人教新课标九年级初三数学下册26.1.2二次函数图像和性质第三课时

合集下载

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2一. 教材分析《反比例函数的图象和性质》是人教版九年级数学下册第26章第1节的内容。

本节课主要介绍了反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行学习的。

通过本节课的学习,使学生能理解反比例函数的概念,会绘制反比例函数的图象,掌握反比例函数的性质,并能应用于实际问题中。

二. 学情分析学生在学习本节课之前,已经学习了正比例函数和一次函数的相关知识,对函数的概念、图象和性质有一定的了解。

但反比例函数的概念和性质与前两者存在较大差异,需要学生在已有的知识基础上进行迁移和拓展。

同时,学生需要理解反比例函数图象的特点,如双曲线、渐近线等,这对学生的空间想象能力有一定要求。

三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。

2.学会绘制反比例函数的图象,并能分析反比例函数图象的特点。

3.能将反比例函数应用于实际问题中,提高解决问题的能力。

4.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数图象的绘制和分析。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。

通过设置问题引导学生思考,分析案例使学生理解反比例函数的应用,小组合作讨论促进学生交流和拓展思维。

六. 教学准备1.准备反比例函数的相关案例和问题。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备反比例函数图象的素材,如图片、图表等。

七. 教学过程导入(5分钟)教师通过展示一些实际问题,如购物时商品的单价和数量的关系,引出反比例函数的概念。

让学生思考并讨论这些问题,引导学生发现其中的规律。

呈现(10分钟)教师通过多媒体展示反比例函数的图象和性质,引导学生观察和分析。

同时,教师给出反比例函数的定义,并解释反比例函数的性质。

操练(10分钟)教师提出一些有关反比例函数的问题,让学生独立解答。

教师选取部分学生的解答进行讲解和分析,引导学生掌握反比例函数的性质。

人教版九年级下册第二十六章:26.1.2反比例函数的图象和性质 教学设计

人教版九年级下册第二十六章:26.1.2反比例函数的图象和性质 教学设计

26.1.2《反比例函数的图像和性质》教材分析众所周知,函数知识是中学代数的核心内容,反比例函数是初中阶段所要学习的三种函数之一,反比例函数这部分的体系和安排,基本上与一次函数部分相同,教学中要注意和一次函数,尤其是正比例函数对比,引导学生从函数的意义,自变量的取值范围,图象的形状等方面辨明相应的区别。

《反比例函数的图像和性质》在反比例函数这部分的第二小节,是在学生学习了反比例函数的意义和掌握了用描点法画函数图象的基础上进行教学的。

反比例函数图像与一次函数图像不同,研究方法更具有一般性和代表性。

《反比例函数的图像和性质》分两课时完成:第一课时,主要内容反比例函数的图像和性质;第二课时;反比例函数与一次函数的图像和性质对比,确定反比例函数的表达式,本课为第一课时主要内容为探究反比例函数的图像和性质。

学情分析此时学生已经学习了函数及其图像的初步知识,及系统的研究了一次函数和二次函数的概念,图像,性质以及简单应用。

学生研究函数的基本方法有一些初步的了解。

但是反比例函数图像分两支,与一次函数、二次函数图像有很大的差别,学生很容易走进误区。

教学目标分析知识与技能(1)进一步熟悉作函数图像的主要步骤和注意事项;(2)会用描点法画反比例函数图像;(3)理解反比例函数的图像与性质。

过程与方法(1)学生通过自己动手,列表,描点,连线,提高学生的作图能力;(2)通过观察反比例函数图像,分析、探究反比例函数的性质,培养学生探究、归纳及概括的能力。

