最新人教版七年级数学下册《第五章相交线与平行线》单元测试卷含答案
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)题号一二三总分192021222324分数1.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角2.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等3.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.4.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.75.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°10.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°二、填空题(每题3分,共24分)11.如图,请填写一个条件,使结论成立:∵__________,∴//a b.12.. 如图,直线AB,CD,EF相交于点O,则∠BOE的对顶角是,∠COE的邻补角是,∠COG的邻补角是.13.如图,∠B的内错角是.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,将△ABC沿BC所在的直线平移得到△DEF.如果GC=2,DF=4.5,那么AG=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.20.给下面命题的说理过程填写依据.已知:如图,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.对OD⊥OE说明理由.理由:因为∠DOC=∠AOC().∠COE=∠COB().所以∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)().所以∠DOE=∠AOB=×°=90°(两角和的定义)所以OD⊥OE().21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,已知AB∥CD,EF∥MN,且∠1=110°.(1)求∠2和∠4的度数;(2)根据(1)的结果可知,如果两个角的两边分别平行,那么这两个角;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.24. 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一、选择题:题号12345678910答案B A C A C D A D B B二、填空题:11. 【答案】:∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】本题考查了平行线的判定,∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b,因此本题填:∠1=∠4或∠2=∠4或∠3+∠4=180°.12. 【答案】∠AOF∠COF和∠DOE∠DOG13.解:∠B的内错角是∠BAD;故答案为:∠BAD.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵△ABC沿BC所在的直线平移得到△DEF.∴AC=DF=4.5,∴AG=AC﹣GC=4.5﹣2=2.5.故答案为2.5.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.三.解答题:19..证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.20.解:根据题意,可知前两个空分别为角平分线的定义,第三个空是利用上面等式右边的代入计算,故属于等量代换,第四个空属于垂直的定义.故答案为:角平分线的定义,角平分线的定义,等量代换,垂直的定义.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 解:(1) 因为AB∥CD,所以∠1=∠2=110°,又因为EF∥MN,所以∠2+∠4=180°,∠4=70°(2)相等或互补(3)因为这两个角中,其中一角是另一个角的两倍,由(2)得,这两个角互补.设其中一个角的度数是x,则另一个角的度数为2x,根据题意,得x+2x=180°,解得x=60°.所以其中一个角是60°另一个角是120°24. 解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
人教版七年级数学下册第五章相交线和平行线单元测试卷(含答案)
第五章相交线与平行线单元测试卷一、选择题(每小题3分,共30分)1.如图,直线AB,CD相交于点O,所形成的∠1、∠2、∠3和∠4中,一定相等的角有( )A.0对B.1对C.2对D.4对2.下列说法正确的是( )A.大小相等的两个角互为对顶角B.有公共顶点且相等的两个角是对顶角C.两角之和为180°,则这两个角互为邻补角D.—个角的邻补角可能是锐角、钝角或直角3.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( )A.35° B.70°C.110° D.145°4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80° B.100°C.110° D.120°请问:由图中所示的图案通过平移后得到的图案是( )6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是( ) A.a=-2 B.a=-1C.a=1 D.a=27.以下关于距离的几种说法中,正确的有( )①连接两点间的线段长度叫做这两点的距离;②连接直线外的点和直线上的点的线段叫做点到直线的距离;③从直线外一点所引的这条直线的垂线叫做点到直线的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.1个B.2个C.3个D.4个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( ) A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°10.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为( )A.100米B.99米C.98米D.74米二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……,那么……”的形式是.12.将线段AB平移1 cm,得到线段A′B′,则点A到点A′的距离是cm.13.如图,建筑工人常在一根细绳上拴上一个重物,做成一个“铅锤”,挂铅锤的线总垂直于地面内的任何直线,当这条线贴近墙壁时,说明墙与地面垂直,请说出它的根据是.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=.15.(温州中考)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.三、解答题(共50分)16.(7分)如图,∠1=60°,∠2=60°,∠3=85°,求∠4的度数.17.(9分)如图所示,火车站,码头分别位于A,B两点,直线a和b分别表示河流与铁路.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.18.(10分)如图,直线AB,CD,EF相交于点O,∠BOD=64°,∠AOF=140°.(1)求∠COF的度数;(2)若OM平分∠EOD,求∠AOM的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?图1图2图3图4参考答案一、选择题(每小题3分,共30分)1.如图,直线AB,CD相交于点O,所形成的∠1、∠2、∠3和∠4中,一定相等的角有(C)A.0对B.1对C.2对D.4对2.下列说法正确的是(D)A.大小相等的两个角互为对顶角B.有公共顶点且相等的两个角是对顶角C.两角之和为180°,则这两个角互为邻补角D.—个角的邻补角可能是锐角、钝角或直角A.35° B.70°C.110° D.145°4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是(B)A.80° B.100°C.110° D.120°5.(杭州期中)同桌读了“子非鱼,焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是(D)6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是(A) A.a=-2 B.a=-1C.a=1 D.a=27.以下关于距离的几种说法中,正确的有(A)①连接两点间的线段长度叫做这两点的距离;②连接直线外的点和直线上的点的线段叫做点到直线的距离;③从直线外一点所引的这条直线的垂线叫做点到直线的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.1个B.2个8.下列图形中,由AB∥CD,能得到∠1=∠2的是(B)9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是(A) A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°10.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为(C) A.100米B.99米C.98米D.74米二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……,那么……”的形式是如果两直线平行,那么同位角相等.12.将线段AB平移1 cm,得到线段A′B′,则点A到点A′的距离是1_cm.13.如图,建筑工人常在一根细绳上拴上一个重物,做成一个“铅锤”,挂铅锤的线总据是过一点有且只有一条直线与已知直线垂直.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=42°.15.(温州中考)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.三、解答题(共50分)16.(7分)如图,∠1=60°,∠2=60°,∠3=85°,求∠4的度数.解:∵∠1=60°,∠2=60°,∴∠1=∠2.∴a∥b(同位角相等,两直线平行).∴∠4=∠3(两直线平行,同位角相等).∵∠3=85°,17.(9分)如图所示,火车站,码头分别位于A,B两点,直线a和b分别表示河流与铁路.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.解:如图所示:(1)沿AB走,两点之间线段最短.(2)沿BD走,垂线段最短.(3)沿AC走,垂线段最短.18.(10分)如图,直线AB,CD,EF相交于点O,∠BOD=64°,∠AOF=140°.(1)求∠COF的度数;(2)若OM平分∠EOD,求∠AOM的度数.解:(1)∵∠AOC=∠BOD=64°,∠BOE=∠AOF=140°,∴∠COF=∠AOF-∠AOC=140°-64°=76°.(2)∵∠DOE=∠COF=76°,OM平分∠EOD,∴∠EOM=∠DOM=12∠DOE=12×76°=38°,∠BOF=180°-∠AOF=180°-140°=40°.又∵∠AOE=∠BOF,∴∠AOM=∠AOE+∠EOM=40°+38°=78°.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?解:(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°,∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∵∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(12分)探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?图1图2图3图4解:(1)理由:过点E作EF∥AB,∴∠B=∠BEF.∵CD∥AB,∴CD∥EF.∴∠D=∠DEF.∴∠B+∠D=∠BEF+∠DEF=∠BED.(2)AB∥CD.(3)∠B+∠D+∠E=360°.(4)∠B=∠D+∠E.(5)∠E+∠G=∠B+∠F+∠D.。
新版人教版七年级数学下册 第五章 相交线与平行线测试题(含答案)
D CB A 212121211DC BA D CB A 321D C B A O E D C B A 21D CB A O E DC B A新版人教版七年级数学下册 第五章 相交线与平行线测试题(时间:45分钟,满分:100分)一、选择题(每小题4分,共16分)1.下面四个图形中,∠1与∠2是对顶角的是( )2.如图,AB ∥CD ,∠A=700,则∠1的度数是( )A. 700B. 1000C. 1100D.1300 3.下列说法正确的是( )A.在同一平面内,a ,b ,c 是直线,且a ∥b ,b ∥c ,则a ∥cB.在同一平面内,a ,b ,c 是直线,且a ⊥b ,b ⊥c ,则a ⊥cC.在同一平面内,a ,b ,c 是直线,且a ∥b ,b ⊥c ,则a ∥cD.在同一平面内,a ,b ,c 是直线,且a ∥b ,b ∥c ,则a ⊥c4.如图,AD ∥BC ,∠C=300,∠ADB:∠BDC=1:2,则∠ADB 的度数是( ) A. 450 B.300 C.500 D.360第2题图 第4题图 第5题图 二、填空题(每小题4分,共24分) 5.如图,(1)要证AD ∥BC ,只需∠B=________,根据是__________________________________ (2)要证AB ∥CD ,只需∠3=________,根据是_______________________________________ 6.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________________________________________________________ (2)同角的补角相等._________________________________________________________________7.如图,长方形ABCD 中,线段AC ,BD 相交于点O ,DE ∥AC ,CE ∥BD ,BC=2cm ,那么△EDC 可以看作由___________________平移得到的,连接OE ,则OE=___________cm. 8.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,垂足为O ,如果∠EOD=380,则∠AOC=_____0,∠COB=_____0 9.如图,AC 平分∠DAB ,∠1=∠2.填空:因为AC 平分∠DAB ,所以∠1=_____.从而∠2=_______.因此AB ∥________.第7题图 第8题图 第9题图 10.如果两个角的两边两两互相平行,且一个角的21等于另一个角的31,则这两个角的度数分别是___________.三、解答题(每小题15分,共60分)BCβαEDC B A ED C B AF E D C B A 11.如图,已知△ABC 及△ABC 外一点D ,平移△ABC ,使点A 移动到点D ,并保留作图痕迹.第11题图 第12题图12.完成下面的证明:如图,BE 平分∠ABD ,DE 平分∠BDC ,且∠α+∠β=900,求证:AB ∥CD. 证明:∵BE 平分∠ABD (已知)∴∠ABD=2∠α( ) ∵DE 平分∠BDC (已知)∴∠BDC=_________( ) ∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( ) ∵∠α+∠β=900(已知)∴∠ABD+∠BDC=___________( ) ∴AB ∥CD ( )13.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=300,求∠EAD ,∠DAC ,∠C 的度数.第13题图14.如图,AB ∥CD ∥EF ,写出∠A ,∠C ,∠AFC 的关系并说明理由.第14题图A B D ED CB A F E DC B A 参考答案: 1.C 2.C 3.A 4.C5.(1)∠1,同位角相等,两直线平行;(2)∠2,内错角相等,两直线平行6.(1)如果两条直线被第三条直线所截,内错角相等,那么这两条直线互相平行;(2)如果两个角是同一个角的补角,那么这两个角相等.7.△OAB 28.52 1289.∠CAB ,∠CAB , DC10.1080,720 11. 如图所示12. 证明:∵BE 平分∠ABD (已知)∴∠ABD=2∠α( 角平分线的定义 ) ∵DE 平分∠BDC (已知) ∴∠BDC=_2∠β________(角平分线的定义 ) ∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( 等式的性质) ∵∠α+∠β=900(已知) 第11题 ∴∠ABD+∠BDC=1800( 等量代换 )∴AB ∥CD ( 同旁内角互补,两直线平行 ) 13.解:∵AD ∥BC ,∠B=300∴∠EAD=∠B=300∵AD 是∠EAC 的平分线,∴∠DAC=∠EAD=300∵AD ∥BC 第13题 ∴∠C=∠DAC=30014.解:∠AFC=∠A-∠C.理由如下:∵AB ∥EF∴∠A=∠AEF∵CD ∥EF∴∠C=∠CEF∵∠AFC=∠AFE-∠CFE ∴∠AFC=∠A-∠C 第14题。
最新人教版七年级下册第五章《相交线与平行线》单元测试及答案
人教版七年级下册第 5 章订交线与平行线能力水平测试卷一.选择题(共10 小题)1.如图,直线AB,CD 订交于点O,OE,OF,OG分别是∠ AOC,∠ BOD,∠ BOC 的均分线,以下说法不正确的选项是()A.∠ DOF与∠ COG 互为余角B.∠ COG与∠ AOG 互为补角C.射线 OE,OF不必定在同一条直线上D.射线 OE,OG 相互垂直2.如图,直线AB、CD订交于点O,EO⊥ AB,垂足为 O,∠ EOC=35° 15′.则∠ AOD 的度数为()A.55° 15′B. 65°15′C.125° 15′D. 165°15′3.如图 ,∠ ACB=90° ,CD⊥ AB,垂足为 D,则点 B 到直线 CD的距离是指()A.线段 BC的长度B.线段 CD的长度C.线段 AD 的长度D.线段 BD 的长度4.在以下图形中,由∠1=∠ 2 必定能获得AB∥ CD 的是()A.B.C.D.5.如图,以下条件:①∠1=∠2,②∠ 3+∠4=180 °,③∠ 5+∠ 6=180 °,④∠ 2=∠ 3,⑤∠ 7=∠ 2+∠3,⑥∠ 7+∠4-∠ 1=180°中能判断直线a∥ b 的有()A.3 个B.4 个C.5 个D.6 个6.以下命题中是假命题的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确立一条直线D.两点之间的全部连线中,线段最短7.如图,直线EF分别交 AB、CD 于点 E、F,EG均分∠ BEF,AB∥ CD.若∠ 1=72 °,则∠ 2 的度数为()A.54°B. 59°C.72°D. 108 °A、B 两8.已知直线m∥ n,将一块含30°角的直角三角板ABC,按如下图方式搁置,此中点分别落在直线m、 n 上,若∠ 1=25°,则∠ 2 的度数是()A.25°B. 30°C. 35°D.55°9.如图,将三角板与直尺贴在一同,使三角板的直角极点C(∠ ACB=90°)在直尺的一边上,若∠ 2=56°,则∠ 1的度数等于()A.54°B. 44°C. 24°D.34°10.如图在一块长为12m, 宽为 6m 的长方形草地上,有一条曲折的柏油小道(小道任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70B. 60C. 48D.18二.填空题(共 6 小题)11.如图,∠ 1=15° ,∠ AOC=90°,点 B、 O、 D 在同向来线上,则∠2的度数为.12.命题“同位角相等”的抗命题是13.如图,直线 a,b 与直线 c 订交,给出以下条件:①∠ 1=∠ 2;②∠ 3=∠ 6;③∠ 4+∠7=180 °;④∠ 5+∠ 3=180°;⑤∠ 6=∠ 8,此中能判断a∥ b 的是(填序号)14.如图,∠ A=70°,O 是 AB 上一点,直线OD 与 AB 所夹的∠ AOD=100°,要使 OD∥ AC,直线OD 绕点 O 按逆时针方向起码旋转.15.将一块 60°的直角三角板DEF搁置在 45°的直角三角板ABC上,挪动三角板DEF使两条直角边DE、 DF恰分别经过B、 C 两点,若EF∥ BC,则∠ ABD=°.16.在长为 a(m), 宽为 b(m)一块长方形的草坪上修了一条宽2(m)的笔挺小道,则余下草坪的面积可表示为m2;先为了增添美感,把这条小道改为宽恒为2(m) 的曲折小道(如图),则此时余下草坪的面积为m2.三.解答题(共7 小题)17.如图,直线AB 和直线 CD 订交于点 O,已知∠ AOC=30°,作 OE均分∠ BOD.(1)求∠ AOE 的度数;(2)作 OF⊥ OE,请说明 OF 均分∠ AOD 的原因.18.如图, AB、 CD 交于点 O,∠ AOE=4∠ DOE,∠ AOE 的余角比∠ DOE小 10°(题中所说的角均是小于平角的角).(1)求∠ AOE 的度数;(2)请写出∠ AOC在图中的全部补角;(3)从点 O 向直线 AB 的右边引出一条射线 OP,当∠ COP=∠ AOE+∠ DOP 时,求∠ BOP 的度数.19.如图, OD 是∠ AOB 的均分线 ,∠ AOC=2∠BOC.(1)若 AO⊥ CO,求∠ BOD 的度数;(2)若∠ COD=21°,求∠ AOB 的度数.20.填空或标注原因:如图,已知∠ 1=∠ 2,∠A=∠ D,试说明: AE∥ BD证明:∵∠ 1=∠ 2(已知)∴AB∥ CD()∴∠ A=()()∵∠ A=∠ D(已知)∴=∠D()∴AE∥ BD()21.如图,已知点D、E、B、C 分别是直线m、 n 上的点,且m∥ n,延伸 BD、CE交于点 A,DF 均分∠ ADE,若∠ A=40° ,∠ ACB=80°.求:∠ DFE的度数.22.如图,直线A B∥ CD,而且被直线 MN 所截, MN 分别交 AB 和 CD于点 E、 F,点 Q 在 PM 上,且∠ AEP=∠ CFQ.求证:∠ EPM=∠ FQM.23.如图,在 6× 6 的正方形网格中,每个小正方形的边长为1,点 A、B、C、D、E、F、M 、N、 P 均为格点(格点是指每个小正方形的极点).(1)利用图①中的网格,过P 点画直线MN 的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF经过平移使之首尾按序相接构成一个三角形(在图②中画出三角形).(3)第( 2)小题中线段AB、 CD、EF首尾按序相接构成一个三角形的面积是.答案:1-5CCDAC6-10 AACDB11. 10512.相等的角是同位角13.①③④⑤14.10 °15.1516.( ab-2a) , ( ab-2a)17.解:( 1)∵∠ AOC=30°,∴∠ BOD=∠AOC=30°,∵OE均分∠ BOD,∴∠ EOB=15°,∴∠ AOE=180° -15 °=165°,(2)∵∠ AOC=30°,∴∠ AOD180° -30 ° =150°,∵∠ DOE=∠EOB=15°,∵OF⊥ OE,∴∠ EOF=90°,∴∠ DOF=90° -15 ° =75°,∴∠ DOF=∠AOF=150° -75 ° =75°,∴OF均分∠ AOD18.解:( 1)设∠ DOE=x,则∠ AOE=4x,∵∠ AOE的余角比∠ DOE小 10°,∴90° -4x=x-10°,∴x=20°,∴∠ AOE=80°;(2)∠ AOC 在图中的全部补角是∠ AOD 和∠ BOC;(3)∵∠ AOE=80°,∠ DOE=20°,∴∠ AOD=100°,∴∠ AOC=80°,如图,当OP 在 CD 的上方时,设∠ AOP=x,∴∠ DOP=100° -x,∵∠ COP=∠ AOE+∠ DOP,∴80° +x=80°+100° -x,∴x=50°,∴∠ AOP=∠ DOP=50°,∵∠ BOD=∠AOC=80°,∴∠ BOP=80° +50°=130°;当OP 在CD 的下方时,设∠ DOP=x,∴∠ BOP=80° -x,∵∠COP=∠AOE+∠DOP,∴100° +x=80° +80° -x,∴x=30°,∴∠BOP=30°,综上所述,∠ BOP的度数为 130°或 30°.19.解:( 1)∵ AO⊥ CO,∴∠ AOC=90°,∵∠ AOC=2∠ BOC,∴∠ BOC=45°,∴∠ AOB=∠AOC+∠ BOC=135°,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=67.5°;(2)∵∠ AOC=2∠ BOC,∴∠ AOB=3∠ BOC,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=∠ BOC,∵∠ COD=21°,∴21° +∠ BOC=∠ BOC,∴∠ BOC=42°,∴∠ AOB=3∠ BOC=126°.20. 故答案为:内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.21.解:∵ m∥n,∠ ACB=80°∴∠ AED=∠ACB=80°,∵∠ A=40°,∴△ ADE中,∠ ADE=180° - (∠ A+∠ AED) =180°- ( 40°+80°) =60°,七年级人教版数学下册第 5 章订交线与平行线单元测试题人教版七年级数学下册第 5 章订交线与平行线单元检测题一、选择题:1.下边四个语句:(1)只有铅垂线和水平线才是垂直的;(2)经过一点起码有一条直线与已知直线垂直;(3)垂直于同一条直线的垂线只有两条;(4)两条直线订交所成的四个角中,假如此中有一个角是直角,那么其他三个角也必定相等.此中错误的选项是()A. ( 1)( 2)( 4)B. ( 1)( 3)( 4)C.( 2)( 3)( 4)D.(1)( 2)( 3)2.点 P为直线 MN外一点 , 点 A、B、C为直线 MN上三点 ,PA=4 厘米 ,PB=5 厘米 ,PC=2 厘米 , 则 P到直线MN的距离为()A.4 厘米B.2厘米C.小于2厘米D.不大于2厘米3.如图 , 以下结论错误的选项是()A. ∠1与∠ B是同位角B.∠ 1与∠ 3 是同旁内角C. ∠2与∠ C是内错角D.∠ 4与∠ A是同位角4.如图, AB∥CD, CD⊥EF,若∠ 1=125°,则∠ 2=()A.25 °B.35°C.55°D.65°5.如图, a∥ b,将三角尺的直角极点放在直线 a 上,若∠ 1=40°,则∠ 2=()A.30 °B.40°C.50°D.60 °6. 