贵州省贵阳市九年级数学上学期期末考试试题(含解析)

合集下载

2020-2021学年贵阳市九年级上学期期末数学试卷(含答案解析)

2020-2021学年贵阳市九年级上学期期末数学试卷(含答案解析)

2020-2021学年贵阳市九年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.方程−2+x=2x解是.()A. x=2.B. x=−1C. x=−2D. x=12.如图,直线y=kx+6(k<0)与y轴、x轴分别交于点A、B,平行于x轴的直线CD与y轴、线段AB分别交于点C、D.若ADDB =12,则点C的坐标为()A. (0,2)B. (0,3)C. (0,4)D. (0,6)3.给出以下命题,命题正确的有()①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体的投影的长短在任何光线下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④物体的左视图是灯光在物体的左侧时所产生的投影;⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线.A. 1个B. 2个C. 3个D. 4个4.在△ABC中,点D在AB上,联结DC,下列条件中不能判定△ABC∽△ACD的是()A. ∠B=∠ACDB. ∠ADC=∠ACBC. ACCD =ABBCD. AC2=AD⋅AB5.如图,正方形纸片ABCD的面积为1,点M、N分别在AD、BC上,且AM=BN=35,将正方形纸片沿折痕BQ折叠,使点C落在MN上的点P的位置,则折痕BQ长()A. 2B. √52C. √62D. 2√26.甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被2整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 掷一枚正六面体的骰子,出现1点的概率7.如图,E,F分别是正方形ABCD的边BC,CD上的点,BE=CF,连接AE,BF,将△ABE绕正方形的对角线的交点O按顺时针方向旋转到△BCF,则旋转角是()A. 30°B. 45°C. 60°D. 90°8.如图,函数y=−x的图象是二、四象限的角平分线,将y=−x的图象以点O为中心旋转90°与函数y=1的图象交于点A,再将y=−x的图象x向右平移至点A,与x轴交于点B,则点B的坐标为()A. (2,0)B. (3,0)C. (√3,0),0)D. (329.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()cm2 C. 50cm2 D. 75cm2A. 25cm2B. 100310.如图,在梯形ABCD中,∠ABC=90°,AD//BC,AE//CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=√3;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是()A. 1B. 2C. 3D. 411.某种药品经过了两次降价,从每盒54元降到每盒42元.若平均每次降低的百分率都为x,则根据题意,可得方程()A. 54(1−x)2=42B. 54(1−x2)=42C. 54(1−2x)=42D. 42(1+x)2=5412.一个几何体的三视图如图所示,这个几何体是()A. 圆锥B. 圆柱C. 球D. 三棱柱二、填空题(本大题共4小题,共16.0分)13.在实数范围内定义一种运算“∗”,其规则为a∗b=a2−b2,如5∗3=52−32=16.根据这一规则,解决问题:已知三角形的每条边都是方程(x−3)∗1=0的根,则此三角形的周长为______ .14.根据图中所给两个三角形的角度和边长,可得x=.15.如图,在平面直角坐标系中,▱OABC的顶点B、C在第二象限,点D为AB边的在第二象限的中点,反比例函数y=kx图象经过C、D两点.若点A的坐标是(−2√3,0),tan∠COA=3,则k的值为______.16.如图,ABCDXA表示一条环形高速公路,X表示一座水库,B,C表示两个大市镇,已知ABCD是一个正方形,XAD是一个等边三角形,假设政府要铺设两条输水管XB和XC,从水库向B,C两个市镇供水,那么着两水管的夹角∠BXC=______ 度.三、解答题(本大题共7小题,共48.0分)17.某公司2019年10月份营业额为64万元,12月份营业额达到100万元,求该公司11、12两个月营业额的月平均增长率.18.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体V(立方米)的反比例函数,其图象如图:(1)求出它们的函数关系式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于180千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少?19.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.20.在平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0),A(−x,0),C(0,y),且x、y满足y=√x−4+√4−x+6.(1)矩形的顶点B的坐标是______.(2)若D是AB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BE交y轴于Q点.①求证:四边形DBOQ是平行四边形.②求△OEQ面积.(3)如图2,在(2)的条件下,若R在线段AB上,AR=4,P是AB左侧一动点,且∠RPA=135°,求QP的最大值是多少?21.下面是小东设计的“作平行四边形一边中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AD的中点.作法:如图1,①作射线BA;②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;③连接EC交AD于点M.所以点M就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:22.如图,在▱ABCD中,对角线AC与BD交于点O,OE⊥AC交AD于点E,△CDE的周长为12,求▱ABCD的周长.23.定义:点P(a,b)关于原点的对称点为P′,以PP′为边作等边△PP′C,则称点C为P的“等边对称点”;(1)若P(1,√3),求点P的“等边对称点”的坐标.(x>0)上一动点,当点P的“等边对称点”点C在第四象限时,(2)若P点是双曲线y=2x①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.参考答案及解析1.答案:C解析:①把x=2代入−2+x=2x,左边=0,右边=4,左边≠右边,所以x=2不是原方程解;②把x=−1代入−2+x=2x,左边=−3,右边=−2,左边≠右边,所以x=−1不是原方程解;③把x=−2代入−2+x=2x,左边=−4,右边=−4,左边=右边,所以x=−2是原方程解;④把x=1代入−2+x=2x,左边=−1,右边=2,左边≠右边,所以x=1不是原方程解.故选C.2.答案:C解析:本题考查的是一次函数图象与坐标轴的交点,及平行线分线段成比例.先求出点A的坐标,再由CD//x轴和ADDB =12可得出ACOC的值,进而可得出结论.解:∵直线y=kx+6(k<0)与y轴、x轴分别交于点A、B,当x=0时,y=6,∴A的坐标为(0,6).∵CD//x轴,ADDB =12,∴ACOC =12,即OC=23OA=23×6=4,∴C的坐标为(0,4).故选C.3.答案:B解析:解:根据平行投影及中心投影的定义及特点知:①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影正确;②物体的投影的长短在任何光线下,仅与物体的长短有关错误,还与光线与物体所成的角度有关;③物体的俯视图是光线垂直照射时,物体的投影正确;④物体的左视图是灯光在物体的左侧时所产生的投影,错误;⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线错误,所以①③正确.故选B.根据平行投影及中心投影的定义及特点即可得出答案.本题考查了平行投影及中心投影,属于基础题,关键是掌握平行投影及中心投影的定义及特点.4.答案:C解析:解;∵∠A是公共角,∴再加上∠B=∠ACD,或∠ADC=∠ACB都可判定△ABC∽△ACD,∵∠A是公共角,再加上AC2=AD⋅AB,即ACAD =ABAC,也可判定△ABC∽△ACD,∴选项A、B、D都可判定△ABC∽△ACD.而选项C中的对两边成比例,但不是相应的夹角相等,所以选项C判定△ABC∽△ACD.故选:C.根据相似三角形的判定定理对各个选项逐一分析即可.此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.5.答案:B解析:本题考查了翻折变换的性质,勾股定理,熟记性质并利用勾股定理列出方程是解题的关键,本题难点在于作辅助线构造出直角三角形并多次利用勾股定理.根据正方形的面积求出边长,根据翻折的性质可得BP=BC,PQ=CQ,过点Q作QE⊥MN于E,可得四边形NCQE是矩形,利用勾股定理列式求出PN,再求CN,设CQ=x,表示出PQ、PE,然后利用勾股定理列方程求出CQ,再利用勾股定理列式计算即可得解.解:如图,∵正方形纸片ABCD的面积为1,∴正方形的边长为1,由翻折的性质得,BP=BC=1,PQ=CQ,过点Q作QE⊥MN于E,则四边形NCQE是矩形,在Rt △PBN 中,由勾股定理得,PN =√12−(35)2=45, CN =BC −BN =1−35=25, 设CQ =x ,则PQ =CQ =x ,PE =45−x ,在Rt △PEQ 中,由勾股定理得,PE 2+EQ 2=PQ 2,即(45−x)2+(25)2=x 2,解得x =12,在Rt △BCQ 中,BQ =√BC 2+CQ 2=√12+(12)2=√52. 故选B . 6.答案:A解析:解:A 、画树形图得:所以从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率13;故此选项正确; B 、任意写一个整数,它能2被整除的概率为12;故此选项错误;C 、列表如下:正 反 正(正,正) (反,正) 反 (正,反)(反,反) 所以抛一枚硬币,连续两次出现正面的概率14,故此选项错误;D 、掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;故选:A .根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的概率,约为0.33者即为正确答案.此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式7.答案:D解析:解:将△ABE 绕正方形的对角线交点O 按顺时针方向旋转到△BCF 时,A和B 重合,即∠AOB 是旋转角,∵四边形ABCD 是正方形,∴∠BAO =∠ABO =45°,∴∠AOB =180°−45°−45°=90°,即旋转角是90°.故选D .根据旋转性质得出旋转后A 到B ,只要根据正方形的性质和三角形的内角和定理求出∠AOB 即可. 本题考查了旋转的性质和正方形性质,主要考查学生的理解能力和推理能力,关键是找到旋转角. 8.答案:A解析:解:AO 的解析式为y =x ,由{y =x y =1x,解得{x =1y =1. A 点坐标为(1,1),设AB 的解析式为y =−x +b ,则1=−1+b ,解得b =2.故AB 的解析式为y =−x +2,当y =0时,−x +2=0.解得x =2,B(2,0).故选:A .根据旋转,可得AO 的解析式,根据解方程组,可得A 点坐标,根据平移,可得AB 的解析式,根据自变量与函数值得对应关系,可得答案.本题考查了反比例函数与一次函数的交点问题,利用了直线的旋转,直线的平移,自变量与函数值得对应关系.9.答案:C解析:解:如图:设OF =EF =FG =x ,∴OE=OH=2x,在Rt△EOH中,EH=2√2x,由题意EH=20cm,∴20=2√2x,∴x=5√2,∴阴影部分的面积=(5√2)2=50(cm2)故选:C.如图:设OF=EF=FG=x,可得EH=2√2x=20,解方程即可解决问题.本题考查正方形的性质、勾股定理、等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.答案:D解析:解:∵AD//BC,AE//CD,∴四边形AECD是平行四边形.∵AD=DC,∴四边形AECD是菱形,∴AE=EC=CD=AD=2,∴∠2=∠3.∵∠1=∠2,∴∠1=∠2=∠3.∵∠ABC=90°,∴∠1+∠2+∠3=90°,∴∠1=∠2=∠3=30°,AE,AC=2AB.本答案正确;∴BE=12∴BE=1,.在Rt△ABE中,由勾股定理,得AB=√4−1=√3.本答案正确;∵O是AC的中点,∠ABC=90°,∴BO=AO=CO=12AC.∵∠1=∠2=∠3=30°,∴∠BAO=60°,∴△ABO为等边三角形.∵∠1=∠2,∴AE⊥BO.本答案正确;∵S△ADC=S△AEC=AB.CE2,S△ABE=AB.BE2,∵CE=2,BE=1,∴CE=2BE,∴S△ACE=AB.2BE2=2×AB.BE2,∴S△ACE=2S△ABE,∴S△ADC=2S△ABE.本答案正确.∴正确的个数有4个.故选D.