初三二次函数的图像与性质
九年级数学《二次函数y=a(x+h)2的图象与性质》课件
(1,0)
对称轴 最值
变化趋势
直线x=0
直线x=1
当x=0时,最小值为0.
在对称轴左侧,y随x的增 大而减小 在对称轴右侧,y随x的增 大而增大
当x=1时,最小值为0.
在对称轴左侧,y随x的增 大而减小 在对称轴右侧,y随x的增 大而增大
向上
(-1,0)
直线x=-1
当x=-1时,最小值为0.
在对称轴左侧,y随x的增 大而减小 在对称轴右侧,y随x的增 大而增大
2.二次函数y=-3(x-4)2的图像是由抛物线y= -3x2 向 右 平移 4
个单位得到的;开口 向下 ,对称轴是直线x= 4 ,当x= 4 时,
y有最 大 值,是 0
.
3.将二次函数y=2x2的图像向右平移3个单位后得到函数 y=2(x-3)2 的图像 ,其对称轴是 直线x=3 ,顶点是 (3,0) , 当x >3 时,y随x的增大而增大;当x <3 时,y随x的增大 而减小
3.将函数y=3(x-4)2的图象沿x轴对折后得到的函数解 析式是 y=-3(x-4)2 ;将函数y=3(x-4)2的图象 沿y轴对折后得到的函数解析式是 y=3(x+4)2;
本节课学习了什么内容?
交流收获
1.顶点坐标与对称轴
2.位置与开口方向 3.增减性与最值 根据图形填表:
y ax h2
小组展示
它们的位置关系: y=x2
向左平移1个单位
y=x2 y=(x+1)2
y=(x+1)2
y=(x1)2
...
小组展示
它们的位置关系:
y=x2
向右平移1个单位
y=x2 y=(x+1)2
y=(x-1)2
二次函数的图像和性质(共82张PPT)
y=ax2
向上
y轴 (0,0)
向下
y轴 (0,0)
4、二次函数y=2x2+1的图象与二次函数y=
2x2的图象开口方向、对称轴和顶点坐标是否相
同?它们有什么关系?我们应该采取什么方法
来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 …
y 1 x2 ··· 2
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y y x2 8
y 2x2
···
6
y 1 x2
4
2
2
-4
-2 O
24
在对称轴左侧,y都随x的增大而增大,
在对称轴右侧,y都随 x的增大而减小 .
联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),
再沿对称轴整体上(下)平移|
|个单位 (当
>0时向上平移;当 <0时,向下平移)得到的.
y 1 x2
y1
1 3
x2
2
3
y2
1 3
x2
2
的图像
在同一直角坐标系中
画出函数 y 1 x2 5 y
y1
1 3
x2
2
3
y2
的图像
二次函数图像与性质ppt课件
D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
人教版九年级上册第22章二次函数图像与性质知识点题型总结
二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。
《二次函数的图像和性质》PPT课件 人教版九年级数学
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
人教版九年级数学上册第节二次函数的图像和性质
你能说出二次函数y=—x -6x+21 (共46张PPT)人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT)
拱峦芦人蝉差终尺奇袱壕径砂蛹蜗桌峙瓢钝蚌硼绚驱碑印卫续决隙薪箍苏人教版九年级数学上册第22章第1节二次函数的图像和性质
yax2 bxc的对称轴是:x b 2a
顶点坐标是:(
b
4acb2
,
)
2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
y3x24x1 y2x2x3
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
yax2 bxc的对称轴是:x b 2a
顶点坐标是:(
b
4acb2
,
)
2a 4a
2.抛 物 线 y=2x2+bx+c的 顶 点 坐 标
(共46张PPT)人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT) ⑴a决定抛物线的开口方向:
当x=
时,y有最大(最小)值
当Байду номын сангаас﹤0时,开口
,
说出下列函数的开口方向、对称轴、顶点坐标:
b=-8 c= 6 D. 抛物线y=a(x-h)2+k有如下特点:
向上 直线x=3 (3,7 )
(3)“画”:列表、描点、连线。
a+b+c=0 D.
y1(x6) 3 求二次函数y=ax²+2bx+c的对称轴和顶点坐标. 2 (3)都有最(大或小)值.
第三象限 D.
(1)形状相同(图像都是抛物线,开口方向相同).
二次函数的图像和性质——y=ax^2的图像 (共14张PPT)
5.2 二次函数的图像和性质(1)
例1 已知二次函数 y = m -1 xm2 + m 的图像开口向下.
