二元一次方程组与实际问题

合集下载

七年级数学人教版下册课件8.3实际问题与二元一次方程组

七年级数学人教版下册课件8.3实际问题与二元一次方程组
题中有哪些等量关系?
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?

利用二元一次方程组解决实际问题

利用二元一次方程组解决实际问题

教案纸 科目名称 数学 审批意见:课 题 利用二元一次方程组解决实际问题 学生姓名任课教师 学生年级 初一授 课 日 期 授 课 形 式 □AA □AB 教学目的:1、掌握常见实际问题的几种类型中的等量关系式教学重点:实际问题等量关系的挖掘教学难点:实际问题等量关系的挖掘 要点一、常见的一些等量关系(一) 1.和差倍分问题: 增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题: 解这类问题的基本等量关系是:加工总量成比例. 3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量. 4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价 . 要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想 列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足: ①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等. 2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释: (1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题例1.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=()100%()⨯男女生优分人数男女生测试人数,全校优分率=100%⨯全校优分人数全校测试人数)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题的第(2)问也可以用不等式求出甲乙两校男生人数满足什么关系时,才满足甲校的全校优分率比乙校的全校的优分率低.举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?类型二、配套问题例2. 某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【总结升华】两人抬土需要一根扁担,一只筐;一人挑土需要一根扁担,两只筐.题中的等量关系是:参加劳动的同学一共用去箩筐68个和40根扁担,从而列出方程组,解出即可.举一反三:【变式】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?类型三、工程问题例3.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成.现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前1天完成任务.问:甲、乙两队合做了多少天?丙队加入后又做了多少天?【总结升华】①工程类问题中相等关系一般都比较明显,常见的一组相等关系是:两个或几个工作效率不同的对象所完成的工作量之和等于工作总量.②在工程类问题中如果没有工作总量,一般情况下把工作总量设为单位“1”.变式训练:甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系:类型四、利润问题例题4.甲乙两件服装的成本为500元,商店老板为获取利润,决定将甲种服装按50%的利润定价,乙种服装按40%的利润定价.实际出售时,两种服装均按九折出售,这样商店共获利157元.求甲乙两件服装的成本各是多少元?举一反三:【变式】儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?变式:4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)课堂练习一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? () .A.200(30-x)+50(30-y) =1800 B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=18002. 某中心学校现有学生515人,计划一年后女生在校人数增加135,男生在校人数增加190,这样在校学生人数将增加2103,那么该校现有女生和男生人数分别是( ).A.245和270 B.260和255 C.25.9和256 D.240和2753.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ).A.288元B.322元C.288元或316元D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了().A.18道B.19道C.20道D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有().A.2592362yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2592362xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2592236xyx y⎧+=⎪⎨⎪+=⎩D.259236x yx y+=⎧⎨+=⎩6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?()A. B.C. D.二、填空题7.一张方桌由一个桌面和四条桌腿组成,如果1 m3木料可制作方桌的桌面50个,或制作桌腿300条,现有5 m3木料,设用x cm3木料制作桌面,用y m3木料制作桌腿,恰好配成方桌,则可得方程组为________.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm,则木桶中水的深度是cm.9.如图所示个大小、形状完全相同的小长方形组合成一个周长为68的大长方形,则大长方形的面积为________.10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与________个砝码C的质量相等.三、解答题13.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这批货车的情况如下表:第一次第二次甲种货车辆数(单位:辆)2 5乙种货车辆数(单位:辆)3 6吨)现租用该公司4辆甲种货车和5辆乙种货车一次刚好运完这批货,如果按每吨付费30元计算,问货主应付费多少元?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?15. [阅读]在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2、y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭. [运用](1)如图所示,长方形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为________;。