根据条件AD//BC,AE//CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD 是菱形,就有AE=EC=CD=AD=2,就有∠2=∠3,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠3=30°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=12AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=30°,∠ABE=90°,就有BE=12AE=1,由勾股定理就可以求出AB的值,从而得出结论.本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键11.答案:A解析:解:设平均每次降价的百分率为x,54(1−x)2=42.故选:A.设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的54元降至42元,可列方程.本题考查由实际问题抽象出一元二次方程,关键知道经过了两次降价,降价前和降价后的价格,可列方程.12.答案:A解析:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选:A.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.答案:6或12或10解析:解:∵a∗b=a2−b2,如5∗3=52−32=16,∴(x−3)∗1=0,为(x−3)2−12=0,解得:x1=2,x2=4,∴此三角形的周长为:2+2+2=6或4+4+4=12或4+4=2=10.故答案为:6或12或10.利用已知得出(x−3)∗1=0,为(x−3)2−12=0,进而得出x的值,进而得出三角形的周长.此题主要考查了一元二次方程的应用以及三角形的周长求法,根据已知得出x的值是解题关键.14.答案:5解析:试题分析:根据三角形内角和定理得出∠A的度数,进而得出△ABC∽△C′A′B′,再利用相似三角形的性质得出x的值即可.如图所示:则∠A=180°−45°−81°=54°,∴∠C=∠B′,∠A=∠C′,∴△ABC∽△C′A′B′,∴=,∴=,解得:x=5.故答案为:5.15.答案:−16解析:解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,则∠AFD=∠OEC=90°,∵OC//AB,∴∠DAF=∠COE,∴△ADF∽△OCE,在▱OABC中,OC=AB,D为边AB的中点,∴OC=AB=2AD,∴CE=2DF,OE=2AF,设OE=a,则CE=3a,C(−a,3a),∴AF=12a,DF=32a,又∵A(−2√3,0),∴AO=2√3,∴OF=12a+2√3,∴D(−12a−2√3,32a),∵反比例函数y=kx在第二象限的图象经过C、D两点,∴k=−a⋅3a=(−12a−2√3)⋅32a,解得a=43√3,∴k=−43√3×4√3=−16.故答案为:−16.过点C作CE⊥OA于E,过点D作DF⊥x轴于F,依据△ADF∽△OCE,可得CE=2DF,OE=2AF,设OE=a,可得CE=3a,C(−a,3a),D(−12a−2√3,32a),依据比例函数y=kx在第二象限的图象经过C、D两点,即可得到a的值,进而得出k的值.本题考查了平行四边形的性质,相似三角形的判定与性质以及反比例函数图象上点的坐标特征,根据反比例函数y=kx在第二象限的图象经过C、D两点列出方程是解题的关键.16.答案:30解析:解:∵四边形ABCD是一个正方形,△XAD是一个等边三角形,∴AX=AB=AD,∠DAX=∠AXD=∠ADX=60°,∠BAD=90°,∴∠BAX=∠BAD+∠DAX=90°+60°=150°,∴∠AXB=15°,同理可得∠DXC=15°,∴∠BXC=∠AXD−∠AXB−∠DXC=60°−15°−15°=30°.故答案为:30.根据正方形的性质和等边三角形的性质可得AX=AB=AD,∠DAX=∠AXD=∠ADX=60°,∠BAD=90°,然后求出∠BAX=150°,再根据等腰三角形两底角相等求出∠AXB=15°,同理可得∠DXC=15°,然后根据∠BXC=∠AXD−∠AXB−∠DXC代入数据进行计算即可得解.本题考查了正方形的性质,等边三角形的性质,等腰三角形两底角相等的性质,熟记各性质是解题的关键.17.答案:解:设该公司11、12两个月营业额的月平均增长率为x,依题意,得:64(1+x)2=100,解得:x=0.25=25%,或x=−2.25(不合题意,舍去).答:该公司11、12两个月营业额的月平均增长率为25%.解析:设平均每月的增长率为x,根据10月份的营业额为60万元,12月份的营业额为100万元,分别表示出11、12月的营业额,即可列出方程求解.本题考查的是一个增长率问题,关键是知道10月份的钱数和增长两个月后12月份的钱数,列出方程.18.答案:解:(1)函数图象经过已知点(2.5,64);设解析式为P=kV,∵图象经过已知点(2.5,64),∴k =2.5×64=160,所以解析式为:P =160V ; (2)当V =0.8时,P =1600.8=200千帕;(3)把p =180代入P =160V 得,V =89, 故p ≤180时,V ≥89,答:气球的体积应不小于89立方米.解析:(1)将已知点的坐标代入到反比例函数的一般形式中即可求得其解析式;(2)代入V =0.8求得压强即可;(3)把p =180代入p =160V 得,V =89.所以可知当气球内的气压>180千帕时,气球将爆炸,为了安全起见,气球的体积应不小于89立方米.本题考查了反比例函数的实际应用.关键是根据图象建立函数关系式,并会运用函数式解答题目的问题.19.答案:解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:14;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:212=16.解析:(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.答案:(1)∵x−4≥0,4−x≥0∴x=4,∴y=6∴点A(−4,0),点C(0,6)∴点B(−4,6)故答案为:(−4,6)(2)①∵D是AB中点,∴AD=BD∵折叠∴AD=DE,∠ADO=∠ODE∴∠DBE=∠DEB∵∠ADE=∠DBE+∠DEB∴∠ADO+∠ODE=∠DBE+∠DEB∴∠ADO=∠DBE∴OD//BQ,且AB//OC∴四边形BDOQ是平行四边形,②如图,过点D作DF⊥BQ于点F,∵AD=3,AO=4∴DO=√AD2+AO2=5∵四边形BDOQ是平行四边形,∴BD=OQ=3,BQ=DO=5,∴CQ =CO −OQ =3∵AB//CO∴∠ABQ =∠BQC ,且∠BFD =∠BCQ =90°∴△BFD∽△QCB ∴BF CQ =BD BQ =DF BC ∴BF 3=35=DF 4 ∴BF =95,DF =125∵DE =BD ,DF ⊥BQ∴BE =2BF =185∵S △DEO =S △ADO =12S ▱BDOQ =12×AD ×AO =6,∴S ▱BDOQ =12∴S △EOQ =S ▱BDOQ −S △DEO −S △BDE =12−6−12×125×185=4225(3)如图,连接RO ,以RO 为直径作圆H ,作HF ⊥OQ 于点F ,∵RA =4=AO∴∠AOR =∠ARO =45°,RO =√AR 2+AO 2=4√2∵∠APR +∠AOR =135°+45°=180°∴点A ,点P ,点R ,点O 四点共圆∴点P 在以点H 为圆心,RO 为直径的圆上,∴点P ,点H ,点Q 三点共线时,PQ 值最大,∵∠HOF =45°,HF ⊥OQ ,∴∠FHO =∠HOF =45°,且OH =2√2∴HF =OF =2,∴QF=OQ−OF=3−2=1∴HQ=√HF2+QF2=√5∴PQ的最大值为2√2+√5解析:解:(1)∵x−4≥0,4−x≥0∴x=4,∴y=6∴点A(−4,0),点C(0,6)∴点B(−4,6)故答案为:(−4,6)(2)①∵D是AB中点,∴AD=BD∵折叠∴AD=DE,∠ADO=∠ODE∴∠DBE=∠DEB∵∠ADE=∠DBE+∠DEB∴∠ADO+∠ODE=∠DBE+∠DEB∴∠ADO=∠DBE∴OD//BQ,且AB//OC∴四边形BDOQ是平行四边形,②如图,过点D作DF⊥BQ于点F,∵AD=3,AO=4∴DO=√AD2+AO2=5∵四边形BDOQ是平行四边形,∴BD=OQ=3,BQ=DO=5,∴CQ =CO −OQ =3∵AB//CO∴∠ABQ =∠BQC ,且∠BFD =∠BCQ =90°∴△BFD∽△QCB ∴BF CQ =BD BQ =DF BC ∴BF 3=35=DF 4 ∴BF =95,DF =125∵DE =BD ,DF ⊥BQ∴BE =2BF =185∵S △DEO =S △ADO =12S ▱BDOQ =12×AD ×AO =6,∴S ▱BDOQ =12∴S △EOQ =S ▱BDOQ −S △DEO −S △BDE =12−6−12×125×185=4225(3)如图,连接RO ,以RO 为直径作圆H ,作HF ⊥OQ 于点F ,∵RA =4=AO∴∠AOR =∠ARO =45°,RO =√AR 2+AO 2=4√2∵∠APR +∠AOR =135°+45°=180°∴点A ,点P ,点R ,点O 四点共圆∴点P 在以点H 为圆心,RO 为直径的圆上,∴点P ,点H ,点Q 三点共线时,PQ 值最大,∵∠HOF =45°,HF ⊥OQ ,∴∠FHO =∠HOF =45°,且OH =2√2∴HF =OF =2,∴QF=OQ−OF=3−2=1∴HQ=√HF2+QF2=√5∴PQ的最大值为2√2+√5(1)由题意可求x=4,y=6,即可求点B坐标;(2)①由折叠性质可得AD=DE,∠ADO=∠ODE,由三角形外角性质可得∠ADO=∠DBE,可得OD//BQ,即可证四边形BDOQ是平行四边形;②由题意可证△BFD∽△QCB,可得BFCQ =BDBQ=DFBC,可求BF=95,DF=125,由S△EOQ=S▱BDOQ−S△DEO−S△BDE可得△OEQ面积;(3)连接RO,以RO为直径作圆H,作HF⊥OQ于点F,由题意可得点A,点P,点R,点O四点共圆,即点P在以点H为圆心,RO为直径的圆上,则点P,点H,点Q三点共线时,PQ值最大,由勾股定理可求HQ=√5,即可求QP的最大值.本题是四边形的综合题,矩形的性质,平行四边形的判定和性质,折叠的性质,相似三角形的判定和性质,勾股定理,圆的有关知识,熟练运用这些性质进行推理是本题的关键.21.答案:解:(1)如图,点M即为所求.(2)理由:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD//BC,∵AE=CD,∴AE=AB,∵AM//BC,∴EM=CM,∴AM=1BC,2AD,∴AM=12∴AM=MD.解析:(1)根据要求画出图形即可.(2)利用平行四边形的性质以及三角形的中位线定理解决问题即可.本题考查作图−复杂作图,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.答案:解:∵四边形ABCD是平行四边形,∴OA=OC,又∵OE⊥AC,∴OE是AC的垂直平分线,∴EA=EC,∵△CDE的周长为12,∴EC+ED+DC=12,∴EA+ED+DC=12,即AD+DC=12,∴▱ABCD的周长=2(AD+DC)=24.解析:首先判断OE是AC的垂直平分线,从而得出EA=EC,再由△CDE的周长为12,可得AD+DC= 12,这样即可求出▱ABCD的周长.本题考查了平行四边形的性质,解答本题注意掌握中垂线的性质及平行四边形对边相等、对角线互相平分的性质.23.答案:解:(1)∵P(1,√3),∴P′(−1,−√3),∴PP′=4,设C(m,n),∴等边△PP′C,∴PC=P′C=4,∴√(m−1)2+(n−√3)2=√(m+1)2+(n+√3)2=4,∴m=−√3n,∴(−√3n−1)2+(n−√3)2=16.解得n =√3或−√3,∴m =−3或m =3.如图1,观察点C 位于第四象限,则C(−3,√3).即点P 的“等边对称点”的坐标是(3,√3).(2)①设P(c,2c ),∴P′(−c,−2c), ∴PP′=2√c 2+4c 2,设C(s,t),PC =P′C =2√c 2+4c 2, ∴√(s −c)2+(t −2c )2 =√(s +c)2+(t +2c )2=2√c 2+4c 2,∴s =−2t c 2, ∴t 2=3c 2,∴t =±√3c ,∴C(−2√3c ,√3c)或C(2√3c ,−√3c), ∴点C 在第四象限,c >0,∴C(2√3c,−√3c), 令{x =2√3c y =−√3c,∴xy =−6,即y =−6x (x >0);②当AG 为平行四边形的边时,G 与B 重合时,为一临界点通过平移可求得C(1,−6),∴y c ≤−6;当AG 为平行四边形的对角线时,G 与B 重合时,求得C(3,−2),G 与A 重合时,C(2,−3),此时−3<y c ≤−2,综上所述:y c ≤−6或−3<y c ≤−2.解析:(1)P(1,√3)则P′(−1,−√3),可求PP′=4;设C(m,n),有PC =P′C =24,通过解方程可得m =−3n ,再进行运算即可;(2)①设P(c,2c )则P′(−c,−2c ),可求PP′=2√c 2+4c 2;设C(s,t),有PC =P′C =2√c 2+4c 2,通过解方程可得s =−2t c 2,t =±√3c ,令{x =2√3c y =−√3c,消元c 即可得xy =−6;②当AG 为平行四边形的边时,G 与B 重合时,为一临界点通过平移可求得C(1,−6),y c ≤−6;当AG 为平行四边形的对角线时,G 与B 重合时,求得C(3,−2),G 与A 重合时,C(2,−3),此时−3<y c ≤−2.本题考查反比例函数的图象及性质,等边三角形的性质,新定义;理解题意,利用等边三角形的性质结合勾股定理求点C 的坐标是关键,数形结合解题是求y c 范围的关键.。

