笔记:线性常差分方程基本知识

合集下载

第6节一阶和二阶常系数线性差分方程

第6节一阶和二阶常系数线性差分方程
代人方程,比较同次系数,确定出 B0, B1, B2, , Bn 得到方程的特解。对于 f ( x) 是一般的 n 次多项 式的情况可类似求解。
8/8/2024 1:07 AM
第7章 微分方程与差分方程
当 a 1时,取 s 1,此时将
y x x(B0 B1x Bn xn )
代人方程,比较同次系数,确定出 B0, B1, B2, , Bn 得到方程的特解。这种情况下,方程的左端为 yx , 方程为 yx cxn ,可将 xn化成 x(n) 的形式 求出它的一个特解。
2 , 1
对应的齐次方程的通解为 yx A1(2)x A2 因为 1 a b 1 1 2 0 ,a 1 2 所以特解为
yx
12 x 21
4x
故原方程的通解为
yx 4x A1(2)x A2 ( A1, A2为任意常数)
8/8/2024 1:07 AM
第7章 微分方程与差分方程
其中 r
2 2
b , tan
4b a2 ,
A1, A2 为任意常数。
a
8/8/2024 1:07 AM
第7章 微分方程与差分方程
2.方程(4)中 f ( x)取某些特殊形式的 函数时的特解(利用待定系数法求出)
(1) f ( x) c (c 为常数)
方程(4)为
yx2 a yx1 byx c (6)
8/8/2024 1:07 AM
第7章 微分方程与差分方程
利用待定系数法 设方程具有yx kxs形式 的特解。
当 a 1时,取 s 0 ,代人方程得 k ak c
k c , 1a
所以方程的特解为
yx
c 1
a
又因对应的齐次方程的通解为 yx Aa x