将如下图的图案经过平移后能够获得的图案是()A. B. C. D.7.如图,AB ∥ CD,AE 均分∠CAB交 CD于点 E, 若∠C=50°, 则∠AED=()A.65 °B.115 °C.125 °D.130 °8.如图, AE∥BD,∠ 1=120°,∠ 2=40°,则∠ C的度数是()A.10 °B.20°C.30°D.40°9.如下图,已知AB∥CD, EF均分∠ CEG,∠ 1=80°,则∠ 2 的度数为 ()A.20°B.40°C.50°D.60°10.如图,若两条平行线EF, MN与直线 AB, CD订交,则图中共有同旁内角的对数为()A.4B.8C.12D.1611. 以下条件中能获得平行线的是()①邻补角的角均分线;②平行线内错角的角均分线;③平行线同旁内角的角均分线.A. ①②B.②③人教版七年级数学下册第 5 章订交线与平行线单元测试题(分析版)一.选择题(共10 小题)1.如图各图中,∠ 1 与∠ 2 是对顶角的是()A.B.C.D.2.以下表达中正确的选项是()A.相等的两个角是对顶角B.若∠ 1+∠2+ ∠ 3= 180°,则∠ 1,∠ 2,∠ 3 互为补角C.和等于 90°的两个角互为余角D.一个角的补角必定大于这个角3.在如图图形中,线段PQ 能表示点P 到直线 L 的距离的是()A.B.C.D.4.在以下图形中,由条件∠1+∠ 2= 180°不可以获得AB∥ CD 的是()A.B.C.D.5.如图,已知∠1=68°,要使AB∥ CD ,则须具备另一个条件()A .∠ 2= 112°B .∠ 2= 122°C.∠ 2=68°D.∠ 3= 112°6.如下图,点 E 在AC 的延伸线上,以下条件中能判断AB∥ CD ()A.∠1=∠2B.∠3=∠ 4C.∠ D =∠ DCE D.∠D +∠ ACD= 180°7.如图,直线a∥ b, AC⊥ AB, AC 交直线 b 于点C,∠1=55°,则∠ 2 的度数是()A .35°B .25°C. 65°D. 50°8.如图,已知AB∥ DE,∠ ABC = 75°,∠ CDE = 145°,则∠BCD的值为()A .20°B .30°C. 40°D. 70°9.如下图是一条街道的路线图,若 AB∥ CD ,且∠ ABC = 130°,那么当∠CDE等于()时, BC∥ DE.A .40°B .50°C. 70°D. 130°10.如图,在直角三角形ABC 中,∠ BAC= 90°, AB= 3,AC= 4,将△ ABC 沿直线 BC 平移 2.5 个单位获得三角形DEF ,连结 AE.有以下结论:① AC∥ DF;② AD∥BE,AD=BE ABE DEF ED ACA.4 个B.3 个C.2 个D.1 个二.填空题(共8 小题)11.在体育课上某同学立定跳远的状况如下图,l 表示起跳线,在丈量该同学的实质立定跳远成绩时,应丈量图中线段PC 的长,原因是.12.如图,直线 AD 与 BE 订交于点O,∠ COD = 90°,∠COE = 70°,则∠ AOB=.13.如图,直线a, b 与直线 c 订交,给出以下条件:① ∠ 1=∠ 2;② ∠ 3=∠ 6;③ ∠ 4+∠ 7= 180°;④ ∠ 5+∠ 3= 180°;⑤ ∠ 6=∠ 8,此中能判断a∥b 的是(填序号)14.如图:请你增添一个条件能够获得DE∥AB15.如图, AB∥ EF ,设∠ C= 90°,那么x, y,z 的关系是.16.如图,将一张矩形纸片按图中方式折叠,若∠1= 63°,则∠ 2 为度.17.如图,已知长方形纸片的一条边经过直角三角形纸片的直角极点,则图中∠1与∠2之间的数目关系为.18.如下图,一块正方形地板,边长60cm,上边横竖各有两道宽为5cm 的花纹(图中阴影部分),空白部分的面积是.三.解答题(共7 小题)19.如图,点O 在直线 AB 上, CO⊥ AB,∠ BOD﹣∠ COD = 34°,求∠ AOD 的度数.20.如图, AO⊥ CO, DO⊥ BO.(1)∠ AOD 与∠ BOC 相等吗?为何?(2)已知∠ AOB= 140°,求∠ COD 的度数.21.已知:如图,直线AB 与 CD 被 EF 所截,∠ 1=∠ 2,求证: AB∥ CD .22.如图,∠ DAC +∠ACB= 180°, CE 均分∠ BCF ,∠ FEC =∠ FCE ,∠ DAC = 3∠ BCF ,∠ACF =20°.(1)求证: AD ∥ EF;(2)求∠ DAC、∠ FEC 的度数.23.如图,在△ ABC 中,GD ⊥ AC 于点 D,∠AFE =∠ ABC,∠1+∠ 2= 180°,∠ AEF =65°,求∠ 1 的度数.解:∠ AFE =∠ ABC(已知)∴(同位角相等,两直线平行)∴∠ 1=∠(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴(等量代换)∴EB∥ DG∴∠ GDE=∠ BEAGD⊥ AC(已知)∴(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠﹣∠= 90°﹣ 65°= 25°(等式的性质)24.如图,已知∠1=∠ 2= 50°, EF∥ DB .(1)DG 与 AB 平行吗?请说明原因.(2)若 EC 均分∠ FED ,求∠ C 的度数.25.直线AB、 CD 被直线EF 所截, AB∥ CD ,点 P 是平面内一动点.设∠PFD =∠ 1,∠PEB=∠ 2,∠ FPE =∠α.( 1)若点 P 在直线 CD 上,如图①,∠α= 50°,则∠ 1+∠ 2=°;(2)若点 P 在直线 AB、CD 之间,如图②,试猜想∠α、∠ 1、∠ 2 之间的等量关系并给出证明;(3)若点 P 在直线 CD 的下方,如图③,( 2)中∠α、∠ 1、∠2 之间的关系还建立吗?请作出判断并说明原因.人教版七年级数学下册第 5 章订交线与平行线单元测试题参照答案与试题分析一.选择题(共10 小题)1.【剖析】依据对顶角的定义判断即可.【解答】解:依据两条直线订交,才能构成对顶角进行判断,A、C、 B 都不是由两条直线订交构成的图形,错误,D是由两条直线订交构成的图形,正确,应选: D.【评论】本题主要考察了对顶角的定义,有一个公共极点,而且一个角的两边分别是另一个角的两边的反向延伸线,拥有这类地点关系的两个角,互为对顶角.2.【剖析】依据余角、补角、对顶角的定义进行判断即可.【解答】解: A、两个对顶角相等,但相等的两个角不必定是对顶角;故 A 错误;B、余、补角是两个角的关系,故 B 错误;C、假如两个角的和是一个直角,那么这两个角互为余角;故 C 正确;D 、锐角的补角都大于这个角,而直角和钝角不切合这样的条件,故 D 错误.应选: C.【评论】本题考察对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.3.【剖析】依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点判断.P 到直【解答】解:图A、B、C中,线段PQ不与直线L 垂直,故线段PQ 不可以表示点线 L 的距离;图 D 中,线段 PQ 与直线 L 垂直,垂足为点 Q,故线段 PQ 能表示点 P 到直线 L 的距离;应选:D.【评论】本题考察了点到直线的距离的观点,重点是依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点解答.4.【剖析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解: A、∠ 1 的对顶角与∠ 2 的对顶角是同旁内角,它们互补,因此能判断AB∥CD;B、∠ 1 的对顶角与∠ 2 是同旁内角,它们互补,因此能判断AB∥ CD;C、∠ 1 的邻补角∠BAD =∠ 2,因此能判断AB∥CD ;D 、由条件∠ 1+ ∠ 2=180°能获得AD ∥ BC,不可以判断AB∥ CD;应选: D.【评论】本题考察了平行线的判断,解题的重点是注意平行判断的前提条件一定是三线八角.5.【剖析】欲证 AB∥ CD,在图中发现AB、CD 被向来线所截,且已知∠ 1= 68°,故可按同旁内角互补,两直线平行增补条件.【解答】解:∵∠ 1= 68°,∴只需∠ 2= 180°﹣ 68°= 112°,即可得出∠ 1+∠2= 180°.应选: A.【评论】本题主要考察了判断两直线平行的问题,可环绕截线找同位角、内错角和同旁内角.本题是一道探究性条件开放性题目,能有效地培育学生“执果索因”的思想方式与能力.6.【剖析】依据平行线的判断分别进行剖析可得答案.【解答】解: A、依据内错角相等,两直线平行可得AB∥ CD,故此选项正确;B、依据内错角相等,两直线平行可得C、依据内错角相等,两直线平行可得 D 、依据同旁内角互补,两直线平行可得应选: A.BD ∥AC,故此选项错误;BD ∥AC,故此选项错误;BD ∥ AC,故此选项错误;【评论】本题主要考察了平行线的判断,解答此类要判断两直线平行的题,可环绕截线找同位角、内错角和同旁内角.7.【剖析】依据平行线的性质求出∠3,再求出∠ BAC= 90°,即可求出答案.【解答】解:∵直线a∥b,∴∠ 1=∠ 3= 55°,∵AC⊥ AB,∴∠ BAC= 90°,∴∠ 2= 180°﹣∠ BAC﹣∠ 3= 35°,应选: A.【评论】本题考察了平行线的性质的应用,注意:平行线的性质有① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补.8.【剖析】延伸 ED 交 BC 于 F,依据平行线的性质求出∠MFC =∠ B= 75°,求出∠ FDC = 35°,依据三角形外角性质得出∠C=∠ MFC ﹣∠ MDC ,代入求出即可.【解答】解:延伸ED 交 BC 于 F,如下图:∵AB∥DE ,∠ABC=75°,∴∠ MFC =∠ B= 75°,∵∠ CDE= 145°,∴∠ FDC = 180°﹣ 145°= 35°,∴∠ C=∠ MFC ﹣∠ MDC = 75°﹣ 35°= 40°,应选: C.【评论】本题考察了三角形外角性质,平行线的性质的应用,解本题的重点是求出∠ MFC 的度数,注意:两直线平行,同位角相等.9.【剖析】第一利用平行线的性质定理获得∠BCD = 130°,而后利用同旁内角互补两直线平行获得∠ CDE 的度数即可.【解答】解:∵ AB∥CD ,且∠ ABC = 130°,∴∠ BCD=∠ ABC= 130°,∵当∠ BCD +∠ CDE = 180°时 BC∥ DE,∴∠ CDE= 180°﹣∠ BCD= 180°﹣ 130°= 50°,应选: B.【评论】本题考察了平行线的判断与性质,注意平行线的性质与判断方法的差别与联系.10.【剖析】依据平移的性质获得AC∥ DF ,AB∥ DE ,AD ∥ CF,AD = CF= 2.5,∠ EDF =∠BAC=90°,则利用平行线的性质得∠ ABE=∠ DEF ,利用垂直的定义得 DE ⊥ DF ,于是依据平行线的性质可判断 DE⊥ AC.【解答】解:∵将△ ABC 沿直线向右平移 2.5 个单位获得△ DEF ,∴ AC∥ DF ,AB ∥ DE,AD ∥ CF , AD= CF = 2.5,∠ EDF =∠ BAC=90°,∴∠ ABE=∠ DEF ,DE⊥ DF ,∴ DE⊥ AC,∴ ①②③④ 都正确.应选: A.【评论】本题考察了平移的性质:把一个图形整体沿某向来线方向挪动,会获得一个新的图形,新图形与原图形的形状和大小完整同样;新图形中的每一点,都是由原图形中的某一点挪动后获得的,这两个点是对应点.连结各组对应点的线段平行(或共线)且相等.二.填空题(共8 小题)11.【剖析】依据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的原因是依据垂线段最短.故答案为:垂线段最短.【评论】本题主要考察了垂线段的性质,重点是掌握性质定理.12.【剖析】由题意可知∠DOE= 90°﹣∠ COE,∠ AOB 与∠ DOE 是对顶角相等,由此得解.【解答】解:∵已知∠COD = 90°,∠ COE= 70°,∴∠ DOE= 90°﹣ 70°= 20°,又∵∠ AOB 与∠ DOE 是对顶角,∴∠ AOB=∠ DOE= 20°,故答案为: 20°.【评论】本题考察了对顶角与邻补角,利用余角的定义、对顶角的性质是解题重点.13.【剖析】直接利用平行线的判断方法分别剖析得出答案.【解答】解:① ∵∠ 1=∠ 2,∴ a∥ b,故此选项正确;② ∠ 3=∠ 6 没法得出a∥b,故此选项错误;③ ∵∠ 4+∠ 7= 180°,∴ a∥ b,故此选项正确;④ ∵∠ 5+∠ 3= 180°,∴∠ 2+∠ 5= 180°,∴ a∥ b,故此选项正确;⑤ ∵∠ 7=∠ 8,∠ 6=∠ 8,∴∠ 6=∠ 7,∴a∥ b,故此选项正确;综上所述,正确的有①③④⑤ .故答案为:①③④⑤ .【评论】本题主要考察了平行线的判断,正确掌握平行线的几种判断方法是解题重点.14.【剖析】依照平行线的判断条件进行增添,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【解答】解:若∠ EDC =∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA=180°,则 DE∥ AB,故答案为:∠ EDC=∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA= 180°等.【评论】本题主要考察了平行线的判断,正确辨别“三线八角”中的同位角、内错角、同旁内角是正确答题的重点,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.【剖析】过 C 作 CM ∥AB ,延伸 CD 交 EF 于 N,依据三角形外角性质求出∠CNE= y ﹣z,依据平行线性质得出∠ 1= x,∠ 2=∠ CNE ,代入求出即可.【解答】解:过 C 作 CM∥ AB,延伸 CD 交 EF 于 N,则∠ CDE=∠ E+∠ CNE,即∠ CNE= y﹣ z∵CM∥ AB,AB∥ EF,∴CM∥ AB∥EF,∴∠ ABC= x=∠ 1,∠ 2=∠ CNE,∵∠ BCD= 90°,∴∠ 1+∠ 2= 90°,∴x+y﹣ z=90°,∴z+90 °= y+x,即 x+y﹣ z= 90°.【评论】本题考察了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补,题目比较好,难度适中.16.【剖析】依据平行线的性质和平角的定义即可获得结论.【解答】解:∵ a∥ b,∴∠ 5=∠ 1= 63°,∠ 2=∠ 3,又由折叠的性质可知∠4=∠ 5,且∠ 3+∠ 4+∠ 5= 180°,∴∠ 3= 180°﹣∠ 5﹣∠ 4= 54°,∴∠ 2= 54°,故答案为: 54.【评论】本题主要考察平行线的性质和判断,掌握平行线的判断和性质是解题的重点,即①两直线平行 ? 同位角相等,②两直线平行 ? 内错角相等,③两直线平行 ? 同旁内角互补,④ a∥ b, b∥ c? a∥c.17.【剖析】先依据平角的定义得出∠3= 180°﹣∠ 2,再由平行线的性质得出∠4=∠ 3,依据∠ 4+∠ 1= 90°即可得出结论.【解答】解:∵∠ 2+∠ 3=180°,∴∠ 3= 180°﹣∠ 2.∵直尺的两边相互平行,∴∠ 4=∠ 3,∴∠ 4= 180°﹣∠ 2.∵∠ 4+∠ 1= 90°,∴ 180°﹣∠ 2+∠1= 90°,即∠ 2﹣∠ 1= 90°.∴∠ 1 与∠ 2 之间的数目关系为:∠2﹣∠ 1=90°,故答案为:∠2﹣∠ 1= 90°.【评论】本题考察的是平行线的性质,用到的知识点为:两直线平行,同位角相等.18.【剖析】由题意可知:利用“挤压法”,将图形中的花纹挤去,求出节余的正方形的边长,即可求出白色部分的面积.【解答】解:( 60﹣ 2× 5)2,=50×50,=2500(平方厘米);∴空白部分的面积是 2500 平方厘米.故答案为: 2500平方厘米【评论】本题考察了生活中的平移现象,解答本题的重点是:利用“挤压法”,求出节余的长方形的边长,从而求其面积.三.解答题(共7 小题)19.【剖析】依据垂直的定义获得∠AOC=∠ BOC= 90°,获得∠ BOD +∠ COD =90°,根据已知条件即可获得结论.【解答】解:∵ CO⊥ AB,∴∠ AOC=∠ BOC= 90°,∴∠ BOD+∠ COD = 90°,∵∠ BOD﹣∠ COD = 34°,∴∠ COD = 28°,∴∠ AOD=∠ AOC+∠ COD = 118°.【评论】本题主要考察了垂线以及角的计算,正确掌握垂线的定义是解题重点.20.【剖析】( 1)依据垂线的定义获得∠AOC=∠ BOD= 90°,依据余角的性质即可获得结论;(2)依据角的和差即可获得结论.【解答】解:( 1)∠ AOD=∠ BOC,原因:∵ AO⊥ CO,DO⊥ BO,∴∠ AOC=∠ BOD= 90°,∵∠ COD =∠ COD ,∴∠ AOC﹣∠ COD =∠ BOD ﹣∠ COD ,∴∠ AOD=∠ BOC;(2)∵∠ AOB=140°,∠ BOD = 90°,∴∠ AOD=∠ AOB﹣∠ BOD = 50°,∴∠ COD =∠ AOC﹣∠ AOD =40°.【评论】本题考察了垂线,余角的定义,娴熟掌握垂线的定理是解题的重点.21.【剖析】依据对顶角相等,等量代换和平行线的判断定理进行证明即可.【解答】证明:∵∠ 2=∠ 3(对顶角相等),又∵∠ 1=∠ 2(已知),∴∠ 1=∠ 3,∴ AB∥ CD (同位角相等,两直线平行).【评论】本题考察的是平行线的判断,掌握平行线的判断定理是解题的重点.22.【剖析】( 1)依据同旁内角互补,两直线平行,可证BC∥ AD,依据角均分线的性质和已知条件可知∠FEC =∠ BCE ,依据内错角相等,两直线平行可证BC∥ EF,依据两条直线都和第三条直线平行,那么这两条直线平行,可证AD∥ EF;( 2)先依据CE 均分∠ BCF,设∠ BCE=∠ ECF =∠ BCF=x.由∠ DAC=3∠ BCF可得出∠ DAC = 6x,由平行线的性质即可得出x 的值,从而得出结论.【解答】( 1)证明:∵∠ DAC +∠ACB= 180°,∴ BC∥ AD,∵ CE 均分∠ BCF ,∴∠ ECB=∠ FCE ,∵∠ FEC=∠ FCE ,∴∠ FEC=∠ BCE,∴BC∥ EF,∴AD∥ EF;(2)设∠ BCE=∠ ECF =∠ BCF = x.由∠ DAC =3∠ BCF 可得出∠ DAC= 6x,则6x+x+x+20°= 180°,解得 x=20°,则∠ DAC 的度数为120°,∠ FEC 的度数为20°.【评论】本题考察的是平行线的判断,平行线的性质,用到的知识点为:同旁内角互补,两直线平行;内错角相等,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;两直线平行,同旁内角互补.23.【剖析】依据平行线的性质和判断可填空.【解答】解:∠ AFE =∠ ABC(已知)∴EF∥ BC(同位角相等,两直线平行)∴∠ 1=∠ EBC(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴∠ EBC+∠ 2= 180°(等量代换)∴EB∥ DG (同旁内角互补,两直线平行)∴∠ GDE=∠ BEA (两直线平行,同位角相等)GD⊥ AC(已知)∴∠ GDE= 90°(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠ BEA﹣∠ AEF = 90°﹣ 65°= 25°(等式的性质)故答案为: EF∥ BC ,∠ EBC,∠ EBC +∠ 2= 180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE ,∠ BEA,∠ AEF .【评论】本题考察了平行线的判断和性质,灵巧运用平行线的性质和判断解决问题是本题的重点.24.【剖析】(1)依照 EF ∥ DB 可得∠ 1=∠ D,依据∠ 1=∠ 2,即可得出∠ 2=∠ D,从而判断 DG∥ AC;( 2)依照 EC 均分∠ FED ,∠ 1=50°,即可获得∠DEC =∠ DEF=65°,依照DG∥AC,即可获得∠C=∠ DEC= 65°.【解答】解:( 1) DG 与 AB 平行.∵EF∥ DB∴∠ 1=∠ D,又∵∠ 1=∠ 2,∴∠ 2=∠ D,∴DG ∥AC;( 2)∵ EC均分∠FED ,∠ 1=50°,∴∠ DEC=∠DEF =×( 180°﹣ 50°)= 65°,∵DG ∥AC,∴∠ C=∠ DEC= 65°.【评论】本题考察了平行线的性质和判断的应用,能正确运用定理进行推理是解本题的重点.25.【剖析】( 1)依据平行线的性质即可获得结论;(2)过点 P 作 PG∥ AB,依据平行线的性质即可获得结论;(3)过点 P 作 PG∥ CD ,依据平行线的性质即可获得结论.【解答】解:( 1)∵ AB∥ CD ,∴∠ α= 50°,故答案为: 50;(2)∠α=∠ 1+∠2,证明:过点P 作 PG∥∵ AB∥ CD,∴PG∥ CD,∴∠ 2=∠ 3,∠ 1=∠ 4,∴∠ α=∠ 3+∠ 4=∠ 1+ ∠2;( 3)∠α=∠ 2﹣∠ 1,证明:过点P 作 PG∥ CD ,∵AB∥ CD ,∴ PG∥ AB,∴∠ 2=∠ EPG,∠ 1=∠ 3,∴∠ α=∠ EPG﹣∠ 3=∠ 2﹣∠ 1.【评论】本题考察了平行线的性质,娴熟掌握平行线的性质是解题的重点.。
新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)
人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。
【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。
人教版七年级数学下册《第五章相交线与平行线》单元测试卷-带答案
人教版七年级数学下册《第五章相交线与平行线》单元测试卷-带答案(本试卷六个大题,23个小题。
满分120分,考试时间120分钟。
)学校:___________班级:___________姓名:___________考号:___________一、单项选择题(每小题3分,共18分.)1.如图,在平面内作已知直线m的垂线,可作的垂线有()A.0条B.1条C.2条D.无数条2.下面四个图形中,∠1与∠2是同位角的是()3.如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠3+∠4=180°C.∠2+∠5=180°D.∠1=∠64.下列命题中,为假命题的是()A.内错角相等,两直线平行B.同角的补角相等C.两直线平行,同位角互补D.过直线外一点有且只有一条直线与已知直线平行5.如图,∠1=∠2,∠4=120°,则∠3等于()A.60°B.40°C.50°D.30°6.2022年北京冬奥会男子500米短道速滑冠军在一次直道速滑训练中,经过两次拐弯后的速滑方向与原来的方向相反,则两次拐弯的角度可能是() A.第一次向左拐52°,第二次向右拐52° B.第一次向左拐48°,第二次向左拐48°C.第一次向左拐73°,第二次向右拐107°D.第一次向左拐32°,第二次向左拐148°二、填空题(每小题3分,共18分)7.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法如下:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是 .8.已知直线a∥b,把一块含30°角的直角三角板按如图所示的方式放置,若∠1=48°,则∠2的度数为.9.如图,已知m∥n,若∠1+∠2=280°,则∠4-∠3= .10.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪.则草坪的面积为平方米.11.如图,将长方形纸片ABCD沿折痕MN折叠,A,B分别落在对应位置A1,B1处,A1B1交AD于点E,若∠BNM=62°,则∠A1ME的度数为.12.如图,直线AB和CD交于点O,∠AOC=30°,∠BOE=90°,OF平分∠AOD.射线OE以每秒10°的速度绕点O逆时针转动,同时射线OF也以每秒4°的速度绕点O顺时针转动,当射线OE转动一周时,射线OE,OF同时停止转动.在射线OE转动一周的过程中,当OE⊥OF时,射线OE转动的时间为秒.三、解答题(每小题6分,共30分)13.(1)如图,点A,O,B在同一条直线上,已知∠BOC=50°,求∠AOC的度数.(2)如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,求∠BOD的度数.14.如图,AD与BC交于点O,点E在OD上,∠C=∠3,∠2=70°,∠1+∠3=150°,∠A=∠D,求∠B的度数.15.填空,并在括号内,填上推理的依据.如图,已知∠BAE=∠E,∠B=∠D,证明:∠AFC+∠DAE=180°.证明:∵∠BAE=∠E∴∥(),∴∠B=∠().又∵∠B=∠D∴∠D=∠(等量代换),∴AD∥BC()∴∠AFC+∠DAE=180°().16.某市为了方便市民绿色出行,推出了共享单车服务.图1是某品牌共享单车放在水平地面的实物图,图2是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=54°.问当∠MAC为多少度时,AM与CB平行?17.如图,在由小正方形组成的4×4的网格中,请用无刻度直尺按下列要求作格点三角形(图形的顶点都在正方形网格的格点上).(1)在图1中,将三角形ABC平移,得到三角形A'B'C',使得三角形A'B'C'与三角形ABC无重合部分.(2)在图2中,线段AB与CD相交,所夹的一个角为∠α,请画一个三角形ABE,使得三角形ABE中的一个角等于∠α.四、解答题(每小题8分,共24分。
人教版七年级数学下册第五章相交线与平行线单元测试卷(含答案)