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图图形中完全是中心对称图形的一组是()A . ①②B . ③④C . ①③D . ②④2. (2分) (2017九上·金华开学考) 如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A . 5B . 10C . 8D . 63. (2分)(2018·青岛) 已知一次函数y= x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A .B .C .D .4. (2分)某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A . 15%B . 20%C . 5%D . 25%5. (2分) (2016九上·苍南月考) 如图,二次函数图象,过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A . 2a+b=0B . ac>0C .D .6. (2分)如图,抛物线y1=ax2+bx+c与直线y2=kx+n的图象交于A(﹣4,﹣1),B两点,下列判断中:①abc >0;②a+b+c<0;③不等式ax2+bx+c<kx+n的解集为﹣4<x<;④方程ax2+bx+c=﹣1的解为x=﹣4,其中正确的个数是()A . 1B . 2C . 3D . 47. (2分)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A .B .C .D .8. (2分)如图,在△ABC中,AB为⊙O 的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A . 50ºB . 60ºC . 70ºD . 80º9. (2分)如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连接MD.若∠B=26°,则∠BMD等于()A . 76°B . 96°C . 52°D . 104°10. (2分) (2019九上·德清期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是().A . a>0B . abc>OC . 2a+b<0D . ax2+bx+c=o有两个不相等的实数根二、填空题 (共7题;共8分)11. (2分)(2015·义乌) 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为________.12. (1分)从1,2,3,4,5五个数中任意取2个(不可重复),它们的和是偶数的概率为________ .13. (1分)(2017·临沂模拟) 在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是________.14. (1分) (2017九上·浙江月考) 如图,弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数________.15. (1分) (2019八上·威海期末) 当x=________时,多项式x2+2x﹣5有最小值.16. (1分)如图,边AB是⊙O内接正六边形的一边,点C在上,且BC是⊙O内接正八边形的一边,若AC是⊙O内接正n边形的一边,则n=________.17. (1分) (2016九上·岑溪期中) 方程x2﹣3x=0的解是________.三、解答题 (共9题;共67分)18. (5分) (2019八下·嘉兴期中) 解下列一元二次方程:(1)(2)19. (10分) (2018八上·东台期中) 阅读下面材料,并解决问题:(1)如图(1),等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.请将下列解题过程补充完整。

九年级上册贵阳数学期末试卷测试卷 (word版,含解析)

九年级上册贵阳数学期末试卷测试卷 (word版,含解析)

九年级上册贵阳数学期末试卷测试卷 (word 版,含解析)一、选择题1.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内3.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④4.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+ B .226-+ C .242+ D .242 5.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <1 6.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定7.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .758.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4 B .4.5 C .5 D .6 9.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .510.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .211.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>12.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题13.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.14.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.15.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.16.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)17.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.18.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.19.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.20.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.21.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接CP,以 CP 为边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.22.若a bb=23,则ab的值为________.23.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF 的最小值是_____.24.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题25.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?26.如图,在ABC∆中,AD是高.矩形EFGH的顶点E、H分别在边AB、AC上,FG在边BC上,6BC=,4=AD,23EF EH=.求矩形EFGH的面积.27.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x棵橙子树,果园橙子的总产量为y个.(1)求y与x之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60420个以上?28.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80=-+. 设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?29.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.30.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1)=031.如图,OA l⊥于点,A B是OA上一点,O是以O为圆心,OB为半径的圆.C是O上的点,连结CB并延长,交l于点D,且AC AD=.(1)求证:AC是O的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);BC ,求线段AC的长.(2)若O的半径为5,632.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.2.B解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外. 【详解】解:∵以AB 为直径作⊙O , 当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.3.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.4.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.C解析:C 【解析】 【分析】点到圆心的距离大于半径,得到点在圆外. 【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4, ∴点P 在圆外. 故选:C. 【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.7.D解析:D 【解析】 【分析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE ,在Rt △BCE 中,利用勾股定理即可解决问题. 【详解】如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3, ∴2234+,∵CD=DB , ∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC , ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形, ∵12•AD•BO=12•BD•AH , ∴OB=125, ∴BE=2OB=245,在Rt △BCE 中,75==. 故选D .点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.8.C解析:C 【解析】 【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可. 【详解】由3、4、6、7、x 的平均数是5, 即(3467)55++++÷=x 得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5. 故选C 【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.9.B解析:B 【解析】 【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 10.D解析:D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD AB,再证明△CBD为等边三角形得到BC=BD AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.11.D解析:D【解析】【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 12.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题13.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.14.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.15.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m .解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm ,根据相同时刻的物高与影长成比例,得到160:80x =:10,解得x 20=.故答案是:20m .【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.16.()【解析】设它的宽为xcm .由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm .由题意得:20x =. ∴10x =.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618. 17.【解析】【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 18.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键. 19.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.20.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.21.【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相解析:7【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°3=3 ∴BF =4,∴BD 22DF BF +1612+7,∵△CPQ 是等边三角形,∴S △CPQ 32, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴627BP =, ∴BP 127, ∴AQ =BP 127, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴627AE =, ∴AE 67,∴QE=AQ−AE=7..【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.22.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.23.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF 254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.24.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.三、解答题25.(1)50;(2)8.26,8;(3)400【解析】【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为6471081591110108.2650分 ; 4+10+15=29<26,所以中位数为8+8=82分; (3)根据题意得2000名居民中得分为10分的约有102000=40050名, ∴社区工作人员需准备400份一等奖奖品.【点睛】 本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据.26.6EFGH S =四边形【解析】【分析】根据相似三角形对应边比例相等性质求出EF,EH 的长,继而求出面积.【详解】解:如图:∵四边形EFGH 是矩形,AD 交EH 于点Q,∴∥EH FG∴AEH ABC ∆∆∽∴AQ EH AD BC= 设2EF x =,则3EH x = ∴42346x x -=解得:1x =. 所以2EF =,3EH =.∴236EFGH S EF EH =⋅=⨯=四边形【点睛】本题考查的知识点主要是相似三角形的性质,利用相似三角形对应边比例相等求出有关线段的长是解题的关键.27.(1)y=600-5x (0≤x <120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x 2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:y=600-5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w=(600-5x )(100+x )=-5x 2+100x+60000当y=-5x 2+100x+60000=60420时,整理得出:x 2-20x+84=0,解得:x 1=14,x 2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10, ∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y 与x 之间的二次函数关系式是解题关键.28.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.29.35°【解析】【分析】连接OD ,根据切线的性质得∠ODC =90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=12∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.30.(1)x1104,x2104(2) x1=1,x2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2-8x+6=0x2-8x+16=10(x-4)2=10x-4=10∴x1104,x2104(2)(x -1)2 - 3(x -1)=0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x1=1,x2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.31.(1)见解析;(2)1207AC =【解析】【分析】 (1)如图连结OC ,先证得4390∠+∠=︒,即可得到OC AC ∴⊥,即可得到AC 是O 的切线;(2)由(1)知:过O 作OE BC ⊥于E ,先证明OBE DBA ∆∆∽得到34AB BE AD OE ==,设3,4AB x AD x AC ===,在Rt OAC ∆中,222OC AC OA +=,即:2225(4)(53)x x +=+解出方程即可求得答案.【详解】证明:(1)如图,连结OC ,则OB OC =,∴23∠∠=,∵12∠=∠,∴13∠=∠,∵AC AD =,∴4D ∠=∠,而OA l ⊥,∴190D ∠+∠=︒,即有4390∠+∠=︒,∴OC AC ⊥,故AC 是O 的切线;(2)由(1)知:过O 作OE BC ⊥于E ,∵OB OC =, ∴23∠∠=,13,2BE BC ==而5OB =,由勾股定理,得:4OE =, 在OBE △和DBA 中,∵12∠=∠,90OEB DAB ∠=∠=︒,∴OBE DBA ∆∆∽, ∴34AB BE AD OE ==, 设3,4AB x AD x AC ===, 在Rt OAC ∆中,222OC AC OA +=,即:2225(4)(53)x x +=+ 解得:30,07x x ==(舍去), ∴1207AC =. 【点睛】 本题考查的是相似三角形的应用和切线的性质定理,勾股定理应用,是综合性题目.32.(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB =CD +BA ;证明见解析;(实践应用).【解析】【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD =DB +BA ,即CD =6﹣CD +AB ,即CD =6﹣CD +4,解得:CD =5,即可求解;(变式探究)证明△MAB ≌△MGB (SAS ),则MA =MG ,MC =MG ,又DM ⊥BC ,则DC =DG ,即可求解;(实践应用)已知∠D 1AC =45°,过点D 1作D 1G 1⊥AC 于点G 1,则CG 1′+AB =AG 1,所以AG 1=12(6+8)=7.如图∠D 2AC =45°,同理易得AD 2. 【详解】 (问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD =DB +BA ,即CD =6﹣CD +AB ,即CD =6﹣CD +4,解得:CD =5, BD =BC ﹣CD =6﹣5=1,故答案为:1;(变式探究)DB =CD +BA .证明:在DB 上截去BG =BA ,连接MA 、MB 、MC 、MG ,。