线性差分方程

线性差分方程

线性差分方程内容提要:1 齐次线性差分方程1-1 一阶齐次线性差分方程1-2 二阶齐次线性差分方程(容许复数解)1-3 二阶齐次线性差分方程(容许实数解)1-4 齐次线性差分方程2 线性差分方程3 例子本文主要参考文献.由于最近需要用到一些线性差分方程,所以这里做一个复习小结.注:由于阶数为 2 或者 2 以上,处理方法毫无区别,所以我们集中火力搞定 2 阶情形,一般情形则不加证明给出结果. 但不难由 2 阶情形照搬证明过去.1 齐次线性差分方程1-1 一阶齐次线性差分方程称如下形式的方程为序列 \{z_t, \ t\in \mathbb{Z} \} 的一阶齐次线性差分方程:z_t =a_1 z_{t-1} ,式中 a_1 为实数.\bullet 显然这个方程的解为z_t =C a_1^t . C 为任意实数.1-2 二阶齐次线性差分方程(容许复数解)称如下形式的方程为序列 \{z_t, \ t\in \mathbb{Z} \} 的二阶齐次线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} ,式中 a_1, a_2 为实数.[特征方程与特征根] 我们把矩阵A={ \left[ \begin{array}{cc} a_1 & a_2 \\ 1 & 0\end{array} \right ]} 的特征多项式\lambda^{2}=a_{1}x+a_{2}称为齐次线性差分方程 z_t =a_1 z_{t-1} + a_2 z_{t-2} 的特征方程,而它的两个根\lambda_{1},\lambda_{2} (可能有重根)叫做特征根.[特解]z_{t}=\lambda_{i}^{t} ( i=1,2 ) 为方程的特解.[证明] 由\lambda_{i}^{2}=a_{1}\lambda_{i}+a_{2} ,两边同时乘以 \lambda_{i}^{t-2} ,得\lambda_{i}^{t}=a_{1}\lambda_{i}^{t-1}+a_{2}\lambda_{i}^{t-2}因此z_{t}=\lambda_{i}^{t} ( i=1,2 )满足原方程.1-2-1 不等特征根情形\bullet 如果 \lambda_{1}\ne\lambda_{2} , 那么,方程z_t =a_1 z_{t-1} + a_2 z_{t-2} 的通解为z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}.[证明] 由于\begin{array}{llll} a_{1}z_{t-1}+a_{2}z_{t-2}\\=a_{1}\left( C_{1}\lambda_{1}^{t-1}+C_{2}\lambda_{2}^{t-1}\right)+a_{2}\left( C_{1}\lambda_{1}^{t-2}+C_{2}\lambda_{2}^{t-2}\right)\\=C_{1}\left( a_{1}\lambda_{1}^{t-1}+a_{2}\lambda_{1}^{t-2} \right)+C_{2}\left( a_{1}\lambda_{2}^{t-1}+a_{2}\lambda_{2}^{t-2}\right)\\=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}\\=z_{t} \end{array}所以对任意的常数 C_{1},C_{2}, 我们都有z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t} 是方程 z_t =a_1 z_{t-1} + a_2 z_{t-2}的解.还需要验证所有的解具有这个形式. 对于给定的一组初值 z_{0},z_{1},有\begin{array}{llll}C_{1}+C_{2}=z_{0}\\C_{1}\lambda_{1}+C_{2}\lambda_{2}=z_{1}\\\end{array}这个关于 C_{1},C_{2} 的二元一次方程组的系数矩阵的行列式为\left|\begin{array}{cccc} 1 & 1 \\\lambda_{1} & \lambda_{2}\end{array}\right| \not=0所以给定初值z_{0},z_{1},就能唯一确定系数 C_{1},C_{2}. 1-2-2 相等特征根情形\bullet 如果 \lambda_{1} = \lambda_{2}= \lambda , 那么,方程 z_t =a_1 z_{t-1} + a_2 z_{t-2} 的通解为z_t =(C_1 +C_2t) \lambda^t .[证明] 由于 \lambda 是特征多项式\lambda^{2}=a_{1}x+a_{2}的二重根 ,所以它也是 \lambda^{t}=a_{1}\lambda^{t-1}+a_{2}\lambda^{t-2} 的二重根. 把\lambda^{t}=a_{1}\lambda^{t-1}+a_{2}\lambda^{t-2} 的两边对 \lambda 求导,得t\lambda^{n-1}=a_{1}\left( t-1\right)\lambda^{t-2}+a_{2}\left( t-2\right)\lambda^{t-3},因为重根求导之后仍为根,所以 \lambda 是 t\lambda^{n-1}=a_{1}\left( t-1 \right)\lambda^{t-2}+a_{2}\left( t-2 \right)\lambda^{t-3} 的根,两边乘以 \lambda 得到\lambda 也是t\lambda^{t}=a_{1}\left( t-1\right)\lambda^{t-1}+a_{2}\left( t-2\right)\lambda^{t-2} 的根,即z_{t}=t\lambda^{t} 也是特解. 容易验证z_t=(C_1 +C_2t) \lambda^t 都是方程 z_t =a_1z_{t-1} + a_2 z_{t-2} 的解.还需要验证所有的解具有这个形式. 对于给定的一组初值z_{0},z_{1},有\begin{array}{llll}C_{1}=z_{0}\\C_{1}\lambda+C_{2}\lambda=z_{1}\\\end{array}这个关于 C_{1},C_{2} 的二元一次方程组的系数矩阵的行列式为 \left|\begin{array}{cccc} 1& 0 \\ \lambda & \lambda\end{array}\right|\ne0所以给定初值z_{0},z_{1},就能唯一确定系数 C_{1},C_{2}.1-3 二阶齐次线性差分方程(容许实数解)延续上一节的记号.\bullet (i) 若特征方程有两不等实根 \lambda_1,\lambda_2 ,那么这个方程的解为z_t =C_1 \lambda_1^t+C_2 \lambda_2^t . C_1, C_2 为任意实数.\bullet (ii) 若特征方程有两相等实根 \lambda_1=\lambda_2 = \lambda ,那么这个方程的解为z_t =(C_1+C_2t) \lambda^t . C_1, C_2 为任意实数.\bullet (iii) 若特征方程有两共轭复根 \lambda_1=re^{iw}, \lambda_2=re^{-iw}, 那么两个特解为z_t=r^{t}e^{iwt} ,z'_t=r^{t}e^{-iwt},由欧拉公式有z_t=r^{t}[cos(wt)+isin(wt)],z'_t=r^{t}[cos(wt)-isin(wt)].特解含有复数部分,我们希望解是实的,可以凑出新的两个特解r^{t}cos(wt)与 r^{t}sin(wt) , 因此通解为z_t =C_1r^{t}cos(wt) +C_2 r^{t}sin(wt) .1-4 齐次线性差分方程[齐次线性差分方程] 称如下形式的方程为序列 \{z_t, \t\in \mathbb{Z} \} 的齐次线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p} ( )式中, p\geq 1 , a_1, a_2, \cdots a_p 为实数.[特征方程与特征根] 我们把矩阵A={ \left[ \begin{array}{cccccc} a_1 & a_2 &a_3&\cdots &a_{p-1} & a_p\\ 1 & 0 & 0&\cdots &0 & 0\\ 0 & 1 & 0&\cdots &0 & 0\\ \cdots &\cdots &\cdots&\cdots &\cdots &\cdots \\ 0 & 0 & 0&\cdots &1 & 0\end{array} \right ]} 的特征多项式\lambda^{p}=a_{1}\lambda^{p-1}+a_{2}\lambda^{p-2} +\cdots +a_p称为齐次线性差分方程 ( ) 的特征方程,而它的 p 个非零根\lambda_{1},\lambda_{2},\cdots,\lambda_{p} (可能有重根)叫做特征根.\bullet 如果 \lambda_{i} 为两两不等的实根, 那么,方程( ) 的通解为z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}+\cdots +C_{p}\lambda_{p}^{t}.2 线性差分方程[线性差分方程] 称如下形式的方程为序列 \{z_t, \ t\in\mathbb{Z} \} 的线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p}+h( t). ( )式中, p\geq 1 , a_1, a_2, \cdots a_p 为实数而 h(t) 为t 的已知函数. 并且称方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p} ( )为( )的导出齐次线性差分方程.\bullet 线性差分方程( )的解为导出齐次线性差分方程( )的通解和特解之和.3 例子[例1] (等差数列) 等差数列z_{t+1}=z_{t}+d 为一阶线性差分方程.它的导出齐次方程为 z_{t+1}=z_{t} , 特征根为 \lambda=1 . 于是导出齐次方程的解为 z_t=C.猜测原方程的一个特解为 z_{t} = dt , 那么全部解为 z_{t} = dt+C.[例2] z_{t}= 2 z_{t-1}+1 .它的导出齐次方程为 z_{t}=2z_{t-1} , 特征根为\lambda=2 . 于是导出齐次方程的解为 z_t=C2^t.猜测原方程的一个特解为 z_{t} = 2^t-1 , 那么全部解为z_t=C2^t-1.。

差分方程方法总结

差分方程方法总结
对应代数方程:
a1
k
k 1
a2
k 2
ak 0
称为差分方程(1)的特征方程,其特征方程的根 称为特征根。
33
2018年10月15日
2018年10月15
一 .常系数线性差分方程
2.常系数线性非齐次差分方程
常系数线性非齐次差分方程的一般形式:
xn a1 xn1 a2 xn2 ak xnk f (n) (2) 其中 k 为差分方程的阶数,ai (i 1,2,, k ) 为差分
方程的系数, ak 0(k n) , f (n) 为已知函数。
7
2018 年 10 月 15日 2018 年10 月 15 日
二 差分方程的平衡点及其稳定性
1. 一阶线性常系数差分方程的平衡点
一阶线性常系数差分方程的一般形式:
xk 1 axk b, k 0,1,2, * 它的平衡点为 x ax b 的解,不妨记为 x 。
f ( xk 1 ) f ( xk 1 ) 中心差: f ( xk ) (k 1, 2, xk 1 xk 1
13
, n)
2018 年 10 月 15日 2018 年10 月 15 日
三 连续模型的差分方法
2. 定积分的差分方法
问题:已知 f ( x) 在点 xk 处的函数值 f ( xk )(k 0,1,, n) , 且在 [a, b] 上可积,试求 f ( x) 在 [a, b] 上的积分值
根据定义,则有一般的求积公式:

b
a
f ( x)dx 。

b
a
f ( x)dx Ak f ( xk )
k 0
n

差分方程知识点总结

差分方程知识点总结

差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。

差分运算符Δ表示的是某一变量在两个连续时间点的变化量。

差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。

二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。

一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。

2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。

二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。

3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。

线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。

4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。

滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。

5. 差分方程组差分方程组是指由多个差分方程组成的方程组。

差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。

三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。

通过求解特征方程,可以求得差分方程的通解。

2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。

通过递推关系,可以求得差分方程的特解。

3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。

通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。

4. 数值解法对于复杂的差分方程,通常采用数值解法求解。

数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。

常微分方程与差分方程知识点

常微分方程与差分方程知识点
特解形式:
不是特征方程的根,
是特征方程的单根,
是特征方程的重Hale Waihona Puke ,(2)特解形式: ,
不是特征方程的根,
是特征方程的单根,
个人总结:
自由项为多项式 ,
自由项为指数函数 ,
自由项为正弦函数 ,
特解设为
自由项为余弦函数 ,
特解设为
8、一阶常系数差分方程的概念及一般形式
含有自变量、自变量的未知函数及其差分的方程,称为差分方程。一阶常系数线性差分方程的一般形式为:
常微分方程与差分方程知识点
考试纲要
常微分方程的基本概念
变量可分离的微分方程
齐次微分方程
一阶线性微分方程
线性微分方程解的性质及解的结构定理
二阶常系数齐次线性微分方程及简单的非齐次线性微分方程
微分方程的简单应用
差分与差分方程的概念
差分方程的通解与特解
一阶常系数线性差分方程
考试要求
1、了解微分方程及其阶、解、通解、初始条件和特解等概念
特解 的形式
其中 是 次多项式
其中常数
其中, 是常数,且
上表特解中 是待定系数的 次多项式, 是两个待定系数。
【注】 或 时, 可归结为前两种情况来设定特解形式。
友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。
7、会用微分方程求解简单的经济应用问题
重要知识点
1、微分方程通解中任意常数的个数与微分方程的阶数相同
2、变量可分离微分方程解法
→ →
3、齐次微分方程解法
→设 → →再用 代替
附:可化为齐次的方程
4、一阶线性微分方程解法
个人总结:对于 ,首先计算 ,通解为

一阶常系数线性差分方程

一阶常系数线性差分方程
一阶常系数线性差分方程
目录
• 引言 • 差分方程的基本理论 • 一阶常系数线性差分方程的求解方法 • 一阶常系数线性差分方程的应用 • 一阶常系数线性差分方程的数值解法 • 一阶常系数线性差分方程的变种与扩展
01 引言
差分方程的概念
差分方程是描述离散 时间系统动态行为的 数学模型。
差分方程在经济学、 物理学、生物学等领 域有广泛应用。
分析经济周期
通过差分方程模型分析经济变量的 周期性变化,为政策制定提供参考。
评估政策效果
模拟不同政策对经济系统的影响, 评估政策的实施效果。
在信号处理中的应用
滤波处理
利用一阶常系数线性差分 方程构建数字滤波器,对 信号进行滤波处理,去除 噪声和干扰。
信号预测
基于差分方程模型对信号 未来走势进行预测,实现 信号的实时跟踪和监控。
与常系数线性差分方程不同,变 系数线性差分方程的系数可以随 时间变化,这使得方程的求解更
加复杂。
求解方法
变系数线性差分方程通常无法通 过简单的代数方法求解,而需要 使用迭代法、变换法或数值方法
等更复杂的求解方法。
应用领域
变系数线性差分方程在经济学、 金融学、信号处理等领域有广泛 应用,如描述股票价格、利率、
05 一阶常系数线性差分方程 的数值解法
欧拉法
基本思想
利用泰勒级数展开式,忽略高阶项, 得到差分方程的近似解。
迭代公式
通过给定的初始值,利用迭代公式逐 步求解差分方程的解。
误差分析
欧拉法是一种显式方法,其局部截断 误差与步长成正比,全局误差随步长 减小而减小。
稳定性分析
对于某些问题,欧拉法可能不稳定, 需要采用其他方法。
01

1.3 常系数线性差分方程

1.3 常系数线性差分方程

同一个差分方程,边界条件不同,所求的h(n)表达 式不同。即:
同一个差分方程,边界条件不同,其对应的系统 是不同的。
二、常系数线性差分方程的求解
解得:此系统不是线性系统,也不是移不变系统。 结论:常系数线性差分方程,其所对应的
系统并不一定是线性移不变的。
一些关于差分方程的结论
一个差分方程不能唯一确定一个系统 常系数线性差分方程描述的系统不一定
利用查找表实现4bit x 4bit
4bit x 4bit 乘法器
用D触发器实现延时器
1. 己知差分方程,作出系统运算结构
2. 己知系统运算结构,求差分方程表达式
例:已知某系统结构如下所示,求此系统所对应的 差分方程。
四、系统运算结构的实现
当输入x(n)=nR10(n),求输出y(n)。
(输入和输出信号均为8件编程
课后自训
某线性移不变离散时间系统的单位抽样响应序 列h(n)=R3(n),
1.求此系统对应的差分方程; 2.作出此系统的运算结构; 3. 分别用硬件电路和软件编程实现此系统,
当输入信号x(n)=nR10(n)时,求出输出 信号y(n)。(输入输出信号均用8bit表示)
1.3 常系数线性差分方程
(3) y(n) x(n) h(n) x(m)h(n m) m
(使用3之前要证明此系统是线性移不变系统)
一、常系数线性差分方程的定义
二、常系数线性差分方程的求解
二、常系数线性差分方程的求解
二、常系数线性差分方程的求解
解得:
二、常系数线性差分方程的求解
解得:
是线性移不变的 不一定是因果的 不一定是稳定的
在今后的讨论中,通常假设常系数 线性差分方程就代表线性移不变系统, 且多数代表可实现的因果系统。