用二元一次方程组解决实际问题

用二元一次方程组解决实际问题

用二元一次方程组解决实际问题(一)对大小牛的含量估计1、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班同学共用土筐59个,扁担36根,问抬土和挑土的同学各有多少人?2、某课外小组学生准备分组外出活动,若每组7人,则余下3人,若每组8人,则少5人,求学生有多少人?3、某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?4、两地相距280千米,一轮船在其间航行,顺流用14小时,逆流用20小时,求轮船在静水中的速度?5、已知一铁桥长1000米,有一列火车从桥上通过,测得火车开始上桥到完全过桥共用1分钟,整列火车在桥是的时间为40秒,求火车的速度和列车的长分别是多少?6、一个两位数的数字之和为10,十位数字与个位数字互换后,所得新数比原数小36,求原来的两位数是多少?7、某车间有28个工人生产某种螺栓和螺母,每人每天能生产螺栓12个或螺母18个,为了合理分配劳动,使生产的螺栓和螺母配套(一个螺栓和两个螺母)应分配多少人生产螺栓?8、甲、乙两家超市销售同一价格的某种商品,甲超市分两次降价,每次降价10%,乙超市一次性降价20%,那么顾客到哪家超市购此种商品最合算?8、要修一段420千米长的公路,甲工程队先干2天,乙工程队加入,两队再合干2天完成任务,如果乙队先干2天,两队两队再合干3天完成任务,问两个队每天各能修多少千米?(二)调动问题行程问题中常用到的等量关系:路程=____________________相遇问题:同时两地相向而行,________ ×相遇时间=出发地间的距离追击问题:同时两地同向而行,________ ×追击时间=出发地间的距离环行问题:同时同地同向而行,则快的行的路程-慢的行的路程=n×环形的周长(n为相遇次数)同时同地反向而行,则快的行的路程+慢的行的路程= n×环形的周长(n为相遇次数)1、两人练习跑步,如果乙先跑16米,甲8秒可以追上乙,如果乙先跑2秒,则甲4秒可以追上乙,求甲、乙两人每秒各跑多少米?2、甲、乙两人从同一地点出发,同向而行,甲骑车,乙步行,如果乙先行12千米,那么甲1小时就能追上乙,如果乙先走1小时,那么甲只用0.5小时就能追上乙,则乙的速度是多少?3、张华与李明两个同学相距15千米,同时出发,若同向而行,张华3小时追上李明,若相向而行,两人1小时后相遇,则张华与李明的速度分别是多少?4、一批货物要运往某地,货主准备租用汽车运输公司的甲乙两种货车,已知过去两次租用这两种货车的现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,部货主应付运费多少元?5、北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台,已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示。

人教版七年级数学下册_8.3实际问题与二元一次方程组

人教版七年级数学下册_8.3实际问题与二元一次方程组

感悟新知
由这个方程组,得 x=5y. 把 x=5y 代入方程①,得 a=4(5y+y)=24y. 所以木筏从甲地漂流到乙地所需时间为 ay=24yy=24(h). 答:木筏从甲地漂流到乙地需 24 h.
知2-练
感悟新知
知2-练
例 9 在当地农业技术部门的指导下,李明家增加种植菠萝 的投资,使今年的菠萝喜获丰收. 如图8.3-1 是李明和 他的爸爸、妈妈的一段对话.
感悟新知
知1-练
解:设甲种货物应装x 吨,乙种货物应装y 吨.
由题意,得
x+y 300, 6x+2 y 1200,
解得
x y
150, 150.
答:甲、乙两种货物应各装150 吨.
感悟新知
知1-练
1-1. 某校决定组织全校600 名师生去郊游,租用10 辆大客 车和8辆小客车,恰好全部坐满. 已知每辆大客车的座 位数比每辆小客车多15 个. 若设每辆大客车有x 个座 位,每辆小客车有y 个座位,则可列方程组为 10x+8y=600, __x_-__y_=__1_5_.______ .
套问题中的“配套”,销售问题中的“售价”“标 价”“折扣”等等.
感悟新知
知2-练
例2 某中学七年级甲、乙两班共有93 人,其中参加数学
课外兴趣小组的共有27
人,已知甲班有
1 4
的学生、
乙班有 1 的学生参加数学课外兴趣小组,求这两个
3
班各有多少人.
解题秘方:紧扣人数之间的数量关系,关键是和、 差、倍、分关系,建立已知量与未知量的等量关系.
感悟新知
解:设轮船在静水中的速度为x km/h, 水流速度为y km/h.
由答题:意这,艘得轮船170在x+x静-y水y中114的400,速. 度解为得17xykm13/7.h, ,

实际问题与二元一次方程组(第1课时)-七年级数学下册课件(人教版)