(1)求m的值和函数表达式.
解:(1)由题意知:m-1<0且m²+m=2,则m=-2.
5.2 二次函数的图像和性质(1)
例2 已知二次函数y=ax²(a≠0)的图像经过点(2,3). 求:(1)a的值和写出解析式.
列表时自变量要 均匀和对称!
5.2 二次函数的图像和性质(1)
例2 画出y=-x2图像.
x ... -3 -2 -1 0 1 2 3 ... y=-x² ... -9 -4 -1 0 -1 -4 -9 ...
5.2 二次函数的图像和性质(1)
请在直角坐标系中画出函数
y=
1 2
x2
和
y=2 x2
、
初中数学 九年级(下册)
5.2 二次函数的图像和性质(1)
5.2 二次函数的图像和性质(1)
画函数图像步骤:列表 描点 连线 研究函数性质方法:数形结合 二次函数的图像是怎样的? 试着画一画吧!
5.2 二次函数的图像和性质(1)
例1 画出函数y=x2的图像.
x ... -3 -2 -1 0 1 2 3 ... y=x² ... 9 4 1 0 1 4 9 ...
(2)确定图像的开口方向.
解:(1)将(2,3)代入y=ax²(a≠0),得a=0.75; (2)抛物线y=0.75x²,开口向上.
5.2 二次函数的图像和性质(1)
本节课我们学习了什么?
抛物 y轴 线
向上 向下
(0,0) 最低点
(0,0) 最高点
5.2 二次函数的图像和性质(2)
分别说出下列函数图像的开口方向、顶 点坐标、对称轴:
九年级数学二次函数的图象和性质
练习三 知识应用
例1.说出下列抛物线的开口方向、 说出下列抛物线的开口方向、 说出下列抛物线的开口方向
顶点坐标: 对称轴及 顶点坐标: (2)y=4(x(1)y=-3(x-1)2 (2)y=4(x-3)2 (3)y=2(x+3)2 y=-3(x解(1)∵a=-3<0 ∴开口向下 (1)∵a=对称轴: 对称轴: 顶点: 顶点: 直线 x= 1 (1, (1,0)
是k 是k
y=ax2+k
a<0
向下
(0 , k) 最大值 )
回顾: 回顾:抛物线 y = x +1 是由抛物线 y = x 2 轴怎样移动得到的? 沿y轴怎样移动得到的?抛物线 y = x −1 呢? 2 y = x +1 y 2 y=x 7 2 y = x −1 6
2
5 4 3 2 1 -4 -3
2.二次函数y=ax2、y=ax2+k的性质有哪 二次函数y=ax 二次函数 请填写下表: 些?请填写下表:
函数
开口方向
对称 顶 点 y的 轴 坐 标 最值
Y轴 轴 Y轴 轴 Y轴 轴 Y轴 轴 (0 ,0) 是0 )
是0 最小值
a>0
向上 向下
y=ax2
a<0 a>0
向上
(0 , 0) 最大值 ) (0 , k) 最小值 )
o
-1 -2 -3 -4 -5
1
2
3
4
5x
探究2:抛物线 y=探究2:抛物线 y=-(x+1)2 是由抛物线 y=-x2 2: y=轴怎样移动得到的? y=-(x- 呢 沿x轴怎样移动得到的?抛物线 y=-(x-1)2?
y
1 -4 -3 -2 -1
o
九下数学课件 二次函数y=ax^2+k的图像与性质 (课件)
(2) BF=BC 理由:在y=kx+2中,令x=0,得y=2.∴ 点F的坐标为(0,2).
∴ OF=2.过点F作FH⊥BC,垂足为H.设点B的坐标为 t, 1 t2 + 1 ,
4
∵ 易知四边形OFHC为矩形,∴ OF=CH,FH=OC=t,BC=14t2+1.
∴
BH
=
BC
-
CH
=
BC
-
OF
=
1 4
当x<0时,y随x增大而减小.
抛物线关于y轴对称.
图像有最低点,过(0,0) y有最小值.
当x>0时,y随x增大而增大.
抛物线开口向上.
那么y=x2+1的图像与y=x2的图像有什么关系?