第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是( )A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是( )图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是( )A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是( )A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为( )A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是( )A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有( )A.4组B.5组C.6组D.7组10.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为( )A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD 时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.参考答案第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是(D)A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是(B)图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是(D)A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是(C)A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是(D)A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为(A)A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是(D)A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(A)A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C)A.4组B.5组C.6组D.7组10.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为(D)A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是(C)A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东42°.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=270°.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是垂直;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD垂直时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF 平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.解:答案不唯一,如:已知:如图,AB⊥BC,CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∠ABC=∠DCB=90°.又∵BE∥CF,∴∠EBC=∠FCB.∴∠ABC-∠EBC=∠DCB-∠FCB,即∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C 之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).。
人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附带答案
人教版七年级数学下册《第五章相交线与平行线》单元测试卷-附带答案班级姓名学号分数核心知识1. 相交线一选择题(共3小题)1.(2022春·黑龙江哈尔滨·七年级期中)在下列图中1∠属于对顶角的是()∠与2A.B.C.D.【答案】C【分析】根据对顶角的定义:有一个公共顶点并且一个角的两边分别是另一个角的两边的反向延长线具有这种位置关系的两个角互为对顶角可得结论.【详解】解:在选项B D中1∠的两边都不互为反向延长线A选项没有公共点所以不是对顶角∠与2是对顶角的只有选项C.故选:C.【点睛】本题主要考查了对顶角的定义熟记有一个公共顶点并且一个角的两边分别是另一个角的两边的反向延长线具有这种位置关系的两个角互为对顶角是解答此题的关键.2.(2022秋·重庆云阳·七年级校考阶段练习)春节过后某村计划挖一条水渠将不远处的河水引到农田(记作点O)以便对农田的小麦进行灌溉现设计了四条路段OA OB OC OD如图所示其中最短的一条路线是()A.OA B.OB C.OC D.OD【答案】B【分析】根据垂线段的性质:垂线段最短 可得答案.【详解】由垂线段最短 得四条线段OA OB OC OD 如图所示其中最短的一条路线是OB故选:B .【点睛】本题考查了垂线段的的性质 熟记性质是解题关键.3.(2022春·黑龙江哈尔滨·七年级哈尔滨风华中学校考期中)图中1∠与2∠是同位角的有( )A .1个B .2个C .3个D .4个 【答案】B【分析】根据同位角的定义作答.【详解】解:第1个图和第4个图中的1∠与2∠是同位角 有2个故选:B .【点睛】本题考查了同位角的识别 两条直线被第三条直线所截 在截线的同侧 在两条被截直线的同旁的两个角是同位角.如果两个角是同位角 那么它们一定有一条边在同一条直线上. 二 填空题(共3小题)4.(2022秋·江西九江·七年级统考期中)如图 过直线AB 上一点O 作射线OC 30BOC ∠=︒ OD 平分AOC ∠ 则DOC ∠的度数为__________.【答案】75︒##75度故答案为:75︒.【点睛】本题主要考查了角平分线的有关计算 领补角的计算 解题的关键是根据邻补角求出150AOC ∠=︒.5.(2022秋·北京·七年级校考阶段练习)如图 O 为直线AB 上一点 将一直角三角板()30M ∠=︒的直角顶点放在点O 处 一边ON 在射线OA 上 另一边OM 在直线AB 的上方.将三角板绕点O 以每秒3°的速度沿逆时针方向旋转一周.则经过______秒后 MN AB ⊥.6.(2022秋·上海·七年级校考期中)如图:与FDB ∠成内错角的是______ 与DFB ∠成同旁内角的是______.【答案】 EFD ∠ AFD ∠和CBD ∠ DBF ∠ BDF ∠和CBF ∠【分析】准确识别内错角 同旁内角的关键 是弄清哪两条直线被哪一条线所截.也就是说 在辨别这些角之前 要弄清哪一条直线是截线 哪两条直线是被截线.【详解】解:如图 与FDB ∠成内错角的是EFD ∠ AFD ∠和CBD ∠ 与DFB ∠成同旁内角的是:DBF ∠ BDF ∠和CBF ∠.故答案分别是:EFD ∠ AFD ∠和CBD ∠ DBF ∠ BDF ∠和CBF ∠.【点睛】本题考查了同位角 内错角 同旁内角.在复杂的图形中识别同位角 内错角 同旁内角时 应当沿着角的边将图形补全 或者把多余的线暂时略去 找到三线八角的基本图形 进而确定这两个角的位置关系.三 简答题(共1小题)7.(2022春·广东佛山·七年级校考阶段练习)已知直线AB 经过点O 90COD ∠=︒ OE 是BOC ∠的平分线.(1)如图1 若30AOC ∠=︒ 求DOE ∠(2)如图1 若AOC α∠= 直接写出DOE ∠=______ (用含α的式子表示)(3)将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置 其他条件不变 (2)中的结论是否还成立?试说明理由.核心知识2.平行线及其判定一选择题(共3小题)1.(2022春·江苏·七年级专题练习)已知三角形ABC过AC的中点D作AB的平行线根据语句作图正确的是()A.B.C.D.【答案】B【分析】根据中点的定义平行线的定义判断即可.【详解】解:过AC的中点D作AB的平行线正确的图形是选项B故选:B.【点睛】本题考查作图——复杂作图平行线的定义中点的定义等知识解题关键是理解题意灵活运用所学知识解决问题.2.(2022秋·甘肃武威·七年级校考期中)如图 在平面内作已知直线a 的平行线 可作平行线的条数是( )A .1条B .2条C .无数条D .无法确定 【答案】C【分析】根据平行线的定义和性质求解即可.【详解】解:在同一平面内与已知直线平行的直线有无数条∵在平面内作已知直线a 的平行线 可作平行线的条数是无数条故选C .【点睛】本题主要考查了平行线的定义和性质 熟知相关知识是解题的关键.3.(2022春·北京东城·八年级校考期末)如图 在下列条件中 能够证明AD CB ∥的条件是( )A .14∠=∠B .5B ∠=∠C .12180D ∠+∠+∠=︒D .23∠∠= 【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A . 14∠=∠ 内错角相等两直线平行 能判定AB DE ∥ 故A 不符合题意B . 5B ∠=∠ 同位角相等两直线平行 能判定AB DE ∥ 故B 不符合题意C . 12180D ∠+∠+∠=︒ 同旁内角互补两直线平行 能判定AB DE ∥ 故C 不符合题意D . 32∠=∠ 内错角相等两直线平行 能判定AD BC ∥ 故D 符合题意.故选:D .【点睛】本题考查了平行线的判定方法 掌握平行线的判定方法“同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 两直线平行”是解题的关键. 二 填空题(共3小题)4.(2022春·上海·九年级开学考试)如图 点E F 分别是梯形ABCD 两腰的中点 联结EF DE 如果图中DEF △的面积为1.5 那么梯形ABCD 的面积等于___.1.5DEFS=1 2EF AG⋅•EF AH5.(2022春·江苏·七年级专题练习)下列说法:①对顶角相等②两点之间的线段是两点间的距离③过一点有且只有一条直线与已知直线平行④过一点有且只有一条直线与已知直线垂直⑤一个锐角的补角一定比它的余角大90° 正确的有______.(填序号)【答案】①⑤【分析】根据对顶角线段直线垂直的定义平行线的性质及余补角的性质可直接进行求解.【详解】解:①对顶角相等原说法正确②两点之间的线段长度是两点间的距离原说法错误③过直线外一点有且只有一条直线与已知直线平行原说法错误④在同一平面内过一点有且只有一条直线与已知直线垂直原说法错误⑤一个锐角的补角一定比它的余角大90° 原说法正确综上所述:正确的有①⑤故答案为①⑤.【点睛】本题主要考查对顶角线段直线垂直的定义平行线的性质及余补角的性质熟练掌握相关概念及性质是解题的关键.6.(2022秋·江西赣州·七年级统考期中)如图点E在AC的延长线上若要使AB CD则需添加条件_______(写出一种即可)【答案】∵1=∵2 等(写出一种即可)【分析】根据平行线的判定定理得出直接得出即可.【详解】解:∵当∵1 =∵2时AB CD(内错角相等两直线平行)∵若要使AB CD则需添加条件∵1 =∵2故答案为:∵1=∵2.【点睛】本题主要考查了平行线的判定熟练掌握平行线的判定定理是解题关键.三简答题(共1小题)7.(2022秋·河南信阳·七年级校考期末)如图已知点O在直线AB上射线OE平分∵AOC过点O作OD∵OE G是射线OB上一点连接DG使∵ODG+∵DOG=90°.(1)求证:∵AOE=∵ODG(2)若∵ODG=∵C试判断CD与OE的位置关系并说明理由.【答案】(1)证明见解析(2)CD∥OE理由见解析【分析】(1)由OD ∵OE 得到∵EOC +∵COD =∵AOE +∵DOG =90° 再利用等角的余角相等即可证明∵AOE =∵ODG (2)证明∵EOC =∵C 利用内错角相等两直线平行 即可证明CD ∥OE .【详解】(1)证明:∵OD ∵OE∵∵EOC +∵COD =∵AOE +∵DOG =90°∵∵ODG +∵DOG =90°∵∵AOE =∵ODG(2)解:CD ∥OE .理由如下:由(1)得∵AOE =∵ODG∵射线OE 平分∵AOC∵∵AOE =∵EOC∵∵ODG =∵C∵∵EOC =∵C∵CD ∥OE .【点睛】本题考查了角平分线定义 垂直的定义 平行线的判定 等角的余角相等 正确识图是解题的关键.核心知识3.平行线的性质一 选择题(共3小题)1.(2022春·陕西商洛·八年级统考期末)将一副直角三角尺如图所示放置 已知AE BC ∥ 则AFD ∠的度数是( )A .80︒B .75︒C .65︒D .60︒ 【答案】B【分析】根据平行线的性质及三角形内角定理解答.【详解】解:由三角板的性质可知45,30,90EAD C BAC ADE ︒︒︒∠=∠=∠=∠=.∵AE BC ∥∵30EAC C ∠=∠=︒∵453015DAF EAD EAC ∠=∠-∠=︒-︒=︒.∵180180901575AFD ADE DAF ︒︒︒︒︒∠=-∠⋅∠=--=.故选:B .【点睛】本题考查的是平行线的性质及三角形内角和定理 平行线的性质:两直线平行同位角相等 同旁内角互补.三角形内角和定理:三角形的内角和等于180︒.2.(2022秋·北京·七年级校考阶段练习)如图 点A B 为定点 直线l AB ∥ P 是直线l 上一动点.对于下列各值:①APB ∠的度数 ②线段AB 的长 ③PAB 的面积 ④PAB 的周长 其中不会..随点P 的移动而变化的是( )A .①③B .①④C .②③D .①② 【答案】C【分析】根据运动得出APB ∠的大小不断发生变化 求出AB 长为定值 由于P 到AB 的距离为定值 再根据三角形的面积公式进行计算即可 根据运动得出PA PB +不断发生变化.【详解】解:当P 点移动时 APB ∠发生变化∵①错误∵A B 为定点∵AB 长为定值∵②正确∵点A B 为定点 直线l AB ∥∵P 到AB 的距离为定值 故PAB 的面积不变∵③正确当P 点移动时 PA PB +的长发生变化∵PAB 的周长发生变化∵④错误综上 正确的有②③故选:C .【点睛】本题考查了平行线的性质 等底等高的三角形的面积相等 平行线间的距离的运用 熟记定理是解题的关键.3.(2022春·八年级单元测试)对于命题“如果1290∠+∠=︒ 那么12∠≠∠” 能说明它是假命题的反例是( ) A .1245∠=∠=°B .150∠=︒ 250∠=︒C .150∠=︒ 240∠=︒D .140∠=︒ 240∠=︒ 【答案】A【分析】判断命题是假命题 结论错误即可 由此即可求解.【详解】解:当1245∠=∠=°时 1290∠+∠=︒ 但12∠=∠∵命题“如果1290∠+∠=︒ 那么12∠≠∠”是假命题故选:A .【点睛】本题主要考查命题真假的判定 掌握命题真假的判定方法是理解命题的条件与结论的关系 即掌握相关定理 命题的定义和性质是解题的关键. 二 填空题(共3小题)4.(2022春·广东深圳·八年级校考期末)光线在不同介质中传播速度不同 从一种介质射向另一种介质时会发生折射.如图 水面AB 与水杯下沿CD 平行 光线EF 从水中射向空气时发生折射 光线变成FH 点G 在射线EF 上 已知20HFB ∠︒= 45FED ∠︒= 则GFH ∠的度数为______.【答案】25︒##25度【分析】根据平行线的性质求得GFB ∠ 根据GFH GFB HFB ∠=∠-∠即可求解.【详解】解:∵AB CD ∥∵45GFB FED ∠=∠=︒.∵20HFB ∠=︒∵452025GFH GFB HFB ∠=∠-∠=︒-︒=︒故答案为25°.【点睛】本题考查了平行线的性质与判定 掌握平行线的性质与判定是解题的关键.5.(2022秋·上海闵行·七年级校考阶段练习)如图 已知直线a b ∥ 将一块三角板的直角顶点放在直线a 上 如果142∠=︒ 那么2∠=______度.【答案】48【分析】根据平行线得到内错角相等 在根据直角即可得到答案.【详解】解:∵a b ∥∵23∠∠=∵1+3=90∠∠︒ 142∠=︒∵3904248∠=︒-︒=︒故答案为48.【点睛】本题考查平行线性质:两直线平行内错角相等.6.(2022秋·陕西渭南·七年级统考阶段练习)下列命题:①经过直线外一点 有且只有一条直线与这条直线平行 ②在同一平面内 过一点有且只有一条直线与已知直线垂直 ③直线外一点到这条直线的垂线段的长度 叫做点到直线的距离 ④如果直线a b ∥ b c ⊥ 那么a c ∥.其中是真命题的有______.(填序号)【答案】①②③【分析】根据平行公理及其推论 垂线的性质 点到直线的距离定义等分析判断即可.【详解】解:①经过直线外一点 有且只有一条直线与这条直线平行 正确 为真命题②在同一平面内 过一点有且只有一条直线与已知直线垂直 正确 为真命题③直线外一点到这条直线的垂线段的长度 叫做点到直线的距离 正确 为真命题④如果直线a b ∥ b c ⊥ 那么a c ⊥ 原命题为假命题.综上所述 真命题有①②③.故答案为:①②③.【点睛】本题主要考查了命题与定理的知识 解题关键是理解平行公理及其推论 垂线的性质 点到直线的距离定义等知识.三 简答题(共1小题)7.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图1 AB CD ∥ 直线AB 外有一点M 连接AM CM .(1)证明:M A C ∠+∠=∠(2)如图2 延长MA 至点E 连接CE CM 平分ECD ∠ AF 平分EAB ∠ 且AF 与CM 交于点F 求E ∠与AFC ∠的数量关系(3)如图3 在2的条件下 100E ∠=︒ FA AN ⊥ 连接CN 且2M N ∠=∠ 30MCN ∠=︒ 求M ∠的度数. 【答案】(1)证明见解析(2)3602E AFC ∠=︒-∠(3)20︒【分析】(1)过点M 作MN AB ∥ 根据平行线性质即可得到角度关系 即可求证(2)过点E 作EP AB ∥ 过点F 作QF AB ∥根据平行线性质得到角度关系即可得到答案(3)过点N 做NY AB ∥ 过点M 作MX AB ∥ 根据平行线性质得到角度关系即可得到答案.【详解】(1)证明:过点M 作MN AB ∥∵AB CD ∥ MN AB ∥∵MN CD AB ∥∥∵180A NME AME ∠+∠+∠=︒ 180NME MEB ∠+∠=︒ MEB C ∠=∠∵A AME MEB ∠+∠=∠∵A AMC C ∠+∠=∠(2)解:∵CM 平分ECD ∠ 设ECM MCD a ∠=∠=又∵AF 平分EAB ∠ 设EAF FAB b ∠=∠=∵22ECD ECM a ∠=∠= 22EAB EAF b ∠=∠=过点E 作EP AB ∥∵AB CD ∥∵EP CD ∥∵180EAB AEP ∠+∠=︒ 180ECD CEP ∠+∠=︒∵1801802AEP EAB b ∠=︒-∠=︒- 1801802CEP ECD a ∠=︒-∠=︒-∵360223602()AEC AEP CEP b a a b ∠=∠+∠=--=-+过点F 作QF AB ∥∵QF CD ∥∵AFQ FAB ∠=∠ QFC MCD ∠=∠∵AFC QFA QFC a b ∠=∠+∠=+∵3602AEC AFC ∠=︒-∠(3)设NAB r ∠= NCD y ∠=过点N 做NY AB ∥∵AB CD ∥ NY CD ∥∵YNA NAB ∠=∠ YNC NCD ∠=∠∵ANC NCD NAB y r ∠=∠-∠=-∵2M N ∠=∠∵22M y r ∠=-过点M 作MX AB ∥∵MX CD ∥∵XMA MAB ∠=∠ XMC MCD ∠=∠∵XMA XMC AMC ∠=∠-∠∵AMC XMC XMA MCD MAB ∠=∠-∠=∠-∠∵2MAB r ∠= 2MCD y ∠=∵MCN MCD NCD y ∠=∠-∠=∵30MCN ∠=︒∵30y =︒∵260MCD y ∠==︒∵100AEC ∠=︒ 3602AEC AFC ∠=︒-∠∵360AFC AFC ∠=︒-∠130=︒由(2)知BAF FCD AFC ∠+∠=∠∵70BAF AFC MCD ∠=∠-∠=︒∵FA AN ⊥∵90FAN ∠=︒∵20NAB FAN BAF ∠=∠-∠=︒∵20r =︒∵240MAB r ∠==︒∵604020AMC MCD MAB ∠=∠-∠=︒-︒=︒.【点睛】本题考查根据平行线的性质 解题的关键是作平行辅助线转换角度关系.核心知识4.平移一 选择题(共3小题)1.(2022秋·北京西城·七年级北师大实验中学校考期末)下列现象是平移的是( )A .电梯从底楼升到顶楼B .卫星绕地球运动C .纸张沿着它的中线对折D .树叶从树上落下 【答案】A【分析】平移是物体运动时 物体上任意两点间 从一点到另一点的方向与距离都不变的运动 根据平移的定义分析即可.【详解】解:A 电梯从底楼升到顶楼为平移现象 故该选项符合题意B 卫星绕地球运动为旋转现象 故该选项不符合题意C 纸张沿着它的中线对折是轴对称现象 故该选项不符合题意D 树叶从树上落下既不是旋转也不是平移 故该选项不符合题意.故选:A .【点睛】本题考查了平移现象 熟练根据平移的定义联系实际生活是解题的关键.2.(2022秋·重庆璧山·七年级校联考期中)今年4月 被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是( )A .对称B .旋转C .平移D .跳跃【答案】C【分析】根据平移与旋转定义判断即可.【详解】解:云巴在轨道上运行可以看作是数学上的平移.故选:C .【点睛】本题考查对平移与旋转的理解及在实际当中的运用.平移是物体运动时 物体上任意两点间 从一点到另一点的方向与距离都不变的运动 旋转是物体运动时 每一个点离同一个点(可以在物体外)的距离不变的运动 称为绕这个点的转动 这个点称为物体的转动中心.所以 它并不一定是绕某个轴的.正确理解平移与旋转的定义是解题的关键.3.(2022秋·福建龙岩·七年级校考阶段练习)如图是一段楼梯 2cm BC = 4cm AB = 若在楼梯上铺地毯至少要( )A .2cmB .4cmC .6cmD .8cm 【答案】C【分析】把楼梯的横竖向上向左平移 构成一个矩形 则AB +BC 即为所求.【详解】解:∵∵ABC 是直角三角形 BC =2cm AB =4cm∵如果在楼梯上铺地毯 那么至少需要地毯为AB +BC =6米.故选C .【点睛】本题考查的是生活中的平移现象 解决此题的关键是要利用平移的知识. 二 填空题(共3小题)4.(2022秋·浙江温州·七年级校联考阶段练习)如图 将长为5cm 宽为3cm 的长方形ABCD 先向右平移2cm 再向下平移1cm 得到长方形A B C D '''' 则阴影部分的周长为______cm .【答案】32【分析】阴影部分的周长刚好是长方形周长的两倍 据此作答即可.【详解】∵长方形的长为5cm 宽为3cm∵长方形的周长为:5+3+3+5=16(cm )根据图形可知:阴影部分的周长为:A D D C C B B A AD DC CB BA ''''''''+++++++即:阴影部分的周长刚好是长方形周长的两倍即阴影部分的周长为:16×2=32(cm )故答案为:32.【点睛】本题考查了图形的平移的知识 根据图形的平移判断出阴影部分的周长刚好是长方形周长的两倍是解答本题的关键.5.(2022春·上海静安·七年级上海市市西中学校考期中)如图 将周长为8厘米的ABC 沿射线BC 方向平移1厘米得到DEF 那么四边形ABFD 的周长为___________厘米.【答案】10【分析】利用平移的性质得到1AD CF AC DF ===, 然后根据8AB BC AC ++=可计算出四边形ABFD 的周长.【详解】解:ABC 沿射线BC 方向平移1厘米得到DEF1AD CF AC DF ∴===,8++=AB BC AC81110AB BC CF DF AD AB BC AC CF AD ∴++++=++++=++=cm .即四边形ABFD 的周长为10cm .故答案为10.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.新图形中的每一点 都是由原图形中的某一点移动后得到的 这两个点是对应点.连接各组对应点的线段平行(或共线)且相等. 6.(2022秋·浙江·七年级期中)作图题:将如图的三角形ABC 先水平向右平移4格 再竖直向下平移4格得到三角形DEF .观察线段AB 与DE 的关系是_____.【答案】AB ∵DE AB =DE【分析】根据网格结构找出平移后的点D E F 的位置 然后解答即可.【详解】解:∵DEF 如图所示AB ∵DE AB =DE .故答案为:AB ∵DE AB =DE .【点睛】本题考查了平移的性质 熟练掌握网格结构准确找出对应点的位置是解题的关键.三 简答题(共1小题)7.(2022春·江苏·八年级统考期中)在正方形网格中 小正方形的顶点称为“格点” 每个小正方形的边长均为1 内角均为直角 ABC 的三个顶点均在“格点”处.(1)将ABC 平移 使得点B 移到点B '的位置 画出平移后的A B C '''(2)利用正方形网格画出ABC 的高AD(3)连接BB ' CB ' 利用全等三角形的知识证明BB AC '⊥.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)利用平移变换的性质分别作出A B C 的对应点A ' B ' C '即可(2)根据三角形的高的定义画出图形即可(3)证明ADC BCB '△≌△ 可得结论.【详解】(1)过点B '作B C BC ''∥ 且5B C ''= 再沿着B '向右移动两个单位 再向上移动五个单位 就可得到点A ' 连接A B '' A C '' 即可得到A B C '''(2)设从点B 的位置向右两个单位的点为D 连接AD 则AD 就是所求的高(3)设AC 交BB '于点J .在ADC △和BCB '中AD BC = 90ADC BCB ︒'∠=∠= DC CB '=∵ADC BCB '△≌△∵DAC CBB '∠∠=∵90ACD DAC ∠+∠=︒∵90CBB ACB '∠+∠=︒∵90BJC ∠=︒∵BB AC '⊥.【点睛】本题考查作图平移变换全等三角形的判定和性质等知识解题的关键是掌握平移变换的性质正确寻找全等三角形解决问题.。
最新人教版七年级下册第五章《相交线与平行线》单元测试题及答案