实际问题与二元一次方程组(第1课时)-七年级数学下册课件(人教版)

共55元 1束花+2个礼盒=55元 2束花+3个礼盒=90元
共90元
回顾旧知 列方程组解应用题的步骤:
1. 审题 2. 找等量关系 3. 设未知数 4. 列二元一次方程组 5. 解二元一次方程组 6 .检验 7. 答
合作探究
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;一周后又 购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲养员李大叔估 计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7~8 kg. 你能通过计算检验他的估计吗?
运费表 单位:(元/台)
终点
温州
武汉
起点
北京
400
800
上海
300
500
【分析 】(1 )等量 关系为:400 ×北京运 往温州的 台数+800× 北京运 往武汉的 台数+300
×上海运往温州的台数+500×上海运往武汉的台数=8000,温州需要 6 台,把相关数值
代入求解即可;
(2)本着节约运送资金和分配到温州的仪器不能超过 5 台分析即可得到调配方案.
解:设2米的钢材有x段,1米的钢材有y段,根据题意,得
x+y=10 2x +y =18
解方程组,得
x=8 y =2
答:小明估计不正确. 2米钢材有8段,1米钢材2段.
估算作用
在生产和生活中估算具有一定的实用价值的,同学们应该逐渐 具备这种估算能力,但估算通常会产生一定的误差,通过精准 计算可以对估算的结果进行检验.
(2)由表格中的数据可得出,∵上海运送到温州的费用最低,
设北京运送到温州 x 台,则北京运武汉(10﹣x,总费用为 y,

人教七年级数学下册-实际问题与二元一次方程组(附习题)

人教七年级数学下册-实际问题与二元一次方程组(附习题)

探究新知
知识点 和差倍分问题
养牛场原有 30 头大牛和 15 头小牛,1 天约用 饲料 675 kg;一周后又购进 12 头大牛和 5 头小牛, 这时 1 天约用饲料 940 kg.饲养员李大叔估计每只 大牛 1 天约需饲料 18~20 kg,每只小牛 1 天约需 饲料 7 ~8 kg. 你能否通过计算检验他的估计吗?
是否正确的良好习惯.
情景导入
上节课我们学习了运用方程组 解决一些实际问题,这节课我们继 续学习建立二元一次方程组的数学 模型解应用题.
探究新知
知识点 几何图形问题
据统计资料,甲、乙两种作物的单位面积产量 的比是 1:2.现要把一块长 200 m、宽 100 m 的长 方形土地,分为两块小长方形土地,分别种植这两 种作物.怎样划分这块土地,使甲、乙两种作物的 总产量的比是 3:4?
解:设这间会议室共有座位 x 排,该校七年级 有 y 名学生,根据题意,得
12x+11=y 解得: x=12
14x-13=y
y=155
答:这间会议室共有座位 12 排,该校七年级有 155 名学生.
基础巩固
随堂演练
1.现用 190 张铁皮做盒子,每张铁皮可制 8 个 盒身或 22 个盒底,而一个盒身与两个盒底配成一个
综合运用
4.有大小两种货车,2 辆大货车与 3 辆小货车 一次可以运货 15.5 吨,5 辆大货车与 6 辆小货车 一次可以运货 35 吨. 求 3 辆大货车与 5 辆小货车 一次可以运货多少吨?
解:设大车一次可以运货 x 吨,小车一次可以运货
y 吨. 由题意,得 2x 3 y 15.5,①
问题1 要求“这批产品的销售款比原料费与运 输费的和多多少元?”我们必须知道什么?

(完整版)实际问题与二元一次方程组经典例题(学生版)

(完整版)实际问题与二元一次方程组经典例题(学生版)

实际问题与二元一次方程组经典例题列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③船的顺水速度-船的逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。

