10-11高等数学试卷A(下)
高等数学试卷A
A 卷 第1页 蚌埠学院10—11学年第二学期 《高等数学B ②》期末考试试题(A )注意事项:1、适用班级:10电子工艺;10机电设备;10模具;10数控;10建筑;10化工技术; 10无机非金属技术;10环境检测;10生物技术;10生物制药1,2; 10食品加工;10食品检测1,2. 2、本试卷共1页。
满分100分。
3、考试时间120分钟。
4、考试方式:闭卷一、填空题(每小题3分,共24分) 1函数z =的定义域为 .2 2xy y x z ++=,则(1, 1)y f = .3 设23z x y =,则dz = .4 设xz y =,则2zx y∂=∂∂ .5 Ddxdy ⎰⎰= ,其中22:149x y D +≤. 6 如果∑∞=1n na收敛,则lim n n a →∞= .7112nn ∞==∑ . 8 []=a L .二、判断题(每小题3分,共12分)1 如果0,(1,2,)n n a b n ≤≤= ,并且1nn b∞=∑收敛,则1nn a∞=∑也收敛. ( )2 无穷级数∑∞=-134)1(n nn不是绝对收敛的. ( )3 无穷级数111>∑∞=p nn p当时是发散的.( ) 4 x e y y x =+'是可分离变量方程.( ) 三、计算题(每小题8分,共40分) 1 设22sin()xyz e x y =+-,求x z ∂∂;yz ∂∂及dz . 2 设3ln z u v =,而y u x =,v x y =-,求x z ∂∂;yz ∂∂. 3 设(,,)sin 0xyF x y z xyz z e =-+=确定隐函数(,)z f x y =,求x F ,y F ,z F 及,z zx y∂∂∂∂. 4 求22x y De dxdy --⎰⎰,其中22:4D x y +≤.5 求10Dydxdy ⎰⎰,其中D 是由直线1y x =+ 及抛物线21y x=-所围成的闭区域.四、解答题(每小题8分,共24分)1 求函数322(,)423f x y x x xy y =-+-+的极值. 2 求由曲面224z x y =--与xOy 面所围成的立体的体积. 3 求幂级数(1)nn n x∞=+∑的收敛区间.。
10-11(1)高数A(三)试卷
《高等数学 A(三)》(B 卷) 第 6 页 共 6 页
三、计算题(本大题 10 分)
11.计算 n 阶行列式
a1 − m a2 "
Dn =
a1 "
a2 − m " ""
a1
a2 "
an an 的值. " an − m
得分
《高等数学 A(三)》(B 卷) 第 2 页 共 6 页
答 题勿超装 订 线
------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------
通过正交变换 X = QY 化成标准形 f ( y1, y2 , y3 ) = 3y12 + 3y22 + by32 . (1)求参数 a, b 的值; (2)求正交矩阵 Q .
《高等数学 A(三)》(B 卷) 第 3 页 共 6 页
14.(本小题 10 分)甲、乙二人之间经常用 e-mail 联系,他们约定在收到对方邮件的当天即 给回复(即回一个 e-mail),由于线路问题,每 n 份 e-mail 中会有1份不能在当天送达收件人. 甲在某日发了1份 e-mail 给乙, (1)试求甲在当天收到乙的回复的概率; (2)如果已知甲在当天未收到乙的回复,试求乙在当天收到甲发出的 e-mail 的概率.