差分方程基本概念和方法

差分方程基本概念和方法

差分方程基本概念和方法差分方程是一种描述离散系统行为的数学模型,与微分方程类似。

差分方程的解描述了系统的演化过程,这使得差分方程在多个领域中有广泛的应用,如物理、生物、经济学等。

差分方程的基本概念:1.序列:差分方程的解是一个序列,即有序数字集合。

通常用{x_n}表示,其中n是自然数。

2.差分算子:在差分方程中,通常使用差分算子△来表示序列的递推关系。

差分算子△的作用是将序列中的元素转化为下一个元素。

3.初始条件:差分方程还需要初始条件。

初始条件是差分方程的一个边界条件,用来确定序列的起点。

差分方程的一般形式为:x_{n+1}=f(x_n)其中,x_{n+1}是序列中的下一个元素,f是一个给定的函数。

差分方程的解法可以分为两种方法:定解条件法和递推法。

1.定解条件法:此方法适用于已知一些递推关系的问题。

定解条件法的基本思想是找到满足差分方程的序列,并给出初始条件来解决方程。

步骤如下:a.先猜测一个可能的递推关系,并将其代入差分方程中。

b.解得的递推关系与给定的初始条件进行比较,如果相符,则该递推关系为差分方程的解。

c.如果猜测的递推关系与初始条件不符,可以再次猜测一个新的递推关系,继续以上步骤,直到找到满足条件的递推关系。

2.递推法:此方法适用于无法直接找到递推关系的情况。

递推法的基本思想是通过已知的序列元素来逐步计算下一个元素,以构造出满足差分方程的序列。

步骤如下:a.给出初始条件,即序列的前几项。

b.根据初始条件计算出序列的下一项,再利用这一项计算出下下一项,以此类推。

c.最终得到满足差分方程的序列。

需要注意的是,差分方程的解不一定存在,且可能存在多个解。

此外,解的形式可能是递推公式、闭式公式或者一个序列。

总之,差分方程是一种离散系统行为的数学模型,差分方程的解描述了系统的演化过程。

通过定解条件法和递推法,我们可以解决差分方程问题并得到满足条件的解。

差分方程公式总结

差分方程公式总结

差分方程公式总结嘿,咱们来聊聊差分方程这玩意儿!差分方程,听起来是不是有点让人头大?其实啊,它没那么可怕。

先来说说啥是差分方程。

简单来讲,就是含有未知函数差分的方程。

就像我们解普通方程一样,只不过这里的主角变成了差分。

比如说,有个一阶差分方程:$y_{n+1} - y_{n} = f(n)$ 。

这就表示相邻两个时刻函数值的差和自变量之间的关系。

咱们来仔细瞅瞅它的公式。

一阶线性常系数差分方程的一般形式是:$y_{n+1} + ay_{n} = f(n)$ ,这里的$a$是个常数。

求解它的办法有很多,像迭代法啦、特征根法啦。

拿迭代法来说,假设初始值是$y_0$ ,那么就可以一步一步地算下去:$y_1 = -ay_0 + f(0)$ ,$y_2 = -ay_1 + f(1)$ ,以此类推。

再说说特征根法。

先求出特征方程$r + a = 0$的根$r$ ,要是特征根不同,那通解就是$y_n = C_1r_1^n + C_2r_2^n$ ;要是特征根相同,通解就是$y_n = (C_1 + C_2n)r^n$ 。

我还记得之前给学生讲差分方程的时候,有个小家伙一脸懵地看着我,问:“老师,这东西到底有啥用啊?”我笑着跟他说:“你想想啊,咱们预测人口增长、经济发展,都可能用到差分方程呢。

”然后我给他举了个例子,假设一个城市每年的人口增长数量是上一年人口数量的10%,初始人口是 10 万,那咱们就可以用差分方程来算算未来几年的人口。

小家伙听了,眼睛一下子亮了起来,好像突然发现了新大陆。

二阶线性常系数差分方程也有它的一套公式和解法。

一般形式是$y_{n+2} + ay_{n+1} + by_{n} = f(n)$ 。

求解的时候还是先看特征方程,不过这次是$r^2 + ar + b = 0$ 。

在实际应用中,差分方程可太有用啦。

比如在金融领域,分析股票价格的波动;在工程领域,预测系统的稳定性。

总之,差分方程虽然看起来有点复杂,但只要咱们掌握了它的公式和方法,就能在很多地方派上用场。

差分方程基本知识

差分方程基本知识

a.
t 1 a t 0
分别称为方程
yt 1 ayt 0

a
(4)
的特征方程和特征根. 故
yt a t
是方程 (4) 的解. 再由解的结构及通解的定义知:
yt Ca t (C 为任意常数)
是齐次方程的通解.
例4 求 2 yt 1 yt 0 的通解.
(5)
(a 1 时取 s 0 ; a 1 时取 s 1. )
的特解.
* 令 y (1) 当 a 1 时, t k 代入方程 (5) , 得:
k ak c 即
c y k ; 1 a
* t
(2) 当 a 1 时,令 yt* kt 代入方程 (5) , 得:
k (t 1) akt c 即 k c .

2 yt ( yt ) yt 1 yt
( yt 2 yt 1 ) ( yt 1 yt ) yt 2 2 yt 1 yt
为函数 yt 的二阶差分. 同样,称
3 yt ( 2 yt )
为三阶差分.
依此类推,函数的 n 阶差分定义为:
n yt (n1 yt )
且有
i n yt C n ( 1)i yt n i . i 0 n
二阶及二阶以上的差分统称为高阶差分.
性质1 当
a , b, C 是常数, y t , z t 是函数时,
有以下结论成立:
1
2
(C ) 0;
(Cyt ) C( yt );
对差分方程附加一定的条件,这种附加条件称之为
初始条件.满足初始条件的解称之为特解. 如果差分

差分方程基础知识

差分方程基础知识

yt yt y
* t
C APt , 1 P A Ct ,
其中, A为任意常数,且当
P 1 时,

P 1 时,
C A y0 A1 , 1 P
A y0 A 1 .
例5 求差分方程
解 由于
yt 1 3 yt 2 的通解.
,故原方程的通解为
[(t 1) (t n 1)]t (t 1) (t n 2) nt
差分满足以下性质: (1) (2) (3)
(Cyt ) Cyt (C为常数)
(yt zt ) yt zt
(yt zt ) zt yt yt 1zt
y3 Py2 P y0
t
, yt Pyt 1 P y0 .
t y P y0 为方程的解.容易验证,对任意常数 A 则 t
yt APt
都是方程的解,故方程的通解为
yt APt
例4 求差分方程
yt 1 3 yt 0 的通解.
解 利用公式得,题设方程的通解为 yt A3 t.
yt zt yt yt zt ( ) ( zt 0) (4) zt zt 1 zt
例3 求 yt t 2 3t 的差分.
解 由差分的运算性质,有
yt (t 3 ) 3 t (t 1) (3 )
2 t t 2 2 t
3 (2t 1) (t 1) 2 3 3 (2t 6t 3)
差分方程基本知识