2022-2023学年度贵州省贵阳市普通中学第一学期期末检测考试九年级数学试题(含答案解析)

2022-2023学年度贵州省贵阳市普通中学第一学期期末检测考试九年级数学试题(含答案解析)

2022-2023学年度贵州省贵阳市普通中学第一学期期末检测考试九年级数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.10︒B.40︒6.日晷是我国古代利用日影测定时刻的一种计时仪器,它由太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是(A.中心投影C.既是平行投影又是中心投影3A.11, 3⎛⎫ ⎪⎝⎭8.如图,小主持人舞台的长约为()A.3.82米9.小星利用表格中的数据,估算一元二次方程x 0222x x=-…-2由此可以确定,方程2A.0 1.1x<<10.如图,在ABC中,剪下的阴影三角形与原三角形不相似的是(A..C...若反比例函数1yx=图象上有两点()22,B x y,若12x x+=).1-B.01D.12.如图,某校为生物兴趣小组规划一块长15m ,宽12m 的矩形试验田.现需在试验田中修建同样宽的两条互相垂直的小路(两条小路各与矩形的一条边平行),根据学校规划,小路分成的四块小试验田的总面积为2154m .求小路的宽为多少米?若设小路的宽为m x ,根据题意所列的方程是()A .(15)(12)154x x --=B .2(15)(12)154x x x ---=C .(15)(12)77x x --=D .1512(15)(12)154x x ⨯---=二、填空题13.若关于x 的方程230x mx +=+的一个根是1x =,则m 的值为_________.14.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积3(m )V 的反比例函数,其图象如图所示,则反比例函数的表达式为______.15.在边长为1的小正方形网格中,ABC A B C '''∽△△.则ABC 与A B C ''' 的周长比为______.16.在矩形ABCD 中,3AB =,4BC =,点M 是平面内一动点,且满足2BM =,N 为MD 的中点,点M 运动过程中线段CN 长度的取值范围是______.三、解答题17.解下列方程:(1)230-=x x(2)2210+-=x x18.画出如图所示几何体的三种视图.19.如图,在矩形ABCD中,E,F,G,H分别是各边的中点,连接EF,FG,GH,EH.试判断四边形EFGH的形状,并说明理由.20.第24届北京冬奥会开幕式二十四节气倒计时惊艳亮相,从“雨水”开始,倒数最终行至“立春”,将中国人独有的浪漫传达给了全世界.李老师将每个节气的名称写在完全相同且不透明的小卡片上,洗匀后邀请同学随机抽取一张卡片,并向大家介绍卡片上对应节气的含义.(1)若随机抽取一张卡片,则上面写有“立夏”的概率为______;(2)老师选出写有“立春、立夏、立秋、立冬”的四张卡片洗匀后背面朝上放在桌面上,请小星从中抽取一张卡片记下节气名称不放回,再洗匀后从中随机抽取一张卡片记下节气名称.请利用列表或画树状图的方法,求两次抽到的卡片上分别写有立春、立冬节气名称的概率.21.小星测量如图所示大楼的高度MN.在距离大楼39m的点B处竖立一根长为3m的标杆AB.他调整自己的位置.站在D处时.使得他直立时眼睛C、标杆顶点A和高楼顶点M三点共线.已知BD=1m.小星的眼睛距离地面高度CD为1.7m.求大楼的高度.22.如图,在平面直角坐标系中,点垂足为点B ,若3AOB S =△,一次函数(1)求k ,m 的值;(2)有一点(1,2)P ,过点P 作x 轴的平行线,分别交M ,N .判断线段PM 与PN 的数量关系,并说明理由;23.小星和小红在学习了正方形的相关知识后,究.(1)问题解决如图①,在正方形ABCD 中,E ,F 分别是,BC CD 边上的点,连接AE BF ,求证:ABE BCF △△≌;(2)类比探究如图②,在正方形ABCD 中,E ,F ,G ,H 分别是BC AD AB CD ,,,边上的点,连接EF GH ,,且EF GH ⊥,求证:EF GH =;(3)迁移应用如图③,在Rt ABC △中,90ABC ∠=︒,AB BC =,D 是BC 的中点,E 是AC 边上的点,连接AD BE ,,且BE AD ⊥,求AECE ∶的值.参考答案:∵N为MD的中点,∴ON为DMB的中位线,∴112ON BM==,∴点N在以O为圆心,以1为半径的圆上运动,在矩形ABCD中,12 OC AC=∴CN的取值范围为512CN -≤即37 22CN≤≤,故答案为:37 22CN≤≤.【点睛】本题考查了矩形的性质,勾股定理,中位线定理,点和圆的位置关系等知识点,灵【详解】解:【点睛】本题考查作图-三视图,解题的关键是理解三视图的定义,属于中考常考题型.∵共有12种等可能的结果,其中抽中立春、立冬的结果有两种:∴P (抽中立春,立冬)21126==.【点睛】本题考查了概率的计算,熟练提取数据是解题关键.21.53.7m90AHC MGC ∠=∠=︒ ,ACH ∠=∠,CAH CMG ∴ ,AH CH MG CG ∴=即3 1.71,139MG -=+52,MG ∴=52 1.753.7MN MG GN ∴=+=+=(m)∴大楼的高度为53.7m【点睛】本题主要考查了相似三角形的应用.三角形解决问题。

2023-2024学年贵州省贵阳市九年级上学期期末考试数学试题

2023-2024学年贵州省贵阳市九年级上学期期末考试数学试题

2023-2024学年贵州省贵阳市九年级上学期期末考试数学试题1.计算的结果是()A.2B.C.D.42.如图是一个拱形积木玩具,其主视图是()A.B.C.D.3.若,则的值是()A.-1B.C.D.14.如图,与位似,点O为位似中心.已知,,则与的面积比为()A.B.C.D.5.一元二次方程配方后可变形为,则k的值是()A.3B.2C.1D.06.下列多边形一定相似的是()A.两个菱形B.两个平行四边形C.两个矩形D.两个正方形7.已知x=1是关于x的一元二次方程x2+mx-2=0的一个根,则m的值是()A.-1B.0C.1D.0或18.如图,在矩形ABCD中,对角线AC,BD交于点O,若,,则对角线AC的长是()A .4B .3C .2D .19.已知蓄电池的电压为定值,使用蓄电池时,电流(单位:A )与电阻(单位:)是反比例函数关系.下列反映电流与电阻之间函数关系的图象大致是()A.B.C.D .10.小红拿着一块矩形木框在阳光下做投影实验,这块矩形木框在地面上的投影不可能是()A.B.C .D .11.2023年12月16日,贵阳市轨道交通三号线正式运营.某校共有1000个学生,随机调查了100个学生,其中有16个学生在三号线开通首日乘坐了地铁三号线.在该校随机问一个学生,他在三号线开通首日乘坐该地铁的概率大约是()A .0.016B .0.1C .0.116D .0.1612.国庆期间电影《志愿军:雄兵出击》上映的第一天票房约为2亿元,第二、三天单日票房持续增长,三天累计票房亿元,若第二、三天单日票房增长率相同,设平均每天票房的增长率为x ,则根据题意,下列方程正确的是()A .B .C .D .13.计算(x 3)2的结果是____________.14.方程的解是________.15.如图,在这架小提琴中,点C 是线段AB的黄金分割点().若,则______cm .16.如图,在边长为2的菱形ABCD中,,M是AB的中点,连接DM,EM,且,则CE的长是______.17.如图是一个几何体的三种视图.(1)这个几何体的名称是______;(2)由图中尺寸,计算这个几何体的侧面积.18.“双减”政策下,为了切实提高课后服务质量,某中学开展了丰富多彩的课后服务活动,设置了劳动技能、经典阅读、科普活动三大板块课程(依次记为A、B、C).若该校小红和小星两名同学随机选择一个板块课程.(1)小红选择“科普活动”板块课程的概率是______;(2)利用画树状图或列表的方法,求小红和小星同时选择“劳动技能”板块课程的概率.19.综合实践课上,小星在甲秀楼附近P处放置一面平面镜(平面镜的大小忽略不计),示意图如图所示,他站在C处通过平面镜恰好能看到甲秀楼的顶端A点,此时测得小星的脚到平面镜的距离.已知平面镜到甲秀楼底部中心的距离,小星眼睛到地面的距离,点C,P,B在同一水平直线上,且DC,AB均垂直于水平地面C B.请你用光的反射定理,帮小星计算出甲秀楼AB的高度.20.如图,在中,,,,动点P从点C出发,沿CA方向运动,动点Q同时从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.(1)运动几秒时,点P,Q相距6cm?(2)的面积能等于吗?为什么?21.如图,在中,BE平分,CE平分,,,BC,EF交于点O.(1)判断四边形BFCE的形状,并说明理由;(2)若过点E作交DC于点G,画出线段EG,判断线段EG与EF的数量关系,并说明理由.22.小星根据学习反比例函数的经验,探究函数的图象与性质.(1)下面是画函数图象的步骤:列表:x…-4-2-1124…y…12a b21…其中,______,______,描点、连线:把图象补充完整;(2)观察函数的图象,当时,直接写出自变量x的取值范围.23.如图,小红在学习了正方形相关知识后,对正方形进行了探究,在正方形ABCD的外侧作了直线DP.(1)【动手操作】点C关于直线DP的对称点为E,连接CE,AE,其中AE交直线DP于点F.依题意在图①中补全图形;(2)【问题解决】在(1)的条件下,若,求的度数;(3)【拓展延伸】如图②,若,点C关于直线DP的对称点为E,连接CE,AE,其中AE交直线DP于点F.探究线段AB,AF,EF之间的数量关系,并说明理由.。