《高等数学》A试卷A答案
《⾼等数学》A试卷A答案⼀、填空题(每⼩题4分,共20分): 1.设ln(y x =,则1d 2x y dx ==. 2.曲线sin ,1cos x t t y t =-??=-? 在 2t π= 处的切线斜率为1.3.若1lim ()x f x →存在,且111()2lim ()x x f x xf x -→=+,则1()2x f x x e -=-.4.若01()f x '=,则000(2)()lim arctan u f x u f x u u→+--=3.5.若2lim 8xx x a x a →∞+??= ?-??,则a =ln 2.⼆、选择题(每⼩题4分,共20分):1.设()232x x f x =+-,则当0x →时( D ). (A )()f x 与x 是等价⽆穷⼩量(B )()f x 是⽐x 较低阶的⽆穷⼩量(C )()f x 是⽐x 较⾼阶的⽆穷⼩量(D )()f x 与x 是同阶但⾮等价⽆穷⼩量2.若函数()f x 在0x 点存在左、右导数,则()f x 在点0x ( A ).(A )连续(B )可导(C )不可导(D )不连续3.当1x →时,12111x x e x ---的极限( C ). (A )等于2 (B )等于0 (C )不存在但不为∞ (D )为∞4.设函数21()1lim nn xf x x →∞+=+,讨论()f x 的间断点,其结论为( A ).(A )存在间断点1x = (B )存在间断点1x =-(C )存在间断点0x = (D )不存在间断点5.设对任意的x ,总有()()()x f x x ?ψ≤≤,且[]lim ()()0x x x ψ?→∞-=,则lim ()x f x →∞( C ).(A )存在且等于0 (B )存在但不⼀定等于0(C )不⼀定存在(D )⼀定不存在三、计算题(本题共4题,共计24分): 1.(5分)设tan y x y =+,求d y ;解:(tan )()d y d x y =+ 22s c 1e 1sec d ydy dx y d d xyy ==-+2.(6分)求极限:)lim x xx →-∞;解:)lim x xx →-∞limlim 05x x ==-=3.(6分)求极限:lim x +→;解:01lim lim 1()2x x x x ++→→=?22lim lim 212x x x x ++→→===4.(7分)设2(cos )y f x =,且f ⼆阶可导,求22d d yx.解:22(cos )2cos (sin )sin 2(cos )dyf x x x xf x dx''=?-=- (2cos 2)2sin )((cos 2sin )(cos 2cos 2'2''2'2 2xf x x xf x xf dx yd -=---=四、解答题(本题共3⼩题,共计24分): 1.(6分)设1x =1n x +=列{}n x 的极限存在,并求其极限.证明:单调性:当1n =时,1x =,21x x =>,假设当n k =时有1k k x x +>,则当1n k =+时仍然有,21k k x x ++=即,数列}{n x 是单调增加数列。
2011高等数学下试卷及答案
华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是( )(今年不作要求)A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程''6'90y y y -+=的通解为_____.(今年不作要求) 2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域. 6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz. 7.计算二重积分cos Dydxdy y⎰⎰,其中D 是由y y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.(今年不作要求)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z =(今年不作要求)参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y =-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分) 2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2zx y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xy z z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分)243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010n n ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z z z z F F z z y x F e y F e ∂∂=-==-=∂+∂+.........(5分) 故1(2)1zz z dz dx dy dx ydy x y e ∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =及y x =围成的区域. 解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分) 212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定. 解:'DD σθ=..........(2分)120d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分) 而111()00a xdydz ydzdx zdxdy azdxdy dxdy ∑∑∑++===⎰⎰⎰⎰⎰⎰.....(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。
高等数学下册期末考试试题及答案