差分方程: 差分方程反映的是关于离散变量 的取值与变化规律。通过建立一个或几个离散 变量取值所满足的平衡关系,从而建立差分方 程。 差分方程就是针对要解决的目标,引入系统或 过程中的离散变量,根据实际背景的规律、性 质、平衡关系,建立离散变量所满足的平衡关 系等式,从而建立差分方程。通过求出和分析 方程的解,或者分析得到方程解的 特别性质 (平衡性、稳定性、渐近性、振动性、周期性 等),从而把握这个离散变量的变化过程的规 律,进一步再结合其他分析,得到原问题的解。

差分方程_精品文档

差分方程_精品文档

程)法。本节主要讲述前3种方法,后2种方法将在后续章节中讲
解。
一、差分方程的初值问题(边界条件)
二、差分方程的解法(前3种方法)
三、传输算子的概念
返回
一、差分方程的初值问题(边界条件)
相应于连续时间系统中的起始条件和初始条件, 在离散时间系统中存在着起始样值与初始样值。
起始样值即在激励信号加入之前系统已具有的 一组样值, 以符号y-(n)表示。
返回
例7-4-6 已知 y(n)+2y(n-1) =5u(n), 且y(-1) =1,
求完全解。
特征方程 a +2=0 a = -2
齐次解
yhn C1 2n
特解
因为x(n)=5u(n), n³0时为5(常数)
所以 yp(n) =D
代入原方程求特解 D+2D =5 (n 0)
完全解
所以 D 5
“E”表示将序列超前一个单位时间的运算。 E也称为移
序算子,利用移序算子可y(n写-1)出= 1: y(n)
对y于(n差+分1方)=程Eyy((nn)+1)
-
ay(n)
E
=x(n)
可改写为: (E - a)y(n) =x(n)
对于二例,可以引入
传输算子 HE 1
于是有:
Ea
而对于方程式 y(n) - ay(n-1) =x(n -1)
N
akCa nk 0
k 0
消去常数C,逐项除以a n-N 并化简得:
a0a N+a1a N-1+……+ aN-1a + aN=0
该式称为差分方程的特征方程,特征方程的根a1. a2 、……、 aN称为差分方程的特征根。

差分方程_基础知识

差分方程_基础知识

定义2 含有自变量、未知函数及其差分的方程, 称 为差分方程.
差分方程的一般形式为
F(x, yx, yx, , n yx) = 0.
(1)
差分方程中可以不含自变量 x 和未知函数 yx, 但必须含 有差分.
式(1)中, 当 n = 1时, 称为一阶差分方程;当n = 2时, 称为二阶差分方程.
yx+2 + ayx+1 + byx = 0
(11)
称为齐次差分方程; 当 f (x) 0时, 称为非齐次差分方程.
类似于二阶线性常微分方程, 二阶线性差分方程与 其有相同的解的结构. 故先求齐次方程(11)的通解.
当 为常数时, yx = x和它的各阶差商有倍数关系, 所以可设 yx = x为方程(11)的解.
其中B0 , B1 , , Bm为待定系数.
例5 求差分方程 yx+1 2yx = 3x2 的一个特解.
解 这里 a = 2, 设 °yx B0 B1x B2 x2,
代入差分方程, 得
B0+B1(x+1)+B2(x+1)2 2(B0+B1x+B2x2)=3x2. 整理, 得
差 分 方 程(1) ——基础知识
一、差分 二、差分方程的概念 三、一阶常系数线性差分方程 四、二阶常系数线性差分方程
一、差分
微分方程是自变量连续取值的问题, 但在很多实际问 题中, 有些变量不是连续取值的. 例如, 经济变量收入、储 蓄等都是时间序列, 自变量 t 取值为0, 1, 2, , 数学上把这 种变量称为离散型变量. 通常用差商来描述因变量对自变 量的变化速度.
2(x3) = (3x2 + 3x + 1) = 3(x + 1)2 + 3(x + 1) + 1 (3x2 + 3x + 1) = 6x + 6,

常系数线性差分方程的求解

常系数线性差分方程的求解

1
比较两边系数得
33DD12
2 2D
1
1
解得
D1
2 3
,
D2
1 9
完全解为 y(n) c(2)n 2 n 1
39
代入边界条件y(1) ,求1 c
1 c(2)n 2 (1) 1
3
9
y(n) 8 (2)n 2 n 1
Байду номын сангаас
9
39
得 c8 9
经典法不足之处
(1).若激励信号发生变化,则须全部重新求解。 (2).若差分方程右边激励项较复杂,则难以处理。 (3).若初始条件发生变化,则须全部重新求解。 (4).这种方法是一种纯数学方法,无法突出系统响 应的物理概念。
上式称为k齐0 次微分方程的特征方程,其根 1,2, N
称为差分方程的特征根。
非重根时的齐次解 N
C11n
C2
n 2
C
N
n N
Ck
n k
k 0
K次重根时的齐次解
K
(C1nK1 C2nK2 CK1n CK )1n
Ci
n
K
i n 1
i 1
共轭根时的齐次解 1,2 a jb e j0
差分方程的边界条件不一定由 y(0), y(1), y(2), , y(N 1) 这一组数字给出。对于因果系统,常给定
y(1), y(2), y(3), , y(N) 为边界条件。 若激励信号在n=0时接入系统,所谓零状态是指 y(1), y(2), y(3都),等,于y(零N,) 而不是指
y(0), y(1), y(2),等,于y(零N。1)
a0 y(n) a1y(n 1) aN1y(n N 1) aN y(n N) 0