体会数形结合思想和分类讨论思想。

情感与态度通过对本节课的学习,让学生感受双曲线对称美,有限和无限思想,激发他们对数学学习的兴趣;教学重、难点分析基于本节课的教学内容和教学目标,结合学生学情。

确定本节课的重难点如下:重点:用描点法画反比例函数图像,理解反比例函数的性质。

难点:用描点法画反比例函数图像,理解反比例函数的性质。

教法学法分析学法:学生已经研究了一次函数、二次函数,对研究函数的图像和性质的思想方法有所了解,学生可以通过类比的方法学习,实现知识的迁移。

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

O
x
B
SAOB SOMB SOAM 2 4 6.
(2)解法二:
y x 2,当x 0时, y 2, N(0,2).
ON 2.
1
1
SONB

ON 2
x B

2 4 4, 2
y A
N
SONA

1 ON 2
xA

1 2 2 2. 2
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y y = —kx
y=-x
y=x
0
12
x
.如图,在y 1 (x 0)的图像上有三点A,B,C, x
经过三点分别向x轴引垂线,交x轴于A ,B ,C 三点, 111
边结OA,OB,OC,记OAA , OBB , OCC 的
(2)根据图象写出反比y例函数的值大于一次函数的值 的x的取值范围。
M(2,m)
-1 0 2
x
N(-1,-4)
(1)求反比例函数和一次函数的解析式;
解(1)∵点N(-1,-4)在反比例函数图象上
4
∴k=4,
∴y= x
y
又∵点M(2,m)在反比例函数图象上
∴m=2 ∴M(2,2)
∵点M、N都y=ax+b的图象上 M(2,m)
(1)分别求直线AB与双曲线的解析式; (2)求出点D的坐标;
(3)利用图象直接写出当x在什 么范围内取何值时,y1>y2.
5、如图,已知反比例函数 y 12 的图象与一次函数 x
y= kx+4的图象相交于P、Q两点,且P点的纵坐标

人教版初中数学课标版九年级下册第二十六章26.1.2反比例函数的图像和性质

人教版初中数学课标版九年级下册第二十六章26.1.2反比例函数的图像和性质
当k<0时,y随x的增大而减小.
当k>0时,在每一象限内,y 随x的增大而减小 当k<0时,在每一象限内,y 随x的增大而增大
19
作业
必做题:教材6页第2题,8页第3题 选做题:教材9页第9题
20
6 -6 -3 -2 -1.5-1.2 -1 …
y
6
y=
6 x
5 4
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
6
y
6
y6 x
5
y 6
4
x
3
2
1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4 -5
-6
7
(2)将反比例函数的图象绕原点旋转180度后, 能与原来的图象y 重合吗?
y
y2、 k反x 比例函数
的图象如图所示,则k_0;
在图象的每一支上,y随x的增大而__
O
x
3、
y k2 x
当x>0时,y随x的增大而增大
则k的范围是_
16
当堂检测
- 1、 y=
上5x 有两点A(m, y),1 B(n,
y)若2 m>n>0,则
y_ 1
y 2
y
y y 27x 、y=
上有两点A(3, ) B(-1, )y,则 __ y
5
… -6 -5 -4 -3 -2
y
=
6 x

-1 -1.2 -1.5 -2
-3
y=
6 x

九年级下册《二次函数的图像和性质》第三课时说课稿

九年级下册《二次函数的图像和性质》第三课时说课稿
Ⅲ.自主探索、展示完善:
学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程, 已经积累了一些方法和经验,所以此环节由学生自己独立完成:
(1)作出二次函数的图象;
(2)观察、思考完成“想一想”
(3)一学生展示,其他同学与老师评价、完善。
Ⅳ.自主探索、小组互学、展学提升:
学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一 猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基
(1)开口___________;
(2)对称轴是___________;
(3)顶点坐标是___________;
(4)当时,随的增大而___________;
当时,随的增大而___________;
(5)函数图象有___________点,函数有___________值;
当_____时,取得__________值____.
九年级下册《二次函数的图像和性质》第三课时 说课稿
九年级下册《二次函数的图像和性质》第三课时说课稿
一、教材及学情分析
《二次函数的图像与性质》是北师大版九年级下册第二章第二节 的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数 的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的 基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次 函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函 数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预 备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常 重要的作用。另外,本节课最大特点,是结合图形来研究二次函数的性 质,这充分体现了一个很重要的数学思想——数形结合数学思想。因 此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十 分重要的作用。

