电感元件也常用于构建无线电传输线圈、天线和变压器等设备。
总结起来,楞次定律和自感现象是电磁感应中的两个基本定律。
楞次定律描述了磁场变化引起的电场现象,而自感现象描述了电流变化引起的磁场现象。
电磁感应知识点
第四章电磁感应知识总结一、对楞次定律的理解与应用楞次定律反映这样一个物理规律:原磁通量变化时产生感应电流,感应电流的磁场(方向由右手螺旋定则判定)阻碍原磁通量的变化.1.感应电流的磁场不一定与原磁场方向相反,只在磁通量增大时两者才相反,而在磁通量减小时两者是同向的.2.“阻碍”并不是“阻止”,而是“延缓”,电路中的磁通量还是在变化,只不过变化得慢了.3.“阻碍”的表现:增反减同、增缩减扩、增离减靠、来拒去留.例1圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图1所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是( )A.线圈a中将产生顺时针方向(俯视)的感应电流B.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力N将增大解析 通过螺线管b 的电流如图所示,根据右手螺旋定则判断出螺线管b 所产生的磁场方向竖直向下,滑片P 向下滑动,接入电路的电阻减小,电流增大,所产生的磁场的磁感应强度增大,根据楞次定律可知,a 线圈中所产生的感应电流生成的磁场方向竖直向上,再由右手螺旋定则可得线圈a 中的感应电流方向为逆时针方向(俯视),A 错误;由于螺线管b 中的电流增大,所产生的磁感应强度增大,线圈a 中的磁通量应变大,B 错误;根据楞次定律可知,线圈a 有缩小的趋势,线圈a 对水平桌面的压力增大,C 错误,D 正确.答案 D二、电磁感应中的图像问题1.图像问题的类型:一是给出电磁感应过程,选出或画出正确图像;二是由给定的有关图像分析电磁感应过程,求解相应的物理量.2.应用的规律:(1)利用法拉第电磁感应定律计算感应电动势的大小.(2)利用楞次定律或右手定则判定感应电流的方向.(3)应用公式F =BIL 和左手定则计算或判断安培力的大小或方向.例2 将一段导线绕成如图2甲所示的闭合电路,并固定在纸面内,回路的ab 边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B 随时间t 变化的图像如图乙所示.用F 表示ab 边受到的安培力,以水平向右为F 的正方向,能正确反映F 随时间t 变化的图像是( )解析 由题图乙可知0~T 2时间内,磁感应强度随时间线性变化,即ΔB Δt=k (k 是一个常数),圆环的面积S 不变,由E =ΔΦΔt =ΔB ·S Δt可知圆环中产生的感应电动势大小不变,则回路中的感应电流大小不变,ab 边受到的安培力大小不变,从而可排除选项C 、D ;0~T 2时间内,由楞次定律可判断出流过ab 边的电流方向为由b 至a ,结合左手定则可判断出ab 边受到的安培力的方向向左,为负值,故选项A 错误,B 正确.答案 B三、电磁感应中的电路问题1.首先要找到哪一部分导体相当于电源,分清内、外电路.处于磁通量变化的磁场中的线圈或切割磁感线的导体相当于电源,该部分导体的电阻相当于内电阻;而其余部分的电路则是外电路.2.路端电压、感应电动势和某段导体两端的电压三者的区别:(1)某段导体作为电阻时,它两端的电压等于电流与其电阻的乘积;(2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压.(3)某段导体作为电源时,电路断路时导体两端的电压等于感应电动势.例3 如图3所示,光滑金属导轨PN 与QM 相距1 m ,电阻不计,两端分别接有电阻R 1和R 2,且R 1=6 Ω,R 2=3 Ω,ab 导体棒的电阻为2 Ω.垂直穿过导轨平面的匀强磁场的磁感应强度为1 T .现使ab 以恒定速度v =3 m/s 匀速向右移动,求:(1)导体棒上产生的感应电动势E ;(2)R 1与R 2消耗的电功率分别为多少;(3)拉ab 棒的水平向右的外力F 为多大.解析 (1)ab 棒匀速切割磁感线,产生的电动势为E =BLv =3 V(2)电路的总电阻为R =r +R 1R 2R 1+R 2=4 Ω由欧姆定律得I =E R =34A U =E -Ir =1.5 V电阻R 1消耗的电功率为P 1=U 2R 1=38W 电阻R 2消耗的电功率P 2=U 2R 2=34W (3)由平衡条件得F =BIL =34 N. 