差分方程笔记

差分方程笔记

差分方程笔记
差分方程是一种数学工具,它可以帮助我们研究某些重要类型的函数。

它表示不同值之间的变化,并且可以定义函数的行为。

因此,差分方程在数学中有广泛的应用。

差分方程的定义是,给定一个函数f(x),它表示不同x值之间的变化,可以通过求解关于x的微分方程来解释这种变化。

因此,差分方程可以用来表示一个函数的行为。

微分方程的求解过程可以分为三个步骤:求函数的微分,求微分方程的解,并确定解的精确类型。

第一步,我们首先要求函数的微分,也就是求斜率。

微分可以理解为一个函数的变化速度。

它用来描述函数的变化率。

在求解微分方程的解之前,我们需要根据所求的函数定义其格式,使用基本的微积分定理来解决它。

根据函数的特征,我们可以求出微分方程的一般解,其中包含一个或多个未知数。

最后,我们可以求出函数的定积分。

定积分可以用来求出函数的精确表达,从而确定解的精确类型,并可以详细了解函数的行为。

以上就是求解差分方程的基础知识。

差分方程经常用于研究常见的函数,这些函数经常用于解决实际的问题。

例如,电子电路和机器人控制系统都有利用差分方程研究的应用。

因此,差分方程的研究是数学中重要的一个领域。

它的研究可以帮助我们解决许多实际问题,这些问题通常很复杂,需要我们深入探索。

此外,差分方程也可以应用于计算机科学和工程研究中。

总而言之,差分方程在数学中有广泛的应用,它可以用来帮助我们解决实际问题,可以让我们更好地理解函数的行为,也可以用于计算机科学和工程领域中的研究,因此它受到了广泛的认可。

高等数学中的差分方程相关知识点详解

高等数学中的差分方程相关知识点详解

高等数学中的差分方程相关知识点详解在高等数学中,差分方程是一个非常重要的数学工具,它被广泛应用于各种科学领域,如物理、化学、工程学等。

差分方程与微分方程不同,在处理离散数据时更加方便,因此在实际应用中得到了广泛的应用。

接下来,我们将详细介绍差分方程的相关知识点。

1.差分方程的定义差分方程是一种用递推关系式描述离散变量间数值关系的数学工具,通常表示为:$a_n=F(a_{n-1},a_{n-2},...,a_{n-k})$其中,$a_n$表示一个数列的第$n$项,$k$为正整数,$F$为给定的函数。

差分方程起始值$a_0,a_1,...,a_{k-1}$也是给定的。

2.差分方程的求解方法求解差分方程的过程与求解微分方程的过程类似,需要先求出差分方程的通解,然后根据初始条件得到特解。

(1)求通解对于一个$k$阶差分方程,我们可以猜测一个$k$次线性递推数列$\{b_n\}$,即$b_n=c_1\lambda_1^n+c_2\lambda_2^n+...+c_k\lambda_k^n$,其中$c_1,c_2,...,c_k$是任意常数,$\lambda_1,\lambda_2,...,\lambda_k$是$k$个根。

将猜测的线性递推数列带入差分方程中得到:$c_1\lambda_1^n+c_2\lambda_2^n+...+c_k\lambda_k^n=F(c_1\la mbda_1^{n-1}+c_2\lambda_2^{n-1}+...+c_k\lambda_k^{n-1},c_1\lambda_1^{n-2}+c_2\lambda_2^{n-2}+...+c_k\lambda_k^{n-2},...,c_1\lambda_1^{n-k}+c_2\lambda_2^{n-k}+...+c_k\lambda_k^{n-k})$整理得到:$c_1(\lambda_1^n-F(\lambda_1^{n-1},\lambda_1^{n-2},...,\lambda_1^{n-k}))+c_2(\lambda_2^n-F(\lambda_2^{n-1},\lambda_2^{n-2},...,\lambda_2^{n-k}))+...+c_k(\lambda_k^n-F(\lambda_k^{n-1},\lambda_k^{n-2},...,\lambda_k^{n-k}))=0$由于$c_1,c_2,...,c_k$是任意常数,因此需要使方程的每个系数都等于$0$,也就是:$\lambda_1^n-F(\lambda_1^{n-1},\lambda_1^{n-2},...,\lambda_1^{n-k})=0$$\lambda_2^n-F(\lambda_2^{n-1},\lambda_2^{n-2},...,\lambda_2^{n-k})=0$...$\lambda_k^n-F(\lambda_k^{n-1},\lambda_k^{n-2},...,\lambda_k^{n-k})=0$将上述$k$个方程写成矩阵的形式,即可解得$\lambda_1,\lambda_2,...,\lambda_k$。

[离散时间信号处理学习笔记]4.线性常系数差分方程

[离散时间信号处理学习笔记]4.线性常系数差分方程

[离散时间信号处理学习笔记]4.线性常系数差分⽅程本⽂主要从离散时间系统的⾓度来讨论线性常系数差分⽅程,不过其中也不可避免地涉及到数学⽅⾯的分析,因此在阅读本⽂章之前,如果对线性常系数差分⽅程在数学上有⼀定的认识,将更有助于理解本⽂的相关内容。

推荐阅读:累加器系统这⾥从累加器来引⼊差分⽅程这⼀概念。

累加器系统定义为y[n]=n∑k=−∞x[k]从上⾯定义的式⼦可以得到y[n−1]=n−1∑k=−∞x[k]等号两边相减得到y[n]−y[n−1]=x[n]从累加器的定义上来说,当前输出与前⼀个输出的差值确实为当前的输⼊。

换⼀个⾓度来说,当前的输出等于前⼀个输出与当前输⼊的和y[n]=y[n−1]+x[n]这种当前的值的计算会⽤到前⾯已算出的值的差分⽅程就是差分⽅程的递推表⽰(迭代法)。

这种差分⽅程的递推表⽰使得系统实现更为简单,在离散时间系统的实现中经常⽤到。

累加器系统的递推差分⽅程⽅框图如下表⽰滑动平滑系统滑动平滑系统的定义是y[n]=1M1+M2+1M2∑k=−M1x[n−k]令M1=0以使系统称为因果的。

那么该系统的定义变为y[n]=1M2+1M2∑k=0x[n−k]单位脉冲响应为h[n]=1M2+1(δ[n]–δ[n−M2−1])∗u[n]可以看到式⼦中分为三个部分:衰减器、样本延迟、累加器。

表⽰成⽅框图如下线性时不变系统中的⼀个重要的⼦系统是由这样⼀些系统组成,这些系统的输⼊x[n]和输出y[n]满⾜N阶线性常系数差分⽅程,其形式为N∑k=0a k y[n−k]=M∑m=0b m x[n−m]线性常系数差分⽅程的求解线性常系数差分⽅程的解可以分为两部分y[n]=y p[n]+y h[n]其中y p[n]为特解,y h[n]为齐次解,我们这⾥就齐次解简单展开说明。