高等数学A(下册)期末考试试卷【A 卷】考试日期:2009年一、A 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅=-4.2、设ln()z x xy =,则32zx y∂=∂∂-1/(y*y ). 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为2x+4y+z-14=0.4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于,在x π=处收敛于.5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ 1.414.※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y ⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 解:两边同时对x 求导并移项。
2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 条件收敛4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n ∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z = 3()lim t F t t +→. -------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
高等数学下册考试试卷一、填空题每...
高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y 的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x yxf y x yf u +=其中f 具有二阶连续导数,则2222yu y x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202013cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
2010高等数学下试卷及答案
华南农业大学期末考试试卷(A 卷)2009~2010学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、 单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程'220y y x ---=是( )A .齐次方程B .可分离变量方程C .一阶线性方程D .二阶微分方程2.过点(1,2,--且与直线25421x y z +-==-垂直的平面方程是( )A .4250x y z +-+=B .4250x y z ++-=C .42110x y z +-+=D .42110x y z ++-= 3.设(,)ln()2yf x y x x=+,则(1,1)y f =( ) A .0 B .13 C .12D .24.若lim 0n n u →∞=,则级数1n n u ∞=∑( )A .可能收敛,也可能发散B .一定条件收敛C .一定收敛D .一定发散5.下列级数中发散的是( )A .112n n ∞=∑ B .11(1)n n ∞-=-∑ C .n ∞= D .n ∞= 二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程"4'50y y y -+=的通解为______。
(今年不作要求)2.设有向量(4,3,0),(1,2,2)a b ==-,则2a b +=____________________。
3.设有向量(1,1,0),a b ==-,它们的夹角为θ,则c o s θ=____________________。
4.设x z y =,则dz =____________________。
5.设L 是圆周229x y +=(按逆时针方向绕行),则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰的值为____________________。
三、计算题(本大题共7小题,每小题7分,共49分)1.已知arctan x z y =,求2,z z x x y∂∂∂∂∂。
10-11 高等数学1试题(A卷)及解答
广州大学2010-2011学年第一学期考试卷课 程:高等数学Ⅰ1(90学时) 考 试 形 式:闭卷考试学院:__________专业班级:__________ 学号:__________ 姓名:_________一.填空题(每小题3分,本大题满分15分)1.设函数1,||1()0,||1x f x x ≤⎧=⎨>⎩,则 )]([x f f = .2.设函数sin 2,0()2,0xx f x x x a x ⎧<⎪=⎨⎪+≥⎩,当常数=a ______时,)(x f 在0x =处连续.3.曲线xe y 2=上点(0,1)处的切线方程为______ __.4.曲线53523++-=x x x y 的凹区间为_______ _____. 5.若xe -是)(xf 的原函数,则dx x f x )(ln 2⎰= .二.选择题(每小题3分,本大题满分15分)1. 当1x →时,无穷小量x -1是x -1的( ).A. 高阶无穷小;B. 低阶无穷小;C. 等价无穷小;D. 同阶但不等价无穷小. 2.若∞=→)(lim x f ax ,∞=→)(lim x g ax 则必有( ).A. ∞=+→)]()([lim x g x f ax ; B. ∞=-→)]()([lim x g x f ax ;C. 0)()(1lim=+→x g x f ax ; D. ∞=→)(lim x kf a x ,(0≠k 为常数).3.函数xx x x f πsin )(3-=的可去间断点个数为( ).A .1; B. 2; C. 3; D. 无穷多个.4.设函数)(x f y =在点0x 处可导, 则 xdyy x ∆-∆→∆0lim等于( ).A. 0;B. -1;C. 1;D. ∞ .5. 设)(x f 连续,且240()x f t dt x =⎰,则)4(f = ( ).A. 2;B. 4;C. 8;D. 16 .三.解答下列各题(每小题6分,本大题满分18分)1.)3ln(tan 2x x y ⋅=,求dy .2.求由方程0)cos(=-+xy e yx 所确定的隐函数()y f x =在0x =处的导数.3.设⎩⎨⎧=+=ty t x cos 12,求dx dy 和22dx y d .四.解答下列各题(每小题6分,本大题满分12分)1.计算极限13)1232(lim +∞→++x x x x .2.设21cos ,02(),0x x f x xx x ⎧<<⎪=⎨⎪≤⎩,讨论)(x f 在0=x 处的连续性与可导性.五.