人教版七年级数学下册:实际问题与二元一次方程组【精品课件】

人教版七年级数学下册:实际问题与二元一次方程组【精品课件】

巩固练习
某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放 1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2 个大餐厅和1个小餐厅,可供2280名学生就餐. (1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐? (2)若7个餐厅同时开放,请估计一下能否供应全校的 5300名学生就餐?请说明理由.
解:设张强、李毅每小时各走x, y千米,由题意得
0.5x 2x
x
y
11
2y 20.
20,
0.5x千米
解得
x y
4, 5.
2x千米
2y千米
(1) A
B
张强2.5小时走的路程
李毅2小时走的路程
x千米
11千米
y千米
(2) A
B
答:张强、李毅每小时各走4, 5千米.
巩固练习
巴广高速公路在5月10日正式通车,从巴中到广元全长约126
人教版 数学 七年级 下册
导入新知
悟空顺风探妖踪,千里只行四分钟. 归时四分行六百,风速多少才称雄?
素养目标
3.经历用方程组解决实际图形问题的过程,体 会方程组是刻画现实世界的有效数学模型. 2.学会利用二元一次方程组解决几何、行程 问题. 1.能够根据具体的数量关系,列出二元一次方 程组解决简单的实际问题.
课堂检测
4.A市至B市的航线长1200km,一架飞机从A市顺风飞往B市需2 小时30分,从B市逆风飞往A市需3小时20分.求飞机的平均速度 与风速.
解:设飞机的平均速度为xkm/h,风速为y km/h,
根据题意可列方程组
解得: x = 420,
y = 60.
答:飞机的平均速度为420km/h,风速为60km/h.

实际问题与二元一次方程组教学反思5篇

实际问题与二元一次方程组教学反思5篇

实际问题与二元一次方程组教学反思5篇实际问题与二元一次方程组教学反思5篇篇一:《实际问题与二元一次方程组》教学反思本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。

本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。

教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。

教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的三道实际问题:牛饲料问题,捐款问题以及红茶沟门票问题。

在解决这些实际问题当中,我充分体现了以学生发展为本,让学生积极参与并且有效参与的新课程理念,在这样的理念指导下,我充分让时间留给学生,让讲台留给学生,让发现留给学生,注重学生情感价值观的培养,发扬教学民主,发挥了学生的主动意识,因此在学生解决(探究1)牛饲料问题当中,学生能想出三种列方程组的方法,这是我意想不到的收获,这是我实施新课程理念中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。

从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。

教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。

同时,我能改变传统教学的方法,跳出文本,活用教材。

如:在探究1解决牛饲料问题中,我先让学生对平均每只母牛和每只小牛1天的食量进行估算,再寻求检验估算的方法,使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。

同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。

人教版数学七年级下册 运用二元一次方程组解决实际问题

人教版数学七年级下册 运用二元一次方程组解决实际问题

二 元
应用
和差倍分、几何面积、工程、配套等...
一 次
审题:弄清题意和题目中的_数__量__关__系_

程 组

的题
应步
用骤
设元:用字__母__表示题目中的未知数 列方程组:根据_2_个等量关系列出方程组 解方程组:代__入__法__、__加__减__法__ 检验作答
1.(扬州中考)《孙子算经》是我国古代经典数学名著,其
中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三
十五头,下有九十四足.问鸡兔各几何?”,该如何解
决呢? 解:设鸡有 x 只,兔有 y 只.
由题意,得
x y35, 2x4 y94.
解此方程组得
x23,
y
12.
答:鸡有 23 只,兔有 12 只.
2. 有甲、乙两数,甲数的 3 倍与乙数的 2 倍之和等于 47, 甲数的 5 倍比乙数的 6 倍小 1,这两个数分别是多少?
知识点1:和差倍分问题 合作探究
探究一:养牛场原有 30 只大牛和 15 只小牛,1 天 约用饲料 675 kg;一周后又购进 12 只大牛和 5 只小 牛,这时 1 天约用饲料 940 kg. 饲养员李大叔估计每 只大牛 1 天约需饲料 18 ~ 20 kg,每只小牛 1 天约需 饲料 7 ~ 8 kg. 你认为李大叔估计的准确吗?
x = 45, 解此方程组得
y = 15.
60 cm
答:每块小长方形地砖的长和宽分别是 45 cm,15 cm.
4. A 地至 B 地的航线长 9750 km,一架飞机从 A 地 顺风飞往 B 地需 12.5 h,它逆风飞行同样的航线需 13 h,求飞机的平均速度与风速.
解:设飞机的平均速度为 x km/h,风速为 y km/h.