人教版七年级数学下册第五章订交线与平行线单元测试卷一、选择题(每题 3 分,共 30 分)1.以下命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.此中错误的有()A.1 个B.2 个C.3 个D.4 个2.点 P 是直线 l 外一点,,且 PA=4 cm,则点 P 到直线 l 的距离(A.小于 4 cm B.等于 4 cm C.大于 4 cm D.不确立3.如图,点在延伸线上,以下条件中不可以判断的是()A.∠ 1=∠ 2B.∠ 3=∠ 4)C.∠ 5=∠D.∠ +∠ BDC=180°第 3题图第 4题图4.如图,,∠ 3=108°,则∠ 1 的度数是()A.72°B. 80°C. 82°D. 108°5.如图,A.3 对BE 均分∠ ABC, DE∥ BC,图中相等的角共有(B.4 对C.5对D.6 对)6 .如图,第5题图AB∥ CD,AC⊥ BC,图中第6题图与∠ CAB互余的角有()A.1 个B.2 个C.3 个D.4 个7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传递带上,瓶装饮料的挪动;③在笔挺的公路上行驶的汽车;④随风摇动的旌旗;⑤钟摆的摇动.属于平移的是()A.①B.①②C.①②③D.①②③④8.如图, DH∥ EG∥ BC, DC∥ EF,那么与∠ DCB相等的角(不包含∠EFB)的个数为()A.2个B.3个C.4个D.5个第图9. 点 P 是直线 l 外一点, A、B、C 为直线 l 上的三点, PA=4 cm,PB=5 cm,PC=2 cm,则点 PlA.小于 2 cm B.等于 2 cmC.不大于 2 cm D.等于 4 cm10. 两平行直线被第三条直线所截,同位角的均分线(A.相互重合B.相互平行)C.相互垂直二、填空题(共D.订交8 小题,每题 3 分,满分24 分)11.如图,直线a、b 订交,∠1=,则∠ 2=.第11题图第12 题图12.如图,当剪子口∠AOB 增大13.如图,计划把河水引到水池15°时,∠A 中,先作COD 增大AB⊥ CD,垂足为.B,而后沿AB 开渠,能使所开的渠道最短,这样设计的依照是.第13题图第14题图14.如图,直线15.如图, D 是AB,CD, EF订交于点O,且 AB⊥ CD,∠ 1 与∠ 2 的关系是AB 上一点, CE∥ BD,CB∥ ED,EA⊥ BA 于点 A,若∠ ABC=38°,.则∠ AED=.第15题图第16题图16.如图,AB∥CD,直线 EF分别交 AB、CD于 E、F,EG均分∠ BEF,若∠ 1=72°,则∠ 2=17.如图,直线a∥ b,则∠ ACB=..第17题图第18题图18.如图,一个宽度相等的纸条按以下图方法折叠一下,则∠1=.三、解答题(共 6 小题,满分46 分)19.( 7 分)读句绘图:如图,直线CD 与直线AB 订交于C,依据以下语句绘图:(1)过点 P 作 PQ∥ CD,交 AB 于点 Q;(2)过点 P 作 PR⊥ CD,垂足为 R;(3)若∠ DCB=120°,猜想∠ PQC是多少度?并说明理由.20.( 7 分)如图,方格中有一条漂亮可爱的小金鱼.(1)若方格的边长为 1,则小鱼的面积为;(2)画出小鱼向左平移 3 格后的图形.(不要求写作图步骤和过程)第20题图21 .( 8 分)已知:如图,∠BAP+∠APD=,∠1 =∠2.求证:∠ E =∠ F.第 21题图第 22题图22.( 8 分)已知:如图,∠ 1 =∠2,∠ 3 =∠ 4,∠5 =∠ 6. 求证:ED//FB.23 .( 8 分)如图, CD均分∠ ACB,DE∥BC,∠ AED=80°,求∠ EDC的度数.第2424.( 8 分)如图,已知第23题题图AB∥ CD,∠ B=65°, CM 均分∠图BCE,∠ MCN=90°,求∠DCN的度数.分析1.B分析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角均分线分红的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的状况下才相等.故①②正确,③④错误,所以错误的有两个,应选 B.,2. B 分析:依据点到直线的距离为点到直线的垂线段长(垂线段最短)所以点 P 到直线 l 的距离等于 4 cm,应选 C.,故正确;3. A 分析:选项 B 中,∵∠ 3=∠ 4,∴ AB∥ CD (内错角相等,两直线平行)选项C 中,∵∠ 5=∠ B,∴ AB∥CD (内错角相等,两直线平行),故正确;选项 D 中,∵∠ B+∠ BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项 A 中,∠1 与∠ 2 是直线 AC、BD 被 AD 所截形成的内错角,∵ ∠ 1=∠ 2,∴ AC∥ BD,故 A 错误.选 A.4.A 分析:∵ a∥ b,∠ 3=108°,∴ ∠ 1=∠ 2=180°∠ 3=72°.应选 A.5.C 分析:∵ DE∥ BC,∴ ∠ DEB=∠ EBC,∠ ADE=∠ ABC,∠ AED=∠ ACB.又∵BE 均分∠ ABC,∴∠ ABE=∠ EBC.即∠ ABE=∠ DEB.所以图中相等的角共有 5 对.应选 C.6.C 分析:∵ AB∥ CD,∴ ∠ ABC=∠BCD.设∠ ABC的对顶角为∠ 1,则∠ ABC=∠ 1.又∵AC⊥ BC,∴ ∠ ACB=90°,∴ ∠ CAB+∠ABC=∠ CAB+∠BCD=∠ CAB+∠ 1=90°,所以与∠ CAB互余的角为∠ABC,∠ BCD,∠ 1.应选 C.7.C 分析:①用打气筒打气时,气筒里活塞沿直线运动,切合平移的性质,故属平移;②传递带上,瓶装饮料的挪动沿直线运动,切合平移的性质,故属平移;③在笔挺的公路上行驶的汽车沿直线运动,切合平移的性质,故属平移;④随风摇动的旌旗,在运动的过程中改变图形的形状,不切合平移的性质;⑤钟摆的摇动,在运动的过程中改变图形的方向,不切合平移的性质.应选 C.8.D 分析:如题图,∵ DC∥ EF,∴ ∠ DCB=∠ EFB.∵DH∥ EG∥ BC,∴ ∠ GEF=∠ EFB,∠ DCB=∠ HDC,∠ DCB=∠ CMG=∠DME,故与∠ DCB相等的角共有 5 个.应选 D.9. C分析:依据点到直线的距离为点到直线的垂线段长(垂线段最短),又 2< 4< 5,∴ 点 P 到直线 l 的距离小于等于 2,即不大于 2,应选C.10.B 分析:∵ 两平行直线被第三条直线所截,同位角相等,∴它们角的均分线形成的同位角相等,∴ 同位角相等的均分线平行.应选 B.二、填空题11.144°分析:由图示得,∠ 1 与∠ 2 互为邻补角,即∠ 1+∠ 2=180° .又∵∠ 1=36°,∴∠2=180° 36° =144°.12.15°分析:由于∠ AOB 与∠ COD是对顶角,∠ AOB与∠ COD一直相等,所以随∠AOB 变化,∠ COD 也发生相同变化.故当剪子口∠ AOB 增大 15°时,∠ COD也增大 15°.13.垂线段定理,连结直线外一点与直线上全部点的连线中,垂线段最短分析:依据垂线段定理,连结直线外一点与直线上全部点的连线中,垂线段最短,∴沿 AB 开渠,能使所开的渠道最短.14.∠ 1+∠ 2=90°分析:∵直线 AB、 EF订交于 O 点,∴ ∠ 1=∠ DOF.又∵AB⊥ CD,∴ ∠ 2+∠ DOF=90°,∴ ∠ 1+∠ 2=90°.15.52°分析:∵ EA⊥ BA,∴ ∠ EAD=90° .∵CB∥ ED,∠ ABC=38°,∴ ∠ EDA=∠ ABC=38°,∴ ∠ AED=180°∠ EAD∠ EDA=52°.16.54°分析:∵ AB∥ CD,∴ ∠ BEF=180°∠ 1=180° 72° =108°,∠ 2=∠ BEG.又∵EG均分∠ BEF,∴ ∠ BEG=∠ BEF=× 108°=54°,故∠ 2=∠ BEG=54°.17.78°分析:延伸BC与a订交于D,∵ a∥ b,∴∠ADC=∠ 50° .∴ ∠ ACB=∠ ADC +28°=50° +28° =78° .故应填 78° .18. 65°分析:依据题意得2∠1 与 130°角相等,即 2∠ 1=130°,解得∠ 1=65°.故填 65°.三、解答题19.解:( 1)(2)以下图 .(3)∠ PQC=60°.∵PQ∥ CD,∴ ∠ DCB+∠ PQC=180° .∵ ∠ DCB=120° ,∴ ∠ PQC=180° 120° =60°.11111120. 解:( 1)小鱼的面积为 7× 61×5×61 ×2×51× 4× 21 × 1.5 ×1× × 11=16.222222(2)将每个重点点向左平移 3 个单位,连结即可.21.证明:∵ ∠ BAP+∠ APD= 180°,∴AB∥ CD.∴∠ BAP=∠ APC.又∵∠1 =∠2,∴ ∠BAP-∠1 =∠APC-∠2.即∠ EAP=∠ APF.∴AEF∥ P.∴∠E=∠F.22.证明:∵ ∠3 = ∠4,∴AC∥ BD.∴∠6+∠2+∠ 3 = 180 ° .∵∠6=∠5,∠2=∠1,∴∠5+∠1+∠ 3 = 180° .∴ED∥ FB.23.解:∵ DE∥ BC,∠ AED=80°,∴ ∠ ACB=∠ AED=80°.∵CD均分∠ ACB,1∴ ∠ BCD=∠ ACB=40°,2∴ ∠ EDC=∠ BCD=40°.24.解:∵ AB∥ CD,∴∠ B+∠ BCE=180°(两直线平行同旁内角互补).∵ ∠ B=65°,∴∠ BCE=115° .1∵ CM均分∠ BCE,∴∠ ECM=∠ BCE=57.5°,2∵ ∠ ECM+∠ MCN+∠ NCD=180°,∠ MCN=90°,∴ ∠ NCD=180°-∠ ECM-∠ MCN=180°-57.5人教版七年级数学下册暑期单元加强复习卷:第五章订交线与平行线一、填空题(每题 3 分,满分24 分)1. 图中是对顶角量角器,用它丈量角的原理是.2.如图,l∥m,∠ 1= 120 °,∠ A= 55°,则∠ ACB的大小是.3.如图,计划把河水引到水池 A 中,先作AB⊥ CD,垂足为B,而后沿AB 开渠,能使所开的渠道最短,这样设计的依照是.4.如图,直线AB, CD,EF订交于点 O,且 AB⊥ CD,∠ 1 与∠ 2 的关系是.第1题图第2题图第3题图第4题图5.如图 , 在△ABC中,∠A=90 °,点 D 在 AC边上, DE∥ BC,若∠1=155°,则∠ B 的度数为.6.如图, AB∥ CD,直线 EF分别交 AB、CD 于 E、F, EG均分∠ BEF,若∠ 1=72°,则∠2=.7.如图,直线a∥ b,则∠ ACB=.8.如图,已知 AB∥ CD,∠ 1=60°,则∠ 2=度.第5题图第6题图第7题图第8题图二、选择题(每题 3 分,共 30 分)9.已知∠α=35 °,则∠ α的补角的度数是()A.55 °B.65 °C.145 °D.165 °10.将图中所示的图案平移后获得的图案是()A. B. C. D.第10题图11.如图, AB∥ CD,FE⊥ DB,垂足为 E,∠ 1= 50°,则∠ 2 的度数是()A.60 °B.50°C.40°D.30°第11题图第12题图12.如图,A.40 °a∥b,∠ 1=∠ 2,∠ 3=40 °,则∠ 4B.50 °等于( C.60 °)D.70 °13.以下图,已知AB∥ CD,∠A.30°B. 35°C= 70°,∠ F= 30°,则∠C.40°A 的度数为(D. 45°)第13题图第14题图第15题图第16题图14.如图, AB∥ CD, AC⊥BC,图中与∠ CAB互余的角有()A.1 个B.2 个C.3 个D.4 个15.如图,点 E 在 CD的延伸线上,以下条件中不可以判断AB∥CD 的是(A.∠ 1=∠2B.∠ 3=∠ 4C.∠ 5=∠ B D.∠ B+∠ BDC=180°)16.如图,A.2 个DH∥ EG∥ BC, DC∥EF,那么与∠B.3 个C.4 个DCB相等的角的个数为(D.5 个)17. 以下条件中能获得平行线的是()①邻补角的角均分线;②平行线内错角的角均分线;③平行线同旁内角的角均分线.A.①②B.②③C.②D.③18. 两平行直线被第三条直线所截,同位角的均分线(A.相互重合B.相互平行)C.相互垂直D.订交三、解答题(共46 分)19.( 7 分)读句绘图:如图,直线CD 与直线 AB 相交于 C,依据以下语句绘图:(1)过点 P 作 PQ∥CD,交 AB 于点 Q;(2)过点 P 作 PR⊥CD,垂足为 R;(3)若∠ DCB=120°,猜想∠ PQC是多少度?并说明原因.第19题图20.( 7 分)如图,方格中有一条漂亮可爱的小金鱼.( 1)若方格的边长为1,则小鱼的面积为;( 2)画出小鱼向左平移 3 格后的图形.(不要求写作图步骤和过程)21.( 8 分)已知:如图,∠BAP+∠ APD= 180°,∠1 =∠2.求证:∠ E =∠ F.22.( 8 分)已知:如图,∠ 1 = ∠ 2,∠ 3 = ∠ 4,∠ 5 = ∠6. 求证:ED∥FB.23.( 8 分)如图, CD 均分∠ ACB, DE∥ BC,∠ AED=80°,求∠ EDC的度数.24.( 9 分)如图,已知AB∥ CD,∠ B=65°, CM 均分∠ BCE,∠ MCN=90°,求∠ DCN的度数.25.( 10 分)如图,直线EF, CD 订交于点0,OA⊥ OB,且 OC 均分∠ AOF,(1)若∠ AOE=40°,求∠ BOD 的度数;(2)若∠ AOE=α,求∠ BOD 的度数;(用含α的代数式表示)(3)从( 1)( 2)的结果中能看出∠ AOE 和∠ BOD 有何关系?参照答案1.对顶角相等分析:依据图形可知量角器丈量角的原理是:对顶角相等.2. 65°分析:∵l∥ m,∴∠ ABC=180°-∠ 1=180°-120°=60°.在△ ABC中,∠ ACB=180°-∠ ABC-∠A=180°-60 °-55 °=65°.3.垂线段定理:直线外一点与直线上全部点的连线中,垂线段最短分析:依据垂线段定理,直线外一点与直线上全部点的连线中,垂线段最短,∴沿 AB 开渠,能使所开的渠道最短.4. ∠ 1+∠ 2=90 °分析:∵直线AB、EF订交于O点,∴∠ 1=∠ DOF.又∵AB⊥ CD,∴∠ 2+∠ DOF=90°,∴∠1+∠ 2=90°.5.65°分析:∵∠ 1=155 °,∴ ∠ EDC=180 ° -155 ° =25 ° .∵DE∥ BC,∴ ∠ C=∠ EDC=25 ° .∵在△ ABC 中,∠A=90°,∠C=25°,∴ ∠ B=180 ° -90 ° -25 ° =65 °.故答案为 65°.6.54°分析:∵ AB∥ CD,∴∠ BEF=180° ∠1=180° 72° =108°,∠ 2=∠ BEG.又∵EG均分∠ BEF,∴ ∠ BEG=∠BEF=×108° =54°,故∠ 2=∠ BEG=54°.7.78°分析:延伸BC与直线a订交于点D,∵a∥ b,∴∠ ADC=∠ DBE=50° . ∴ ∠ ACB=∠ ADC +28° =50° +28° =78° .故应填78° .8.120 分析:∵ AB ∥ CD,∴ ∠ 1= ∠ 3,而∠1=60 °,∴∠ 3=60 °.又∵ ∠ 2+ ∠ 3=180 °,∴ ∠ 2=180 ° -60 ° =120 °.故答案为 120.9. C 分析:∵∠ α=35°,∴ ∠ α的补角的度数为 180°35°=145°,应选 C.10.C 分析:依据平移的性质可知C 正确 .11. C 分析:由于 FE⊥ DB,所以∠ FED=90 °,由∠ 1=50 °可得∠ FDE=90 °-50 °=40 °.由于 AB∥ CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.12.D 分析:由于 a∥ b,所以∠ 2=∠ 4.又∠ 2=∠ 1,所以∠ 1=∠ 4.由于∠ 3=40°,所以∠ 1=∠ 4==70°.5. C分析:由AB∥ CD可得,∠ FEB=∠ C=70°,∵ ∠ F =30°,又∵ ∠FEB=∠ F+∠ A,∴ ∠A=∠ FEB ∠ F= 70° 30°=40°.应选项 C是正确的 .13. C分析:∵AB∥ CD,∴∠ ABC=∠ BCD.设∠ ABC 的对顶角为∠1,则∠ ABC=∠ 1.又∵AC⊥ BC,∴∠ACB=90°,∴∠ CAB+∠ ABC=∠ CAB+∠ BCD=∠ CAB+∠ 1=90°,所以与∠CAB 互余的角为∠ABC,∠ BCD,∠ 1.应选C.14. A选项分析:选项 B 中,∵C 中,∵∠ 5=∠ B,∴∠ 3=∠ 4,∴ AB∥ CD (内错角相等,两直线平行)AB∥ CD (内错角相等,两直线平行),故正确;,故正确;选项 D 中,∵而选项 A 中,∠∠B+∠ BDC=180 °,∴ AB ∥ CD (同旁内角互补,两直线平行)1 与∠2 是直线 AC 、BD 被直线 AD 所截形成的内错角,∵,故正确; ∠ 1=∠ 2,∴AC ∥BD ,故A 错误.选A .15. D 分析 :如题图所示,∵DC ∥ EF ,∴ ∠ DCB=∠ EFB.∵ DH ∥EG ∥ BC ,∴ ∠ GEF=∠ EFB ,∠ DCB=∠ HDC ,∠ DCB=∠ CMG=∠DME ,故与∠ DCB 相等的角共有 5 个.应选 D .16. C 分析 :联合已知条件,利用平行线的判断定理挨次推理判断. 18. B 分析:∵ 两条平行直线被第三条直线所截,同位角相等, ∴ 它们角的均分线形成的同位角相等,∴ 同位角相等的均分线平行.应选 B .19.解:( 1)( 2)以下图 .第 19 题答图( 3)∠ PQC=60° .原因:∵ PQ ∥ CD,∴ ∠ DCB+∠ PQC=180° .∵ ∠ DCB=120° ,∴ ∠ PQC=180 ° 120 ° =60°.20. 解:( 1)小鱼的面积为 7×61 1 1 1 1 1 2× 5×6 × 2×52× 4×2 ××12× ×1 1=16.222( 2)将每个重点点向左平移3 个单位,连结即可.第 20 题答图21. 证明:∵∠BAP+∠ APD = 180 °,∴ AB ∥CD. ∴ ∠ BAP = ∠ APC.又∵ ∠1 = ∠2, ∴ ∠BAP -∠1 = ∠APC -∠2.即∠ EAP = ∠ APF . ∴ AE ∥ FP . ∴ ∠ E = ∠ F .22.证明:∵∵ ∠6=∠3 = ∠4,∠5,∠ 2 =∴ AC BD . ∴ ∠6+∠2+∠3 = 180∠1, ∴ ∠5+∠1+∠ 3 = 180 ° .° .∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠ AED =80°,∴ ∠ EDC =∠ BCD ,∠ ACB=∠ AED=80° .∵ CD 均分∠ACB,1∴ ∠ BCD=∠ ACB=40°,∴∠ EDC=∠ BCD=40°.224.解:∵ AB∥CD,∴∠ B+∠ BCE=180°(两直线平行,同旁内角互补).∵ ∠ B=65°人教版七年级下册第五章平行线与订交线单元能力提高测试卷一.选择题(共11 小题)1.下边四个命题中,真命题是()A.相等的角是对顶角B.和为 180 °的两个角互为邻补角C.两条直线被第三条直线所截,内错角相等D.两条直线订交形成的四个角相等,则这两条直线相互垂直2.如图,要丈量两堵围墙形成的∠AOB 的度数,先分别延伸AO、 BO 获得∠ COD,而后经过AOB 的度数,此中运用的原理是()丈量∠COD的度数进而获得∠A.对顶角相等B.同角的余角相等C.等角的余角相等D.垂线段最短3.以下图,以下结论中不正确的选项是()A.∠ 1 和∠ 2 是同位角B.∠ 2 和∠ 3 是同旁内角C.∠ 1 和∠ 4 是同位角D.∠ 2 和∠ 4 是内错角4.已知直线m∥ n,将一块含30°角的直角三角板ABC,按以下图方式搁置,此中A、B两点分别落在直线m、 n 上,若∠1=25°,则∠ 2 的度数是()A. 25°B. 30°C. 35°D.55°5.以下图,直线a、 b、 c、 d 的地点以下图,若∠1=115°,∠ 2=115°,∠ 3=124 °,则∠ 4的度数为()A.56°B. 60°C. 65°D.66°6.如图 ,∠ BCD=90° ,AB∥ DE,则α 与β必定知足的等式是()A.α+β =180 °B.α+β =90°C.β =3αD.α -β =90°7.如图,已知AB∥ DE,∠ ABC=80°,∠ CDE=150°,则∠ BCD=()A.30°B. 40°C. 50°D.60°8.如图,以下条件:①∠1=∠ 2,②∠ 3+∠4=180 °,③∠ 5+∠6=180 °,④∠ 2=∠ 3,⑤∠ 7=∠ 2+∠3,⑥∠ 7+∠4-∠ 1=180°中能判断直线 a∥ b 的有()A.3 个B.4 个C.5 个D.6 个9.如形中,把△ABC平移后能获得△DEF的是()A.B.C.D.10.依据中数据可求暗影部分的面和()A.12B. 10C. 8D.7二.填空(共 5 小)11.如,射OA⊥ OC,射 OB⊥OD,若∠ AOB=40°,∠ COD=°.12.命“正数的平方根的和零”写.成“假如⋯⋯,那么⋯⋯”是13.如,已知直EF⊥ MN 垂足 F,且∠ 1=140 °,当∠ 2 等于,AB∥ CD.14.关于同一平面内的直线a、 b、 c,假如 a 与 b 平行, c 与 a 平行,那么 c 与 b 的地点关系是.15.把一张对边相互平行的纸条(AC′∥ BD′ )折成以下图,EF 是折痕,若折痕EF与一边的夹角∠ EFB=32°,则∠ AEG=.三.解答题(共7 小题)16.直线 AB、 CD订交于点O,OE 均分∠ BOD.OF⊥ CD,垂足为 O,若∠ EOF=54°.(1)求∠ AOC的度数;(2)作射线 OG⊥ OE,试求出∠ AOG 的度数.117.如图, AB 和 CD 订交于点O,∠ DOE=90°,若∠ BOE=3∠ AOC,(1)指出与∠ BOD 相等的角,并说明原因.(2)求∠ BOD,∠ AOD 的度数.18.如图 ,∠ ABC=∠C,∠A=∠ E.求证:∠ DBE=∠ BDA.19.如图,在△ ABC中,∠ A=∠ B,D、E是边 AB 上的点 ,DG∥ AC,EF∥ BC,DG、EF订交于点H.(1)∠ HDE与∠ HED 能否相等?并说明原因.解:∠ HDE=∠ HED.原因以下:∵DG∥ AC(已知)∴=()∵E F∥ BC(已知)∴= ()又∵∠ A=∠ B(已知)∴=().(2)假如∠ C=90°,DG、 EF 有何地点关系?并模仿(1)中的解答方法说明原因.20.如图,点D、 E 在 AB 上,点 F、 G 分别在 BC、 CA上,且 DG∥ BC,∠1=∠ 2.(1)求证: DC∥ EF;(2)若 EF⊥ AB,∠ 1=55°,求∠ ADG 的度数.21.如图,在边长为 1 个单位长度的小正方形构成的8× 8 网格中,三角形ABC的三个均在3 个单位长度、再向下平移 2 个单位长度获得三角形DEF.格点上,将三角形ABC向左平移(1)画出平移后的三角形DEF;(2)若点 A 向左平移n 个单位长度在三角形DEF的内部,请直接写出全部切合条件的整数n的值.22.如图,将△ ABC 沿射线 AB 的方向平移 2 个单位到△ DEF的地点,点 A、 B、C 的对应点分别点 D、E、 F.(1)直接写出图中与 AD 相等的线段.(2)若 AB=3,则 AE=.(3)若∠ ABC=75°,求∠ CFE的度数.23.如图,已知点 E 、F 在直线 AB 上,点 G 在线段 CD 上, ED 与 FG 交于点 H,∠ C= ∠EFG ,∠ CED= ∠ GHD .(1)求证: CE ∥GF ;(2)试判断∠ AED 与∠ D 之间的数目关系,并说明原因;(3)若∠ EHF=80°,∠ D=30°,求∠ AEM 的度数.答案:1-5 DAACA6-10 DCCAC11.4012.假如两个数是一个正数的平方根,那么这两个数的和为零13.50°14.平行15.116 °16.解:( 1)∵ OF⊥ CD,∠ EOF=54°,∴∠ DOE=90° -54 ° =36°,又∵ OE均分∠ BOD,∴∠ BOD=2∠ DOE=72°,∴∠ AOC=72°;(2)如图,若OG在∠AOD内部,则由(1)可得,∠BOE=∠DOE=36°,又∵∠ GOE=90°,∴∠ AOG=180° -90 °-36 ° =54°;如图,若OG在∠ COF内部,则由( 1)可得,∠ BOE=∠ DOE=36°,∴∠ AOE=180° -36 °=144°,又∵∠ GOE=90°,∴∠ AOG=360° -90 °-144 ° =126°.综上所述,∠ AOG的度数为54°或 126°.17.解:(1)∠AOC,对顶角相等;(2)∵∠ BOD=∠ AOC,又∵∠ BOE=∠AOC,∴∠ BOE=∠ BOD,∵∠ DOE=90°,∴∠ DOE=∠BOE+∠ BOD=∠BOD+∠ BOD=90°,解得:∠ BOD=67.5°;∴∠ AOD=180° -∠BOD=180° -67.5°=112.5°.18.证明:∵∠ ABC=∠ C,∴AB∥ CD,∴∠ A=∠ ADC,又∵∠ A=∠ E,∴∠ ADC=∠ E,∴AD∥ BE,∴∠DBE=∠ BDA.19. :∠ A,∠ HDE,两直线平行,同位角相等;∠B,∠ HED,两直线平行,同位角相等;∠HDE,∠ HED,等量代换.DG⊥ EF.20.( 1)证明:∵ DG∥ BC,∴∠ 1=∠ DCB,∵∠ 1=∠ 2,∴∠ 2=∠ DCB,∴DC ∥。
人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案
人教版七年级数学下册《第五章 相交线与平行线》单元测试卷-附参考答案(测试时间:90分钟 卷面满分:100分)班级 姓名 学号 分数一 选择题(本大题共10个小题 每小题3分 共30分 在每小题给出的四个选项中 只有一项是符合题目要求的)1.(2022春·全国·七年级单元测试)下图中 1∠和2∠是对顶角的是( )A .B .C .D . 【答案】B 【分析】根据对顶角的定义解答即可.【详解】解:A 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意B 1∠和2∠是对顶角 则此项符合题意C 1∠和2∠没有公共顶点 则不是对顶角 此项不符合题意D 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意故选:B .【点睛】本题考查了对顶角 解题的关键是熟记对顶角的定义:有一个公共顶点 并且一个角的两边分别是另一个角的两边的反向延长线 具有这种位置关系的两个角 互为对顶角. 2.(2022·全国·七年级单元测试)如图 直线AD BE 、 被直线BF 和AC 所截 则2∠的同位角有( )个.A .2B .3C .4D .1【答案】B【分析】根据同位角的定义求解即可:同位角:两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角.【详解】解:∠2的同位角有:∠1 ∠F AC ∠4 共三个.故选:B .【点睛】本题考查了同位角熟记同位角定义是解题的关键.3.(2022春·七年级单元测试)如图所示的图案可以看作由“基本图案”经过平移得到的是()A.B.C.D.【答案】B【分析】根据平移的概念:在平面内把一个图形整体沿某一的方向移动这种图形的平行移动叫做平移变换简称平移即可选出答案.【详解】解:A 不是由“基本图案”经过平移得到故此选项不符合题意B 是由“基本图案”经过平移得到故此选项符合题意C 不是由“基本图案”经过平移得到故此选项不符合题意D 不是由“基本图案”经过平移得到故此选项不符合题意故选B.【点睛】本题考查生活中的平移现象仔细观察各选项图形是解题的关键.4.(2022秋·江苏连云港·七年级校考单元测试)下列语句中属于命题的是()A.等角的余角相等B.两点之间线段最短吗C.连接P Q两点D.花儿会不会在春天开放【答案】A【分析】根据命题的定义对选项一一进行分析即可.【详解】解:选项A:是用语言可以判断真假的陈述句是命题故符合题意选项B C D:都不是可以判断真假的陈述句都不是命题故不符合题意.故选:A【点睛】本题考查了命题的定义解本题的关键在判断给出的语句是否用语言符号或式子表达是否为可以判断真假的陈述句.一般地对某件事情作出正确或不正确的判断的句子叫做命题命题可看做由题设和结论两部分组成.5.(2022·全国·七年级单元测试)如图若图形A经过平移与下方图形(阴影部分)拼成一个长方形则平移方式可以是()A .向右平移4个格 再向下平移4个格B .向右平移6个格 再向下平移5个格C .向右平移4个格 再向下平移3个格D .向右平移5个格 再向下平移4个格 【答案】A【分析】根据平移的性质 结合图形解答即可.【详解】解:图形A 向右平移4个格 再向下平移4个格可以与下方图形(阴影部分)拼成一个长方形 故选:A .【点睛】本题考查的是平移的性质 把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.6.(2022春·黑龙江哈尔滨·七年级校考单元测试)如图 已知直线AB CD ∥ 130GEF ∠=︒ 135EFH ∠=︒ 则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒ 【答案】D【分析】由130GEF ∠=︒ 135EFH ∠=︒可得1324265︒∠+∠+∠+∠= 由ABCD 得34180∠+∠=︒ 进而可求出12∠+∠的度数.【详解】解:如下图所示∠130GEF ∠=︒∠13130︒∠+∠=∠135EFH ∠=︒∠24135︒∠+∠=∠1324265︒∠+∠+∠+∠=∠AB CD∠34180∠+∠=︒∠121324(34)26518085︒∠∠︒+∠=∠+∠+∠+∠-+∠=︒=-故选:D .【点睛】本题考查了平行线的性质 解题的关键是根据平行线的性质找出图中角度之间的关系.7.