在同一坐标系中画出函数y=x2和y=x2+1的图像. (1)列表.
x
… -3 -2 -1 0 1 2 3 …
y=x2 … 9
位置上下平移规律,即:抛物线y=ax2+k 是由抛物线 y=ax2 上下平移| k |个单位长度得到的,“上加”表 示当k 为正数时,向上平移;“下减”表示当k为负数时, 向下平移;
“纵变横不变”表示坐标的平移规律,即:抛物线平 移时其对应点的纵坐标改变而横坐标不变.
l 归纳:
2. 二次函数y=ax2+k 的图像
l 归纳:
3. 二次函数y=ax2+k 的性质 (1)当a>0时,函数有最小值k,当a<0时,函数有 最大值k; (2)如果a>0,当x<0时,y随x的增大而减小,当 x>0时,y随x的增大而增大;如果a<0,当x<0 时,y随x的增大而增大,当x>0时,y随x的增 大而减小.
l 归纳:
4. 二次函数y=ax2+k 的图象的画法 (1)描点法:类比作二次函数y=ax2 图象的描点法,
二次函数的图像和性质(共48张PPT)
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0
九年级数学二次函数的图像和性质课件
向下
增减性
当x<0时,y随着x的增大而减小.
当x>0时,y随着x的增大而增大.
当x<0时,y随着x的增大而增大.
当x>0时,y随着x的增大而减小.
最值
当x = 0时,最小值为0.
当x = 0时,最大值为0.
在x轴的下方(除顶点外)
课堂测试
2
3
4
3
1.在二次函数①y=3x2② = 2 ③ = 2 中,图象在同一水平线上的开口大
象叫做抛物线y=ax2+bx+c.
=
-3
O
3
x
二次函数=^2 的性质
观察 = 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
y
=
9
实际上,每条抛物线都有对
交点坐标(0,0),
观察图像,当二
次函数的x=0时,
y=0(最小值)
6
3
-3
O
3
做抛物线的顶点.
【切记】顶点是抛物线的最低点
或最高点.
P’(1,1)
P(-1,1)
称轴,抛物线与对称轴的交点叫
x
这条抛物线关于y轴对称,y轴就
是它的对称轴.
二次函数=^2 的性质
观察 = 2 的图像,小组讨论与的变化趋势?
y
变化过程:
=
9
1.在y轴左侧(x<0),y的值随x的增大而减少。
6
2.在顶点处能得到二次函数 = 2 的最小值。
小顺序用题号表示应该为(
)
A.①>②>③
B.①>③>②
C.②>③>①
D.②>①>③
分析:|a|越大,抛物线的开口越小.
北师大版九年级下册数学《二次函数的图象与性质》二次函数研讨说课复习课件
- - - - - O1 2 3 4 5 x
5 4 3 2 1联 系: 二次项系数互为相反数,开
2
1
y =- x
口相反,大小相同,它们关
2
-3
于x轴对称.
4
5
ቤተ መጻሕፍቲ ባይዱ知讲解
5
4
3
2
y
对于抛物线 y = ax 2 (a>0)
当x>0时,y随x取值的增大而增大;
当x<0时,y随x取值的增大而减小.
与二次函数y=2x2的图象有什么相同与不同?
解:先列表:
8
2
9
3
1
3
7
1
-1
1
0
2
8
9
7
观察发现
再描点,连线
y
8
6
1、因为a值相同,所以开口方向,
4
大小都相同;
2
2、二次函数y=2x2+1的图象,可以看作是由y=2x2
的图象向上平移1个单位得到;
3、二次函数
的图象,可以看作是由y=2x2
的图象向下平移1个单位得到.
2
-4
-2
2
O
-1
4
x
归纳
开口方向
上
y = 2x2+1
上
y = 2x2 -1
对称轴
y轴
y轴
顶点坐标
(0,1)
(0,-1)
y
y = 2x2+1
8
y = 2x2 -1
6
4
相同点:开口方向相同、形状相同,
对称轴都是y轴。
不同点:顶点坐标发生了改变。
22.1.3二次函数的图像与性质 初中初三九年级数学教学课件PPT 人教版
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
《二次函数——二次函数的图象与性质》数学教学PPT课件(9篇)
y3>y2>y1
关系为___________.
导引:因为a>1,所以0<a-1<a<a+1, 所以这三个点
都在函数y=x2的图象的对称轴的右侧.根据
“当x>0时,y随x的增大而增大”的性质,可得
y3>y2>y1.