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列食品商标中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)下列说法正确的是()A . 垂直于半径的直线是圆的切线B . 圆周角等于圆心角的一半C . 圆是中心对称图形D . 圆的对称轴是直径3. (2分) (2019八下·温州期中) 用配方法解方程 ,配方后正确的是()A .B .C .D .4. (2分)(2020·孝感) 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为()A .B .C .D .5. (2分)如图,⊙O是正方形ABCD的内切圆,与各边分别相切于点E、F、G、H,则∠1的正切值等于()A .B .C . 1D . 26. (2分) (2016八上·杭州期末) 如图,在平面直角坐标系中,等腰直角三角形ABC的腰长为2,直角顶点A在直线l:y=2x+2上移动,且斜边BC∥x轴,当△ABC在直线l上移动时,BC的中点D满足的函数关系式为()A . y=2xB . y=2x+1C . y=2x+2﹣D . y=2x﹣7. (2分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A . 3:4B . 4:3C . 7:9D . 9:78. (2分)同时投掷两枚硬币每次出现正面都向上的概率是()A .B .C .D .9. (2分)(2019·秦安模拟) 下列二次函数的图象通过平移能与二次函数的图象重合的是()A .B .C .D .10. (2分)如图,若将图正方形剪成四块,恰能拼成图的矩形,设,则的值为()A .B .C .D .11. (2分)如图,以图中的直角三角形三边为边长向外作三个正方形M、P、Q,且正方形M、P的面积分别为225和81,则正方形Q的面积是()A . 144B . 196C . 12D . 1312. (2分)对于抛物线,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(-5,3)D . 开口向上,顶点坐标(-5,3)二、填空题 (共4题;共4分)13. (1分)(2018·龙东模拟) 已知圆锥底面圆的直径是20cm,母线长40cm,其侧面展开图圆心角的度数为________.14. (1分)(2014·淮安) 一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为________.15. (1分)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 ,△QMN的面积记为S2 ,则S1 ________S2 .(填“>”或“<”或“=”)16. (1分)若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2=________ .三、解答题 (共10题;共117分)17. (10分)解方程:(1) x2﹣4x+1=0(用配方法)(2)(x+1)(x+2)=2x+4.18. (10分) (2016七下·潮州期中) 读语句作图(1)点P是直线AB外一点,直线CD经过点P,且与直线AB垂直;(2)直线AB、CD是相交直线,点P是直线AB、CD外的一点,直线EF经过点P且与直线AB平行,与直线CD 相交于点E.19. (14分)(2017·准格尔旗模拟) 今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有________人,m=________,n=________;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是________度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.20. (15分) (2019八上·无锡月考) 已知函数y=(2m+1)x+m﹣3.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.21. (10分)如图,在 ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连结DE,CF。

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·龙海模拟) 下列事件中,是必然事件的是()A . 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B . 抛掷一枚普通正方体骰子,所得点数小于7C . 抛掷一枚一元硬币,正面朝上D . 从一副没有大小王的扑克牌中抽出一张,恰好是方块2. (2分)下列命题中,真命题是()A . 矩形的对角线相互垂直B . 顺次连结四边形各边中点所得到的四边形是矩形C . 等边三角形既是轴对称图形又是中心对称图形D . 对角线互相垂直平分的四边形是菱形3. (2分) (2019九上·杭州月考) 367个不同人之中,必有两个人生日相同的概率为()A .B .C . 0.99D . 14. (2分)如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°则∠BOE=()A . 30°B . 45°C . 60°D . 75°5. (2分) (2018九上·云梦期中) 某药品经过两次降价,每瓶零售价由 156 元降为 118 元.已知两次降价的百分率相同每次降价的百分率为 x,根据题意列方程得()A . 156(1+x)2=118B . 156(1﹣x2)=118C . 156(1﹣2x)=118D . 156(1﹣x)2=1186. (2分)(2019·朝阳模拟) 关于一元二次方程x2﹣4x+4=0根的情况,下列判断正确是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有且只有一个实数根D . 没有实数根7. (2分)下列函数的图像在每一个象限内,值随值的增大而增大的是()A .B .C .D .8. (2分)(2018·鹿城模拟) 七巧板是我们祖先的一项卓越创造,被誉为“东方魔板” 如图是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中E,P分别是AD,CD的中点,一只蚂蚁从点A处沿图中实线爬行到出口点P处若,则它爬行的最短路程为A .B .C .D . 39. (2分) (2017九上·东丽期末) 如图,在△ 中,,将△ 绕点顺时针旋转,得到△ ,连接,若,,则线段的长为()A .B .C .D .10. (2分)(2019·贵阳模拟) 在平面直角坐标系中,已知点,,直线与轴和轴分别交于点,,若抛物线与直线有两个不同的交点,其中一个交点在线段上(包含,两个端点),另一个交点在线段上(包含,两个端点),则的取值范围是()A .B . 或C .D . 或二、填空题 (共7题;共8分)11. (1分) (2015七上·重庆期末) 已知2x2+xy=6,3y2+2xy=9,则4x2+8xy+9y2的值为________.12. (1分) (2018九上·宁波期中) 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意摸出一支笔芯,则摸出黑色笔芯的概率是________.13. (1分)如图所示,⊙O的半径OA=4,∠AOB=120°,则弦AB长为________.14. (1分) (2018九上·大石桥期末) 如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD= ,则图中阴影部分的面积为________.15. (1分) (2017八下·怀柔期末) 课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米,围成苗圃园的面积为72平方米,设这个苗圃园垂直于墙的一边长为x 米.可列方程为________16. (1分) (2014九上·临沂竞赛) 如果圆锥的底面周长是20πcm,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是________.17. (2分)如图,边长为a的正方形ABCD沿直线l向右滚动.当正方形滚动一周时,正方形中心O经过的路程为________,此时点A经过的路程为________.三、解答题 (共9题;共75分)18. (5分) (2019九上·川汇期中) 如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)19. (10分)(2017·大石桥模拟) 甲口袋中装有两个相同的小球,它们的标号分别为2和5,乙口袋中装有两个相同的小球,它们的标号分别为4和9,丙口袋中装有三个相同的小球,它们的标号分别为1,6,7.从这3个口袋中各随机取出一个小球.(1)用树形图表示所有可能出现的结果;(2)若用取出的三个小球的标号分别表示三条线段的长,求这些线段能构成三角形的概率.20. (5分) (2018九上·广州期中) 如图,在⊙O中,AD是直径,弧AB=弧AC,求证:AO平分∠BAC.21. (8分) (2020八下·大东期末) 如图,正方形ABCD的边长为4,E是边BC上的一点,把平移到,再把逆时针旋转到的位置.(1)把平移到,则平移的距离为________;(2)四边形AEFD是________四边形;(3)把逆时针旋转到的位置,旋转中心是________点;(4)若连接EG,求证:是等腰直角三角形.22. (12分) (2017八下·秀屿期末) 为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中m的值为________;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23. (15分)(2017·河源模拟) 如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y= (x>0)相交于P(1,m).(1)求k的值;(2)若点Q与点P关于y=x成轴对称,求点Q的坐标为(3)若过P、Q两点的抛物线与y轴的交点为N(0,),求该抛物线的解析式,并求出抛物线的对称轴方程.24. (5分) (2019七下·甘井子期中) (问题发现)如图1,D是△ABC边AB延长线上一点,求证:∠A+∠C=∠CBD.小白同学的想法是,过点B作BE∥AC,从而将∠A和∠C转移到∠CBD处,使这三个角有公共顶点B,请你按照小白的想法,完成解答;(问题解决)在上述问题的前提,,如图3,从点B引一条射线与∠ACB的角平分线交于点F,且∠CBF=∠DBF,探究∠A与∠F 的数量关系。