计算下列积分(每小题6分,本大题满分18分) 1.xdx x 2sin ⎰.2.12dx x. 3.221(1)dx x -⎰.六.(本题满分5分)证明方程015=-+x x 只有一个正根.七.(本题满分5分)设)(x f 在),(+∞-∞内连续,且0()(2)()x F x x t f t dt =-⎰,试证:若)(x f 为偶函数,则)(x F 亦为偶函数.八.(本大题满分12分)设抛物线c bx ax y ++=2通过点(0,0),且当]1,0[∈x 时,0≥y .求c b a ,,的值,使得抛物线c bx ax y ++=2与直线0,1==y x 所围图形的面积为94,且使该图形绕x 轴旋转而成的旋转体的体积最小.广州大学2010-2011学年第一学期考试卷高等数学Ⅰ1(90学时A 卷)参考解答与评分标准一.填空题(每小题3分,本大题满分15分)1.设函数⎩⎨⎧>≤=1||01||1)(x x x f ,则 )]([x f f = 1 ),(+∞-∞∈x 。
浙江大学大二数学专业《高等数学下》考试A卷及答案
《高等数学》(下)考试卷A适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题:(共6小题,每空2分,共14分)1.设z=22x xy y ++,则x z ∂∂= ; yz∂∂= . 2.改变积分顺序240(,)dy f x y dx ⎰⎰= .3.函数 z=2x 2+y 2在点P(1,1)处的梯度为__________4.级数∑∞=11n n的敛散性为 .5.设平面曲线L 为下半圆周y=-21x -,则曲线积分⎰+Lds y x )(22=__________6.曲线x=41t 4,y=31t 3,z=21t 2在相应点t=1处的切线方程为_______________二.单项选择. (共8小题,每小题3分,共24分)1.设D 为圆域:x 2+y 2≤1,Ddxdy ⎰⎰=A.则A =( ) .(A) π (B) 4π (C) 2π (D) 3π. 2.lim 0n n u →∞≠是级数1n n u ∞=∑发散的( )(A).充分条件 (B). 必要条件 (C).充要条件 (D).无关条件 3.积分()(),,LP x y dx Q x y dy +⎰与路径无关的充要条件是( )(A) .P Q y x ∂∂=∂∂ (B). P Q y x∂∂=-∂∂ (C). P Q x y ∂∂=∂∂ (D). P Q y y ∂∂=∂∂ 4.设3z x y =,则dz =( ).(A)dx dy + (B)233x ydx x dy + (C) 3x dx ydy + (D) 23x ydx ydy +5.曲线积分⎰++-c yx xdyydx 22的值为( ),其中C 取圆周221x y +=的正向. (A )、π (B)、-2π (C)、 2π (D)、-π 6.已知2)()(y x ydydx ay x +++为某一函数的全微分,则a=( ) (A) -1 (B) 0 (C) 2 (D) 17.设∑为锥面z=22y x +介于z=0与z=1之间的部分,1∑是∑在第一卦限的部分,则⎰⎰∑++ds xz yz xy )(=( )(A)0 (B)4⎰⎰∑1xyds (C) 4⎰⎰∑1zyds (D) 4⎰⎰∑1xzds8.f x (x 0,y 0) 与f y (x 0,y 0)均存在是函数f(x,y)在点(x 0,y 0)处连续的( )条件 (A) 充分 (B)必要 (C)充要 (D)无关三.(8分)设z=x 3y 2-3xy 3-xy+1,求22x z ∂∂ ,22yz∂∂。
《高等数学》 2020-2021学年第二学期期末试卷A卷
河海大学2020—2021学年第二学期 《高等数学》 期末试卷(A )一.填空题 (本题共5小题,每小题3分,满分15分) 1. 设xy e z sin =,则=dz _______。
2. 母线平行于x 轴且通过曲线⎪⎩⎪⎨⎧=+-=++0162222222z y x z y x 的柱面方程是 3.⎰=++-12222y x y x xdyydx =4. 函数y=x1在x=3处的幂级数展开式为: 5. 微分方程02=+'-''y y y 的通解是:二. 选择题 (本题共5小题,每小题3分,满分15分)1.已知a ϖ=(0, 3, 4), b ϖ=(2, 1, -2),则=b j a ϖPr [ ]A. 3B.31- C. -1 D.1 2. 函数yx xy z 2050++= (x>0,y>0)[ ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值C. 在点(5, 2)处取极大值 D . 在点(5, 2)处取极小值3.I=1:,)(222222=++Ω++⎰⎰⎰Ωz y x dv z y x 球面内部, 则I= [ ]A. ⎰⎰⎰ΩΩ=dv 的体积B.⎰⎰⎰1042020sin dr r d d θϕθππ C. ⎰⎰⎰104020sin dr r d d ϕϕθππ D. ⎰⎰⎰104020sin dr r d d θϕθππ4. I=⎰+Ly dy xe dx x 22 其中L 是由y=x-1, y=1, x=1所围区域的正向边界曲线, 则I=[ ]A. 21B. )1(21-e C. 2eD. e5. 若级数∑∞=--11)1(n nn x n 的收敛域是 [ ]A. (-1, 1)B. [-1, 1]C. [)1,1-D. (]1,1-三.解答下列各题 (本题共5小题,每小题6分,满分30分)1. 计算I=⎰⎰Ddxdy x D={(x, y)x y x ≤+22}。
MK_10-11(2)高数A(二)、B(二)试卷
v ∫
L
+
Pdx + Qdy + Rdz ≤ max
( x , y , z )∈Σ
(Q
x
− Py ) + ( Ry − Qz ) + ( Pz − Rx ) ⋅ S
2 2 2
其中 Σ 为以 L 为边界的某曲面, S 为曲面 Σ 的面积.
第 6 页 共 6 页
(−1) n−1 (2)求级数 ∑ 的和. n n =1 n ⋅ 2
∞
第 3 页 共 6 页
[‰Y'•Q~ÜNf^—
⎧ x = uv ∂u ∂v 5. (1)设 ⎨ ,求 , . ∂x ∂x ⎩ y = sin u + cos v
(2)设 sin z − xyz = 0 ,求
∂2 z . ∂y 2
安徽大学 2010—2011 学年第二学期
------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------
f ( x ) 的 Fourier 级数在 x = 4π 处收敛于
.