人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例

人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例
(三)学生小组讨论
在学生掌握了反比例函数的基本性质后,我会组织小组讨论。每个小组选取一个或几个反比例函数,通过绘制图象、分析性质,探讨反比例函数在实际问题中的应用。我会鼓励学生尝试用反比例函数解决一些简单的几何问题,如求两个反比例函数交点的问题。
(四)总结归纳
在总结归纳环节,我会邀请几个小组代表展示他们的讨论成果,让学生通过对比和讨论,总结出反比例函数的普遍性质和图象特征。我会引导学生从数形结合的角度,理解反比例函数的本质,并强调反比例函数在实际问题中的应用价值。
二、教学目标
(一)知识与技能
1.理解反比例函数的定义,掌握反比例函数的一般形式,并能准确表述。
2.学会绘制反比例函数的图象,分析图象特征,总结反比例函数的性质。
3.能够运用反比例函数的性质解决实际问题,提高数学应用能力。
4.掌握反比例函数与一次函数、二次函数等其他类型函数之间的关系,拓展函数知识体系。
(五)实施多元化评价
本案例采用多元化的评价方式,包括自评、互评、师评等,全面评价学生的学习过程和结果。这种评价方式有助于激发学生的学习动力,促使学生反思自己的学习,不断提高。
(二)问题导向
在教学过程中,我将采用问题导向法,引导学生发现问题、提出问题、解决问题。首先,通过提出问题“反比例函数的图象有什么特点?”让学生进行独立思考。然后,组织学生进行小组讨论,共同探讨反比例函数的性质。在学生掌握性质后,再提出问题:“反比例函数在实际生活中有哪些应用?”引导学生将所学知识运用到实际问题中。
(五)作业小结
为了巩固本节课的学习内容,我会布置以下作业:
1.绘制并分析至少三个不同反比例函数的图象,总结它们的性质。
2.结合实际情境,编写至少两个反比例函数的应用问题,并解答。

26.1.2反比例函数的图像与性质 (教学课件)- 初中数学人教版九年级下册

26.1.2反比例函数的图像与性质   (教学课件)- 初中数学人教版九年级下册
作业布置1.课后习题3,5题;2.完成练习册本课时的习题。
典例精析例4如下图,它是反比例函数 图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图象的某一支上任取点 A(x₁,y₁) 和点B(x₂,y₂), 如果x₁>X₂, 那么 y₁ 和 y₂有怎样的大小关系? o A
3.反比例函 的图象如图所示,则k<_0, 在图象的每一支上,y 随 x 的增大而增 大4.如图,M 为反比例函 图象上的一点,MA 垂直y轴,垂足为A,△MAO 的面积为2,则k的 值 为 4 .
yA M0
642o5-2-6
5X
课堂练习
3
课堂练习5.已知一次函数y=kx+b 的图象与反比例函 图象交于点A(3, 司),点B(14-2a,2).(1)求反比例函数的解析式;(2)若一次函数图象与y 轴交于点C, 点 D 为点C 关于原点O 的对称点,求△A CD 的面 积 . yAC ABO X
可得 解 故一次函数的解析式为

课堂练习∵当x=0 时 ,y=6,C(0,6)..OC=6. ∵点D 为点C关于原点O 的对称点, ∴CD=20C=12.
板书设计反比例函数的图象和性质1.反比例函数的性质:反比例函 的图象,当k>0 时,图象位于第一、三象限, 在每一象限内,y 的值随x的增大而减小;当k<0 时,图象位于第二、四象限,y 的 值随x的增大而增大.2.双曲线的两条分支逼近坐标轴但不可能与坐标轴相交。3.反比例函数的图象是一个以原点为对称中心的中心对称图形.4. 在反比例函数 的图象上任取一点,分别作坐标轴的垂线(或平行线), 与 坐标轴所围成的矩形的面积S矩形=|k|.
典例精析解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或 者位于第二、第四象限.因为这个函数的图象的一支位于第一象限,所以另 一支必位于第三象限.因为这个函数的图象位于第一、第三象限,所以m-5>0解 得 m>5.( 2 ) 因 为m-5>0, 所以在这个函数图象的任一支上,y 都随x 的增大而减小,因此当X₁>X₂ 时 ,y₁<y₂.

人教版九年级数学下册第二十六章:26.1.2 反比例函数的图像和性质 优秀课件

人教版九年级数学下册第二十六章:26.1.2  反比例函数的图像和性质  优秀课件

-4
-6
-8
当k>0时,两支双曲线分 位于第一,三象限内; 当k<0时,两支双曲线分别 位于第二,四象限内;
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
一、复习引入
反比例函数的定义:
一般地,形如 (k是常数,k≠0)的函数, 叫做反比例函数。其中, x是自变量,y是函 数.自变量x的取值范围是不等于0的一切实 数.
反比例函数的三种表达式:
① ② ③
1、过点(2,5)的反比例函数的解析 10 式是: y x . 2、一次函数y=2x-1的图象 是 一条直线 ,y随x的增大而 增大. 3、用描点法作函数图象的步骤:
y
4 C(-3,y3)是 y B(5,y2)是反比例函数 x
数形结合