(2022春·江苏·七年级单元测试)下列说法中 错误的有( )①若a b ∥ b c ∥ 则a c ∥②若a 与c 相交 b 与c 相交 则a 与b 相交③相等的角是对顶角④过一点有且只有一条直线与已知直线平行.A .3个B .2个C .1个D .0个【答案】A【分析】根据平行公理及推论可判断① 若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 可判断② 对顶角相等 但相等的角不一定是对顶角 可判断③ 根据平行公理及推论可判断④.【详解】解:根据平行线公理及推论可知 ①正确若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 ②错误对顶角相等 但相等的角不一定是对顶角 ③错误过直线外一点有且只有一条直线与已知直线平行④错误.故错误的有3个故选:A.【点睛】本题考查平行公理及推论平行线的判定与性质熟练掌握平行线的判定与性质是解答本题的关键.8.(2022·全国·七年级单元测试)如图P为直线l外一点A B C在l上且PB∠l下列说法中正确的个数是()①P A PB PC三条线段中PB最短②线段PB叫做点P到直线l的距离③线段AB的长是点A到PB 的距离④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度叫做点到直线的距离从直线外一点到这条直线上各点所连的线段中垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段根据垂线段最短可知P A PB PC三条线段中PB 最短故原说法正确②线段BP是点P到直线l的垂线段故线段BP的长度叫做点P到直线l的距离故原说法错误③线段AB是点A到直线PB的垂线段故线段AB的长度叫做点P到直线l的距离故故原说法正确④由题意及图形无法判断线段AC的长是点A到PC的距离故原说法错误综上所述正确的说法有①③故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中垂线段最短.∥的是()9.(2022春·天津·七年级校考单元测试)如图下列条件中能判断AB CDA .12∠=∠B .34∠∠=C .180DAB ABC ∠+∠=︒D .B D ∠=∠ 【答案】A 【分析】结合图形分析两角的位置关系 根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:∠12∠=∠∠AB CD ∥故①选项符合题意∠34∠∠=∠AD BC ∥故②选项不符合题意∠180DAB ABC ∠+∠=︒∠AD BC ∥故③选项不符合题意∠B D ∠=∠ 不能判定AB CD ∥故④选项不符合题意故选:A .【点睛】本题主要考查了平行线的判定 能根据图形准确找出同位角 内错角和同旁内角是解决问题的关键.10.(2022秋·江苏盐城·七年级校联考单元测试)如图 在宽为20m 长为30m 的矩形地面上修建两条同样宽的道路 余下部分作为耕地.根据图中数据 计算耕地的面积为( )A .600m 2B .551m 2C .550m 2D .500m 2【答案】B【详解】由图可以看出两条路的宽度为:1m 长度分别为:20m 30m所以 可以得出路的总面积为:20×1+30×1-1×1=49m 2又知该矩形的面积为:20×30=600m 2所以 耕地的面积为:600-49=551m 2.故选B.二 填空题(本大题共8个小题 每题2分 共16分)11.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考单元测试)如图 要把池水引到C 处 可作CD AB ⊥于点D 然后沿CD 开渠 可使所开渠道最短 依据是______.【答案】垂线段最短【分析】根据直线外一点到直线的距离解答.【详解】解:因为直线外一点到直线上各点的连线中 垂线段最短所以沿CD 开渠故答案为:垂线段最短.【点睛】本题考查垂线段的性质 熟练掌握垂线段最短是解决本题的关键.12.(2022秋·重庆铜梁·七年级校考单元测试)如图 O 是直线AB 上一点 32COB ∠=︒ 则1∠=___.【答案】148︒##148度 【分析】依据邻补角进行计算 即可得到∠1的度数.【详解】解:∠O 是直线AB 上一点 32COB ∠=︒∠118032148∠=︒-︒=︒故答案为:148︒.【点睛】本题主要考查了邻补角的概念 只有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 互为邻补角.邻补角互补 即和为180︒.13.(2022秋·河南安阳·七年级统考单元测试)如图 给出下列条件:①∠1=∠2 ②∠3=∠4 ③∠A =∠CDE ④∠A +∠ADC =180°.其中 能推出AB //DC 的条件为_______.【答案】①③④【分析】根据平行线的判定定理逐个分析判断即可求解.【详解】解:①∠∠1=∠2∥符合题意∠AB DC②∠∠3=∠4∥不符合题意∠BC AD③∠∠A=∠CDE∥符合题意∠AB DC④∠∠A+∠ADC=180°∥符合题意∠AB DC故答案为:①③④.【点睛】本题考查了平行线的判定定理掌握平行线的判定定理是解题的关键.14.(2022秋·云南昭通·七年级校考单元测试)如图把三角尺的直角顶点放在直线b上.若∠1= 50° 则当∠2=____时a∥b.【答案】40°##40度【分析】根据三角尺的直角顶点在直线b上∠1=50° 即可得到∠3=180°−90°−∠1=40° 再根据a//b即可得到∠2=∠3=40°.【详解】解:如图∠三角尺的直角顶点在直线b上∠1=20°∠∠3=180°−90°−∠1=40°又∠要使得a b∠只需要∠2=∠3=40°故答案为:40.【点睛】本题主要考查了平行线的性质熟记两直线平行线同位角相等是解题的关键.15.(2022秋·河北石家庄·七年级统考单元测试)在同一平面内直线a b相交于P 若a∠c 则b与c的位置关系是______.【答案】相交【详解】解:因为a∠c 直线b相交所以直线b与c也有交点故答案为:相交.【点睛】本题考查了平行线和相交线.同一平面内一条直线与两条平行线中的一条相交则必与另一条直线也相交.16.(2022秋·北京·七年级校考单元测试)如图快艇从P处向正北航行到A处时向右转60︒航行到B处再向左转90︒继续航行此时的航行方向为北偏西______°.【答案】30【分析】根据平行线的性质与方位角的定义即可求解.【详解】解:如图∠//PC BE 60CAB ∠=︒∠60EBF ∠=︒∠906030DBE此时的航行方向为:北偏西30︒故答案为:30.【点睛】此题主要考查方位角 解题的关键是熟知方位角的定义及平行线的性质.17.(2022·全国·七年级单元测试)如图 在三角形ABC 中 90BAC ∠=︒ 4cm AB = 5cm =BC 3cm AC = 将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF 且AC 与DE 相交于点G 连接AD .(1)阴影部分的周长为______cm(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm 则a 的值为______.【答案】 12 4.5##92##142 【分析】(1)由平移的性质可得出cm AD BE a == 5cm DE AB ==.再根据()5cm CE BC BE a =-=- 即ADG S ABC CEG ABEG S S S =+四边形 即可得出1342ADG CEG S S =⨯⨯- 再根据24.8cm ADG CEG S S -= 列出关于a 的等式 解出a 即可.【详解】(1)∠三角形ABC 沿BC cm(5)a <得到三角形DEFCE BC =∴阴影部分的周长为故答案为:(2)过AABC S =3AH =ADG ABED S四边形 ADG S . ABC CEG ABEG S S S =+四边形1342CEG ABEG S S =⨯⨯-四边形121342ADG CEG BE S S ⨯-=⨯⨯- 即125ADG CEG S S -=ADG 的面积比三角形EGC 的面积大24.8cm 4.8cm ADG CEG SS -=4 4.8⨯= 18.(2022春·黑龙江哈尔滨·七年级单元测试)如图 直线AB CD ∥ 点E F 分别为直线AB 和CD 上的点 点P 为两条平行线间的一点 连接PE 和PF 过点P 作EPF ∠的平分线交直线CD 于点G 过点F 作FH PG ⊥ 垂足为H 若120DGP PFH ∠-∠=︒ 则AEP ∠=________︒.【答案】30︒【分析】设FPG x GPM y ∠∠=︒=︒, 过P 作PM CD ∥ 则AB CD PM ∥∥ 用x y ︒︒,表示PGD ∠ PFH ∠ 代入求出x y ︒-︒ 即AEP ∠的值可以解出.【详解】解:设FPG x GPM y ∠∠=︒=︒,PG 平分EPF ∠EPG FPG x ∠∠∴==︒过P 作PM CD ∥∥AB CDAB CD PM ∴∥∥AEP EPM EPG MPG x y ∠∠∠∠∴==-=︒-︒ 180180PGD MPG y ∠∠=︒-=︒-︒FH PG ⊥90PHF ∠∴=︒909090PFH FPG FPG x ∠∠∠∴=︒-=︒-=︒-︒120DGP PFH ∠-∠=︒()()18090120y x ∴︒-︒-︒-︒=︒ 即30x y ︒-︒=︒30AEP x y ∠∴=︒-︒=︒.故答案为:30︒.【点睛】本题考查平行线的性质 角平分线的性质 垂线的性质 熟练运用性质计算是解题的关键.三 解答题(本大题共8个小题 共54分 第19-22每小题6分 23-24每小题7分 25-26每小题8分)19.(2022·全国·七年级单元测试)如图 在边长为1个单位的正方形网格中 ABC 经过平移后得到A B C ''' 点B 的对应点为B ' 根据下列条件 利用网格点和无刻度的直尺画图并解答 保留痕迹:(1)画出A B C ''' 线段AC 扫过的图形的面积为______(2)在A B ''的右侧确定格点Q 使A B Q ''△的面积和ABC 的面积相等 请问这样的Q 点有______个? 根据平移的性质得出'''ABC线段)根据平行线之间的距离处处相等可得答案.A B C '''即为所求111022612411022A B ∥ 则点1234,,,Q Q Q Q 即为所求本题主要考查了作图——平移变换20.(2022秋·北京海淀·七年级校考单元测试)如图 点C 在MON ∠的一边OM 上 过点C 的直线AB ON ∥CD 平分ACM ∠.当60DCM ∠=︒时 求O ∠的度数.解:∠CD 平分ACM ∠∠ACM ∠= .∠60DCM ∠=︒∠ACM ∠= °.∠直线AB 与OM 交于点C∠OCB ∠=ACM ∠= °( )∠AB ON ∥∠+=180O OCB ∠∠︒( )∠O ∠= °.【答案】2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60【分析】根据角平分线的定义 即可得到∠ACM 的度数 进而得出∠OCB 的度数 再依据平行线的性质 即可得到∠O 的度数.【详解】解:∠CD 平分ACM ∠∠=2ACM DCM ∠∠.∠∠60DCM ∠=︒∠=120ACM ∠︒.∠直线AB 与OM 交于点C∠==120OCB ACM ∠∠︒(对顶角相等)∠AB ON ∥∠+=180O OCB ∠∠︒(两直线平行 同旁内角互补)∠=60O ∠︒.故答案为:2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60.【点晴】本题主要考查了角的计算 平行线的性质以及角平分线的定义 解题的关键是熟练掌握平行线的性质:两直线平行 同旁内角互补.21.(2022秋·重庆铜梁·七年级校考单元测试)如图 在四边形ABCD 中 130A ∠=︒ 50ADC ∠=︒ 试说明12∠=∠.【答案】AB CD 同旁内角互补 两直线平行 两直线平行 内错角相等【分析】由180A ADC ∠+∠=︒ 利用同旁内角互补 两直线平行可得AB CD ∥ 再利用平行线的性质可得答案.【详解】证明:∠130A ∠=︒ 50ADC ∠=︒(已知)∠180A ADC ∠+∠=︒(等式的性质)∠AB CD ∥ (同旁内角互补 两直线平行)∠12∠=∠(两直线平行 内错角相等).【点睛】本题考查的是平行线的判定与性质 熟记平行线的性质与判定方法是解本题的关键.22.(2022·全国·七年级单元测试)如图 己知点P Q 分别在AOB ∠的边OA OB 、上 按下列要求画图:(1)画射线PQ(2)过点P 画垂直于射线OB 的线段PC 垂足为点C(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图分别P画垂直于射线OB的射线PC垂足为点C过点Q画直线QM平行于射线OA.【详解】(1)如图射线PQ为所求(2)如图线段PC为所求(3)如图直线QM为所求【点睛】此题主要考查了基本作图正确把握相关定义是解题关键.23.(2022春·七年级单元测试)如图汽车站码头分别位于A B,两点直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线并说明理由(2)从码头B到公路b怎样走最近?画出最近路线BC并说明理由.【答案】(1)作图见解析 理由见解析(2)作图见解析 理由见解析【分析】(1)根据两点之间线段最短解决问题.(2)根据垂线段最短解决问题.【详解】(1)解:如图 连接,A B 线段AB 即为所求作.(2)如图 过点B 作BC b ⊥于点C 线段BC 即为所求作.【点睛】本题考查作图﹣应用与设计作图 垂线段最短 两点之间线段最短等知识 解题的关键是理解题意 灵活运用所学知识解决问题.24.(2022春·七年级单元测试)如图 AB CD ⊥ 垂足为O .(1)比较AOD EOB AOE ∠∠∠,,的大小 并用“<”号连接.(2)若28EOC ∠=︒ 求EOB ∠和EOD ∠的度数.【答案】(1)AOE AOD EOB ∠<∠<∠(2)118152EOB EOD ∠=︒∠=︒,【分析】(1)根据图形可判断各角的大小.(2)根据图形可得90118EOB EOC ∠=∠+︒=︒,根据平角的定义求得EOD ∠. 【详解】(1)解:∠AB CD ⊥∠909090AOD EOB EOC AOE EOC ∠=︒∠=︒+∠∠=︒-∠,,∠AOE AOD EOB ∠<∠<∠(2)∠AB CD ⊥∠90118EOB EOC ∠=∠+︒=︒∠180********EOD EOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角的关系 垂直的定义 通过已知角求得未知角 数形结合是解题的关键. 25.(2022春·广东·七年级单元测试)如图 直线CD EF 交于点O OA OB 分别平分COE ∠和DOE ∠ 已知1290∠+∠=︒ 且2:32:5∠∠=.(1)求BOF ∠的度数(2)试说明AB CD 的理由.∠+∠)解:12AOCAB CD.【点睛】本题主要考查了平行线的判定与性质是解题的关键.26.(2022秋·上海宝山·七年级校考单元测试)已知AB∠CD点M为平面内的一点∠AMD=90°.(1)当点M在如图1的位置时求∠MAB与∠D的数量关系(写出说理过程)(2)当点M在如图2的位置时则∠MAB与∠D的数量关系是(直接写出答案)(3)在(2)条件下如图3 过点M作ME∠AB垂足为E∠EMA与∠EMD的角平分线分别交射线EB于点F G回答下列问题(直接写出答案):图中与∠MAB相等的角是∠FMG=度.【答案】(1)∠MAB+∠D=90°见解析(2)∠MAB﹣∠D=90°(3)∠MAB=∠EMD45【分析】(1)在题干的基础上通过平行线的性质可得结论(2)仿照(1)的解题思路过点M作MN∠AB由平行线的性质可得结论(3)利用(2)中的结论结合角平分线的性质可得结论.【详解】(1)解:如图①过点M作MN∥AB∵AB∥CD∴MN∥AB∥CD(如果一条直线和两条平行线中的一条平行那么它和另一条也平行).∴∠D=∠NMD.∵MN∥AB∴∠MAB+∠NMA=180°.∴∠MAB+∠AMD+∠DMN=180°.∵∠AMD=90°∴∠MAB+∠DMN=90°.∴∠MAB+∠D=90°(2)解:如图②过点M作MN∥AB∵MN∥AB∴∠MAB+∠AMN=180°.∵AB∥CD∴MN∥AB∥CD.∴∠D=∠NMD.∵∠AMD=90°∴∠AMN=90°﹣∠NMD.∴∠AMN=90°﹣∠D.第21页共22页第22页共22页。
最新人教版七年级下册第五章《相交线与平行线》单元检测试题(含答案解析)
人教版七年级下册数学单元检测卷:第五章相交线与平行线一.填空题(共6小题)1.如图,直线DE经过三角形ABC的顶点A,则∠DAC与∠C的关系是.(填“内错角”或“同旁内角”)2.如图,AB∥CD,CF交AB于点E,∠AEC与∠C互余,则∠CEB是度.3.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD= °.4.把命题“等角的余角相等”写成“如果……,那么……”的形式为.5.在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量图中线段PC的长,理由是.6.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).二.选择题(共10小题)7.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°15′.则∠AOD的度数为()A.55°15′B.65°15′C.125°15′D.165°15′8.图中∠1和∠2是对顶角的是()A.B.C.D.9.在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是()A.B.C.D.10.下列命题中是假命题的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行11.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D12.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°13.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠E=45°,∠B=60°,若AE∥BC,则∠AFD=()A.75°B.85°C.90°D.65°14.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°15.下列现象是平移的是()A.电梯从底楼升到顶楼B.卫星绕地球运动C.碟片在光驱中运行D.树叶从树上落下16.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48三.解答题(共6小题)17.如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21°,求∠AOB的度数.18.如图,已知直线AB,CD,EF相交于点O.(1)若∠COF=120°,∠AOD=100°,求∠AOF的度数;(2)若∠BOC-∠BOD=20°,求∠AOC的度数.19.填空或批注理由:如图,已知∠1=∠2,∠A=∠D,试说明:AE∥BD证明:∵∠1=∠2(已知)∴AB∥CD ( )∴∠A=()( )∵∠A=∠D(已知)∴=∠D ( )∴AE∥BD ( )20.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?21.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是.22.如图,已知点D、E、B、C分别是直线m、n上的点,且m∥n,延长BD、CE交于点A,DF 平分∠ADE,若∠A=40°,∠ACB=80°.求:∠DFE的度数.23.问题情境:(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答;问题迁移:如图3,点A、B在射线OM上,点C、D在射线ON上,AD∥BC,点P在射线OM上运动(点P与A、B、O三点不重合).(2)当点P在线段AB上运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由;(3)当点P在线段AB外运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由.参考答案1. 同旁内角2.1353.154. 如果两个角相等,那么这两个角的余角相等5. 垂线段最短6. ⑤⑥7-11 CADDD12-16 CACAD17. 解:(1)∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°;(2)∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=∠BOC,∵∠COD=21°,∴21°+∠BOC=∠BOC,∴∠BOC=42°,∴∠AOB=3∠BOC=126°.18.解:(1)∵∠COF=120°,∴∠2=180°-120°=60°,∴∠DOF=∠2=60°,∵∠AOD=100°,∴∠AOF=100°-60°=40°;(2)∵∠BOC+∠BOD=180°,∠BOC-∠BOD=20°,∴∠BOC=100°,∠BOD=80°,∴∠AOC=∠BOD=80°.19. 内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.20. 解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).21. 解:(1)如图①,PQ∥MN,PN⊥MN;(2)如图②,△EFG或△EFH即为所求;(3)三角形的面积为:3×3-×1×2-×1×3-×2×3=9-1-1.5-3=3.5,22.解:∵m∥n,∠ACB=80°∴∠AED=∠ACB=80°,∵∠A=40°,∴△ADE中,∠ADE=180°-(∠A+∠AED)=180°-(40°+80°)=60°,又∵DF平分∠ADE,∴∠EDF=∠ADE=30°,∴△DEF中,∠DFE=180°-∠EDF-∠DEF=180°-30°-80°=70°.23.解:(1)∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°-∠A=50°,∠CPE=180°-∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠ADP +∠BCP,理由如下:如图3,过P作PE∥AD交CD于点E,图3∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠ADP,∠CPE=∠BCP,∴∠CPD=∠DPE+∠CPE=∠ADP +∠BCP;(3)①当点P在射线AM上时,∠CPD=∠BCP-∠ADP;理由:如图4,过点P作PE∥AD交ON于点E,∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠人教版七年级数学下册单元测试卷第五章相交线与平行线综合能力提升测试卷一、选择题(每小题4分,共24分)1.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 153°.2.“直角都相等”的题设是两个角是直角,结论是这两个角相等.3.如图,点A在直线DE上,当∠BAC=___57_____°时,DE∥BC.4. 如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是内错角 .5.互为邻补角的两个角相加等于180°.6.如图,AB∥CD,则∠1+∠3—∠2的度数等于 ___180° _____.二、选择题(每小题4分,共40分)7.如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°8.下列命题是真命题的是( C )A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交9.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为( C )A. ①②③B. ①②④C. ①③④D. ②③④10.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35°B.40°C.45°D.60°11 .经过直线外一点画直线,下列说法错误的是( B )A.可以画无数条直线与这条直线相交B.可以画无数条直线与这条直线平行C.能且只能画一条直线与这条直线平行D.能且只能画一条直线与这条直线垂直12.下列叙述中,正确的是( C )A. 在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B. 不相交的两条直线叫平行线C. 两条直线的铁轨是平行的D. 我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角13. 如图,点O为直线AB上一点,CO⊥AB于点O, OD在∠COB内,若∠COD=50°,则∠AOD的度数是( D )A.100°B.110°C.120°D.140°14. 下列图形中,周长最长的是( C )15. 如图,已知OA⊥OC,OB⊥OD, ∠BOC=50°,则∠AOD的度数为( C )A.100°B.120°C.130°D.140°16 .a、b、c是平面上的任意三条直线,它们的交点可以有( B )A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不正确三、解答题(共36分)17.(共7分)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和____是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____是内错角;(3)∠1和∠3是直线AB,AF被直线_____所截构成的_____角;(4)∠2和∠4是直线____,______被直线BC所截构成的_____角.17.(1) ∠2(2) ∠4(3) ED内错(4) AB, AF同位18. (共4分)如图,直线AB、CD是一条河的两岸,并且AB∥CD,E为直线AB、CD 外一点,现想过点E画岸CD的平行线,只需过点E画岸AB的平行线即可.画图,并说明理由.图略理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (共4分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).20. (共6分)根据下列要求画图.(1)如图1,过点P画AB的垂线;(2)如图2,过点P画OA,OB的垂线;(3)如图3,过点A画BC的垂线.答案:(1)如图1所示.(2)如图2所示.(3)如图3所示.21. (共7分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE 与DF的位置关系?试说明理由。
人教版七年级下册数学第五章相交线与平行线-测试题含答案
图中对顶角有:∠AOC 与∠BOD、∠AOD 与∠BOC,共 2 对.