答案 (1)3 V (2)38 W 34 W (3)34N 四、电磁感应中的动力学问题解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等.1.做好受力情况、运动情况的动态分析:导体运动产生感应电动势―→感应电流―→通电导体受安培力―→合外力变化―→加速度变化―→速度变化―→感应电动势变化.周而复始循环,最终加速度等于零,导体达到稳定运动状态.2.利用好导体达到稳定状态时的平衡关系式,往往是解答该类问题的突破口.例4 如图4所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是 ( )A .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θ D .在导体棒速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功解析 当导体棒的速度达到v 时,对导体棒进行受力分析如图甲所示. mg sin θ=BIL ,I =BLv R, 所以mg sin θ=B 2L 2v R① 当导体棒的速度达到2v 时,对导体棒进行受力分析如图乙所示.mg sin θ+F =2B 2L 2v R② 由①②可得F =mg sin θ功率P =F ×2v =2mgv sin θ,故A 正确,B 错误.当导体棒速度达到v 2时,对导体棒受力分析如图丙所示.a =mg sin θ-B 2L 2v 2R m③ 由①③可得a =g 2sin θ,故C 正确. 当导体棒的速度达到2v 时,安培力等于拉力和mg sin θ之和,所以以后匀速运动的过程中,R 上产生的焦耳热等于拉力和重力做功之和,故D 错误.答案 AC五、电磁感应中的能量问题1.能量观点分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.(2)若电流变化,则:①利用克服安培力做的功求解,电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解,若只有电能与机械能的转化,则机械能的减少量等于产生的电能.例5 如图5所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l =0.5 m ,左端接有阻值R =0.3 Ω的电阻.一质量m =0.1 kg 、电阻r =0.1 Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B =0.4 T .金属棒在水平向右的外力作用下,由静止开始以a =2 m/s 2的加速度做匀加速运动,当金属棒的位移x =9 m 时撤去外力,金属棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1.导轨足够长且电阻不计,金属棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)金属棒在匀加速运动过程中,通过电阻R 的电荷量q ;(2)撤去外力后回路中产生的焦耳热Q 2;(3)外力F 做的功W F .解析 (1)设金属棒匀加速运动的时间为Δt ,回路的磁通量的变化量为ΔΦ,回路中的平均感应电动势为E ,由法拉第电磁感应定律得 E =ΔΦΔt① 其中ΔΦ=Blx ② 设回路中的平均电流为I ,由闭合电路欧姆定律得 I =E R +r ③则通过电阻R 的电荷量为q =I Δt ④联立①②③④式,得q =Blx R +r代入数据得q =4.5 C(2)设撤去外力时金属棒的速度为v ,对于金属棒的匀加速运动过程,由运动学公式得v 2=2ax ⑤ 设金属棒在撤去外力后的运动过程中安培力所做的功为W ,由动能定理得W =0-12mv 2⑥ 撤去外力后回路中产生的焦耳热Q 2=-W ⑦联立⑤⑥⑦式,代入数据得Q 2=1.8 J ⑧(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1,可得Q 1=3.6 J ⑨在金属棒运动的整个过程中,外力F 克服安培力做功,由功能关系可知W F =Q 1+Q 2⑩由⑧⑨⑩式得W F =5.4 J.答案 (1)4.5 C (2)1.8 J (3)5.4 J。
电磁感应知识点(整理)
电磁感应知识点(整理)
基本概念
- 电磁感应是指导体在磁场变化或电流通过时产生感应电流和感应电动势的现象。
- 法拉第电磁感应定律描述了感应电动势的大小与磁场变化率和线圈匝数的关系。
- 感应电流的方向遵循一个右手定则,根据磁场变化的方向和线圈的位置决定。