贵阳市九年级(上)期末数学试卷含答案

贵阳市九年级(上)期末数学试卷含答案

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.观察下列每组图形,相似图形是()A. B.C. D.2.方程x2+4x+4=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 有一个实数根D. 没有实数根3.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A. 2B. 3C. 4D. 54.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A. 2B. 3.5C. 7D. 145.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A. 24B. 18C. 16D. 66.一个三角形三边的长分别为3,4,5,另一个与它相似的三角形的最长边是10,则其他两边的和是()A. 9B. 12C. 13D. 147.祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A. =930B. =930C. x(x+1)=930D. x(x﹣1)=9308.已知点(x1,-1),(x2,),(x3,3)都在反比例函数y=-的图象上,则x1,x2,x3的大小关系是()A. x1>x2>x3B. x1 >x3 >x2C. x2 >x1 >x3D. x3 >x1>x29.如图,矩形OABC的顶点O与原点重合,点A,C分别在x轴,y轴上,点B的坐标为(-5,4),点D为边BC上一动点,连接OD,若线段OD绕点D顺时针旋转90°后,点O恰好落在AB边上的点E处,则点E的坐标为()A. (-5,3)B. (-5,4)C. (-5,)D. (-5,2)10.将2019个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3…A2019和点M,M1,M2…M2018是正方形的顶点,连接AM1,AM2,AM3…AM2018分别交正方形的边A1M,A2M1,A3M2…A2018M2017于点N1,N2,N3…N2018,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,…,则S2018为()A. B. C. D.二、填空题(本大题共5小题,共20.0分)11.小明拿一个等边三角形木板在阳光下玩,等边三角形木板在地面上形成的投影可能是______.(填序号)12.已知正方形ABCD的对角线AC=,则正方形ABCD的面积为______.13.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=______.14.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是______.15.在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,P是线段AD上的一个动点,以点P为直角的顶点,向上作等腰直角三角形PBE,连接DE,若在点P的运动过程中,DE的最小值为3,则AD的长为______.三、解答题(本大题共7小题,共50.0分)16.画出如图所示立体图形的三视图.17.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)(1)EF=______cm,GH=______cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.18.如图:在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连结CD,BE,(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由(2)在(1)的条件下,当∠A=______时四边形BECD是正方形.19.如图,一块直角三角板的直角顶点P放在矩形ABCD的BC边上,并且使一条直角边经过点D,另一条直角边与AB交于点Q(1)请你写出一对相似三角形,并加以证明;(2)若AB=6,BC=8,当PD=3PQ时,求PC的长.20.如图,在3×3的方格中分上、中、下三层,第一层有一枚黑色方块甲,可在方块A,B,C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D,E,F中移动.甲、乙移入方格后,四枚黑色方块构成各种拼图.(l)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是______;(2)若甲、乙均可在本层移动,用画树状图法或列表法求出黑色方块所构成拼图是轴对称图形的概率.21.在平面直角坐标系中,一次函数y=-x+b的图象与y轴交于点B(0,2),与反比例函数y=的图象交于点A(4,-1).(1)求反比例函数的表达式和一次函数表达式;(2)若点C是y轴上一点,且BC=BA,请直接写出点C的坐标.22.如图,已知A,B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个单位长度的速度向原点O运动,同时直线EF由x轴为起始位置以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E,F,连接EP,FP,设动点P与直线EF同时出发,运动时间为t秒.(1)求t=15秒时,求EF的长度;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状相同,故是相似图形;D、两图形形状不同,故不是相似图形;故选:C.根据相似图形的定义,形状相同,可得出答案.本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.2.【答案】B【解析】解:∵△=b2-4ac=16-16=0∴方程有两个相等的实数根.故选:B.判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.【答案】C【解析】解:∵AD∥BE∥CF,∴=,∵AB=3,BC=6,DE=2,∴EF==4,故选:C.根据平行线分线段成比例定理列出比例式,代入计算.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.4.【答案】B【解析】解:∵四边形ABCD是菱形,且周长为28,∴AB=AD=BC=CD=7,BO=DO,AC⊥BD,∵点EAD中点,BO=DO,∴OE=AB=3.5故选:B.由菱形的性质可得AB=AD=BC=CD=7,BO=DO,AC⊥BD,由三角形中位线定理可求OE的长.本题考查了菱形的性质,三角形中位线定理,熟练运用菱形的性质是本题的关键.5.【答案】C【解析】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.6.【答案】D【解析】解:设另一个三角形的两边为a、b,根据题意得==,所以a=6,b=8,则a+b=14,即其他两边的和是14.故选:D.设另一个三角形的两边为a、b,利用相似三角形的性质得到==,然后利用比例性质求出a和b,再计算它们的和即可.本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的面积的比等于相似比的平方.7.【答案】D【解析】解:设全班有x名同学,则每人写(x-1)份留言,根据题意得:x(x-1)=930,故选:D.可设全班有x名同学,则每人写(x-1)份留言,共写x(x-1)份留言,进而可列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,其中x(x-1)不能和握手问题那样除以2,另外这类问题转化为一元二次方程求解时应注意考虑解的合理性,即考虑解的取舍.8.【答案】B【解析】解:由于点(x1,-1),(x2,),(x3,3)都在反比例函数y=-的图象上,∴y=-1时,x1=2;y=时,x2=-3;y=3时,x3=-;∴x1,x2,x3的大小关系是x1>x3>x2.故选:B.将各点的纵坐标代入反比例函数y=-,求得x1、x2、x3的值,再比较大小.本题考查了反比例函数图象上点的坐标特征,反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.【答案】A【解析】【分析】则BE=4-x=CD,依据BD+CD=5,可得4+4-x=5,进而得到AE=3,据此可得E(-5,3).【解答】解:由题可得,AO=BC=5,AB=CO=4,由旋转可得,DE=OD,∠EDO=90°,又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD(AAS),∴BD=OC=4,设AE=x,则BE=4-x=CD,∵BD+CD=5,∴4+4-x=5,解得x=3,∴AE=3,∴E(-5,3),故选A.10.【答案】D【解析】解:如图,∵M2017A2017∥AO∴=∴S△M2017M2018N2018=×2019×1×=∴S2018=1-=故选:D.由相似三角形的性质可求S△M2017M2018N2018=×2019×1×=,即可求S2018的值.本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.11.【答案】①③④【解析】解:当等边三角形木框与阳光平行时,投影是①;当等边三角形木框与阳光垂直时,投影是③;在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同.12.【答案】1【解析】解:在直角△ABC中,AC=,且AB=BC,且AB2+BC2=AC2,计算得AB=BC=1,故正方形的面积为S=AB2=1.故答案为:1.在直角△ABC中,AC为斜边,且AB=BC,已知AC的长即可求AB、BC的长,根据AB 的长即可求正方形ABCD的面积.本题考查了正方形各边长相等的性质,勾股定理在直角三角形中的运用,正方形面积的计算,本题中正确的计算正方形ABCD的边长是解题的关键.13.【答案】-2【解析】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=-2,故答案为:-2.根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=-2,然后利用整体代入的方法进行计算.本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.【答案】-6【解析】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,设A而∴|k|=3,∵k<0,∴k=-6.故答案为:-6.连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.【答案】3【解析】解:连接CE,∵在Rt△ABC中,∠BAC=90°,AB=AC,△PBE是等腰直角三角形,∴=,=,∵∠ABC=∠PBE=45°,∴∠CBE=∠CBP,∴△CBE∽△ABP,∴∠BCE=∠BAP=45°,∴∠BCE=∠CBA,∴CE∥BA,∴E点的运动轨迹为射线CE,∴DE最短时,DE⊥CE时,即当DE⊥CE时,DE的最小值=3,∵在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD,∵∠DAE=45°,∴△ADE是等腰直角三角形,∴DE=3,∴AD=CD=3.故答案为:3.连接CE,根据等腰直角三角形的性质得到=,=,推出△CBE∽△ABP,得到∠BCE=∠BAP=45°,求得∠BCE=∠CBA,推出CE∥BA,得到E点的运动轨迹为射线CE,即当DE⊥CE时,DE的最小值=3,解直角三角形即可得到结论.本题考查了相似三角形的应用,等腰直角三角形的性质,熟练掌握等腰直角三角形的性质是解题的关键.16.【答案】解:如图所示:【解析】观察几何体,作出三视图即可.此题考查了作图-三视图,熟练掌握三视图的画法是解本题的关键.17.【答案】(30-2x)(20-x)【解析】解:(1)EF=AB-AE-BF=(30-2x)cm,GH=BC-BG=(20-x)cm.故答案为:(30-2x);(20-x).(2)依题意,得:(30-2x)(20-x)=300,整理,得:x2-35x+150=0,解得:x1=5,x2=30(不合题意,舍去).答:剪掉的小正方形的边长为5cm.(1)观察图形,根据各线段之间的关系可用含x的代数式表示出EF,GH的长度;本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各线段之间的关系,用含x的代数式表示出EF,GH的长度;(2)找准等量关系,正确列出一元二次方程.18.【答案】45°【解析】解:当点D是AB的中点时,四边形BECD是菱形;理由如下:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;∵D为AB中点,∴AD=BD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=AB=BD,∴四边形BECD是菱形;(2)当∠A=45°时,四边形BECD是正方形;理由如下:∵∠ACB=90°,∠A=45°,∴∠ABC=45°,∵四边形BECD是菱形,∴∠ABC=∠DBE,∴∠DBE=90°,∴四边形BECD是正方形.故答案为:45°.(1)先证明AC∥DE,得出四边形BECD是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD=BD,得出四边形BECD是菱形;(2)先求出∠ABC=45°,再根据菱形的性质求出∠DBE=90°,即可证出结论.本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.19.【答案】解:(1)△BPQ∽△CDP理由如下:∵四边形ABCD是矩形∴∠B=∠C=90°,∵∠QPD=90°∴∠QPB+∠BQP=90°,∠QPB+∠DPC=90°∴∠BQP=∠DPC,且∠B=∠C∴△BPQ∽△CDP(2)∵△BPQ∽△CDP∴,且PD=3PQ,∴CD=3BP,且CD=AB=6∴BP=2∴PC=BC-BP=6【解析】(1)由矩形的性质和余角的性质可得∠BQP=∠DPC,∠B=∠C,即可证△BPQ∽△CDP;(2)由相似三角形的性质可求PC的长.本题考查了相似三角形的判定和性质,矩形的性质,熟练运用相似三角形的性质求线段的长度是本题的关键.20.【答案】【解析】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有2种情况是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率为,故答案为:;(2)如图所示:一共有9种等可能的情况,其中黑色方块构成的拼图是轴对称图形的有5种,所以黑色方块所构成拼图是轴对称图形的概率为.(1)根据乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有2种情况是轴对称图形,可得概率的值;(2)根据共有9种等可能的情况,其中黑色方块构成的拼图是轴对称图形的有5种,可得概率的值.本题主要考查了概率公式以及列表法、树状图法的运用,当有两个元素时,可用树形图列举,也可以列表列举.21.【答案】解:(1)∵一次函数y=-x+b的图象与y軸交于点B(0,2),∴b=2∴一次函数表达式为:y=-x+2,∵反比例函数y=的图象交于点A(4,-1),∴m=-1×4=-4∴反比例函数的表达式为:y=(2)∵B(0,2),A(4,-1),∴AB==5∵点B(0,2)∴点C(0,7)或(0,-3)【解析】(1)将点A,点B坐标代入解析式可求反比例函数的表达式和一次函数表达式;(2)由距离公式可求AB的长,即可求点C坐标.本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象上点的坐标满足函数图象解析式是本题的关键.22.【答案】解:(1)∵A,B两点的坐标分别为(40,0)和(0,30),∴AO=40,BO=30∵t=15s∴OE=15,∴BE=OB-OE=15∵EF∥AO∴△BEF∽△BOA∴∴∴EF=20(2)∵EF∥AO∴△BEF∽△BOA∴∴EF=∴S△PEF=×t×=160∴t2-30t+240=0∵△=900-4×1×240=-60<0∴方程没有实数根∴不存在这样的t,使得△PEF的面积等于160(平方单位)【解析】(1)通过证明△BEF∽△BOA,可得,即可求EF的长;(2)通过证明△BEF∽△BOA,可得,可得EF=,由三角形面积公式可求t2-30t+240=0,由根的判别式可得△<0,即可得不存在这样的t,使得△PEF 的面积等于160(平方单位).本题是几何变换综合题,考查了相似三角形的性质,一元二次方程的应用,证明△BEF∽△BOA是本题的关键.。