(来自《点拨》)
知2-讲
总 结
当所比较的点都在抛物线的对称轴的同一侧时,
y值都随x值的增大而增大
D.当x<0时,函数y=x2,y的值随x值的增大的变化情况与当x>0
时,函数y=-x2,y的值随x值的增大的变化情况相同
(来自《典中点》)
知2-练
4 如图,一次函数y1=kx+b的图象与二次函数y2=
x2的图象交于A(-1,1)和B(2,4)两点,则当y1<y2时,x的取
值范围是( D )
1
(1,2
), 可知, 其中有两点在第一象限, 一
点在第四象限, 排除B,
1
C;在第一象限内,
y1的对应
2
点(1, 2)在上, y3的对应点(1, )在下, 排除A.
知1-练
1 关于二次函数y=3x2的图象,下列说法错误的是( C )
A.它是一条抛物线
B.它的开口向上,且关于y轴对称
C.它的顶点是抛物线的最高点
可直接利用函数的增减性进行大小比较.
(来自《点拨》)
知2-练
1 已知点(x1,y1),(x2,y2)是二次函数y=-x2的图象
上的两点,当x1<x2<0时,y1与y2的大小关系为
y1<y2
________.
初三数学,二次函数(图像、性质、规律、实际问题)
y=ax^2 (0,0) x=0
y=ax^2+K (0,K) x=0
y=a(x-h)^2 (h,0) x=h
y=a(x-h)^2+k (h,k) x=h
y=ax^2+bx+c (-b/2a,4ac-b²/4a) x=-b/2a
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
3。一般式,顶点式,交点式,等,区分对称轴,顶点,图像等的差异性。
4。联系实际对函数图像的理解。
5。计算时,看图像时切记取值范围。
二次函数的图像
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0)。
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时
冀教版九年级下册数学《二次函数的图像和性质》教学说课复习课件巩固
同,且顶点坐标是(4,-2),试求这个函数关系式.
y 1 (x 4)2 2 3
当堂练习
1.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么
平移后抛物线的解析式是 y=-(x+3)2或y=-(x-3)2 .
2.二次函数y=2(x顶点是__(_32_, 0_)___.
3 2
)2图像的对称轴是直线___x__32__,
4
对称轴 直线x=3 直线x=2 直线x=1
顶点坐标 ( 3, 0 ) (2, 0 ) ( 1, 0)
5.在同一坐标系中,画出函数y=2x2与y=2(x-2)2的 图像,分别指出两个图像之间的相互关系.
解:图像如图. 函 数 y=2(x-2)2 的 图 像 由 函数y=2x2的图像向右平 移2个单位得到.
增 减 性 极值
a>0 向上
(h ,k) x=h
a<0 向下 (h ,k) x=h
当x<h时,y随着x的增 当x<h时,y随着x的增大 大而减小;当x>h时,而增大;当x>h时, y随着x的增大而增大. y随着x的增大而减小.
x=h时,y最小=k
x=h时,y最大=k
抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移得到的.
3
.若(-
143,y1)(-
5 4
,y2)(
1 4
,y3)为二次函数
y=(x-2)2图像上的三点,则y1 ,y2 ,y3的大小关系为
____y_1_>__y_2_>___y_3_.
4.指出下列函数图像的开口方向,对称轴和顶点坐标.
抛物线
开口方向
y 2 x 32 向上
y 2 x 22 向上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育学科导学教师:学生:年级:日期: 星期: 时段:学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。
课题二次函数的图像与性质学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数;2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法;3、熟练的选用合适的解析式利用待定系数法求解析式。
学习重点图像的平移;待定系数法求解析式学习方法讲练结合、师生讨论、启发引导学习内容与过程教学内容:知识回顾1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中,x 是自变量,a,b,c分别是函数解析式的二次项系数,一次项系数和常数项.2.二次函数的解析式及其对称轴(1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交点式:。
此时抛物线的对称轴为。
其中,(x1,0)(x2,0)是抛物线与X轴的交点坐标。
显然,与X轴没有交点的抛物线不能用此解析式表示的3.二次函数y=a(x-h) 2+k的图像和性质4.二次函数的平移问题5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系:6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系二次函数的常规解法:一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。
我们称y=ax2+bx+c(a≠0)为一般式(三点式)。
例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。
说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。
所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。
二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。
我们称y =a(x+m)2+k (a≠0)为顶点式(配方式)。
例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。
说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。
用顶点式只要确定a的值就可以求二次函数解析式。
若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。
三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。
我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。