齐次解是假设x[n]=0时求得的y[n],即有如下齐次差分⽅程N∑k=0a k y h[n−k]=0在求解差分⽅程的过程中,我们会假设y h[n]=Az n然后代⼊上述齐次差分⽅程,整理后得到N∑k=0a k z−k=0求解该⽅程后可以得到N个不同的z值都能满⾜上述⽅程(没有重根的情况下),即z m,m=1,2,⋅⋅⋅,N另外,⽆论A m为什么值,在把y h[n]=A m z n m代⼊到齐次差分⽅程都能得到满⾜,因此y h[n]的解为y h[n]=N∑m=1A m z n m此时z m的值已知,A m未知,那么此时就需要辅助条件来求解A m,辅助条件可以由⼀些特定n点上的特定y[n]值组成,诸如y[−1],y[−2],⋅⋅⋅,y[−N],然后求解⼀组由N个线性⽅程构成的⽅程组来求得N个特定系数A m。

微积分 第十章 第四节 n阶常系数线性差分方程

微积分 第十章 第四节 n阶常系数线性差分方程

故原方程通解为
yt
C1 (3)t
2t (C2
cos 2
t
C3
sin 2
t)
t
,
其中 C1,C2 ,C3 为任意常数.
10
将 yt t 代入方程(2),得
(n a1n1 a n1 an ) t 0 ,
而 t 0 ,于是有
n a1n1 an1 an 0
(3)
代数方程(3)称为差分方程(2)的特征方程, 它的根称为特征根(或特征值).
2
n a1n1 an1 an 0
(3)
1. 若(3)有一实特征根 ,其重数为 m(m n) ,则
4
二、 n 阶常系数非齐次线性差分方程的解法
ytn a1 ytn1 an1 yt1 an yt b (1) 其中 a1,, an1, an , b 为常数,且an 0 , b 0 ,
对应齐次方程
ytn a1 ytn1 an1 yt1 an yt 0 (2) 设 yt 是方程(1)的一个特解, yc (t ) 是(2)的通解,
7
例1 求三阶差分方程 yt3 3 yt2 4 yt1 12 yt 20
的通解.
解 特征方程为 3 32 4 12 0
( 3)(2 4) 0 , 特征根为 1 3, 2 2i , 3 2i
相应齐次方程的通解为
yc (t)
C1 (3)t
2t
(C2
cos
2
t
C3
sin
那么方程(1)的通解为 yt yc (t ) yt .
问题归结为求方程(1)的一个特解. 用待定系数法求解.
5
ytn a1 ytn1 an1 yt1 an yt b (1) 设特解为 yt B ,B 为待定常数. 代入(1)得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本材料是关于线性常差分方程基本知识的笔记,参考了两个文献:1、《差分方程》【日】福田武雄著穆鸿基译上海科学技术出版社1962年9月第一版2、《常差分方程》王联、王慕秋著新疆大学出版社1991年2月第一版目录第一节差分第二节和分第三节对步长及定义域的约定第四节阶乘多项式与差分第五节Bernoulli多项式与差分第六节几个公式,例题第七节n阶线性常差分方程的解的结构第八节 Lagrange变易常数法第九节解n阶常系数齐次线性方程的特征根方法第十节常系数对称型线性方程的解第十一节几种特殊常系数非齐次线性方程的解法第一节 差分定义1.1:设函数()x f 的定义域是D ,R D ⊂,R x ∈∆,0≠∆x ,D x ∈∀有D x x ∈∆+,定义算子∆为()()()x f x x f x f -∆+=∆称x ∆是x 的变化步长,()x f ∆是()x f 在x 处的步长为x ∆的一阶差分、阶差、有限差;D x ∈,函数()x f ∆称为D 上的差分函数,简称差分;算子∆是步长为x ∆的差分算子。

定义为()()x x f x f ∆+=E称()x f E 是()x f 在x 处的步长为x ∆的一阶位移;称函数()x f E 是D 上的位移函数,简称位移;算子E 是步长为x ∆的位移算子。

定义算子I 为()()x f x f =I称算子I 为恒等算子。

称函数()xx f ∆∆是D 上的差商函数,简称差商。

约定算子∆与算子E 的步长相等。

注1.1:大写希腊字母∆、E 、I 的小写形式是δ、ε、ι,其英文单词形式是delta /`delt ә/ 、epsilon /ep`sail әn/ 、 iota /ai`әut ә/ 。

若D x ∈∀,有D x x ∈∆+,则N n ∈∀,有D x n x ∈∆+。

定理1.1:算子∆、E 、I 有以下关系:①()()()()()x f x f x f x f I -E =I -E =∆,即I -E =∆。

②()()()()()x f x f x f x f I +∆=I +∆=E ,即I +∆=E 。

③()()()()x f x f E ∆=∆E ,即∆E =E∆。

定理1.2:算子∆、E 是线性算子。

对R b a ∈,,函数()x f 与()x g ,有以下等式()()()()()x g b x f a x bg x af ∆+∆=+∆ ()()()()()x g b x f a x bg x af E +E =+E定义1.2:设N n ∈,作递推定义()()()x f x f x f =I =∆0,()()()x f x f n n ∆∆=∆+1()()()x f x f x f =I =E 0,()()()x f x f n n E E =E +1称()x f n ∆是()x f 在x 处的步长为x ∆的n 阶差分;称()x f n E 是()x f 在x 处的步长为x ∆的n 阶位移;称n ∆是步长为x ∆的n 阶差分算子;称n E 是步长为x ∆的n 阶位移算子。

凡阶数大于1的差分与位移,称为高阶差分与高阶位移。

注1.2:N n m ∈∀,,有()()()()x f x f m n n m ∆E =E ∆。

定理1.3:N n ∈∀,有()()∑=-E ⎪⎪⎭⎫ ⎝⎛-=I -E =∆ni in i nni n 01 ()∑=-∆⎪⎪⎭⎫ ⎝⎛=I +∆=E ni in nni n 0 其中,组合系数()!!i n i n i n -=⎪⎪⎭⎫ ⎝⎛,n i ,,3,2,1,0 =. 证明:用数学归纳法。

定义1.3:设二元函数()y x f ,的定义域是D ,()D y x ∈∀,,有()D y x x ∈∆+,,R x ∈∆,0≠∆x ,记()()()y x f y x x f y x f x ,,,-∆+=∆称()y x f x ,∆是()y x f ,在()y x ,处对x 的步长为x ∆的一阶偏差分。