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·罗平模拟) 如图所示的几何体的俯视图是()A .B .C .D .2. (2分)若关于x的方程k2x2﹣(2k+1)x+1=0有实数根,则k的取值范围是()A . ﹣B .C .D . k≥﹣且k≠03. (2分)(2019·广西模拟) 如图,随机闭合开关S1 , S2 , S3 ,中的两个,则能让灯泡发光的概率()A .B .C .D .4. (2分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选一个作为补充条件后,使得四边形ABCD是菱形,现在下列四种选法,其中都正确的是()A . ①或②B . ②或③C . ③或④D . ①或④5. (2分) (2017九上·辽阳期中) 如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=()A . 7B . 7.5C . 8D . 8.56. (2分)已知M、N两点关于y轴对称,且点M在反比例函数y=的图象上,点N在一次函数 y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A . 有最小值,且最小值是-B . 有最大值,且最大值是-C . 有最大值,且最大值是D . 有最小值,且最小值是7. (2分)(2018·河北模拟) 在四张边长都是10厘米的正方形纸板上,分别剪下一个长5厘米,宽3厘米的长方形,剩下图形()的周长最长.A .B .C .D .8. (2分)(2018·黔西南) 下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A . 甲和乙B . 乙和丙C . 甲和丙D . 只有丙二、填空题 (共8题;共9分)9. (1分) (2020九上·兴安盟期末) 小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b-3.例如把(2,-5)放入其中就会得到22+2×(-5)-3=-9.现将实数对(m,-3m)放入其中,得到实数4,则m=________.10. (1分) (2020九上·醴陵期末) 某中学共有学生人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有________人.11. (1分)一个长方形的正投影的形状、大小与原长方形完全一样,则这个长方形________投影面;一个长方形的正投影的形状、大小都发生了变化,则这个长方形________投影面.12. (1分)(2016·温州) 如图,点A,B在反比例函数y= (k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是________13. (1分) (2019九上·东台月考) 某小区准备在每两幢楼房之间开辟一块面积为300平方米的矩形绿地,且长比宽多7米,设长方形绿地的宽为米,则可列方程为________.14. (2分)(2018·吉林模拟) 如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD 的周长是________.15. (1分)如图,在Rt△AOB中,∠AOB=90°,AO=, BO=1,AB的垂直平分线交AB于点E,交射线BO 于点F.点P从点A出发沿射线AO以每秒个单位的速度运动,同时点Q从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q同时停止运动.设运动的时间为t秒.(1)当t= ________时,PQ∥EF;(2)若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′与线段EF有公共点时,t的取值范围是________.16. (1分)(2017·锦州) 如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,连接DE交BC于点F,则CF:AD=________.三、解答题 (共8题;共70分)17. (10分) (2018九上·华安期末) 解方程:18. (7分) (2019九上·江都月考) 如图,在平面直角坐标系中,点的坐标为(,),点的坐标为(,),点C的坐标为(,).(1)在图中作出的外接圆(利用格图确定圆心);(2)圆心坐标为________;外接圆半径为________;(3)若在轴的正半轴上有一点,且,则点的坐标为________.19. (11分) (2017八下·东台期中) 在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值.20. (10分)(2020·杭州模拟) 某校开展了一系列“垃圾分类,从我做起”的活动.主题有:A:垃圾分类的模拟投放,B:垃圾回收,C:创意垃圾箱的设计,D:参观垃圾焚烧厂,E:人人都是宣传员。

贵州省贵阳市2019-2020学年九年级数学第一学期期末考试试卷答案及评分标准

贵州省贵阳市2019-2020学年九年级数学第一学期期末考试试卷答案及评分标准

九年级数学参考答案 第1页(共4页)贵阳市普通中学2019—2020学年度第一学期期末监测考试试卷九年级数学参考答案及评分建议说明:1.本次考试成绩仅作为学生期末评价的一个方面,学生期末的总体评价还应包括“知识与技能”、“过程和方法”、“情感、态度和价值观”三个方面的动态评价。

本次考试成绩的量17.(本题满分5分)(1) ① 20 ;② 0…….……………..……………... ................................................…(4分) (2)矩形“接近度”的合理定义为:根据矩形与正方形的接近程度称为“接近度”,定义矩形“接近度”为n n. ...............................(5分)九年级数学参考答案 第2页(共4页)4250)5400)(2540(=+m m --18.(本题满分5分) 解:(1.…………...........................…..…..……............………(2分) (2) 画树状图如下:19 如图所示,线段FG 即为所求. 20答:八,九这两个月的月平均增长率为25% . ………………………......(4分) (2)设:当农产品每袋降价m 元时,该淘宝网店10月份获利4250元.根据题意可得:解得:m 1=5,m 2=-70(不合题意舍去).答:当农产品每袋降价5元时,该淘宝网店10月份获利4250元. …. ...(7分)开始第17题图九年级数学参考答案 第3页(共4页)21.(本题满分8分)解:(1) ∵AB ⊥CD ,AC ⊥BC ,∴∠A+∠ACD =90°,∠BCD+∠ACD =90°, ∴∠A =∠BCD ,又∵NM ⊥BM ,AC ⊥BC ,∴∠AMN+∠BMC =90°,∠CBM+∠BMC =90°,22九年级数学参考答案 第4页(共4页)23.(本题满分8分)解:(1) 6-x ; ……………………….............................................................. . ..............(2分) (2)在Rt △ACB 中,由勾股定理有:222AB BC AC =+,且BC=8,AB=10,∴AC=6,又∵A 1是BC 的中点, (3又∵∠A =∠DA 1E ,∠A =∠DA 1E =∠CDA 1 EA 1//AD∴四边形ADA 1E 是平行四边形, ∵DA =DA 1,∴平行四边形ADA 1E 是菱形. .................................................................…….......(8分)(第23题图)(第23题备用图)。

贵阳市数学九年级上册期末试卷(带解析)

贵阳市数学九年级上册期末试卷(带解析)
29.如图,在□ABCD 中,E、F 分别是 AD、CD 的中点,EF 与 BD 相交于点 M,若△DEM 的面 积为 1,则□ABCD 的面积为________.
30.如图,在四边形 ABCD 中,∠BAD=∠BCD=90°,AB+AD=8cm.当 BD 取得最小值 时,AC 的最大值为_____cm.
CA 相交于点 M、N,则△AMN 的周长为________cm.
19.如图,四边形 ABCD 内接于⊙O,AB 是⊙O 的直径,过点 C 作⊙O 的切线交 AB 的延长 线于点 P,若∠P=40°,则∠ADC=____°.
20.如图,二次函数 y=ax2+bx+c 的图像过点 A(3,0),对称轴为直线 x=1,则方程 ax2+bx+c=0 的根为____.
A. y2 y1 3
B. y1 y2 3
C. y2 3 y1
D. 3 y2 y1
3.要得到函数 y=2(x-1)2+3 的图像,可以将函数 y=2x2 的图像( )
A.向左平移 1 个单位长度,再向上平移 3 个单位长度
B.向左平移 1 个单位长度,再向下平移 3 个单位长度
C.向右平移 1 个单位长度,再向上平移 3 个单位长度
7.如图,在 RtABC 中, C 90,CD AB ,垂足为点 D ,一直角三角板的直角顶
点与点 D 重合,这块三角板饶点 D 旋转,两条直角边始终与 AC、BC 边分别相交于
G、H ,则在运动过程中, ADG 与 CDH 的关系是( )
A.一定相似
B.一定全等
C.不一定相似
D.无法判断
8.已知⊙O 的半径为 4,点 P 到圆心 O 的距离为 4.5,则点 P 与⊙O 的位置关系是( )

贵阳市十九中九年级上册期末数学试题(含答案)

贵阳市十九中九年级上册期末数学试题(含答案)
A.m≥1B.m≤1C.m>1D.m<1
8.如图, 内接于⊙ , , ,则⊙ 半径为()
A.4B.6C.8D.12
9.某中学篮球队12名队员的年龄情况如下:
年龄(单位:岁)
14
15
16
17
18
人数
1
5
3
2
1
则这个队队员年龄的众数和中位数分别是( )
A.15,16B.15,15C.15,15.5D.16,15
贵阳市十九中九年级上册期末数学试题(含答案)
一、选择题
1.有一组数据5,3,5,6,7,这组数据的众数为()
A.3B.6C.5D.7
2.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()
A.7 : 12B.7 : 24C.13 : 36D.13 : 72
A. B. C. D.
5.函数y=mx2+2x+1的图像与x轴只有1个公共点,则常数m的值是()
A.1B.2C.0,1D.1,2
6.下列说法中,不正确的是( )
A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴
C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心
7.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A. B. C. D.
13.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )
A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3
14.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是( )