电磁感应现象
- 磁通量的改变会引起感应电动势的产生。
当磁通量增大或减小时,感应电动势的方向也相应发生变化。
- 当导体中的电流变化时,也会产生感应电动势。
这是电动机和变压器的基本原理。
自感和互感
- 自感是指导体中的变化电流引起的感应电动势。
自感系数与导体的形状和材料有关。
- 互感是指两个线圈之间的磁场变化引起的感应电动势。
互感系数与线圈之间的匝数和几何关系有关。
电磁感应应用
- 发电机是利用电磁感应原理将机械能转换为电能的设备。
- 变压器是利用互感原理将交流电转换为不同电压的设备。
- 电磁铁是利用电磁感应原理产生强大磁力的装置,广泛应用于电磁吸盘、电磁搬运及各种机械装置中。
应用举例
- 感应加热:利用电磁感应原理加热金属或其他导电材料,常用于工业中的熔炼、烧结等过程。
- 电磁感应制动:利用电磁感应原理制动电动车辆,使其减速或停止。
- 无线充电:利用电磁感应原理将电能传输给无线充电设备,如智能手机、电动牙刷等。
以上是对电磁感应的基本知识点整理,希望对您有帮助。
物理电磁感应知识点的归纳
物理电磁感应知识点的归纳在我们平凡的学生生涯里,大家都背过各种知识点吧?知识点就是学习的重点。
还在为没有系统的知识点而发愁吗?下面是店铺收集整理的物理电磁感应知识点的归纳,希望能够帮助到大家。
1、电磁感应现象利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。
(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
2、磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。
如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb(2)求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
3、楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。
④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
电磁感应知识点总结
电磁感觉1、磁通量、磁通量变化、磁通量变化率对照表t磁通量物理某时辰穿过磁场中某个意面的磁感线条数义大, S为与B垂直的面积,小不垂直式,取S 在与 B 垂计直方向上的投影算若穿过某个面有方向相注反的磁场,则不可以直接用意B ? S ,应试虑相反问方向的磁通量或抵消以题后所节余的磁通量2、电磁感觉现象与电流磁效应的比较磁通量变化穿过某个面的磁通量随时间的变化量2-1,或B? S,或S?B开始和转过 1800时平面都与磁场垂直,但穿过平面的磁通量是不一样的,一正一负,此中 =B· S,而不是零磁通量变化率t表述磁场中穿过某个面的磁通量变化快慢的物理量B ?S 或t tB ?Bt t既不表示磁通量的大小也不表示磁通量变化的多少,在=t图像中,可用图线的斜率表示电磁感觉现象电流磁效应关系利用磁场产生电流的现电流产生磁场电能够生磁,磁能够生电象3、产生感觉电动势和感觉电流的条件比较只需穿过闭合电路的磁通量发生变化,闭合电路中就有感觉电流产生,即产生感觉电流的条件有两个:产生感觉电流的条件○1电路为闭合回路○2回路中磁通量发生变化,0无论电路闭合与否,只需电路中磁通量发生变化,电产生感觉电动势的条件路中就有感觉电动势产生4、感觉电动势在电磁感觉现象中产生的电动势叫感觉电动势,产生感觉电流比存在感觉电动势,产生感觉电动势的那部分导体相当于电源,电路断开时没有电流,但感觉电动势仍旧存在。
(1)电路无论闭合与否,只需有一部分导体切割磁感线,则这部分导体就会产生感觉电动势,它相当于一个电源(2)无论电路闭合与否,只需电路中的磁通量发生变化,电路中就产生感觉电动势,磁通量发生变化的那部分相当于电源。
5、公式E n与 E=BLvsin的差别与联系tE n E=BLvsintt 时间内的均匀感差别( 1)求的是( 1)求的是瞬时感觉电动势, E 与某个应电动势, E 与某段时间或某个过时辰或某个地点相对应程相对应(2)求的是整个回路的感觉电动( 2)求的是回路中一部分导体切割磁势,整个回路的感觉电动势为零感线是产生的感觉电动势时,其回路中某段导体的(3)因为是整个回路的感觉电动(3)因为是一部分导体切割磁感线的势,所以电源部分不简单确立运动产生的,该部分就相当于电源。
电磁感应-知识点总结