⑴代入求值
y1 y2 y3
A
2
⑵利用增减性
B
5
-3
⑶根据图象判断
x
O
C
7、若点(-2,y1)、(-1,y2)、(2,y3)在
100 反比例函数 y = 的图象上,则( x
B

A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
x
标系中的 图象可能是 D
y o x y o x
:
y o x y o x
(A)
(B)

人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计

人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计
5.鼓励学生进行自我反思,总结在学习反比例函数过程中遇到的困难和问题,以及解决方法。要求学生以日记的形式记录,以提高他们的自我监控和自我评价能力。
6.预习下一节课的内容,为课堂学习做好准备。
2.利用多媒体辅助教学,形象直观地展示反比例函数的图像特点,帮助学生理解和记忆。同时,结合实际案例,让学生感受反比例函数在实际生活中的应用,提高学生的学习兴趣。
3.教学过程中,注重分层教学,针对不同学生的学习需求,设计不同难度的例题和练习题。对于基础薄弱的学生,重点辅导他们掌握反比例函数的基本概念和性质;对于学有余力的学生,则引导他们运用反比例函数知识解决更复杂的问题。
3.掌握反比例函数的性质,如:当k>0时,图像位于第一、第三象限;当k<0时,图像位于第二、第四象限;图像在x轴和y轴的渐近线分别为y=0和x=0;在每一个象限内,y随x的增大而减小(或增大)等。
4.能够运用反比例函数的性质解决一些实际问题,如:根据实际情境确定反比例函数的参数k,解决与反比例函数相关的问题。
人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,知道反比例函数的一般形式为y = k/x(k≠0),并能够根据给定的信息判断函数是否为反比例函数。
2.学会绘制反比例函数的图像,了解图像在坐标平面内的分布特点,如:图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限。
三、教学重难点和教学设想
(一)教学重难点
1.重点:反比例函数的概念、图像和性质的理解与应用。
2.难点:
(1)反比例函数图像的绘制及其在坐标平面内的分布特点。
(2)反比例函数性质的理解,尤其是参数k的符号对图像的影响。

人教版九年级数学下册:26.1.2反比例函数的图像和性质(教案)

人教版九年级数学下册:26.1.2反比例函数的图像和性质(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数,它描述了一种变量之间的反比关系。这种关系在现实生活中广泛存在,如物体在反比例力作用下的运动等。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以恒定功率行驶,功率与速度的平方成正比,我们可以通过反比例函数来描述功率与速度的关系,并分析在不同速度下能行驶的最大距离。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数的图像和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过距离和速度成反比的情况?”(例如,汽车以恒定功率行驶,速度越快,能行驶的距离越短。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
实践活动和小组讨论的环节,学生们表现得非常积极。他们能够将反比例函数的概念应用到实际问题中,并通过小组合作解决问题。这一过程不仅加深了他们对反比例函数的理解,还培养了他们的团队合作能力。但在讨论过程中,我也注意到有些学生较为内向,不太愿意表达自己的观点。在今后的教学中,我会更加关注这部分学生,鼓励他们积极参与,增强自信心。
二、核心素养目标
1.培养学生运用数学符号进行表达和交流的能力,通过反比例函数的学习,使学生在实际问题中抽象出数学模型,提高数学建模素养。
2.培养学生运用数形结合思想分析问题,和空间想象能力。
3.培养学生运用函数性质解决问题的能力,让学生在实际情境中发现反比例函数的增减性和奇偶性,提高数学抽象和逻辑推理素养。
此外,通过今天的课程,我也意识到教学过程中要充分关注学生的个体差异。在难点内容的讲解上,需要放慢节奏,给予学生更多的消化和理解时间。同时,针对不同学生的掌握程度,布置分层作业,使他们在巩固知识的基础上,能够有所提高。