例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。
说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。
往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。
四、若已知二次函数在X轴上截得的线段长为d时,可选用或例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。
说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。
注意相互之间不要混淆。
总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。
当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。
二次函数的概念如果y=ax2+bx+c(a≠0,a,b,c为常数),那么y叫做x的二次函数注意:二次函数的表达形式为整式,且二次项系数不为0,b ,c可分别为0,也可同时为0自变量的取值范围是全体实数练习:1.下列各式中,y 是x 的二次函数的是( )A .x+y 2-1=0B .y=(x+1)(x-1)-x 2C .y=1+21x +D .2(x-1)2+3y-2=02.若函数y=(m 2+m )221m m x --是二次函数,那么m 的值是( )A .2B .-1或3C .3D .-1±23.写出下列各函数关系式,并判断是否是二次函数?(1)两直角边的和为40cm ,其中一条直角边长为xcm ,直角三角形的面积是Scm 2,写出S 和x 之间的函数关系式;(2)写出圆面积S 与半径r 之间的函数关系式;(3)写出正方形面积y 与边长x 之间的函数关系式;(4)圆的周长c 与半径r 之间的函数关系式.2.二次函数的图像及其性质二次函数的图像是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的定点1.二次函数y=ax 2(a ≠0)的图像。
(画图讲解)2.二次函数y=ax 2+bx+c(a ≠0,a,b,c 为常数)的图像二次函数y=ax 2+bx+c 用配方法可化成y=a(x-h)2+k h=-a b 2,k=a b ac 442- (注重推导过程)练习:1.抛物线y=(x-1)2+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)2.若k 为任意实数,则抛物线y=-2(x-k )2+k 2的顶点在( )A .抛物线y=x 2上B .直线y=-x 上;C .x 轴上D .y 轴上3.抛物线y=-12x 2的开口向_______,顶点坐标为________,•顶点是抛物线的最____点,当x=_______时,函数有最_______值为_________. 4.二次函数y=14x 2的图象是一条开口_______的_________,有最______点,当x=2时,y=________;当y=1时,x=________.5.已知二次函数y=(m-1)·232m m x-+的图象开口向上,则m=_______.3.二次函数的解析式以及如何求解:练习:1.已知抛物线的顶点坐标为(2,1),且抛物线经过点(3,0),则这条抛物线的解析式是( ).(A )91394912++=x x y (B )9594912+--=x x y (C )y=x 2-4x+5 (D )y=-x 2+4x-3 2.已知抛物线经过A (1,-4),B (7,8),C (-5,20)三点,求二次函数的解析式.4.二次函数的应用1、已知y=x 2+x -6,当x=0时,y= ;当y=0时,x= 。
2、抛物线217322y x x =+-与y 轴交点的坐标为 ,与x 轴交点的坐标为 。
3、抛物线y=(x+3)2-25与y 轴交点的坐标为 ,与x 轴交点的坐标为。
5.图像的平移1.将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 。
2、抛物线21(2)43y x =++可以通过将抛物线y = 向 平移 个单位、再向 平移 个单位得到。
6.用函数观点看一元二次方程1、 已知抛物线232y x x a =-+与x 轴有交点,则a 的取值范围是 ( )(A) a ≤13 (B) a <13 (C) a ≤13- (D) a ≥13 2、无论x 为任何实数,抛物线2y ax bx c =++永远在x 轴上方的条件是 ( )(A) a >0,24b ac -<0 (B) a >0, 24b ac ->0(C) a <0, 24b ac ->0 (D) a <0, 24b ac -<03、已知二次函数y =ax 2+bx +c 的图象如图1所示.①这个二次函数的表达式是y =______;②当x =______时,y =3;③根据图象回答:当x ______时,y >0.xy11 2 -1O7、二次函数的图像与系数之间的关系:1、已知二次函数c bx ax y ++=2的图象如图所示,下列结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )。
A. 2个B. 3个C. 4个D. 5个2、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .3、二次函数2y x ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,14、已知二次函数y =ax 2+bx +c ,如果a>b>c ,且a +b +c =0,则它的图象可能是图所示的( )课内练习与训练1. 已知:如图一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =12x 2+bx +c 的图象与一次函数y =12x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.2、如图14(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ;(2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.图14(1) 图14(2) 图14(3)1x A y O 1xB y O 1xC y O 1xD y O3、如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.学生收获你这次课一定有不少收获吧,请写下来: 教学反思本次课后作业学生对于本次课的评价:○ 特别满意 ○ 满意 ○ 一般 ○ 差学生签字:4 x 2 2 A 8-2 O -2 -4 y 6B CD -4 4教师评定:1、学生上次作业评价:○非常好○好○一般○需要优化2、学生本次上课情况评价:○非常好○好○一般○需要优化教师签字:学科组长签字:龙文教育教务处。