二元一次方程组实际应用

二元一次方程组实际应用

二元一次方程组实际应用
在我们的日常生活中,二元一次方程组可以被广泛应用。

这种方
程组由两个未知数和两个方程构成,其形式如下:
a1x + b1y = c1
a2x + b2y = c2
其中,a1、a2、b1、b2、c1和c2都是已知数,而x和y则是未知数。

这种方程组可以使用代数方法或者图形方法求解。

二元一次方程组在解决问题时有广泛的指导意义。

下面举几个例子:
1. 经济问题:我们可以使用二元一次方程组解决各种涉及到经济
问题的计算。

例如,我们可以用它来计算药品价格和医疗消费之间的
关系,或者计算房子的租金和用户需求之间的关系。

2. 教育问题:我们可以用二元一次方程组来计算学生数和教育资
源之间的关系,或者计算学生的成绩和学校教学水平之间的关系。

3. 质量问题:我们可以使用二元一次方程组来解决质量控制问题,比如计算两种不同材料的质量比较,或者计算不同等级的产品质量之
间的关系。

4. 科技问题:我们可以用二元一次方程组解决各种与科技相关的问题,例如计算电子设备之间的相关性或者计算不同农业技术对作物收成的影响。

二元一次方程组也可以帮助我们更好地理解和探索数学的本质,以及如何应用数学知识去解决实际问题。

当我们遇到一个包含未知数的问题时,通过建立相应的二元一次方程组来查找答案并进行计算,不仅可以帮助我们找到答案,而且可以帮助我们理解问题本质,并更好地掌握数学知识。

二元一次方程组的应用

二元一次方程组的应用

二元一次方程组的应用二元一次方程组是数学中常见的问题形式,可以通过解方程组来求解未知数的取值。

在实际生活和工作中,二元一次方程组有着广泛的应用。

本文将讨论二元一次方程组的一些常见应用场景。

一、消费问题在购物中,我们常常需要计算多个商品的总价。

假设商品A的价格为x元,商品B的价格为y元,购买A商品m件,B商品n件,总花费为p元。

此时可以列出如下二元一次方程组:mx + ny = p (1)m + n = t (2)其中,t为商品的总件数,p为总花费金额。

通过求解方程组,可以得到商品A和商品B的价格。

二、速度问题在物理学中,速度问题通常为二元一次方程组的典型应用。

设一个物体的速度恒定不变,物体在t秒内运动了s米,根据匀速运动的定义,可以得到如下方程组:vt - s = 0 (3)v' - v = 0 (4)其中,v为物体的速度,s为物体的位移,v'为物体的平均速度。

通过解方程组,可以求解物体的速度和位移。

三、投资问题在投资领域,经常需要计算不同投资项目的收益率。

假设我们有两个投资项目A和B,投资A的金额为x元,投资B的金额为y元,A项目的收益率为r1,B项目的收益率为r2,可以列出如下方程组:rx = r1x + r2y (5)x + y = t (6)其中,t为总投资金额。