九年级数学26.1.2反比例函数的图像和性质课件

九年级数学26.1.2反比例函数的图像和性质课件
与y轴交点
同理,反比例函数的图像与y轴也没有交点。
与坐标轴的位置关系
反比例函数的图像总是无限接近于坐标轴,但永远不会与 坐标轴相交。这是因为当x趋近于0时,y的值会趋近于无 穷大或无穷小,但永远不会等于0。
04
反比例函数在实际问题中应用举例
面积问题建模与求解
矩形面积问题
给定矩形的面积和一边的长度,求另 一边的长度,可以通过反比例函数建 立数学模型进行求解。
列表法绘制步骤
列出函数值
在自变量的取值范围内,选取一 些具有代表性的点,计算出对应 的函数值$y$。
绘制表格
将自变量和对应的函数值列成表 格,方便后续绘图。
描点
在坐标系中,根据表格中的自变 量和函数值,描出对应的点。
确定自变量的取值范围
根据题目要求或实际情况,确定 自变量$x$的取值范围。
连线
用平滑的曲线将描出的点连接起 来,得到反比例函数的图像。

02
对称变换
反比例函数的图像关于原点对称,即如果点$(x, y)$在图像上,则点$(-
x, -y)$也在图像上。
03
伸缩变换
当反比例函数的比例系数$k$发生变化时,图像会进行相应的伸缩变换
。具体来说,当$k$增大时,图像会向坐标轴靠近;当$k$减小时,图
像会远离坐标轴。
03
反比例函数性质分析
增减性判断方法
描点法绘制技巧
合理选择描点
在自变量的取值范围内,合理选 择一些具有代表性的点进行描点 ,这些点应该能够反映出函数的
变化趋势。
注意坐标轴的比例
在绘图时,要注意坐标轴的比例, 确保图像的准确性。
用平滑的曲线连接
在连接描出的点时,应该用平滑的 曲线连接,而不是折线。

人教版数学九年级下册26.1.2反比例函数图象和性质课件

人教版数学九年级下册26.1.2反比例函数图象和性质课件
自变量与因变量的关系
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。

人教版九年级下册数学26.1二次函数(3)教案

人教版九年级下册数学26.1二次函数(3)教案

取 x1+x2 时,函数值是
.
4. 在 同 一 平 面 直 角 坐 标 系 中 , 一 次 函 数 y ax b 与 二 次 函 数
y ax2 b 的图像大致是( )
称轴、顶点坐标,教 识形如 y ax2 k 师 指 导 学 生 观 察 图 的二次函数的图 像,说明平移关系, 像特点 学生画图验证获得
思考:⑴这 5 条抛物线的形状、大小有什么关系?
比较。思考教师提出
⑵这 5 条抛物线位置有什么关系?你有什么猜想?
的问题。教师指导感
通过观察图像, 以及图像上横坐 标相同的点的位 置关系,了解抛 物线的平移规律
学生再次画图, 验证获得的结论
3.猜想抛物线 y 2x2 怎么平移会得到抛物线 y 2x2 1、y 2x2 1 ? 觉困难的学生, 将
步感知形如
⑵抛物线 y x2 1, y x2 1 与抛物线 y x2 有什么关系?
y ax2 k 的 二
⑶它们的形状是由什么决定的?它们的位置是由什么决定的?
次函数的图像特点.
2. 在同一平面直角坐标系中画出二次函数 y x2 2 与 y x2 2 的图象。 学生画图,并观察、
5.抛物线 y ax2 b 与 y ax2 b 的位置关系是
四、小结归纳
1.二次函数 y ax2 k 的图像的画法;
教师设计作业,使学
2.二次函数 y ax2 k 的图像的开口方向、对称轴、顶点坐标; 3.二次函数 y ax2 与 y ax2 k 的图像的位置关系.
,对称轴是
,顶点坐标

,它可以看做是抛物线 y 1 x2 向 平移
个单位得

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。

本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。

因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。

三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。

2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。

四. 教学重难点1.反比例函数的概念及其图象的画法。

2.反比例函数的性质及其运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。

2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。

3.教学设备:投影仪、计算机等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。

3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。

教师选取部分学生的作业进行讲解和点评。

4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。

26.1二次函数图象和性质(3)