电磁感应-知识点总结作者: 日期:第16章:电磁感应、知识网络、J 闭合电路中磁通量发生变化感时产生感应电流闭合电路中的部分导体在做应〔右手定则,_ 楞=次定律n 0E n-r实验:通电、断电大小:E L~t灯管镇流器I日光灯工作原理:自感、重、难点知识归纳1. 法拉第电磁感应定律(1) .产生感应电流的条件:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
(2) .感应电动势产生的条件:穿过电路的磁通量发生变化。
这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合, 电动势总是存在的。
但只有当外电路闭合时, 电路中才会有电流。
(3) .引起某一回路磁通量变化的原因 a 磁感强度的变化 b 线圈面积的变化c 线圈平面的法线方向与磁场方向夹角 的变化(4) .电磁感应现象中能的转化感应电流做功,消耗了电能。
消耗的电能是从其它形式的能转化而来的。
在转化和转移中能的总量是保持不变的。
(5) .法拉第电磁感应定律:a 决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b 注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量,一磁通量的变化量,c 定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的 变化率成正比。
a 改变,这时 A ①=BS(sin a 2-sin a 1) 在非匀强磁场中,磁通量变化比较复杂。
有几种情况需要特别注意:① 如图16-1所示,矩形线圈沿a T b T c在条形磁铁附近移动,穿过上边线圈的磁通量由方 向向上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到零,再变为方向向上增大。
最新-自感,电磁感应现象专题 精品
自感,电磁感应现象专题一. 知识要点: 1. 自感现象:(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。
(2)自感电动势:① 自感电动势的方向:自感电动势总阻碍导体中原来电流的变化,即当电增大时,自感电动势阻碍电流增大(这时原I 与原I 反向);自感电动势总是起着推迟变化的作用。
② 自感电动势的大小:对于同一线圈来说取决于本身电流变化的快慢。
t I L t n ∆∆=∆∆=//*φε自2. 自感系数L :① 大小:线圈的长度越长,线圈的面积越大,单位长的匝数越多,线圈的自感系数越大,线圈有铁心比无铁心时自感系数大得多。
② 单位:亨利(符号H )。
H mH H μ6310101==。
③ 物理意义:描述线圈产生自感电动势本领大小的物理量,数值上等于通过线圈的电流在1s 内改变了1A 时产生的自感电动势的大小。
3. 日光灯的构造日光灯主要的由灯管、镇流器和启动器组成 4. 镇流器的作用(1)在日光灯开始点燃时,由于镇流器的自感作用给灯管提供瞬时高电压,激发灯管内的水银蒸气导电,水银蒸气导电时发出的紫外线使涂在管壁上的荧光粉发光。
(2)日光灯点燃后正常发光时,灯管的电阻变得很小,只允许通过不大的电流,要使加在灯管两端的电压低于电源电压,这时镇流器又起到降压限流的作用。
二. 典题解析:当S 电流流经R四. 本章小结1. 知识结构:b点处感应电流为背离读者。
不难分析知环上各点对称点的感应电流方向,从而得到圆环上感应电流方向为逆时针方向。
各点所受安培力的合力方向向左,因此将环向左摆起。
判断感应电流方向,也可以用楞次定律:当N极向环运动时,环内磁通量增加,因此感应电流的磁场方向应与原磁场方向相反;再用安培定则知环上有逆时针方向的感应电流。
判定环的运动,也可根据安培定则,知圆环上感应电流产生的磁场是:环的右端面相当于N极。
再由同性磁极相推斥可知,圆环将向左摆起。
b. 右手定则与左手定则区别,抓住“因果关系”才能无误,“因动而电”——用右手;B方向为垂直纸面向里。
教师招聘考试:高中物理复习题纲电磁感应三
教师招聘考试:高中物理复习题纲电磁感应三
自感:
1、定义:由于导体本身的电流发生变化而产生的电磁感应现象。
2、自感电动势:自感现象中产生的感应电动势。
公式:
式中L是自感系数:由线圈本身的性质决定。
相同条件下,线圈的横截面积越大,线圈越长,加入铁芯,自感系数将增加。
L国际单位:亨利(亨)H 1H=103mH 1mH=103μH
3、日光灯原理:
启动器(启辉器):利用氖管的辉光放电,自动把电路接通、断开,内部的电容防火花(没有电容也能工作)。
日光灯接通发光时,起动器不起作用。
镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压,使灯管通电日光灯正常发光时,利用自感现象起降压、限流作用。
第 1 页共1 页。
电磁感应基础学习知识知识归纳
1.感应电动势大小的计算公式(1):E =tn ∆∆Φ(任何条件下均适用;t ∆∆Φ为斜率,斜率的符号相同,表示感应电流的方向相同。
斜率的大小就表示感应电动势或感应电流的大小)(2):E =tB nS ∆∆(S 为有磁感线穿过的面积,适用于S 不变时;t B ∆∆为斜率,斜率的符号相同,表示感应电流的方向相同。
斜率的大小就表示感应电动势或感应电流的大小) (3):E =nBLV适用于导体棒垂直切割磁感线时;B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解 L 为有效长度;切割的磁感线越多,E 就越大,切割的磁感线相同,E 就相同 B 为导体棒垂直切割处的磁感强度大小 B 可为非匀强磁场(4):E =nB 1L 1V 1 ± nB 2L 2V 2适用于两根以上导体棒垂直切割磁感线时,B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解感应电流相互抵消时用减号L 为有效长度;切割的磁感线越多,E 就越大; B 为导体棒垂直切割处的磁感强度大小; B 可为非匀强磁场(5):E =ω221BL 用于导体一端固定以角速度ω旋转切割磁感线,ω单位必须用rad/s ;B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解;L 为有效长度;切割的磁感线相同,E 就相同,切割的磁感线越多,E 就越大;; B 为导体棒垂直切割处的磁感强度大小; B 可为非匀强磁场(6):e= θωsin NBS = t NBS ωωsin (用于从中性面开始计时,即线圈垂直于磁感线开始计时)e 为交流发电机的瞬时感应电动势(V ); B 为匀强磁场(T);S 为有磁感线穿过的面积(m 2)ω为线圈的角速度,其单位必须用rad/s ;450=4π rad ;5r/s(转/秒)=5⨯2π rad/s ω=2πf (f 为交流电的频率)θ为线圈和中性面的夹角(rad );线圈处于中性面时,Φ最大,感应电动势e=0应从切割磁感线的角度理解该公式,切割的磁感线越多,E 就越大;(7):e= βωcos NBS =t NBS ωωcos (从线圈平行于磁感线开始计时)e 为交流发电机的瞬时感应电动势(V ); B 为匀强磁场(T);S 为有磁感线穿过的面积(m 2)ω为线圈的角速度,其单位必须用rad/s ;300=6πrad ;5r/s(转/秒)=5⨯2π rad/sω=2πf (f 为交流电的频率)θ为线圈和磁感线的夹角(rad );线圈和中性面垂直时,即线圈和磁感线平行,Φ=0,感应电动势e 最大 应从切割磁感线的角度理解该公式,切割的磁感线越多,E 就越大;(8):E=U 外+Ir (适用条件:适用于任何电路;U 外为电源两端的电压(即外电路的总电压),I 为总电流,r 为电源的内阻)2:公式的推导:(1):E = BLV (如右图)E=t n ∆∆Φ=n BLv tBLdvt d BL tBLdS d BL tt ===-+-+∆Φ-∆Φ)()(0(2):E=NBS ωsin θ(如右图)一矩形线圈绕oo ´轴转动(t=0时,线圈处于中性面)E=BL ad V ad sin θ + BL bc V bc sin θ E=BL ad ω21L ab sin θ + BL bc ω21L ab sin θE=21B ωS sin θ+ 21B ωS sin θE=B ωS sin θ当线圈有N 匝时:E=NBS ωsin θθ=ωt∴ E=NBS ωsin ωt 即 e=NBS ωsin ωt3.磁通量:表示穿过某截面的磁感线数量,穿过的磁感线数量越多,磁通量越大;穿过的磁感线数量相同,磁通量就相同(1):Φ=BS 使用条件:B 和S 垂直时,S 为有磁感线穿过的面积(m 2) (2):Φ=0 使用条件:B 和S 平行时(3):当B 、S 既不平行也不垂直时,可以把B 拿来正交分解或把S 投影到B 的方向上,0<Φ<BS(4):0Φ-Φ=∆Φt ,Φ是标量,但是它有正负,如:某线圈的磁通量为6 wb ,当它绕垂直于磁场的轴转过1800,此时磁通量为-6 wb ,在这一过程中,∆Φ=12 wb 而不是04:感应电动势E 与∆Φ的大小、B 的大小无关,E 与B 的变化快慢、∆Φ的变化快慢有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018宁夏教师招聘笔试备考:“电磁感应规律与自感”知识点点击下载文库,(Ctrl+鼠标左键或者右键)可打开链接