通过求解方程组,可以得到投资项目A和B的收益率。

四、运动员的成绩在体育竞技中,运动员的成绩常常可以用二元一次方程组来表示。

假设运动员A和运动员B分别参加了两个项目,A在第一个项目中获得了x分,在第二个项目中获得了y分,B在第一个项目中获得了p分,在第二个项目中获得了q分。

根据成绩的计算方法,可以列出如下方程组:x + y = t (7)p + q = t (8)其中,t为满分。

通过解方程组,可以得到运动员A和运动员B在两个项目中的得分情况。

五、人员分配问题在人员分配和调度问题中,可以利用二元一次方程组来求解不同人数的分配。

二元一次方程组及实际问题应用

二元一次方程组及实际问题应用

二元一次方程组及实际问题应用
二元一次方程组是由两个二元一次方程构成的方程组。

一个二元一次方程的一般形式为:
ax + by = c
其中,a、b、c为实数,且a与b不全为0。

一元一次方程组是指由两个这样的方程组成的方程组。

二元一次方程组及其求解在实际问题中有广泛的应用,例如:
1. 解决经济问题:经济学中常常使用二元一次方程组来描述供需关系、价格变化等。

通过求解方程组可以得到供求平衡点、市场均衡价格等。

2. 解决几何问题:几何学中常常需要求解含有两个未知数的方程组来求解几何问题,如求交点、平行线等。

3. 解决物理问题:在物理学中,二元一次方程组的应用非常广泛。

例如,求解加速度、速度、位移等问题都可以转化为求解方程组。

4. 解决工程问题:工程学中常常使用二元一次方程组来描述电路、力学等问题。

通过求解方程组可以计算电流、电压、力的大小等。

实际问题与二元一次方程组教案

实际问题与二元一次方程组教案

实际问题与二元一次方程组教案实际问题与二元一次方程组教案(通用6篇)作为一位无私奉献的人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么教案应该怎么写才合适呢?以下是店铺为大家收集的实际问题与二元一次方程组教案(通用6篇),欢迎阅读,希望大家能够喜欢。

实际问题与二元一次方程组教案篇1教学目标:1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易4.进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系课前自主学习1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是()量(2)同类量的单位要()(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(),兔有()新课探究看一看问题:1.题中有哪些已知量?哪些未知量?2.题中等量关系有哪些?3.如何解这个应用题?本题的等量关系是(1)()(2)()解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程,得解这个方程组得答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。

(“有”或“没有”)练一练:1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?小结用方程组解应用题的一般步骤是什么?实际问题与二元一次方程组教案篇2教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1、“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。

二元一次方程组与实际问题

二元一次方程组与实际问题

实际问题与二元一次方程组(1)(顺风逆风问题·劳力调配问题)和雅激情:学习贵在坚持学习目标:经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型。

自学指导:用3分钟自学文雅自修一列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答文雅自修二探究:课本99页探究1养牛场原有30只大牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只大牛和5只小牛,这时一天约需用饲料940 kg.饲养员李大叔估计平均每只大牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg.你能否通过计算检验他的估计?问题:1)题中有哪些已知量?哪些未知量?2)题中等量关系有哪些? 3)如何解这个应用题?本题的等量关系是(1)()(2)()优雅展评我会用1.有大小两辆货车,两辆大车与3辆小车一次可以支货15。

50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?2、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?堂清雅行一、顺风逆风问题:1、A市至B市的航线长1200㎞,一架飞机从A市顺风飞往B市需2小时30分,从B市逆风飞往A市需3小时20分,求飞机的平均速度与风速。

2、一艘轮船从甲地顺流而下8小时到达乙地,原路返回12小时才能到达,已知水流速度是3千米/小时,求船在静水中的速度和两地之间的距离。

3、一条船顺流航行,每小时行20㎞;逆流航行,每小时行16㎞,求轮船在静水中的速度与水的流速。

二、劳力调配问题:1、在甲处劳动的有29人,在乙处劳动的有17人,现要赶工期,总公司另调20人前来支援,使甲处的人数是乙处人数的2倍,应该分别调往甲、乙两处各多少人?2、某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班学生共用土筐59人,扁担36条,问抬土和挑土的学生生各多少人?3、有一群鸽子,其中一部分在树上欢歌,另一部分在树下觅食,树上的一只鸽子对树下觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的三分之一;若从树上飞下去一只,则树上、树下的鸽子就一样多啦。

利用二元一次方程组解决实际问题

利用二元一次方程组解决实际问题

利用二元一次方程组解决实际问题二元一次方程组是高中数学中的重要知识点,它可以帮助我们解决很多实际问题。

本文将从解决实际问题的角度出发,介绍二元一次方程组的应用。

一、车票问题假设一辆旅游大巴车每张座位卖30元,车上共有80个座位,卖出的车票数比空座位多8张,求卖出的车票数和空座位的数目各是多少?设卖出的车票数为x,空座位的数目为y。

根据题意,我们可以列出一个关于x和y的方程组:x + 8 = 30yx + y = 80解这个方程组,可以采用消元法。

将第二个方程变形为x = 80 - y,代入第一个方程中,得到:80 - y + 8 = 30y化简后,得到:31y = 88解得y ≈ 2.838,由于座位数必须是整数,所以我们取最接近的整数值y=3。