26.1二次函数图象和性质(3)
26.1二次函数图象和性质 (1)
1. 二次函数的图像都是抛物线. 2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点. (2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点; 当a<0时,抛物线的开口向下,顶点是 抛物线的最高点; |a|越大,抛物线的开口越小; o |a|越小,抛物线的开口越大; (3) a>0时, 在y轴左侧,y随x的增大而减 小,在y轴右侧,y随x增大而增大; a<0时, 在y轴左侧,y随x的增大而增 大,在y轴右侧,y随x增大而减少;
2
抛物线y=a(x-h)2可以由抛物线y=ax2向左或向 右平移|h|得到. (h>0,向右平移;二次函数 y (x 6) 请回答下列问题: 2 1 2 y 的图象作怎样的平移变换得 x 1. 把函数 2 1 2 到函数 y 的图象 . (x 6) 2
抛物线y=ax2+k可以由抛物线y=ax2向上或向下 平移|k|得到. (k>0,向上平移;k<0向下平移.)
画出二次函数 虑它们的开口方向、对称轴和顶点.: 解: 先列表 x … -3 -2 -1 0 描点
1 y ( x 1) 2 2 1 y ( x 1) 2 2
1 1 y ( x 、 1) 2 y ( x 的图像 1) 2 ,并考 2 2
1 2 y (x 6) 2.说出函数 的图象的顶点坐标和对 2
称轴.并说
如果反过 来,如何表述?
明x取何值时,函数取最大值?
1 2 向右平移 1 y x y (x 6)2 6个单位 2 2 1 2 y (x 6) 抛物线 顶点是(6,0),对称轴是直线x=6. 2

九年级数学下册 第二章 二次函数 2.2 二次函数的图象与性质(第3课时)

九年级数学下册 第二章 二次函数 2.2 二次函数的图象与性质(第3课时)