故选 B.
【点睛】
本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的
两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的
反向延长线形成的夹角即可
8.C
【解析】
【详解】
然后由 AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.
【详解】
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠BAC=120°,
∴∠ACD=180°-120°=60°,
∵AC∥DF,
∴∠ACD=∠CDF,
∴∠CDF=60°.
故选 A.
【点睛】
本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
A.120°
B.125°
C.135°
10.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(
)
D.145°
)
第 2 页
A.60°
B.65°
C.50°
D.45°
二、填空题
11.如图, AB、CD 相交于点 O , OE 平分 AOD ,若 BOC 60 ,则 COE 的度数是
∴∠1=∠EBC=16°,
故选:C.
【点睛】
考查了平行线的性质,解题时注意:两直线平行,内错角相等.
4.D
【解析】
【分析】
直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三
条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.
【详解】
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。
人教版初中数学七年级下册第五章《相交线与平行线》单元测试题(含答案)
第五章《相交线与平行线》单元检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1和∠2是对顶角的是( )A. B. C. D.2.下列说法正确的是()A. 不相交的两条直线互相平行B. 垂直于同一条直线的两条直线互相平行C. 经过直线外一点有且只有一条直线与这条直线平行D. 同一平面内,两条直线的位置关系有三种:平行、垂直和相交3.已知,如图,∠1=∠2=∠3=55°,则∠4的度数等于()A. 115°B. 120°C. 125°D. 135°4.如图,若AB//CD,则∠B、∠C、∠E三者之间的关系是( )A. ∠B+∠C+∠E=180°B. ∠B+∠E-∠C=180°C. ∠B+∠C-∠E=180°D. ∠C+∠E-∠B=180°5.一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度应是()A. 第一次向左拐40°,第二次向右拐40°B. 第一次向右拐40°,第二次向左拐140°C. 第一次向左拐40°,第二次向左拐140°D. 第一次向右拐40°,第二次向右拐140°6.如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是()A. 24°B. 26°C. 34°D. 22°7.如图:能判断的条件是A. B. C. D.8.下列图形中,能将其中一个图形平移得到另一个图形的是()A. B. C. D.9.如果a∥b,a∥c,那么b与c的位置关系是()A. 不一定平行B. 一定平行C. 一定不平行D. 以上都有可能10.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A. B. C. D.二、填空题11.如图,∥,AB⊥,BC与相交,若∠ABC=130°,则∠1=________°.12.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是_________.13.如图,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________14.如图,已知如图,,︰=1︰3,=35°,则AD与BC的关系是°.15.如图,当光线从空气中射入水中时,光线的传播方向发生了变化,这种现象叫做光的折射,在图中,AB与直线CD相交于水平面点交于水平点F,一束光线沿CD射入水面,在点F处发生折射,沿FE射入水内.如果,,则光的传播方向改变了____度.三、解答题16.根据提示填空如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD所以∠2=____(____________________________)又因为∠1=∠2所以∠1=∠3(______________)所以AB∥_____(_____________________________)所以∠BAC+______=180°(_____________________)因为∠BAC=80°所以∠AGD=_______17.如图,直线AB、CD相交于点O,OE把分成两部分;(1)直接写出图中的对顶角为,的邻补角为;(2)若,且,求的度数.18.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.19.如图所示,已知AB∥CD,证明下列两个图形中∠P与∠A,∠C的关系.参考答案1.B2.C3.C4.B5.A6.A7.A8.A9.B10.B11.14012.34°13.4∠AFC=3∠AEC14.15.1316.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴(两直线平行,同旁内角互补),∵,∴17.(1)∠BOC,∠BOE;(2)138°解:(1)∠AOD的对顶角为∠BOC,∠AOE的邻补角为∠BOE;(2)∵∠AOC=∠BOD,∠AOC:∠DOE=5:3,∴∠BOD:∠DOE=5:3.设∠BOD=5x,则∠DOE=3x,∴∠BOE=∠BOD-∠DOE=5x-3x=2x.∵∠BOE=28°,∴2x=28°,∴x=14°,∴∠DOE=3x=3×14°=42°.∵∠DOE+∠COE=180°,∴∠COE=180°-∠DOE=180°-42°=138°.18.解:设∠1、∠2、∠3分别为x°、2x°、3x°.∵AB∥CD,∴由同旁内角互补,得:2x°+3x°=180°,解得:x=36°;∴∠1=36°,∠2=72°.∵∠EBG=180°,∴∠EBA=180°﹣(∠1+∠2)=72°;∴∠2=∠EBA,∴BA平分∠EBF.19.如图1,∠A+∠P+∠C=360°;如图2,∠A+∠C=∠P证明如下:过点P作PE∥AB,∵AB∥CD,∴AB∥CD∥PE,如图(1),∵,,∴;如图(2),∵∠A=∠APE,∠C=∠CPE,∴∠A+∠C=∠P.。
人教版七年级下册数学第五章《相交线与平行线》单元测试(含答案)
第五章相交线与平行线单元测试一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直3.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有().A.0个B.1个C.2个D.3个4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完全重合的多边形二、填空题9.如图所示,AB ∥CD ,EF 分别交AB 、CD 于G 、H 两点,若∠1=50°,则∠EGB =________.10.平行用符号表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE ∥AB 的一个条件,这个条件是;①:________ ②:________ ③:________13.如图,已知AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,EP ⊥EF ,与∠EFD 的平分线FP相交于点P ,且∠BEP=50°,则∠EPF=________度.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.北 北 甲 乙三、解答题17.把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC平分∠DAB,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?参考答案一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】D.3. 【答案】B;【解析】(1)只有两条直线平行时,同位角相等,错误;(2)正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误.故选:B.4. 【答案】D;【解析】因为不知道直线AB和CD是否平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角是否相等,故选D.5. 【答案】D【解析】易见A、B、C都可以通过基本图形平移得到,只有D不能.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q 点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确.8.【答案】C【解析】分析:两个能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个角度的多边形)完全重合在一起,只有两个点或两个半径相等的圆总能完全重合在一起,故选C.二、填空题9. 【答案】50°【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF,故∠EGB=50°.10.【答案】∥,AB∥CD.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度. 12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B 或∠A+∠ACE=180°.13.【答案】70°;【解析】∠EFD+∠FEB=180°,∠EFD=180°-50°-90°=40°,∴∠EFP=20°,则∠EPF=180°-90°-20°=70°.14.【答案】∥,∥,⊥;15.【答案】48°;【解析】内错角相等,两直线平行.16.【答案】8;【解析】表示点到直线或线段距离的垂线段有:线段AC、BC、DE、CE、BE、CD、CB、AD.三、解答题17.【解析】解:AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.18.【解析】解:AB∥CD,理由如下:因为AC平分∠DAB(已知),所以∠1=∠3(角平分线定义).又因为∠1=∠2(已知),所以∠2=∠3(等量代换),所以AB∥CD(内错角相等,两直线平行).19.【解析】解:将马路的一边向另一边平移到重合,则此时草地的形状为:长为(a-2)米,宽为b米的长方形,所以面积为:(a-2)b=(ab-2b)平方米.20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF =∠B(等量代换).。
最新(人教版)七年级数学下册第五章《相交线与平行线》单元测试卷(带答案)
七年级数学下册第五章《相交线与平行线》单元测试卷满分:150分考试时间:120分钟班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A. 10°B. 20°C. 30°D. 40°2.如图,下列条件中,不能判定AB//CD的是()A. ∠D+∠BAD=180°B. ∠1=∠2C. ∠3=∠4D. ∠B=∠DCE3.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°4.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A. 5B. 6C. 10D. 45.如图,在三角形ABC中,∠ABC=90°,将三角形ABC沿AB方向平移AD的长度得到三角形DEF,已知EF=8,BE=3,CG=3,则图中阴影部分的面积是()A. 12.5B. 19.5C. 32D. 45.56.如图,已知AB//DE,∠1=30°,∠2=35°,则∠BCE的度数为()A. 70°B. 65°C. 35°D. 5°7.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠4+∠BCD=180°,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD//BC的条件为()A. ①②③B. ①②④C. ①③④D. ②③④8.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF,则∠GEB=()A. 10°B. 20°C. 30°D. 40°9.要证明命题“若a>b则a2>b2”是假命题,下列a,b的值能作为反例的是()A. a=−1,b=2B. a=−2,b=−3C. a=−1,b=0D. a=−2,b=−110.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的∠A=110°,第二次拐的∠B是130°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A. 160°B. 150°C. 130°D. 110°二、填空题(本大题共10小题,共30.0分)11.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.12.如图,直线a、b被直线c所截,若满足________,则a//b.(写出一个即可)13.如图,AB//CD,CB//DE,∠B=50°,则∠D=____________.14.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为______.15.根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为.16.如图,AB//CD,则∠A+∠E+∠F+∠C=.17.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是______.18.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为______.19.平面上不重合的四条直线,可能产生交点的个数为______个.20.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.三、解答题(本大题共6小题,共80.0分)21.(12分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE//DF,求证:∠E=∠F.22.(12分)如图,直线EF分别与直线AB、CD交于M,N两点,∠1=55°,∠2=125°,求证:AB//CD【要求写出每一步的理论依据】.23.(12分)如图,AB、CD交于点O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(题中所说的角均是小于平角的角).(1)求∠AOE的度数;(2)请写出∠AOC在图中的所有补角;(3)从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.24.(14分)如图,已知直线l1//l2,l3和l1,l2分别交于C,D两点,点A,B分别在直线l1,l2上,且位于l3的左侧,点P在直线l3上,且不和点C,D重合.(1)如图①,当动点P在线段CD上运动时,试确定∠1、∠2、∠3之间的关系,并给出证明;(2)如图②,当动点P在线段DC的延长线上运动时,(1)中的结论是否成立?若不成立,试写出新的结论,并给出证明.25.(14分)如图,AB⊥AC,∠1与∠B互余.(1)AD与BC平行吗?为什么?(2)若∠B=∠D,则AB与CD平行吗?为什么?26.(16分)(1)如图①,若AB//CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB//CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB//CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB//CD,猜想∠B+∠D+∠E1+∠E2+⋯+∠E n的度数?答案1.B2.C3.B4.A5.B6.B7.C8.B9.B10.A11.①②12.∠1=∠2(答案不唯一)13.130°14.30°15.1616.540°17.同位角相等,两直线平行18.55°19.0,1,3,4,5,620.45°,60°,105°,135°21.解:∵CE//DF,∴∠ACE=∠D,∵∠A=∠1,∴180°−∠ACE−∠A=180°−∠D−∠1,又∵∠E=180°−∠ACE−∠A,∠F=180°−∠D−∠1,∴∠E=∠F.22.证明:∵∠1=55°(已知),∴∠CNM=55°(对顶角相等),∵∠2=125°(已知),∴∠CNM+∠2=180°(等式的性质),∴AB//CD(同旁内角互补,两直线平行).23.解:(1)设∠DOE=x,则∠AOE=4x,∵∠AOE的余角比∠DOE小10°,∴90°−4x=x−10°,∴x=20°,∴∠AOE=80°;(2)∠AOC在图中的所有补角是∠AOD和∠BOC;(3)∵∠AOE=80°,∠DOE=20°,∴∠AOD=100°,∴∠AOC=80°,如图,当OP在CD的上方时,设∠AOP=x,∴∠DOP=100°−x,∵∠COP=∠AOE+∠DOP,∴80°+x=80°+100°−x,∴x=50°,∴∠AOP=∠DOP=50°,∵∠BOD=∠AOC=80°,∴∠BOP=80°+50°=130°;当OP在CD的下方时,设∠DOP=x,∴∠BOP=80°−x,∵∠COP=∠AOE+∠DOP,∴100°+x=80°+80°−x,∴x=30°,∴∠BOP=30°,综上所述,∠BOP的度数为130°或30°.24.解:(1)∠3+∠1=∠2成立.理由如下:过点P作PE//l1,∴∠1=∠APE;∵l1//l2,∴PE//l2,∴∠3=∠BPE,又∵∠BPE+∠APE=∠2,∴∠3+∠1=∠2.(2)∠3+∠1=∠2不成立,新的结论为∠3−∠1=∠2.理由如下:过点P作PE//l1,∴∠1=∠APE;∵l1//l2,∴PE//l2,∴∠3=∠BPE;又∵∠BPE−∠APE=∠2,∴∠3−∠1=∠2.25.解:(1)AD//BC,理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1与∠B互余,∴∠1+∠B=90°,∴∠1+∠BAC+∠B=180°,即∠B+∠BAD=180°,∴AD//BC;(2)AB//CD,理由如下:由(1)可知∠B+∠BAD=180°,∵∠B=∠D,∴∠D+∠BAD=180°,∴AB//CD.26.解:(1)如图①,过E1作E1F//AB,则E1F//CD,∴∠B+∠1=180°①,∠D+∠2=180°②,①+②得∠B+∠1+∠D+∠2=360°,即∠B+∠D+∠E1=360°;(2)如图②,分别过E1,E2作E1F//AB,E2G//AB,则E1F//E2G//CD,∴∠1+∠B=∠2+∠3=∠4+∠D=180°,∴∠B+∠D+∠E1+∠E2=∠1+∠B+∠2+∠3+∠4+∠D=540°=3×180°;(3)如图③,分别过E1,E2,E3作E1F1//E2F2//E3F3//AB,则E1F1//E2F2//E3F3//CD,∴∠B+∠BE1F1=180°,∠E2E1F1+∠E1E2F2=180°,∠E3E2F2+∠E2E3F3=180°,∠DE3F3+∠D=180°,∴∠B+∠D+∠E1+∠E2+∠E3=720°=4×180°;(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)⋅180°,∴∠B+∠D+∠E1+∠E2+⋯+∠E n=(n+1)⋅180°.。
人教版七年级数学下册第五章相交线与平行线单元卷附解析
人教版七年级数学下册第五章相交线与平行线单元卷附解析一、选择题(共12题;共36分)1.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A. 58°B. 70°C. 110°D. 116°2.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A. ∠AOC=40°B. ∠COE=130°C. ∠EOD=40°D. ∠BOE=90°3.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.A. 50°B. 40°C. 30°D. 60°4.如图,a∥b,∠1=70°,则∠2等于()A. 20°B. 35°C. 70D. 110°5.下列说法正确的是()A. 若两条直线被第三条直线所截,则同旁内角互补B. 相等的角是对顶角C. 有一条公共边并且和为180°的两个角互为邻补角D. 若三条直线两两相交,则共有6对对顶角6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等7.下列说法错误的是()A. 无数条直线可交于一点B. 直线的垂线有无数条,但过一点与直线垂直的直线只有一条C. 直线的平行线有无数条,但过直线外一点的平行线只有一条D. 互为邻补角的两个角一个是钝角,一个是锐角8.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A. 1个B. 2个C. 3个D. 4个9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A. 相等B. 互补C. 相等或互补D. 无法确定10.如图,已知AB⊥BD,CB⊥CD,AD=14 cm,BC=10 cm,若线段BD的长度为偶数,则线段BD的长度为( )A. 8 cmB. 10 cmC. 12 cmD. 14 cm11.如图,已知直线a∥b,AC⊥AB,AC交直线b于点C,如果∠1=62°,则∠2的度数是()A. 36°B. 32°C. 30°D. 28°12.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
最新人教版七年级下册第五章《相交线与平行线》单元测试卷(含答案)