代入第二个方程,得到x = 80 - 3 = 77。

因此,卖出的车票数为77张,空座位的数目为3个。

二、混合液体问题某实验室需要制备一种混合液体,A液与B液按照1:3的比例混合,现有A液200毫升,B液300毫升。

已知混合液体中A液的含量为40%,求需要加入多少毫升的B液使得混合液体中A液含量达到60%?设加入的B液的体积为x毫升。

根据题意,我们可以列出一个关于x的方程:0.4 * (200 + 3x) = 0.6 * (200 + 3x + 300)化简后,得到:0.4 * (200 + 3x) = 0.6 * (500 + 3x)进一步化简,得到:80 + 1.2x = 300 + 1.8x解得x ≈ 100。

因此,需要加入100毫升的B液体。

三、运动问题甲、乙两人同时从两地相向而行,相遇后甲用2小时的时间赶到了B地,乙用3小时的时间赶到了A地。

已知甲每小时行30公里,乙每小时行20公里,求A、B两地的距离。

设A、B两地的距离为x公里。

根据题意,我们可以列出一个关于x的方程:2(30) + 3(20) = x化简后,得到:60 + 60 = x解得x=120。

二元一次方程组的8大解题方法,应用题的克星

二元一次方程组的8大解题方法,应用题的克星

二元一次方程组的8大解题方法,专治各类应用题!二元一次方程大战应用题一、实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

(第一中考网)3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

二、八大典型例题详解01.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

02.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。

典型例题思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组(1)(顺风逆风问题·劳力调配问题)和雅激情:学习贵在坚持学习目标:经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型。

自学指导:用3分钟自学文雅自修一列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答文雅自修二探究:课本99页探究1养牛场原有30只大牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只大牛和5只小牛,这时一天约需用饲料940 kg.饲养员李大叔估计平均每只大牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg.你能否通过计算检验他的估计?问题:1)题中有哪些已知量?哪些未知量?2)题中等量关系有哪些? 3)如何解这个应用题?本题的等量关系是(1)()(2)()优雅展评我会用1.有大小两辆货车,两辆大车与3辆小车一次可以支货15。

50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?2、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?堂清雅行一、顺风逆风问题:1、A市至B市的航线长1200㎞,一架飞机从A市顺风飞往B市需2小时30分,从B市逆风飞往A市需3小时20分,求飞机的平均速度与风速。

2、一艘轮船从甲地顺流而下8小时到达乙地,原路返回12小时才能到达,已知水流速度是3千米/小时,求船在静水中的速度和两地之间的距离。

3、一条船顺流航行,每小时行20㎞;逆流航行,每小时行16㎞,求轮船在静水中的速度与水的流速。

二、劳力调配问题:1、在甲处劳动的有29人,在乙处劳动的有17人,现要赶工期,总公司另调20人前来支援,使甲处的人数是乙处人数的2倍,应该分别调往甲、乙两处各多少人?2、某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班学生共用土筐59人,扁担36条,问抬土和挑土的学生生各多少人?3、有一群鸽子,其中一部分在树上欢歌,另一部分在树下觅食,树上的一只鸽子对树下觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的三分之一;若从树上飞下去一只,则树上、树下的鸽子就一样多啦。

”树上、树下各有多少只鸽子吗?4、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?三、数字问题:1、一个两位数,个位数字与十位数字的和为15,如果把十位数字与个位数字对调,则所得的新数比原数小27,则原来的两位数是多少?2、一个两位数,个位数字比十位数字大3,把十位数字与个位数字对调后,所得的新数比原数大27,则原来两位数是多少?实际问题与二元一次方程组(2)(配套问题·盈不足问题)和雅激情:学习贵在坚持学习目标经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;自学指导:用3分钟自学教材P99探究2文雅自修一1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。