定理1.4:对函数()x f 与()x g ,有以下等式()()()()()()()g f f g g f f g f g g f g f g f ∆⋅+∆⋅+∆⋅∆=∆⋅+E ⋅∆=∆⋅+E ⋅∆=⋅∆gg g f f g g f E ⋅∆⋅-∆⋅=∆,其中g 与g E 不取零值。

证明:参考类似的求导公式的证明。

定理1.5(Leibniz 法则):对函数()x f 与()x g ,有()()()()()()()∑∑----∆E ⋅∆⎪⎪⎭⎫ ⎝⎛=∆E ⋅∆⎪⎪⎭⎫ ⎝⎛=⋅∆niin in nii n i n nf g i n g f i n g f证明:用数学归纳法。

定义1.4:设函数()x f 的定义域是D ,若D x ∈∀,()()()0=-∆+=∆x f x x f x f ,则称()x f 是D 上的以x ∆为周期的周期函数。

注1.3:① 设()x p 是D 上的周期函数,对D 上的任意函数()x f ,按定理1.4,有()()()()()x f x p x f x p ∆⋅=⋅∆。

② 设()x p 1与()x p 2是D 上的周期函数,R b a ∈,,则()()x bp x ap 21+也是D 上的周期函数。

定理 1.6:设函数()x f 的定义域是D ,()x f 是D 上的周期函数的充分必要条件是,D x ∈∀,()()x f x f =E 。

推论1.6.1:设函数()x f 的定义域是N ,1=∆x ,则()x f 是N 上的周期函数的充分必要条件是,()x f 是N 上的常值函数。

定理1.7:对D 上的函数()x f 与()x g ,若D x ∈∀,()()x g x f ∆=∆,则()x f 与()x g 只相差D 上的一个周期函数。

即存在D 上的周期函数()x p ,满足()()()x p x g x f +=。

第二节 和分定义2.1:若D x ∈∀,D 上的函数()x f 与()x F 有以下关系()()x f xx F =∆∆,或,()()x x f x F ∆=∆ 即,()x f 是()x F 在D 上的差商函数,则称()x F 是()x f 在D 上的步长为x ∆的和分函数,简称和分。

注2.1:设()x F 1与()x F 2是()x f 在D 上的任意两个和分,按定义,有()()()x x f x F x F ∆=∆=∆21,按定理1.7,()x F 1与()x F 2只相差D 上的一个周期函数。

所以,设()x F 是()x f 的一个和分,()x p 是D 上的任意一个周期函数,则()()x p x F +就代表()x f 在D 上的任意一个和分。

定义2.2:如上,记()()()x p x F x x f +=∆∑,称()∑∆x x f 是()x f 在D 上的步长为x ∆的不定和分。

注2.2:在文献1中,作者用符号“”表示和分。

在文献2中,作者用“∑”表示和分。

定理2.1:对函数f ,g ,不定和分有以下性质 ①R b a ∈,,()∑∑∑∆+∆=∆+x g b x f a x bg af②设p 是周期函数,∑∑∆=∆x f p x pf③()()∑∑∆∆⋅E -⋅=∆∆⋅x f g g f x g f定义2.3:设()x F 是()x f 在D 上的和分,()x p 是D 上的任意一个周期函数,则()()x p x F +就代表()x f 的任意一个和分,D a ∈,N n ∈,D b x n a ∈=∆+,记()()()()()()()()()a F b F a p a F b p b F x x f ba-=+-+=∆∑称()∑∆bax x f 是()x f 在[]b a ,上的步长为x ∆的定和分。

a 是定和分下限,b 是定和分上限。

约定()()()()()a F b F abx F a b x x f x x f b a-==∆=∆∑∑注2.3:①作为一个记号,在()∑∆x x f ,()∑∆b ax x f ,()abx x f ∑∆中的x ∆不能换成数值,也不能省略。

②按差商与和分的定义,有()()()()()x x i a f x i a F x i a F x i a F ∆∆+=∆+-∆++=∆+∆1, ,3,2,1,0=i ,所以,()()()()()()()()()()()()∑∑∑∆+-=∆=∆+=∆∆-+++∆++=-∆+=-=∆x n a an i baxx f x i a f x x n a f x a f a f a F x n a F a F b F x x f 11 可见,定和分是有限求和运算。

③设Z t s ∈,,s ≤t ,函数()x f 的定义域是Z ,()x F 是()x f 的和分,步长1=∆x ,则()()()()()∑∑∑+-==∆=-+=+=101t sst i tsi x x f s F t F i t f i f可见,有限求和运算是定和分。

第三节 对步长及定义域的约定记1∆是步长等于1的差分算子,在D 上的差分()()()x f x x f x f -∆+=∆中作代换x y x ∆=,记()()()y g x y f x f =∆=,有()()()()n y g x n y f x n x f +=∆+=∆+()()()()()()()y g y g y g x y f x y f x f 111∆=-+=∆+-∆+=∆可见,1∆可以代换∆。

为方便,约定所论差分与位移的步长都等于1。

从步长等于1的约定。

设函数()x f 的定义域是D ,记()()n r n x f =+,N n ∈,则函数()x r 的定义域是N ,有()()()()010r r r x f -=∆=∆()()()()∑∑∑∑∆==+=∆-=-=+nn i n i n x xx x r i r i x f x x f 011可见,()x r 的定义域是N 可以代换()x f 的定义域是D 。

为方便,约定所论函数定义域为N 。

定理3.1:设函数()x f 的定义域是N ,N n ∈,有()()()()()0000f i n f f n f ni i n nn∑=-∆⎪⎪⎭⎫ ⎝⎛=I +∆=E =定理3.2:设函数()x f 的定义域是N ,N n k ∈,,1≤k ≤n ,有()()()j f k j n f i n n f kkn j k i i ∆⎪⎪⎭⎫ ⎝⎛---+∆⎪⎪⎭⎫ ⎝⎛=∑∑-=-=010110定理3.3:设函数()x f 的定义域是N ,N n k j ∈,,,1≤k ≤n ,j ≤k ,有()()()∑∑+-=-=∆⎪⎪⎭⎫ ⎝⎛----+∆⎪⎪⎭⎫ ⎝⎛-=∆jk n s kk j i i is f j k s n f j i n n f 01110以上三个定理称为“离散的泰勒(Taylor )公式”,可用数学归纳法证明。

相关文档
最新文档