【题组训练】
1.(2019·武汉黄陂区期中)二次函数(hánshù)y=2(x-1)2+3的图
象是一条抛物线,则下列说法错误的是 ( A.抛物线开口向上
)
D
B.抛物线的对称轴是直线x=1
C.抛物线的顶点坐标是(1,3)
D.当x>1时,y随x的增大而减小
第二十二页,共二十七页。
2.已知二次函数(hánshù)y=(x+m)2-n的图象如图所示,则一次
第十八页,共二十七页。
知识点二 二次函数y=a(x-h)2+k的图象与性质(P39习题2.4T3拓 展 ) (tuò zhǎn) 【典例2】若抛物线y=(x-1)2+c过点(2,-1),且向左平移4个单 位,求所得新抛物线的表达式.
第十九页,共二十七页。
【尝试(chángshì)解答】∵抛物线y=(x-1)2+c过点(2,-1), ∴__-1__=__(2-1)2__+c,
第十四页,共二十七页。
★★3.试分别说明将下列抛物线的图象通过(tōngguò)怎样的平移得
到y=x2的图象: 世纪金榜导学号
(1)y=(x+1)2.
(2)y=(x-1)2.
(3)y=x2+1.
(4)y=x2-1.
第十五页,共二十七页。
解:(1)把抛物线y=(x+1)2的图象向右平移(pínɡ yí)1个单位得到抛物 线y=x2的图象. (2)把抛物线y=(x-1)2向左平移1个单位得到抛物线y=x2的图象.
3 …………二次函数(hánshù)的增减性
第十二页,共二十七页。
【题组训练】
1.下列抛物线中,顶点(dǐngdiǎn)坐标是(-2,0)的是( C )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
练习
2、把抛物线 抛物线是 3、抛物线
2
向下平移2个单位得到的 y 2x 2 y 2x 2
2
y 3x
2
可以看作是由抛物线 单位得到的.
y 3x 5
向 下 平移 5
知识回顾
1、画抛物线y=ax2+k的图像 有几步? 2、抛物线y=ax2+k 中的a决定什么? 怎样决定的?k决定什么?它的对称轴 是什么?顶点坐标怎样表示?
x
· · -1
1 2 0
2 5 3
3 10
· · · · · ·
· · y = x2+ 1 · · · y = x2- 1 ·
10
8
8 · · ·
y x2 y = x2+ 1
4
2 y = x2- 1 -4 -2 -2 2 4
(1)抛物线 y x 1, y x 1 的开口方向、对 称轴、顶点各是什么? 开口方向都向上,对称轴为y轴, y = x2+1的顶点坐标是 (0,1), y = x2-1的顶点坐标是(0,-1)
把抛物线y = 2x2向上平移5个单位,会得到哪条抛物线?向下平移3.4 个单位呢?
y 2x2 5
8
6
4 2 -4 -2 -2 -4 2
y 2 x2
4 y 2 x 2 3.4
抛物线y = ax2+k的特点:
低 点是顶点; 向上 最 ____ a>0时,开口________,
向下 最 ____ 高 点是顶点; a<0时,开口________,
2 1 -2 -1 -1 -2 -3 -4 -5 0 1 2
2
x
那么抛物线的解析式是: 2
y ax 5
y
练习2
4
3
那么抛物线的解析式是:
2
1 -2 -1 -1 -2 0 1 2
y ax 2
2
x
y ax
2
若抛物线如图
抛物线 1、函数 y 3x 2 2 的图象是_____,开口方 y 轴。顶点坐标____, (0,2) x<0 下 对称轴是___ 向 ___, 增大 ,x>0时,函数值随增 时,函数值y随增大而__ 大 2 大而__ ,x= 0 ___时,有最__值是___。 减小
2 一般地抛物线y=ax +k有如下性质:
二次函数y=ax2+k(a≠0)的图像是一条抛物线, 它的对称轴是y轴,顶点坐标是(0,k),是 由抛物线y=ax2的图像向上( k>0)或向下( k k <0)平移 个单位得到的。
当a>0时,抛物线y=ax2+ k的开口向上, 在对称轴 的左边,即x<0时,曲线自左向右下降,函数y 随x的增大而减小;在对称轴的右边,即x>0时 ,曲线自左向右上升,函数y随x的增大而增大。 顶点是抛物线的最低点,此时,函数y取得最小 值,即当x=0时,y最小值= k
2
y ___ ax 2、抛物线___ 对称轴是y轴,顶点在坐标 原点,开口的方向由a的符号确定,开口的大小由IaI 确定:a >0时开口向 上,a越大开口越小; a < 0 开口向下,a越大开口越大。
2
6/3/2015
2 2 例2 在同一直角坐标系中,画出二函数 y x 1, y x 1 的图象. 解:先列表:
2、抛物线的开口向上对称轴是y轴,和上面1题的形 状大小一样,顶点在坐标原点下一个单位它的解析式 2 是____ y 3x 1 x<0时,函数值y随增大而__ 增大 ,x>0时,函数值随 减小 ,x= ___时,有最__值是___ -1 增大而__ 小 0
练习3
1、把抛物线 y x 向上平移3个单位得到的抛物 线是 y x 2 3 若再向下平移 5个单位 得到的 抛物线是 y x 2 2
2 二次函数y=ax +k图象
6/3/2015
复习与回顾
抛物线 1、函数 y ax 的图象是_____,对称轴是 上 。 y (0,0) a >0时开口向___, ___轴顶点坐标____, 减小 ,x>0时,函数值 x<0时,函数值y随增大而__ 0 时,有最__值是 小 0 增大,x= ___ 随增大而__ ___。 下 x<0时,函数值y随增大 a < 0时开口向 ___,。 而__ 增大 ,x>0时,函数值随增大而 __减小 , 大 0 0 x= ___时,有最__值是___。
当a<0时,抛物线y=ax2+ k的开口向下, 在对称 轴的左边,即x<0时,曲线自左向右上升,函 数y随x的增大而增大;在对称轴的右边,即x >0时,曲线自左向右下降,函数y随x的增大 而减小。顶点是抛物线的最高点,此时,函数 y取得最大值,即当x=0时,y最大值= k
练习1
y
若抛物线如图
y ax
y轴(即直线x=0) 对称轴是 __________________ (0,k) 。 顶点坐标是 __________
例:在同一个直角坐标系中,画出函数 y=-x2和y=-x2+1的图像,并根据图像回答 下了问题: (1)抛物线y=-x2+1经过怎样的平移才能 得到抛物线y=-x2 (2)函数y=-x2+1,当x 时, y随x的增大 而减小;当x 时,函数y有最大值,最大值y是 其图像与y轴的交点坐标是 ,与x轴的交点坐标是 1 2 (3)试说出抛物线y= 2 x -3的开口方向、对 称轴和顶点坐标
2 2
(2)抛物线 y x 1, y x 1 与抛物线 如右图所示
2 2
y x 2 有什么关系?
10 8 6 4 2
10 8 6 4 2 y = x 2+ 1
y x2
y x2
y = x2+ 1
y = x2- 1
-4
y = x2- 1
-4
-2
-2
2
4
-2
-2
2
4
(1)把抛物线y=x2向上移平移1 个单位,就得到抛物线y=x2+1;把 抛物线y=x2向下平移1个单位,就 得到抛物线y=x2-1。 (2)它们的位置是由+1、-1决 定的。
相关文档
最新文档