2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个文雅自修二我知道根据统计资料,甲、乙两种作物的单位面积的产量比是1∶2,现在要在一块长为200 m,宽100 m的长方形的土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量比为3∶4?思考:1、“甲、乙两种作物的单位面积产量比是1:1.5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?优雅展评我会用1.学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请你设计一种分法.2.木工厂有28人,2个工人一天可以加工3张桌子,3个工人一天可加工10只椅子,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?堂清雅行一、配套问题:1、一张方桌由一个桌面和四条腿组成,如果1立方米木料可做桌面50个或桌腿300条,现有50立方米木料,问可用多少立方米木料做桌面多少立方米做桌腿恰好配套?你能求出配成多少张桌子吗?2、某机械厂加工车间有工人80人,平均每人每天加大齿轮10个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,则应该安排多少人生产大齿轮,多少人生产小齿轮才能使加工的大小齿轮配套?3、某服装厂车间有工人54人,每人每天可加工上衣8件或裤子10条,应该怎样分配人数,才能使每天生产的上衣和裤子配套?4.一个圆凳由一个凳面和三条腿组成,如果1立方米木材可制作300条腿或制作凳面50个,现有9立方米的木材,为充分利用材料,请你设计一下,用多少木材做凳面,用多少木材做凳腿,最多能生产多少张圆凳?四、盈不足问题:1、把一些书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本,这个班有多少名学生?这些图书有多少本?2、若干个学生住若干间房间,如果每间房住4人,则有20人没有住处;如果每间房住8人,则有一间房子还差4人才住满,问有多少间房子?多少个学生?3、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产25套服装,就可提前4天完成任务,问这批服装的订货任务是多少套?原计划多少天完成?4、某旅社在黄金旅游期间为一旅游团体安排住宿,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该团体有多少人和宿舍间数.实际问题与二元一次方程组(3)(行程问题)和雅激情:自信快乐,乐学善思学习目标:进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;自学指导:用3分钟自学文雅自修教材100页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。

公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元。

这批产品的销售款比原料费与运输费的和多多少元?设问1.如何设未知数?销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨.设问2.如何确定题中数量关系?产品x吨原料y吨合计公路运费(元)铁路运费(元)价值(元)优雅展评我会用1、一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两甲种货车(辆)乙种货车(辆)总量(吨)第1次 4 5 28.5第2次 3 6 2720元运费,问:菜农应付运费多少元?购票人数1人~50人51~100人100人以上票价10元/人8元/人5元/人人,乙班不足50人。

如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。

问:甲、乙两个班分别有多少人?3,甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?堂清雅行行程问题:1、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车的速度的5倍还快20千米∕小时,半小时后两车相遇,两车的速度各是多少?2、两人练习跑步,如果乙先跑16米,甲8秒可追上乙,如果乙先跑2秒,则甲4秒可追上乙,求甲乙二人每秒各跑多少米?3、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城。

他骑车的平均速度是15千米∕时,步行的平均速度是5千米∕时,路程全长20千米。

他骑车与步行各用多少时间?5、李明与王云分别从A、B两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完AB 全程各需多少小时?实际问题与二元一次方程组(4)和雅激情:自信快乐,乐学善思教学目标:经历和体验列方程组解决实问题的过程,进一步体会方程组是刻画现实世界的有效数学模型。

文雅自修一、球赛积分问题:1、一次足球赛共15场球,胜一场记3分,平一场记1分,负一场记0分,该队所胜数是所负场数的2倍,结果得了27分,则这个足球队胜、平场数各是多少?2、一足球邀请赛,勇士队在第一轮比赛中共赛了9场,得了17分,比赛规定用一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜、平场数各是多少?优雅展评我会用利润问题:1甲、乙二人按2:5比例投资开办了一家公司,约定除去各项开支外,所得利润按投资比例分成,若第一年盈利14000元,那么甲、乙二人应分别分得多少元?2、王先生用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,则王先生买的甲、乙两种股票各是多少元?3、王大伯承包了25亩土地,今年春季改茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,每亩获纯利2250元,种西红柿每亩用去了1800元,每亩获纯利2400元,(1)王大伯茄子和西红柿各种了多少亩?(2)王大伯一共获纯利多少元?堂清雅行1、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,打折后,买50件A商品和50件B商品用了960元,比不打折少花多少钱?2、某种口服液礼品盒有大盒、小盒两种包装,现在知道3大盒、4小盒共装了108瓶;2大盒、3小盒共装了76瓶,现在有一个人一共买了6大盒、6小盒,问他一共买了多少瓶?3、甲:“五一”期间,我们一家5个大人和3个小孩去西山红茶沟,买门票共花了68元。

乙:我们家也是去红茶沟,不过比你家多2个大人,多1个小孩,门票共花了94元。

丙:如果我们家9个大人和5个小孩去红茶沟,买门票需要多少元呢?4、某中学组织七年级学生春游,原计划租用45座客车若干辆,但有15人没座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满。

相关文档
最新文档