人教版七年级数学下册第 5 章订交线与平行线单元测试题(分析版)一.选择题(共10 小题)1.如图各图中,∠ 1 与∠ 2 是对顶角的是()A.B.C.D.2.以下表达中正确的选项是()A.相等的两个角是对顶角B.若∠ 1+∠2+ ∠ 3= 180°,则∠ 1,∠ 2,∠ 3 互为补角C.和等于 90°的两个角互为余角D.一个角的补角必定大于这个角3.在如图图形中,线段PQ 能表示点P 到直线 L 的距离的是()A.B.C.D.4.在以下图形中,由条件∠1+∠ 2= 180°不可以获得AB∥ CD 的是()A.B.C.D.5.如图,已知∠1=68°,要使AB∥ CD ,则须具备另一个条件()A .∠ 2= 112°6.以下图,点 E 在B .∠ 2= 122°C.∠ 2=68°AC 的延伸线上,以下条件中能判断AB∥ CD (D.∠ 3= 112°)A.∠1=∠2B.∠3=∠ 4C.∠ D =∠ DCE D.∠D +∠ ACD= 180°7.如图,直线a∥ b, AC⊥ AB, AC 交直线 b 于点C,∠1=55°,则∠ 2 的度数是()A .35°B .25°C. 65°D. 50°8.如图,已知AB∥ DE,∠ ABC = 75°,∠ CDE = 145°,则∠BCD的值为()A .20°B .30° 9.以下图是一条街道的路线图,若C. 40°D. 70°AB∥ CD ,且∠ ABC = 130°,那么当∠ CDE 等于()时, BC∥ DE.A .40°10.如图,在直角三角形B .50°C. 70°D. 130°ABC 中,∠ BAC= 90°, AB= 3,AC= 4,将△ ABC 沿直线BC平移 2.5 个单位获得三角形DEF ,连结AE.有以下结论:① AC∥ DF;②AD∥BE ,AD =BE;③ ∠ ABE=∠ DEF ;④ED⊥ AC.此中正确的结论有()A.4 个B.3 个C.2 个D.1 个二.填空题(共8 小题)11.在体育课上某同学立定跳远的状况以下图,l 表示起跳线,在丈量该同学的实质立定跳远成绩时,应丈量图中线段PC的长,原因是.12.如图,直线 AD 与 BE 订交于点O,∠ COD = 90°,∠COE = 70°,则∠ AOB=.13.如图,直线a, b 与直线 c 订交,给出以下条件:① ∠ 1=∠ 2;② ∠ 3=∠ 6;③ ∠ 4+∠ 7= 180°;④ ∠ 5+∠ 3= 180°;⑤ ∠ 6=∠ 8,此中能判断a∥b 的是(填序号)14.如图:请你增添一个条件能够获得DE∥AB15.如图, AB∥ EF ,设∠ C= 90°,那么x, y,z 的关系是.16.如图,将一张矩形纸片按图中方式折叠,若∠1= 63°,则∠ 2 为度.17.如图,已知长方形纸片的一条边经过直角三角形纸片的直角极点,则图中∠ 1 与∠ 2 之间的数目关系为.18.以下图,一块正方形地板,边长60cm,上边横竖各有两道宽为5cm 的花纹(图中阴影部分),空白部分的面积是.三.解答题(共7 小题)19.如图,点O 在直线 AB 上, CO⊥ AB,∠ BOD﹣∠ COD = 34°,求∠ AOD 的度数.20.如图, AO⊥ CO, DO⊥ BO.(1)∠ AOD 与∠ BOC 相等吗?为何?(2)已知∠ AOB= 140°,求∠ COD 的度数.21.已知:如图,直线AB 与 CD 被 EF 所截,∠ 1=∠ 2,求证: AB∥ CD .22.如图,∠ DAC +∠ACB= 180°, CE 均分∠ BCF ,∠ FEC =∠ FCE ,∠ DAC = 3∠ BCF ,∠ACF =20°.(1)求证: AD ∥ EF;(2)求∠ DAC、∠ FEC 的度数.23.如图,在△ ABC 中,GD ⊥ AC 于点 D,∠AFE =∠ ABC,∠1+∠ 2= 180°,∠ AEF =65°,求∠ 1 的度数.解:∠ AFE =∠ ABC(已知)∴(同位角相等,两直线平行)∴∠ 1=∠(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴(等量代换)∴EB∥ DG∴∠ GDE=∠ BEAGD⊥ AC(已知)∴ (垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF= 65°(已知)∴∠ 1=∠﹣∠= 90°﹣ 65°= 25°(等式的性质)24.如图,已知∠1=∠ 2= 50°, EF∥ DB .(1)DG 与 AB 平行吗?请说明原因.(2)若 EC 均分∠ FED ,求∠ C 的度数.25.直线AB、 CD 被直线EF 所截, AB∥ CD ,点 P 是平面内一动点.设∠PFD =∠ 1,∠PEB=∠ 2,∠ FPE =∠α.( 1)若点 P 在直线 CD 上,如图①,∠α= 50°,则∠ 1+∠ 2=°;(2)若点 P 在直线 AB、CD 之间,如图②,试猜想∠α、∠ 1、∠ 2 之间的等量关系并给出证明;(3)若点 P 在直线 CD 的下方,如图③,( 2)中∠α、∠ 1、∠2 之间的关系还建立吗?请作出判断并说明原因.人教版七年级数学下册第 5 章订交线与平行线单元测试题参照答案与试题分析一.选择题(共10 小题)1.【剖析】依据对顶角的定义判断即可.【解答】解:依据两条直线订交,才能组成对顶角进行判断,A、C、 B 都不是由两条直线订交组成的图形,错误,D是由两条直线订交组成的图形,正确,应选: D.【评论】本题主要考察了对顶角的定义,有一个公共极点,而且一个角的两边分别是另一个角的两边的反向延伸线,拥有这类地点关系的两个角,互为对顶角.2.【剖析】依据余角、补角、对顶角的定义进行判断即可.【解答】解: A、两个对顶角相等,但相等的两个角不必定是对顶角;故 A 错误;B、余、补角是两个角的关系,故 B 错误;C、假如两个角的和是一个直角,那么这两个角互为余角;故 C 正确;D 、锐角的补角都大于这个角,而直角和钝角不切合这样的条件,故 D 错误.应选: C.【评论】本题考察对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.3.【剖析】依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点判断.P 到直【解答】解:图A、B、C中,线段PQ不与直线L 垂直,故线段PQ 不可以表示点线 L 的距离;图 D 中,线段 PQ 与直线 L 垂直,垂足为点 Q,故线段 PQ 能表示点 P 到直线 L 的距离;应选:D.【评论】本题考察了点到直线的距离的观点,重点是依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点解答.4.【剖析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解: A、∠ 1 的对顶角与∠ 2 的对顶角是同旁内角,它们互补,因此能判断ABB、∠ 1 的对顶角与∠ 2 是同旁内角,它们互补,因此能判断AB∥ CD;C、∠ 1 的邻补角∠BAD =∠ 2,因此能判断AB∥CD ;D 、由条件∠ 1+ ∠ 2=180°能获得AD ∥ BC,不可以判断AB∥ CD;应选: D.【评论】本题考察了平行线的判断,解题的重点是注意平行判断的前提条件一定是三线八角.5.【剖析】欲证 AB∥ CD,在图中发现AB、CD 被向来线所截,且已知∠ 1= 68°,故可按同旁内角互补,两直线平行增补条件.【解答】解:∵∠ 1= 68°,∴只需∠ 2= 180°﹣ 68°= 112°,即可得出∠ 1+∠2= 180°.应选: A.【评论】本题主要考察了判断两直线平行的问题,可环绕截线找同位角、内错角和同旁内角.本题是一道探究性条件开放性题目,能有效地培育学生“执果索因”的思想方式与能力.6.【剖析】依据平行线的判断分别进行剖析可得答案.【解答】解: A、依据内错角相等,两直线平行可得AB∥ CD,故此选项正确;B、依据内错角相等,两直线平行可得C、依据内错角相等,两直线平行可得 D 、依据同旁内角互补,两直线平行可得应选: A.BD ∥AC,故此选项错误;BD ∥AC,故此选项错误;BD ∥ AC,故此选项错误;【评论】本题主要考察了平行线的判断,解答此类要判断两直线平行的题,可环绕截线找同位角、内错角和同旁内角.7.【剖析】依据平行线的性质求出∠3,再求出∠ BAC= 90°,即可求出答案.【解答】解:∵直线a∥b,∴∠ 1=∠ 3= 55°,∵AC⊥ AB,∴∠ BAC= 90°,∴∠ 2= 180°﹣∠ BAC﹣∠ 3= 35°,【评论】本题考察了平行线的性质的应用,注意:平行线的性质有① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补.8.【剖析】延伸 ED 交 BC 于 F,依据平行线的性质求出∠MFC =∠ B= 75°,求出∠ FDC = 35°,依据三角形外角性质得出∠C=∠ MFC ﹣∠ MDC ,代入求出即可.【解答】解:延伸ED 交 BC 于 F,以下图:∵AB∥DE ,∠ABC=75°,∴∠ MFC =∠ B= 75°,∵∠ CDE= 145°,∴∠ FDC = 180°﹣ 145°= 35°,∴∠ C=∠ MFC ﹣∠ MDC = 75°﹣ 35°= 40°,应选: C.【评论】本题考察了三角形外角性质,平行线的性质的应用,解本题的重点是求出∠ MFC 的度数,注意:两直线平行,同位角相等.9.【剖析】第一利用平行线的性质定理获得∠BCD = 130°,而后利用同旁内角互补两直线平行获得∠ CDE 的度数即可.【解答】解:∵ AB∥CD ,且∠ ABC = 130°,∴∠ BCD=∠ ABC= 130°,∵当∠ BCD +∠ CDE = 180°时 BC∥ DE,∴∠ CDE= 180°﹣∠ BCD= 180°﹣ 130°= 50°,应选: B.【评论】本题考察了平行线的判断与性质,注意平行线的性质与判断方法的差别与联系.10.【剖析】依据平移的性质获得AC∥ DF ,AB∥ DE ,AD ∥ CF,AD = CF= 2.5,∠ EDF =∠BAC=90°,则利用平行线的性质得∠ ABE=∠ DEF ,利用垂直的定义得 DE ⊥ DF ,于是依据平行线的性质可判断 DE⊥ AC.【解答】解:∵将△ ABC 沿直线向右平移 2.5 个单位获得△ DEF ,∴ AC∥ DF ,AB ∥ DE,AD ∥ CF , AD= CF = 2.5,∠ EDF =∠ BAC=90°,∴∠ ABE=∠ DEF ,DE⊥ DF ,∴ DE⊥ AC,∴ ①②③④ 都正确.应选: A.【评论】本题考察了平移的性质:把一个图形整体沿某向来线方向挪动,会获得一个新的图形,新图形与原图形的形状和大小完整同样;新图形中的每一点,都是由原图形中的某一点挪动后获得的,这两个点是对应点.连结各组对应点的线段平行(或共线)且相等.二.填空题(共8 小题)11.【剖析】依据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的原因是依据垂线段最短.故答案为:垂线段最短.【评论】本题主要考察了垂线段的性质,重点是掌握性质定理.12.【剖析】由题意可知∠DOE= 90°﹣∠ COE,∠ AOB 与∠ DOE 是对顶角相等,由此得解.【解答】解:∵已知∠COD = 90°,∠ COE= 70°,∴∠ DOE= 90°﹣ 70°= 20°,又∵∠ AOB 与∠ DOE 是对顶角,∴∠ AOB=∠ DOE= 20°,故答案为: 20°.【评论】本题考察了对顶角与邻补角,利用余角的定义、对顶角的性质是解题重点.13.【剖析】直接利用平行线的判断方法分别剖析得出答案.【解答】解:① ∵∠ 1=∠ 2,∴ a∥ b,故此选项正确;② ∠ 3=∠ 6 没法得出a∥b,故此选项错误;③ ∵∠ 4+∠ 7= 180°,∴ a∥ b,故此选项正确;④ ∵∠ 5+∠ 3= 180°,∴∠ 2+∠ 5= 180°,∴ a∥ b,故此选项正确;⑤ ∵∠ 7=∠ 8,∠ 6=∠ 8,∴∠ 6=∠ 7,∴a∥ b,故此选项正确;综上所述,正确的有①③④⑤ .故答案为:①③④⑤ .【评论】本题主要考察了平行线的判断,正确掌握平行线的几种判断方法是解题重点.14.【剖析】依照平行线的判断条件进行增添,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【解答】解:若∠ EDC =∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA=180°,则 DE∥ AB,故答案为:∠ EDC=∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA= 180°等.【评论】本题主要考察了平行线的判断,正确辨别“三线八角”中的同位角、内错角、同旁内角是正确答题的重点,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.【剖析】过 C 作 CM ∥AB ,延伸 CD 交 EF 于 N,依据三角形外角性质求出∠CNE= y ﹣z,依据平行线性质得出∠ 1= x,∠ 2=∠ CNE ,代入求出即可.【解答】解:过 C 作 CM∥ AB,延伸 CD 交 EF 于 N,则∠ CDE=∠ E+∠ CNE,即∠ CNE= y﹣ z∵CM∥ AB,AB∥ EF,∴CM∥ AB∥EF,∴∠ ABC= x=∠ 1,∠ 2=∠ CNE,∵∠ BCD= 90°,∴∠ 1+∠ 2= 90°,∴x+y﹣ z=90°,∴z+90 °= y+x,即 x+y﹣ z= 90°.【评论】本题考察了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补,题目比较好,难度适中.16.【剖析】依据平行线的性质和平角的定义即可获得结论.【解答】解:∵ a∥ b,∴∠ 5=∠ 1= 63°,∠ 2=∠ 3,又由折叠的性质可知∠4=∠ 5,且∠ 3+∠ 4+∠ 5= 180°,∴∠ 3= 180°﹣∠ 5﹣∠ 4= 54°,∴∠ 2= 54°,故答案为: 54.【评论】本题主要考察平行线的性质和判断,掌握平行线的判断和性质是解题的重点,即①两直线平行 ? 同位角相等,②两直线平行 ? 内错角相等,③两直线平行 ? 同旁内角互补,④ a∥ b, b∥ c? a∥c.17.【剖析】先依据平角的定义得出∠3= 180°﹣∠ 2,再由平行线的性质得出∠4=∠ 3,依据∠ 4+∠ 1= 90°即可得出结论.【解答】解:∵∠ 2+∠ 3=180°,∴∠ 3= 180°﹣∠ 2.∵直尺的两边相互平行,∴∠ 4=∠ 3,∴∠ 4= 180°﹣∠ 2.∵∠ 4+∠ 1= 90°,∴ 180°﹣∠ 2+∠1= 90°,即∠ 2﹣∠ 1= 90°.∴∠ 1 与∠ 2 之间的数目关系为:∠2﹣∠ 1=90°,故答案为:∠2﹣∠ 1= 90°.【评论】本题考察的是平行线的性质,用到的知识点为:两直线平行,同位角相等.18.【剖析】由题意可知:利用“挤压法”,将图形中的花纹挤去,求出节余的正方形的边长,即可求出白色部分的面积.【解答】解:( 60﹣ 2× 5)2,=50×50,=2500(平方厘米);∴空白部分的面积是 2500 平方厘米.故答案为: 2500平方厘米【评论】本题考察了生活中的平移现象,解答本题的重点是:利用“挤压法”,求出节余的长方形的边长,从而求其面积.三.解答题(共7 小题)19.【剖析】依据垂直的定义获得∠AOC=∠ BOC= 90°,获得∠ BOD +∠ COD =90°,根据已知条件即可获得结论.【解答】解:∵ CO⊥ AB,∴∠ AOC=∠ BOC= 90°,∴∠ BOD+∠ COD = 90°,∵∠ BOD﹣∠ COD = 34°,∴∠ COD = 28°,∴∠ AOD=∠ AOC+∠ COD = 118°.【评论】本题主要考察了垂线以及角的计算,正确掌握垂线的定义是解题重点.20.【剖析】( 1)依据垂线的定义获得∠AOC=∠ BOD= 90°,依据余角的性质即可获得结论;(2)依据角的和差即可获得结论.【解答】解:( 1)∠ AOD=∠ BOC,原因:∵ AO⊥ CO,DO⊥ BO,∴∠ AOC=∠ BOD= 90°,∵∠ COD =∠ COD ,∴∠ AOC﹣∠ COD =∠ BOD ﹣∠ COD ,∴∠ AOD=∠ BOC;(2)∵∠ AOB=140°,∠ BOD = 90°,∴∠ AOD=∠ AOB﹣∠ BOD = 50°,∴∠ COD =∠ AOC﹣∠ AOD =40°.【评论】本题考察了垂线,余角的定义,娴熟掌握垂线的定理是解题的重点.21.【剖析】依据对顶角相等,等量代换和平行线的判断定理进行证明即可.【解答】证明:∵∠ 2=∠ 3(对顶角相等),又∵∠ 1=∠ 2(已知),∴∠ 1=∠ 3,∴ AB∥ CD (同位角相等,两直线平行).【评论】本题考察的是平行线的判断,掌握平行线的判断定理是解题的重点.22.【剖析】( 1)依据同旁内角互补,两直线平行,可证BC∥ AD,依据角均分线的性质和已知条件可知∠FEC =∠ BCE ,依据内错角相等,两直线平行可证BC∥ EF,依据两条直线都和第三条直线平行,那么这两条直线平行,可证AD∥ EF;( 2)先依据CE 均分∠ BCF,设∠ BCE=∠ ECF =∠ BCF=x.由∠ DAC=3∠ BCF可得出∠ DAC = 6x,由平行线的性质即可得出x 的值,从而得出结论.【解答】( 1)证明:∵∠ DAC +∠ACB= 180°,∴ BC∥ AD,∵ CE 均分∠ BCF ,∴∠ ECB=∠ FCE ,∵∠ FEC=∠ FCE ,∴∠ FEC=∠ BCE,∴BC∥ EF,∴AD∥ EF;(2)设∠ BCE=∠ ECF =∠ BCF = x.由∠ DAC =3∠ BCF 可得出∠ DAC= 6x,则6x+x+x+20°= 180°,解得 x=20°,则∠ DAC 的度数为120°,∠ FEC 的度数为20°.【评论】本题考察的是平行线的判断,平行线的性质,用到的知识点为:同旁内角互补,两直线平行;内错角相等,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;两直线平行,同旁内角互补.23.【剖析】依据平行线的性质和判断可填空.【解答】解:∠ AFE =∠ ABC(已知)∴EF∥ BC(同位角相等,两直线平行)∴∠ 1=∠ EBC(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴∠ EBC+∠ 2= 180°(等量代换)∴EB∥ DG (同旁内角互补,两直线平行)∴∠ GDE=∠ BEA (两直线平行,同位角相等)GD⊥ AC(已知)∴∠ GDE= 90°(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠ BEA﹣∠ AEF = 90°﹣ 65°= 25°(等式的性质)故答案为: EF∥ BC ,∠ EBC,∠ EBC +∠ 2= 180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE ,∠ BEA,∠ AEF .【评论】本题考察了平行线的判断和性质,灵巧运用平行线的性质和判断解决问题是本题的重点.24.【剖析】(1)依照 EF ∥ DB 可得∠ 1=∠ D,依据∠ 1=∠ 2,即可得出∠ 2=∠ D,从而判断 DG∥ AC;( 2)依照 EC 均分∠ FED ,∠ 1=50°,即可获得∠DEC =∠ DEF=65°,依照DG∥AC,即可获得∠C=∠ DEC= 65°.【解答】解:( 1) DG 与 AB 平行.∵EF∥ DB∴∠ 1=∠ D,又∵∠ 1=∠ 2,∴∠ 2=∠ D,∴DG ∥AC;( 2)∵ EC均分∠FED ,∠ 1=50°,∴∠ DEC=∠DEF =×( 180°﹣ 50°)= 65°,∵DG ∥AC,∴∠ C=∠ DEC= 65°.【评论】本题考察了平行线的性质和判断的应用,能正确运用定理进行推理是解本题的重点.25.【剖析】( 1)依据平行线的性质即可获得结论;(2)过点 P 作 PG∥ AB,依据平行线的性质即可获得结论;(3)过点 P 作 PG∥ CD ,依据平行线的性质即可获得结论.【解答】解:( 1)∵ AB∥ CD ,∴∠ α= 50°,故答案为: 50;(2)∠α=∠ 1+∠2,证明:过点P 作 PG∥∵ AB∥ CD,∴PG∥ CD,∴∠ 2=∠ 3,∠ 1=∠ 4,∴∠ α=∠ 3+∠ 4=∠ 1+ ∠2;( 3)∠α=∠ 2﹣∠ 1,证明:过点P 作 PG∥ CD ,∵AB∥ CD ,∴ PG∥ AB,∴∠ 2=∠ EPG,∠ 1=∠ 3,∴∠ α=∠ EPG﹣∠ 3=∠ 2﹣∠ 1.【评论】本题考察了平行线的性质,娴熟掌握平行线的性质是解题的重点.人教版七年级数学下册第 5 章订交线与平行线单元检测及答案人教版七年级数学下册第 5 章订交线与平行线单元检测1.已知∠ α和∠β的对顶角,若∠α =60°,则∠ β的度数为 () A.30° B . 50°C.60° D.150°2.以下说法正确的选项是 ( )A.在同一平面内,过直线外一点向该直线画垂线,垂足必定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足必定在该线段或射线上C.过线段或射线外一点不必定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3.如图,从地点P到直线公路MN共有四条小路,若用同样的速度行走,能最快抵达公路MN的小路是 ( )A.PA B.PB C.PC D.PD4.如图,已知直线 a,b 被直线 c 所截,则∠1 和∠2是一对 ( )A.对顶角B.同位角C.内错角D.同旁内角5.以下说法正确的选项是()A.不订交的两条线段是平行线B.不订交的两条直线是平行线C.不订交的两条射线是平行线D.在同一平面内,不订交的两条直线是平行线6.以下选项中,不可以判断两直线平行的是 ( )A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角相等,两直线平行D.同一平面内,垂直于同一条直线的两条直线平行7.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的均分线,那么以下结论错误的选项是 ( )A.∠ BAO与∠ CAO相等B.∠ BAC与∠ ABD互补C.∠ BAO与∠ ABO互余D.∠ ABO与∠ DBO不等8.以下语言是命题的是 ( )A.画两条相等的线段 B .等于同一个角的两个角相等吗C.延伸线段AO到 C,使 OC=OA D .两直线平行,内错角相等9.以下现象中属于平移的是 ( )A.起落电梯从一楼升到五楼B.闹钟的钟摆运动C.树叶从树上随风飘落D.方向盘的转动10.如图,直线 AB,CD订交于点 O,由于∠ 1+∠ 3=180°,∠ 2+∠3=180°,因此∠ 1=∠ 2,其推理依照是 ( )A.同角的余角相等B.对顶角相等C.同角的补角相等D.等角的补角相等11.如图,已知 AB,CD订交于点 O,OE⊥AB,∠ EOC=28°,则∠ AOD =________度.12. 以下图,当剪刀口∠ AOB增大 20°时,∠ COD增大 _____度,其依据是 _________________.13.如图,BC⊥AC,CB=8 cm,AC=6 cm,点 C 到 AB的距离是 4.8 cm,那么点 B 到 AC的距离是 ____ cm,点 A 到 BC的距离是 ____ cm,A,B两点间的距离是 ____ cm.14. 以下图,∠B 与____________是直线 _________和直线 _______被直线 ________所截得的同位角.15.如图是一个平行四边形,请用符号表示图中的平行线:.16.如图,已知作 BC∥EF,那么线外一点,A,B,C 三点及直线 EF,过 B 点作 AB∥EF,过 B 点A, B,C 三点必定在同一条直线上,依照是:过直与已知直线.17.如图,已知∠ B=40°,要使 AB∥CD,需要增添一个条件,这个条件能够是 __________________.18.如图,已知 l 1∥l2,直线 l 与 l 1,l 2订交于 C,D两点,把一块含30°角的三角尺按以下图的地点摆放.若∠1=130°,则∠ 2=___________度.19.如图,三角形 ABC经过平移获得三角形 DEF,若∠ BAC=65°,则∠ EDF=____________.20.达成下边推理过程:如图,∠1+∠ 2=230°,b∥c,则∠ 1,∠2,∠3,∠4各是多少度?解:∵∠ 1=∠ 2(__________________),∠1+∠ 2=230°,∴∠ 1=∠ 2= ___________(填度数 ) .∵b∥c,∴∠4=∠2=_______(填度数)(_______________________________),∠2+∠ 3=180°(________________________________),∴∠ 3=180°-∠ 2= ____________(填度数 ) .21.如图,直线 AB,CD,EF订交于点 O.人教版七年级数学下册第五章订交线与平行线尖子生培优测试一试卷一、单项选择题(共 10 题;共 30 分)1.以下句子中,不属于命题的是A. 正数大于全部负数吗?()B. 两点之间线段最短C.两点确立一条直线D.会飞的动物只有鸟2.如图:已知∠1=40 °,要使直线a∥ b,则∠2=()A.50 °B. 40C. 140 °D. 150°3.如图,若∠ 1= 50°,则∠ 2 的度数为()A. 30°B. 40C. 50°D. 90°4.如图,AD 是∠ EAC的均分线,AD∥BC,∠ B= 30°,则∠ C 为()最新人教版七年级下册第五章《相交线与平行线》单元测试卷(含答案)A.30 °B. 60C.80 °D. 120 °5.如图,直线 l1∥ l2, AB 与直线 l1垂直,垂足为点B,若∠ ABC=37°,则∠ EFC的度数为()A. 127 °B. 133C. 137°D. 143°°6.如图, AB∥CD, EF⊥ AB 于 E,若∠ 1=60 °,则∠ 2 的度数是()A.35 °B.30C.25°D.20°7.如图,∥,直线分别交、于点,,均分,已知,则=()A. B. C. D.8.以下图形能够由一个图形经过平移变换获得的是()A. B. C. D.9.如图, Rt△ABC 沿直角边BC所在的直线向右平移获得△DEF,以下结论中错误的选项是().A. △ABC与△DEF能够重合B.∠DEF= 90°C. AC= DFD. EC=CF10.如图,已知AB∥ CD, BC均分∠ ABE,∠ C=33°,则∠ CEF的度数是()A.16 °B.33C.49°D.66°二、填空题(共 6 题;共 24 分)11.如图,三角形 ABC经过平移获得三角形DEF,那么图中平行且相等的线段有________对;若∠ BAC=50°,则∠ EDF=________12.如图,直线 a∥ b,∠ BAC的极点 A 在直线 a 上,且∠ BAC=100°.若∠ 1=34 °,则∠ 2=________ .°13.如图交AB 于点于点A,若,则________度14.如图,立方体棱长为2cm ,将线段 AC 平移到 A1C1的地点上,平移的距离是________cm.15.如图,直线 a 与直线 b、c 分别订交于点A、B,将直线 b 绕点 A 转动,当∠ 1=∠ ________时, c∥ b16.如图, AB∥ CD,∠ 1=64 °, FG 均分∠ EFC,则∠ EGF=________.三、解答题(共7 题;共 46 分)17.以下图,点 E 在直线 DF 上,点∠AGB=∠EHF,∠ C=∠ D,请到断∠B 在直线 AC 上,直线 AF 分别交 BD,CE于点 G,H.若A 与∠ F 的数目关系,并说明原因.18.如图,点 A、 B、 C、 D 在一条直线上, EA⊥ AD,FB⊥ AD,垂足分别为 A、 B,∠ E=∠F,CE与 DF 平行吗?为何?19.MF⊥ NF 于 F, MF 交 AB 于点 E,NF 交 CD 于点 G,∠ 1=140 °,∠ 2=50 °,试判断 AB 和CD 的地点关系,并说明原因.20.已知:如图, BE// CD,∠ A=∠ 1.求证:∠ C=∠ E .21.如图,已知 AB∥CD,BC∥ ED,请你猜想∠ B 与∠ D 之间拥有什么数目关系,并说明原因.22.如图, EF∥CD,∠ 1=∠ 2,∠ ACB=45°,求∠ DGC的度数.23.如图,直线 EF∥ GH,点 A 在 EF 上, AC 交 GH 于点 B,若∠ FAC=72°,∠ ACD=58°,点D 在 GH 上,求∠ BDC的度数.答案一、单项选择题1. A2.B3.B4. A5.A6.B7. C8.B9.D 10.D二、填空题11.6;50° 12.4613.4214.2 ;15.316.64 °三、解答题17.解:∠ A=∠ F 原因 ;∵∠ AGB=∠ DGF(对顶角相等 )∠AGB=∠EHF ∴∠ DGF=∠ DGF,∴BD∥CE,∠C=∠ABD,∵∠ D=∠ C∴∠ ABD=∠ D∴AC∥ DF,∴∠ A=∠ F18.解: CE∥ DF,原因以下:∵ AE⊥ AD,BF⊥ AD,∴∠ A=∠ FBD,∴ AE∥BF,∴∠E=∠EGF,又∵∠ E=∠ F,∴∠ EGF=∠ F,∴ CE∥ DF19.解:延伸 MF 交 CD 于点 H∠1=90∠ FH,2140∴∠ CHF=1405-902=50°,∠C HF=∠2,AB∥ CD20.证明:∵∠ A=∠ 1,∴D E//AC .∴∠ E=∠ EBA .∵BE//CD ,∴∠ EBA=∠ C .∴∠ C=∠E .21.解:猜想:∠ B+∠D=180°.原因以下:∵ AB∥ CD,∴∠ B=∠C,∵BC∥ ED,∴∠ C+∠ D=180°,∴∠ B+∠D=180°.22.解:∵ EF∥CD,∴∠ 2=∠ 3,∵∠ 1=∠ 2,∴∠ 1=∠ 3,∴DG∥ BC,∴∠ DGC=180°﹣∠ ACB=135°.23.解:∵ EF∥GH,∴∠ ABD+∠FAC=180°,∴∠ ABD=180°﹣72°=108°,∵∠ ABD=∠ ACD+∠ BDC,∴∠ BDC=∠ABD﹣∠ ACD=108°﹣58°=50°.。