2018年宁夏教师招聘考试很快就要开始。
根据2017年教师招聘公告整体情况来看,教师招聘公告大概在4月中旬发布,考试时间在6月初进行,通过宁夏教师招聘考试网可以了解更多的信息。
教师招聘考试分为两个阶段:一阶段是笔试,二阶段是面试。
笔试内容分为教育综合基础理论和学科专业知识,前者占30%,后者占70%。
教育综合基础理论的题型多为:单选、多选和判断;而学科专业知识因不同学科,所以题型也不大相同。
其中涵盖的题型有单选、填空、书面表达、判断、问答、论述、教学能力等。
宁夏教招面试多数为结构化面试-试讲-答辩这样的形式进行。
侧重点多为与岗位相适应的专业知识、业务能力和工作技能等。
需要更多2018宁夏教师考试培训班指导,请选择在线咨询一对一解答
一、知识梳理
(2)自感系数:由线圈本身特性决定,线圈越长,匝数越多,或者线圈中有铁芯,自感系都会增大,单位是亨特(H)。
(3)当电流增大时,自感电流与原电流方向相反(相当于大电阻);当电流减小时,自感电流与原电流方向相同(相当于电源),可以结合通电自感和断电自感的例子记忆。
二、命题规律
电磁感应部分是高中物理部分必考知识点,其知识内容较多,与力学,能量,动量,电路,磁场等都息息相关,因此可考察的知识点多,是考生必须掌握的内容。
主要考察选择题、以及计算题。
综合性比较强。
常考的就是感生与动生电动势的计算以及与力学和欧姆定律的总和。
三、复习策略
1.处理“杆-滑轨”问题
在处理这类问题时首先要读好题干,确定系统谁充当电源,是“感生”,还是“动生”,系统中是否存在摩擦,电阻等等。
这类问题一般和动力学的内容综合考察,有两种常见模型:
2.电磁感应现象中的电路问题
解决这类问题的一般方法
(1)首先判断感应电流的方向,但电源部分是切割磁感线的部分导体时,使用右手定则比方便,当电源部分为磁通量变化的线圈时,使用楞次定律比较方便。
(2)画出等效电路图
(3)运用闭合电路的欧姆定律、法拉第电磁感应定律等知识去求解问题。
比如求解电功率,效率,路端电压,电路中的总电阻等问题。
3.电磁感应的图像问题
(1)了解图像所提供的信息的物理意义,明确各种“+”“-”号的含义;明确斜率的含义;明确图像和电磁感应过程的对应关系。
(2)理解变化量和变化率的关系。
4.电磁感应中的动力学和能量问题
(1)在处理动力学问题时,一般先分析电学部分,在分析力学部分。
首先找到电源,求解电动势E,分析电路构成,分清楚串并联,求解相关的感应电流I,从而方便求解安培力;接着就是力学部分的分析,确定研究对象,分析受力情况来求解相关问题。
(2)电磁感应现象产生感应电流的过程实际上是能量转化的过程,感应电流在磁场中必定有安培力的作用,要维持感应电流的存在,就要有外力克服安培力做功,这个过程中外力克服安培做了多少功,就有多少其他形式的能转化为电能,反过来,若电路中有用电器,安培力做了多少功,就有多少电能转化为其他形式的能。
(3)确定研究对象,进行受力分析,判断各个力做的功,在运用动能定理或功能关系来求解。
四、习题演练
(2017.8山东聊城教师招聘)磁悬浮列车的运动原理如图所示,在水平面上有两根很长的平行直导轨,导轨间有与导轨垂直且方向相反的匀强磁场B1和B2,B1和B2相互间隔,导轨上有金属框abcd。
当磁场B1和B2同时以恒定速度沿导轨向右匀速运动时,金属框也会沿导轨向右运动。
已知两导轨间距L1=0.4m,两种磁场的宽度均为L2,L2=ab,B1=B2=B=1.0T。
金属框的质量m=0.1kg,电阻R=2.0Ω。
设金属框受到的阻力与其速度成正比,即f=kv,比例系数k=0.08kg/s。
求:
(1)若金属框达到某一速度时,磁场停止运动,此后某时刻金属框的加速度大小为a=6.0m/s2,则此时金属框的速度v1多大?
(2)若磁场的运动速度始终为v0=5m/s,在线框加速的过程中,某时刻线框速度v′=2m/s,求此时线框的加速度a′的大小。
(3)若磁场的运动速度始终为v0=5m/s,求金属框的最大速度v2为多大?此时装置消耗的功率为多大?
知识点杂乱记不住、学习没有头绪。
宁夏教师考试网整理了教师备考资料,
历年真题及每日一练供考生备考学习,助你一举成“师”!。