2022年贵阳市重点中学数学九年级上册期末达标测试试题含解析

2022年贵阳市重点中学数学九年级上册期末达标测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.函数(0)k y k x =≠的图象如图所示,那么函数y kx k =-的图象大致是( )A .B .C .D .2.如图,⊙O 是△ABC 的外接圆,已知AD 平分∠BAC 交⊙O 于点D ,AD=5,BD=2,则DE 的长为( )A .35B .425C .225D .453.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .84.书架上放着三本古典名著和两本外国小说,小明从中随机抽取两本,两本都是古典名著的概率是( ) A .425 B .925 C .310 D .1105.顺次连接边长为6cm 的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于( )A .2813cm 4B .2363cmC .2183cmD .2934cm 6.如图,已知点A (m ,m+3),点B (n ,n ﹣3)是反比例函数y =k x(k >0)在第一象限的图象上的两点,连接AB .将直线AB 向下平移3个单位得到直线l ,在直线l 上任取一点C ,则△ABC 的面积为( )A .92 B .6 C .152 D .97.2018-的绝对值是( )A .12018 B .2018- C .2018 D .12018-8.如图,AB 为圆O 的切线,OB 交圆O 于点D ,C 为圆O 上一点,若24ACD ∠=,则ABO ∠的度数为().A .48B .42C .36D .729.如图,在平面直角坐标系中,直线OA 过点(4,2),则tan α的值是( )A .12 B 5C 5D .210.二次函数2y x 经过平移后得到二次函数2(1)1y x =-+,则平移方法可为( )A .向左平移1个单位,向上平移1个单位B .向左平移1个单位,向下平移1个单位C .向右平移1个单位,向下平移1个单位D .向右平移1个单位,向上平移1个单位二、填空题(每小题3分,共24分)11.如图,在边长为4的正方形ABCD 中,点E 为靠近点D 的四等分点,点F 为AB 中点,将AEF 沿EF 翻折得到',A EF 连接',A C 则点D 到'A C 所在直线距离为________________.12.化简:()2sin 222cos601cos68︒-︒-=︒__________.13.一个布袋里放有5个红球,3个黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是____________.14.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则EF 的长为 .15.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60,则该直尺的宽度为____________cm .16.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是__.17.已知以线段AC 为对角线的四边形ABCD (它的四个顶点A ,B ,C ,D 按顺时针方向排列)中,AB =BC =CD ,∠ABC =100°,∠CAD =40°,则∠BCD 的度数为____________.18.已知11x =-是方程260x mx +-=的一个根,则方程另一个根是________.三、解答题(共66分)19.(10分)超市销售某种儿童玩具,该玩具的进价为100元/件,市场管理部门规定,该种玩具每件利润不能超过进价的60%.现在超市的销售单价为140元,每天可售出50件,根据市场调查发现,如果销售单价每上涨2元,每天销售量会减少1件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省贵阳市2016届九年级数学上学期期末考试试题一、选择题(每小题3分,共30分)1.一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3 B.1,﹣2,3 C.1,2,3 D.1,2,﹣32.如图,已知△ABC与△DEF相似,它们的相似比为1:2,则下列图形中,满足上述条件的△DEF 是()A.B.C.D.3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A.B.C.D.4.已知关于x的一元二次方程x2﹣5x+b=0的一个根是3,则实数b的值为()A.3 B.5 C.6 D.﹣65.从3,4,5三个数中随机抽取两个数,则取出的两个数都是奇数的概率为()A.0 B.C.D.16.根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A.23℃ B.28℃ C.30℃ D.37℃7.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0)B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)8.如图,E是正方形ABCD的边BC上一点,AE=2,∠BAE=30°,则对角线AC的长为()A.2 B.2C.D.29.如图,一次函数y1=k1x+b与反比例函数y2=(x>0)的图象相交于A(3,4),B(6,2)两点,若k1x+b<,则x的取值范围是()A.x<3或x>6 B.3<x<6 C.0<x<3或x>6 D.x>610.我们在制作视力表时发现,每个“E”形图的长和宽相等(即每个“E”形图近似于正方形),如图,小明在制作视力表时,测得l1=14cm,l2=7cm,他选择了一张面积为4cm2的正方形卡纸,刚好可以剪得第②个小“E”形图.那么下面四张正方形卡纸中,能够刚好剪得第①个大“E”形图的是()A.面积为8cm2的卡纸B.面积为16cm2的卡纸C.面积为32cm2的卡纸D.面积为64cm2的卡纸二、填空题(每小题4分,共20分)11.写一个y随x的增大而减小的反比例函数的解析式.12.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC= cm.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.15.若关于x的一元二次方程mx2+3x+4=0有实数根,则m的取值范围是.三、解答题16.新能源轿车即将成为市民购买家用轿车的首选,据某市“北汽E150EV”新能源轿车经销商去年1至3月份统计,该品牌新能源轿车1月份销售量为150辆,经过两个月的努力,3月份销售量达到216辆.求该品牌新能源轿车销售量的月平均增长率.17.画出如图所示几何体的主视图、左视图、俯视图.18.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.19.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?20.如图,在平面直角坐标系中,△ABC与△DOE是位似图形,A(0,3),B(﹣2,0),C(1,0),E(6,0),△ABC与△DOE的位似中心是M.(1)在图中画出M点.(2)求出M点的坐标.21.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.22.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.贵州省贵阳市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3 B.1,﹣2,3 C.1,2,3 D.1,2,﹣3【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)中,ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项,直接进行判断即可.【解答】解:一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是1,﹣2,﹣3.故选:A.【点评】本题主要考查了一元二次方程的一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.2.如图,已知△ABC与△DEF相似,它们的相似比为1:2,则下列图形中,满足上述条件的△DEF 是()A.B.C.D.【考点】相似三角形的判定.【分析】由相似三角形的判定和相似比得出A、B、C不符合,D符合,即可得出结论.【解答】解:A、∵=,∴△ABC∽△DEF,相似比为2:1,∴选项A不符合;B、∵=,∴△ABC∽△DEF,相似比为3:2,∴选项B不符合;C、∵=,∴△ABC∽△DEF,相似比为2:3,∴选项C不符合;D、∵=,∴△ABC∽△DEF,相似比为1:2,∴选项D符合;故选:D.【点评】本题考查了相似三角形的判定、相似比的定义;熟练掌握相似三角形的判定,证明三角形相似,得出相似比是解决问题的关键.3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A.B.C.D.【考点】平行投影.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选D.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.4.已知关于x的一元二次方程x2﹣5x+b=0的一个根是3,则实数b的值为()A.3 B.5 C.6 D.﹣6【考点】一元二次方程的解.【分析】已知一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵一元二次方程x2﹣5x+b=0的一个实数根为3,∴32﹣5×3+b=0,即b=6.故选C.【点评】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.5.从3,4,5三个数中随机抽取两个数,则取出的两个数都是奇数的概率为()A.0 B.C.D.1【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出两个数都是奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,取出两个数都是奇数2种情况,∴两个数都是奇数的概率=,故选B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A.23℃ B.28℃ C.30℃ D.37℃【考点】黄金分割.【分析】根据黄金比的值知,身体感到特别舒适的温度应为37度的0.618倍.【解答】解:根据黄金比的值得:37×0.618≈23℃.故选A.【点评】本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.618.7.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0)B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)【考点】根据实际问题列反比例函数关系式.【分析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为300,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=(x>0),故选:A.【点评】此题主要考查了根据实际问题列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.8.如图,E是正方形ABCD的边BC上一点,AE=2,∠BAE=30°,则对角线AC的长为()A.2 B.2C.D.2【考点】解直角三角形.【分析】在RT△ABE中根据条件求出AB,再在RT△ABC中利用勾股定理即可.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,AB=BC,在RT△ABE中,∵AE=2,∠BAE=30°,∴BE=AE=×2=1,∴AB=BC===,∴AC==,故选C.【点评】本题考查正方形性质、直角三角形30度角的性质、勾股定理等知识,灵活运用勾股定理是解题的关键.9.如图,一次函数y1=k1x+b与反比例函数y2=(x>0)的图象相交于A(3,4),B(6,2)两点,若k1x+b<,则x的取值范围是()A.x<3或x>6 B.3<x<6 C.0<x<3或x>6 D.x>6【考点】反比例函数与一次函数的交点问题.【分析】由图象可知当0<x<3和x>6时,一次函数的图象在反比例函数图象的下方,利用函数图象即可确定出k1x+b<时x的取值范围.【解答】解:∵A(3,4),B(6,2),根据图象得:k1x+b<时x的取值范围是0<x<3和x>6,故选C.【点评】本题考查了反比例函数与一次函数的交点交点问题,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.10.我们在制作视力表时发现,每个“E”形图的长和宽相等(即每个“E”形图近似于正方形),如图,小明在制作视力表时,测得l1=14cm,l2=7cm,他选择了一张面积为4cm2的正方形卡纸,刚好可以剪得第②个小“E”形图.那么下面四张正方形卡纸中,能够刚好剪得第①个大“E”形图的是()A.面积为8cm2的卡纸B.面积为16cm2的卡纸C.面积为32cm2的卡纸D.面积为64cm2的卡纸【考点】相似三角形的应用.【分析】由题意可知△PP2D2∽△PP1D1,再由相似三角形的性质:面积比等于相似比即可求出能够刚好剪得第①个大“E”形图的面积.【解答】解:∵每个“E”形图近似于正方形,∴P2D2∥P1D1,∴△PP2D2∽△PP1D1,∵l1=14cm,l2=7cm,∴P2D2:P1D1=1:2,∵第②个小“E”形图是4cm2的正方形卡纸,∴第①个大“E”形图的=4×4=16cm2,故选B.【点评】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例建立数量关系以及建立适当的数学模型来解决问题.二、填空题(每小题4分,共20分)11.写一个y随x的增大而减小的反比例函数的解析式y=(x>0)(答案不唯一).【考点】待定系数法求反比例函数解析式.【专题】开放型.【分析】根据反比例函数图象的性质,当k>0时,在每个象限内,y随x的增大而减小,所写函数解析式只要是k>0,并且是双曲线的一支即可.【解答】解:∵y随x的增大而减小,∴k>0,如y=(x>0)(答案不唯一),只要是符合k>0,并且只是双曲线的一支即可.【点评】本题主要考查反比例函数图象的性质,当k>0时,图象位于第一三象限,在每个象限内,y随x的增大而减小,当k<0时图象位于第二四象限,在每个象限内,y随x的增大而增大.本题需要注意所写函数只能是双曲线的一支.12.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC= 12 cm.【考点】平行线分线段成比例.【分析】过点A作AE⊥CE于点E,交BD于点D,根据平行线分线段成比例可得,代入计算即可解答.【解答】解:如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴,即,∴BC=12cm.故答案为:12.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有14 颗.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,,解得n=14.故估计盒子中黑珠子大约有14个.故答案为:14.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20 .【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.15.若关于x的一元二次方程mx2+3x+4=0有实数根,则m的取值范围是m≤且m≠0.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程mx2+3x+4=0有实数根得到m≠0且△=9﹣4×4×m≥0,解不等式求出m 的取值范围即可.【解答】解:∵一元二次方程mx2+3x+4=0有实数根,∴m≠0且△=9﹣4×4×m≥0,∴m≤且m≠0,故答案为m≤且m≠0.【点评】本题考查了根的判别式的知识,解答本题要掌握:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.三、解答题16.新能源轿车即将成为市民购买家用轿车的首选,据某市“北汽E150EV”新能源轿车经销商去年1至3月份统计,该品牌新能源轿车1月份销售量为150辆,经过两个月的努力,3月份销售量达到216辆.求该品牌新能源轿车销售量的月平均增长率.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该品牌新能源轿车销售量的月平均增长率为x,等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.【解答】解:设该品牌新能源轿车销售量的月平均增长率为x,根据题意列方程:150(1+x)2=216,解得:x1=﹣220%(不合题意,舍去),x2=20%.答:该品牌新能源轿车销售量的月均增长率20%.【点评】本题考主要查了一元二次方程的应用.找到关键描述语,找出等量关系准确的列出方程是解决问题的关键.17.画出如图所示几何体的主视图、左视图、俯视图.【考点】作图-三视图.【分析】主视图为一个长方形的上方有一个梯形形状的缺口;左视图为一个矩形里有一条横向的虚线;俯视图为一个矩形里有两条竖向的实线以及两条竖向的虚线.【解答】解:如图所示:【点评】本题考查了画三视图;用到的知识点为:主视图,俯视图,左视图分别是从正面看,从上面看,从左面看得到的平面图形.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.18.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.【考点】相似三角形的应用.【分析】利用Rt△DEF和Rt△BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴=,∵DE=0.4m,EF=0.2m,CD=8m,∴=,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米).答:树高为5.5米.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.19.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是2时,|x|=0,不会有奖.【解答】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在平面直角坐标系中,△ABC与△DOE是位似图形,A(0,3),B(﹣2,0),C(1,0),E(6,0),△ABC与△DOE的位似中心是M.(1)在图中画出M点.(2)求出M点的坐标.【考点】作图-位似变换.【分析】(1)直接利用位似图形的性质得出M点坐标即可;(2)利用位似图形的性质首先得出位似比,进而得出MO:MH=1:2,即可求出MO的长.【解答】解:(1)连接DA,并延长交x轴于点M,则M即为△ABC与△DOE的位似中心;(2)过点D作DH⊥OE于点H,由题意可得:BC=3,OE=6,△ABC∽△DOE,则位似比为:3:6=1:2,故OH=2OB=4,DH=2OA=6,则D点的坐标为:(4,6),由MO:MH=1:2,MH=MO+4,故MO:(MO+4)=1:2,解得:MO=4,则M点坐标为:(﹣4,0).【点评】此题主要考查了位似图形的性质,正确得出位似比,进而得出M点坐标是解题关键.21.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.【考点】反比例函数综合题.【分析】(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.【解答】解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.【点评】此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.22.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【考点】矩形的性质;含30度角的直角三角形;平行四边形的判定;菱形的性质;翻折变换(折叠问题).【分析】(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可.(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,由折叠的性质可得:∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形;解法二:证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)解:∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.【点评】本题考查了平行四边形的判定,菱形的性质,矩形的性质,含30度角的直角三角形性质的应用,主要考查学生运用定理进行推理和计算的能力.。

相关文档
最新文档