最新人教版七年级下册第五章《相交线与平行线》单元测试卷及答案
人教版七年级数学下册第五章订交线与平行线单元稳固卷一、选择题1.如图,三条直线订交于点 O.若 CO⊥ AB,∠ 1= 52°,则∠ 2 等于 (C)A. 52°B. 28°C. 38°D. 47°2.两条直线订交所组成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等.此中能判断这两条直线垂直的有(D)A.1 个B.2个C.3 个D.4个3.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
此中假命题有(B )A.1 个B.2个C.3个D.4个4.如图,∠ B 的同位角能够是 (D)A.∠ 1B.∠ 2C.∠ 3D.∠ 45.如图,以下说法错误的选项是 ( C )A. 若 a∥ b, b∥ c, 贝 a∥ c.B. 若∠ 1=∠2, 则 a∥cC.若∠ 3=∠2,则 b∥ cD.若∠ 3+∠5=180°,则 a∥ c6. 如图,直线 a∥ b,直线 c 与直线 a, b 分别交于点 D, E,射线 DF⊥直线 c,则图中与∠ 1 互余的角有 (A)A.4 个B.3 个C.2 个D.1 个7. 如图,从地点P 到直线公路MN共有四条小路,若用相同的速度行走,能最快抵达公路MN 的小路是( B )A.PA B.PB C.PC D.PD8.如下图,三角形 ABC沿直线 m向右平移 a 厘米,获得三角形 DEF,以下说法中错误的选项是(D)A.AC∥DF B.CF∥ABC.CF=a厘米D.BD=a厘米9.如图,∠ 1=∠ 2,∠ 3=40°,则∠ 4 等于 ( C )A.120 °B.130°C.140°D.40°10. 如图,直线a∥ b,直线 c 分别交 a,b 于点 A,C,∠ BAC的均分线交直线 b 于点 D.若∠ 1=50°,则∠ 2 的度数是 (C)A. 50°B. 70°C. 80°D. 110°二、填空11.如,直 a, b 被 c, d 所截,且 c⊥ a, c⊥ b,∠ 1= 70°,∠ 2=70__°.12. 下边生活中的物体的运状况能够当作平移的是______.的在笔挺的公路上行的汽人教新版七年级下册第5 章订交线与平行线培优卷一.(共10 小)1.以下所示的案分是奔、雪、大众、三菱汽的,此中能够看作由“基本案” 平移获得的是( )A.B.C.D.2.两条直最多有 1 个交点,三条直最多有 3 个交点,四条直最多有 6 个交点,⋯⋯,那么 7 条直最多有 ( )A . 28 个交点B . 24 个交点C. 21 个交点D. 15 个交点3.以下命中是真命的是()A.一点有且只有一条直B.两条射成的形叫做角C.两条直订交起码有两个交点D.两点确立一条直4.以下各中,∠ 1 与∠ 2 是角的是()A.B.C.D.5.如图,点 C 是射线 OA 上一点,过 C 作 CD ⊥ OB,垂足为 D ,作 CE⊥ OA,垂足为C,交 OB 于点 E.给出以下结论:① ∠ 1是∠ DCE的余角;② ∠ AOB=∠ DCE;③ 图中互余的角共有 3 对;④ ∠ ACD=∠ BEC.此中正确结论有()A .①②③B .①②④C.①③④D.②③④6.如图,∠ AOB 的一边 OA 为平面镜,∠AOB=37°36′,在 OB 上有一点E,从 E 点射出一束光芒经 OA 上一点 D 反射,反射光芒 DC 恰巧与 OB 平行,入射角∠ ODE与反射角∠ ADC 相等,则∠ DEB的度数是 ( )A . 75° 36′B . 75° 12′C. 74° 36′ D .74° 12′7.如图: AB ∥DE ,∠ B=50°,∠ D = 110°,∠ C 的度数为()A .120°B .115°C. 110°D. 100°8.如图,点 E 在 BC的延伸线上,以下条件中不可以判断AB∥ CD的是 ( )A .∠ 1=∠ 2B.∠ 3=∠ 4C.∠ B= ∠ DCE D .∠ D+∠ DAB=180°9.以下四种说法:①线段 AB 是点 A 与点 B 之间的距离;②相等的角是对顶角;③ 经过一点有且只有一条直线与已知直线平行;④ 直线外一点与直线上各点连结的全部线段中,垂线段最短,此中正确的选项是()A .④B .①④C.③④D.①③④10.新乡村建设中一项重要工程是“村村通自来水”,如下图是某一段自来水管道,经过每次拐弯后,管道仍保持平行(即 AB ∥ CD∥ EF,BC∥ DE ).若∠ B=70°,则∠E 等于 ( )A.70°B.110°C. 120°D.130°二.填空题(共10 小题)11.将一块 60°的直角三角板 DEF 两条直角边 DE、 DF 恰分别经过搁置在45°的直角三角板ABC B、C 两点,若 EF∥ BC,则∠上,挪动三角板ABD =DEF°.使12.如图,已知AB∥ ED ,∠ ACB= 90°,∠ CBA= 40°,则∠ ACE 是度.13.如图, AB, CD 订交于点O,∠ BOE =90°,有以下结论:① ∠ AOC 与∠ COE 互为余角;② ∠ BOD 与∠ COE 互为余角;③ ∠ AOC=∠ BOD;④ ∠ COE 与∠ DOE 互为补角;⑤ ∠ AOC 与∠ DOE 互为补角;⑥ ∠ AOC=∠ COE此中错误的有(填序号).14.如图, DE ∥ BC, EF ∥ AB,图中与∠ BFE 互补的角有个.15.如图,AB ∥ CD,直线 MN 交 AB、CD 于点 M 和 N,MH 均分∠ AMN ,NH ⊥ MH 于点 H,若∠ MND =64°,则∠ CNH =度.16.如图,已知 AB∥ DC,AD ∥BO,点 C 在 BO 上,点 E 在 OD 的延伸线上,若∠ B= 76°,∠ EDA= 48°,则∠ CDO 的度数是°.17.如图,已知DE∥ BC,2∠ D= 3∠ DBC ,∠ 1=∠ 2.则∠ DEB =度.18.如图, CB ∥OA,∠ B=∠ A=100°, E、 F 在 CB 上,且知足∠ FOC =∠ AOC, OE 平分∠ BOF,若平行挪动AC,当∠ OCA 的度数为时,能够使∠ OEB=∠ OCA.19.如图,直线 EF ∥GH ,点 A 在 EF 上,AC 交 CH 于点 B,若∠ FAC =72°,∠ ACD =58°,点 D 在 GH 上,则∠ BDC 的度数为.20.如图,已知∠ 1= 75°,将直线 m 平行挪动到直线n 的地点,则∠ 2﹣∠ 3=°.三.解答题(共 6 小题)21.如图,已知点 E 在线段 AD 上,点 B、C、 F 在同向来线上,CD 与 EF 交于点 G,∠ A+∠B= 180°.求证:∠ BCD =∠ GED +∠EGD .22.如图, OD 是∠ AOB 的均分线,∠AOC= 2∠ BOC.(1)若 AO⊥ CO,求∠ BOD 的度数;(2)若∠ COD = 21°,求∠ AOB 的度数.23.如图:∠ ABC=∠ ACB, BD 均分∠ ABC, CE均分∠ ACB,∠ DBF=∠ F,求证: CE∥DF.请达成下边的解题过程.解:∵BD 均分∠ABC , CE 均分∠ ACB(已知)∴∠ DBC=∠,∠ECB=∠()又∵∠ ABC= ∠ACB(已知)∴=.又∵=(已知)∴∠F=.∴ CE∥DF().24.在正方形网格中,每个小正方形的边长均为 1 个单位长度,△ABC 的三个极点的地点如下图,现将△ABC平移,使点 A 对应点 A′,点 B, C 分别对应点 B′, C′.(1)画出平移后的△A′B′C′.(2)连结 AA′, CC′,则这两条线段之间的地点和数目关系是.25.如图, AB∥ EF ,AD 均分∠ BAC,且∠ C= 45°,∠ CDE= 125°,求∠ ADF 的度数.26.已知 AB∥ CD,解决以下问题:(1)如图①,写出∠ ABE、∠ CDE和∠E 之间的数目关系:;(2)如图②, BP、 DP 分别均分∠ ABE 、∠ CDE,若∠ E=100°,求∠ P 的度数;(3)如图③,若∠ ABP=∠ ABE,∠ CDP=∠ CDE,试写出∠P与∠ E的数目关系,并说明原因.参照答案一.选择题(共10 小题)1. B.2. C.3.D.4. A.5. B.6. B.7. A.8. B.9. A.10. B.二.填空题(共10 小题)11.【解答】解:∵将一块60°的直角三角板DEF 搁置在 45°的直角三角板ABC 上,∴∠ E= 30°,∠ ABC= 45°,∵EF∥ BC,∴∠ DBC=∠ E= 30°,∴∠ ABD= 45°﹣ 30°= 15°,故答案为: 1512.【解答】解:∵∠ ACB= 90°,∴∠ CAB+∠ ABC= 90°,∴∠ CAB= 90°﹣ 40°= 50°.∵AB∥ CD ,∴∠ CAB=∠ ACE= 50°.故答案为: 5013.【解答】解:∵ AB,CD 订交于点O,∠ BOE=90°,∴ ① ∠ AOC 与∠ COE 互为余角,正确;② ∠ BOD 与∠ COE 互为余角,正确;③ ∠ AOC=∠ BOD,正确;④ ∠ COE 与∠ DOE 互为补角,正确;⑤ ∠ AOC 与∠ BOC 互为补角和∠DOE 不是补角,错误;⑥ ∠ AOC=∠ BOD≠∠ COE,错误;故答案为:⑤⑥ .14.【解答】解:∵ DE∥ BC,∴∠ DEF =∠ EFC ,∠ ADE =∠ B,又∵ EF∥ AB,∴∠ B=∠ EFC,∴∠ DEF =∠ EFC =∠ ADE =∠ B,∵∠ BFE 的邻补角是∠EFC ,∴与∠ BFE 互补的角有:∠DEF 、∠ EFC、∠ ADE、∠ B.故答案为: 4.15.【解答】解:∵ AB∥CD ,∴∠ MND =∠ AMN = 64°,∵MH 均分∠ AMN ,∴∠ HMN =∠ AMN=32°,又∵人教版七年级下册第五章订交线与平行线章末检测一、选择题1. 将如下图的图案经过平移能够获得的图案是()答案A依据平移的观点知 A 正确 .2. 如图 , 已知直线a∥ b, ∠1=100°, 则∠ 2 等于 ()A.80°B.60°C.100°D.70°答案A设∠ 1的对顶角为∠ 3,则∠ 3=∠1=100°,∵a∥b, ∴∠ 2+∠3=180°, ∴∠ 2=180° - ∠3=80°. 应选 A.3.A 、 B、 C是直线 l 上的三点 ,P 是直线 l 外一点 , 且 PA=5cm,PB=6cm,PC=8 cm.由此可知 , 点P 到直线 l 的距离 ()A. 等于 5 cmB. 不小于 5 cmC.不大于 5 cmD.在 6 cm 与 8 cm 之间答案C 若 PA 是垂线段 , 则点 P 到直线 l 的距离等于5 cm, 若 PA 不是垂线段 , 则点 P 到直线l 的距离小于 5 cm.4. 如下图 , 直线 AB,CD 订交于点 O,OE ⊥ AB 于点 O,OF 均分∠ AOE,∠1=15°30', 则以下结论中不正确的选项是 ()A. ∠2=45°B. ∠ 1=∠3C.∠ AOD 与∠ 1 互为补角D. ∠1 的余角等于 75°30'答案D 关于 A 选项 , 由 OE ⊥ AB,可知∠ AOE=90°, 又 OF 均分∠ AOE,则∠ 2=45°, 正确 ; 关于B 选项 , ∠1 与∠ 3 互为对顶角 , ∴∠ 1=∠3, 正确 ; 关于C 选项 , ∠AOD 与∠ 1 互为邻补角 , 正确 ; 关于 D 选项 , ∵∠ 1+75°30'=15 °30'+75 °30'=91 °, ∴∠ 1 的余角不等于 75°30'. 应选 D.5. 以下句子中是命题且是真命题的是 ( )A. 同位角相等B. 直线 AB 垂直 CD 吗22D. 同角的补角相等C.若 a =b , 则 a=b 答案 D 四个选项中 B 选项不是命题 ,A 、 C 选项中的命题是假命题 .6. 如图,以下条件中能判断直线 l 1∥ l2的是()A.∠ 1=∠2B.∠ 1=∠5C.∠ 1+∠3=180°D.∠ 3=∠ 5 答案 C ∠ 1 与∠ 3 是直线 l ,l 2被 l 3所截而成的同旁内角 , 当∠ 1+∠3=180°时 ,l ∥ l .11 27. 直尺与三角尺按如图 5-5-5 所示的方式叠放在一同 , 在图中所标志的角中 , 与∠ 1 互余的角有()A.2 个B.3 个C.4 个D.5 个答案 B∵直尺的两长边平行 , ∴∠2=∠ 3( 两直线平行 , 内错角相等 ), ∵∠ 3=∠ 4( 对顶角相等), ∴∠ 2=∠3=∠4, ∵∠ 1+∠2=180° - 90°=90°, ∴∠ 2 与∠ 1 互余 , ∴∠ 3、∠ 4 也与∠ 1 互余 , 又易知∠ 1=∠ 5=∠6, ∴与∠ 1 互余的角有∠ 2, ∠ 3, ∠4, 共 3 个. 应选 B. 8. 如图 ,AE 均分∠ BAC,CE 均分∠ ACD,且 AB ∥ CD,则∠ AEC 等于 ()A.60°B.80°C.100°D.90°答案 D由于 AB ∥ CD,因此∠ BAC+∠ACD=180°, 由于 AE 均分∠ BAC,CE 均分∠ ACD,因此∠1= ∠ BAC,∠ 2= ∠ ACD,因此∠ 1+∠ 2= ( ∠ BAC+∠ACD)=90°. 因此∠ AEC=90°.9. 如下图 , 将一个黑板刷子在黑板上平移, 平移距离为10 cm,以下说法不正确的选项是()A. 四个极点都平移了10 cmB. 平移后与平移前二者地点发生变化, 所占面积未变化C.对应点所连线段相互平行D.水平平移距离为10 cm答案D关于A选项,经过平移,对应点所连的线段相等( 长为10 cm),则四个极点都平移了10 cm,正确 ;关于 B 选项 , 平移只改变地点, 不改变图形的形状和大小, 即面积不变 , 则平移后与平移前两者地点发生变化, 所占面积未变化, 正确 ;关于 C 选项 , 经过平移 , 对应点所连的线段相互平行, 正确 ;D选项应当是黑板刷子在黑板上平移距离为10 cm,而不是水平平移距离为10 cm, 错误 . 应选D.10. 该图是汽车灯的剖面图 , 从位于平线 , 若∠ ABO=α , ∠DCO=60°, 则∠O点灯发出光照耀到凹透镜上反射出的光芒BOC的度数为 ()BA,CD都是水A.180° - αB.120° - αC.60°+αD.60° - α答案 C连结 BC,∵AB∥CD,∴∠ ABO+∠ CBO+∠BCO+∠OCD=180°,∠CBO+∠ BCO+∠BOC=180°, ∴∠ BOC=∠ABO+∠ DCO=α +60°.二、填空题11.如图 , 要把小河里的水引到田地 A 处 , 就作 AB⊥ l( 垂足为 B), 沿 AB挖水渠 , 水渠最短 . 理由是.答案垂段最短分析AB⊥l, 垂足 B, 即从 A到 l 的垂段是 AB, 依据垂段最短, 知沿着 AB挖水渠是最短的.12.把命“两个正数的和仍正数”写成“假如⋯⋯那么⋯⋯”的形式.答案假如两个数是正数, 那么它的和正数分析命的是“两个数是正数”,“它的和正数”.13. 如 , 直 AB、 CD订交于点O,若∠ BOD=40°,OA 均分∠ COE,∠ AOE=.答案40°分析因∠ BOD=40°, 因此∠AOC=∠BOD=40°, 又因OA 均分∠ COE,因此∠ AOE=∠AOC=40°.14. 如 , 已知∠ 1=∠2, ∠3=73°, ∠ 4 的度数度.答案107分析如 , ∵∠1=∠2, ∴a∥b, ∴∠5+∠3=180°, ∵∠4=∠5, ∴∠ 4+ ∠3=180°, 又∠3=73°, ∠ 4=107°.15. 如 , 在三角形ABC中 , ∠B=90°,BC=6,AB=8,AC=10,点 B 到 AC的距离是.答案 4.8分析设所求距离为x, 则由三角形的面积公式得,S △ABC= ×6×8=24= ×10x, 解得 x=4.8.16. 如图 , 已知直线AB∥ CD,∠GEB 的均分线EF 交CD 于点F, ∠1=40°,则∠2等于.答案160°分析∵AB∥ CD,∠1=40°, ∴∠ GEB=∠1=40°, ∵EF 均分∠ GEB,∴∠ FEB= ∠GEB=20°, ∵AB∥CD,∴∠FEB+∠2=180°, ∴∠ 2=180° - ∠FEB=160°.17. 如图,在长方形地块内修建相同宽的两条“订交”的道路,余下部分作为耕地, 当道路宽为2 米时 , 耕地面积为平方米.答案540分析如图,依据平移可得,当道路宽为 2 米时,耕地的面积为 (20- 2) ×(32 - 2)=18×30=540(平方米 ).18.如图 ,C 岛在 A 岛的北偏东 50°方向 ,C 岛在 B岛的北偏西 40°方向 , 则从 C岛看 A,B 两岛的视角∠ ACB等于.答案90°分析在∠ ACB的内部过C 画射线 CD与指北线平行 , 则∠ ACD=50°, ∠BCD=40°.因此∠ ACB=50°+40°=90°.19. 如图 , 已知 AB∥ CD∥ EF, 则∠α、∠β、∠γ三者之间的数目关系是.答案∠ α+∠ β - ∠γ =180°分析∵CD∥EF,∴∠ β +∠CEF=180°,∵AB∥EF,∴∠ α =∠GEF,∵∠ GEF=∠ γ +∠ CEF,∴∠ α =∠γ +∠ CEF=∠ γ +180° - ∠ β,∴∠ α +∠β - ∠ γ =180°.20.如图 , ∠ AOB的一边 OA为平面镜 , ∠AOB=37°36', 在OB上有一点OA上一点 D 反射 , 反射光芒DC恰巧与 OB平行 , 则∠ DEB的度数是E, 从 E 点射出一束光芒经.答案75°12'分析如图, 过点D作DF⊥ AO交OB于点F.∵反射角等于入射角 , ∴∠1=∠ 3,∵DC∥ OB,∴∠ 1=∠ 2( 两直线平行 , 内错角相等 ),∴∠ 2=∠ 3( 等量代换 ),在△DOF中 , ∠ODF=90°, ∠DOF=37°36',∴∠ 2=180° - 90° - 37°36'=52 °24'.∴在△DEF中 , ∠DEF=180° -2 ∠2=75°12'.三、解答题21.判断以下命题是真命题仍是假命题, 并说明原因 .(1) 两个锐角的和是钝角 ;(2) 平行于同向来线的两条直线平行;(3) 两直线被第三条直线所截 , 内错角相等 ;(4)若一个角的两边分别平行于另一个角的两边, 则这两个角相等 .答案 (1) 是假命题 . 若两个锐角的度数分别是 30°、 40°, 因 30°+40°=70°,70 °角不是钝角, 故原命题是假命题 .(2) 是真命题 . 证明 : 如图 , ∵a∥ b,c ∥b, ∴∠ 1=∠ 2, ∠ 3=∠2, ∴∠ 1=∠3, ∴a∥ c.(3)是假命题 . 当两条不平行的直线被第三条直线所截时 , 获得的内错角不相等 . 故原命题是假命题 .(4)是假命题 . 当这两个角的一边同向 , 而另一边反向时 , 如图 , 这两个角互补 , 故原命题是假命题 .22.已知 : 如图 5-5-18,AB ∥ CD∥ GH,EG均分∠ BEF,FG均分∠ EFD,求证 : ∠EGF=90°. 达成下边的证明 :证明 : ∵GH∥ AB(已知 ), ∴∠ 1=∠3().∵GH∥ CD(已知 ), ∴∠ 2=∠ 4().∵AB∥ CD(已知 ),∴∠ BEF+=180°().∵EG均分∠ BEF(已知 ), ∴∠ 1= ∠().∵FG均分∠ EFD(已知 ), ∴∠ 2= ∠().∴∠ 1+∠2= (+),∴∠ 1+∠2=90°,∴∠ 3+∠4=90°(), 即∠ EGF=90°.答案两直线平行, 内错角相等; 两直线平行, 内错角相等; ∠ EFD;两直线平行, 同旁内角互补;BEF; 角均分线定义 ;EFD; 角均分线定义 ; ∠ BEF;∠ EFD;等量代换 .23.将一副三角板拼成如图 5-5-19 所示的图形 , 过点 C 作 CF均分∠ DCE交 DE于点 F.(1)求证 :CF∥ AB;(2)求∠ DFC的度数 .答案(1) 证明 : 如图 , ∵CF 均分∠ DCE,∴∠ 1=∠ 2= ∠ DCE,∵∠ DCE=90°, ∴∠ 1=45°,又∵∠ 3=45°, ∴∠ 1=∠3, ∴AB∥ CF.(2) ∵∠ D=30°, ∠1=45°, ∴∠ DFC=180°- 30° - 45°=105°.24.如图,AD⊥ BC于D,EG⊥ BC于G,∠ E=∠ 1,那么AD均分∠ BAC吗?试说明原因.答案AD均分∠ BAC.原因 : 由于 AD⊥ BC于 D,EG⊥ BC于 G,因此 EG∥ AD(同一平面内 , 垂直于同一条直线的两直线平行),因此∠ 1=∠2( 两直线平行 , 内错角相等 ), ∠ E=∠3( 两直线平行 , 同位角相等 ).又由于∠ E=∠ 1, 因此∠ 3=∠ 2( 等量代换 ), 因此 AD均分∠ BAC(角均分线的定义).25.(8 分 ) 如图 5-5-21, 在直角△ABC中, ∠ACB=90°,AC=4 cm,BC=3 cm,将△ABC沿 AB向右平移获得△DEF,若 AE=8cm,DB=2cm.(1)求△ABC向右平移的距离 ;(2) 求四边形 AEFC的周长 .答案∵△ABC沿 AB向右平移获得△DEF,∴AD=BE=CF,BC=EF=3cm.(1) ∵AE=8 cm,DB=2cm,∴AD=BE= -=3(cm).∴△ABC向右平移的距离为 3 cm.(2) 四边形 AEFC的周长是AE+EF+CF+AC=8+3+3+4=18(cm).26. 如图 , 已知 AB∥ CD,试再添上一个条件, 使∠ 1=∠2 建立 ( 要求给出两个以上答案),并选择一个写出证明过程.答案可增添条件∠ EBC=∠ FCB或 CF∥ BE或∠ E=∠ F.①选∠ EBC=∠ FCB.证明 : ∵AB∥ CD, ∴∠ ABC=∠ BCD,又∵∠ EBC=∠FCB,∴∠ ABC-∠EBC=∠ BCD-∠FCB,∴∠ 1=∠2.②选 CF∥ BE.证明 : ∵CF∥ BE, ∴∠ EBC=∠ FCB,又∵A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线单元测试卷
1.如图,下列条件,不能判断直线l1∥l2的是()
A. ∠1=∠3
B. ∠1=∠4
C. ∠2+∠3=180°
D. ∠3=∠5
2.如图为平面上五条直线L1,L2,L3,L4,L5相交的情形,根据图中标示的角度,判断下列叙述何者正确()
A. L1和L3平行,L2和L3平行
B. L1和L3平行,L2和L3不平行
C. L1和L3不平行,L2和L3平行
D. L1和L3不平行,L2和L3不平行
3.如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()
A. 60°
B. 50°
C. 40°
D. 30°
4.将直尺和直角三角板按如图方式摆放(∠ACB为直角),已知∠1=30°,则∠2的大小是( )
A. 30°
B. 45°
C. 60°
D. 65°
5.如图,AB∥EF∥CD,∠ABC=45°,∠CEF=155°,则∠BCE等于( )
A. 10°
B. 15°
C. 20°
D. 25°
6.下面说法正确的是( )
A. 过一点有且只有一条直线与已知直线平行
B. 两直线成直角,则这两直线一定垂直
C. 没有交点的两条直线一定平行
D. 过直线外一点,有且只有一条直线与已知直线垂直
7.(2017·山东枣庄山亭区期中)如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,正确的有()
①BC与AC互相垂直;②AC与CD互相垂直;③点A到BC的垂线段是线段BC;④点C到AB 的垂线段是线段CD;⑤线段BC是点B到AC的距离;⑥线段AC的长度是点A到BC的距离.
A. 2个
B. 3个
C. 4个
D. 5个
8.如图,在下列四组条件中,能判定AB∥CD的是()
A. ∠1=∠2
B. ∠3=∠4
C. ∠BAD+∠ABC=180°
D. ∠ABD=∠BDC
9.如图,已知∠B=∠D,要使BE∥DF,还需补充一个条件,你认为这个条件应该是_____.(填一个条件即可)
10.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转_____度.
11.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB∶CD=1∶2,若三角形ABC的面积为6,则三角形BCD的面积为__________.
12.两个角的两边分别平行,一个角是50°,那么另一个角是__________.
13.某江段江水流经B,C,D三点拐弯后与原来流向相同,如图,若∠ABC=120°,∠BCD=80°,则∠EDC=___________°.
14.如图,AC、BC分别平分∠DAB、∠ABE,且∠1与∠2互余,则____∥____,理由是______.
15.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为.
16.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=_______.
17.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.
求证:AB∥CD.
18.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?
19.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?
解:BE∥DF.
∵AB⊥BC,
∴∠ABC=°,
即∠3+∠4=°.
又∵∠1+∠2=90°,
且∠2=∠3,
∴=.
理由是:.
∴BE∥DF.
理由是:.
20.已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F.
(1)如图1,若∠E=80°,求∠BFD的度数.
(2)如图2,若∠ABM=1
3
∠ABF,∠CDM=
1
3
∠CDF,试写出∠M与∠E之间的数量关系并证明
你的结论.
(3)若∠ABM=1
n
∠ABF,∠CDM=
1
n
∠CDF,∠E=m°,请直接用含有n,m°的代数式表示出∠M.
21.如图,DE⊥AC于点E,BC⊥AC,CD⊥AB于点D,∠1=∠2,求证:GF⊥AB.
22.如图,∠ABC=∠ADC,BF,DE是∠ABC、∠ADC的角平分线,∠1=∠2. 求证DC∥AB.
试卷答案1.A
2.C
3.B
4.C
5.C
6.B
7.B
8.D
9.∠B=∠COE
10.12
11.12
12.130°或50°
13.20
14.GD HE 同旁内角互补,两直线平行15.30
16.80°
17.证明略
18.AE∥BF
19.BE∥DF,理由略.
20.(1)∠BFD=140°;(2)6∠M+∠E=360°;(3)
360-
2
m M
n
︒︒∠=.
21.略
22.略
答案第1页,总1页。