5.设 f ( x, y ) = xy 2 在点 (2,1) 处沿方向 (4, −3) 的方向导数等于
得 分
.
院/系
二、选择题(每小题 2 分,共 10 分)
⎧ x2 y , x2 + y2 ≠ 0 ⎪ 2 2 1. 二元函数 f ( x, y ) = ⎨ x + y , 在点 (0, 0) 处 2 2 ⎪ 0, x +y =0 ⎩ A.不连续 B.可微 C.不可微,且偏导数不存在 D.不可微,但偏导数存在.
高等数学(A)(下)期末考试试题.解答.
2009-2010(春)高等数学A(下)期末考试试题解答(2010.6)一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在空中).2∂z=2xyexy.∂x2函数u=xy2+z3-x2yz在点P(1,1,1)处的梯度(-1,1,2).21设z=exy,则3设f(x,y)为二元连续函数,交换积分次序⎰10dy⎰f(x,y)dx=y⎰10dx⎰f(x,y)dy.x5级数L在p>1条件下收敛.∑pnn=1∞二、选择填空题(本题满分15分,共有5道小题,每道小题3分).以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效.1 二元函数f(x,y)在点(x0,y0)处两个偏导数fx(x0,y0)与fy(x0,y0)存在是f(x,y)在该点处连续的( D ).(A)充分而非必要条件;(B)必要而非充分条件;(C)充分必要条件;(D)既非必要条件又非充分条件. 2 曲面yz+zx+xy=3在点(0,1,3)处的切平面方程为( B ).(A) 2x+y-1=0; (B)4x+3y+z-6=0; (C) x+y+z-1=0; (D) 4x+3y+z-2=0.(A)bn=(B)bn=(C)bn=(D)bn=4 设级数f(x)sinnxdx(n=1,2, ),和函数为f(x);⎰ππ-πf(x)cosnxdx(n=1,2, ),和函数为f(x);⎰ππ-11πf(x)cosnxdx(n=1,2, ),和函数为2f(x);⎰ππ-ππ⎰2πf(x)sinnxdx(n=1,2, ),和函数为f(x).∑un=1∞n收敛,且∑un=1∞n=u,则级数∑(un+un+1)=( C ).n=1∞(A) 2u;(B)u;(C)2u-u1;(D)u-u1.25 已知y=1,y=x,y=x为某二阶非齐次线性微分方程y''+p(x)y'+q(x)y=f(x)的三个解,则其通解为( C ).(其中C1,C2为任意常数)(A)y=C1+C2x+x;(B)y=C1x+C2x+1;(C)y=C1(x-1)+C2(x-1)+1;(D)y=C1(x-1)+C2(x-1)+x-x.三、(本题满分8分)22222⎛∂2zx⎫设二元函数z=xy+f xy,⎪,其中函数f具有二阶连续的偏导数,求.∂x∂yy⎭⎝∂z1=y+yf1'+f2' , 4分解:∂xy⎡⎛x⎫⎤1⎛x⎫⎤∂2z1⎡''''''''''⎥⎪=1+f1+y⎢xf11+ -2⎪f12⎥-2f2+⎢xf21+ -2⎪f22⎪∂x∂yy⎣⎝y⎭⎦y⎝y⎭⎦⎣1x''-3f22'' . 4分 =1+f1'-2f2'+xyf11yy四、(本题满分10分)计算二重积分解:⎰⎰(yD2+3x+9)dxdy,其中D=(x,y)x2+y2≤1. {}22=(y+3x+9)dxdyy⎰⎰dxdy+⎰⎰3xdxdy+⎰⎰9dxdy 2分⎰⎰DDDD2y⎰⎰dxdy+0+9π 3分D ===⎰2π0sin2θ⎰ρ3dρ+9π 3分0137π . 2分 4五、(本题满分16分,其中1题为8分,2题为8分)1 讨论级数∑n=1∞(-1)nann(a>0)的敛散性;2 试将函数f(x)=1 解:当a>1,lim⎰x0. sint2dt展成x的幂级数(要求写出该幂级数的一般项并指出其收敛域)un+1n1=lim=<1,故原级数绝对收敛; 3分n→∞un→∞n+1aan 当0<a<1,limun+1n1=lim=>1,limun≠0,故原级数发散;3分n→∞n→∞un→∞n+1aan当a=1,原级数为∞∑n=1∞(-1)n,条件收敛. n 2分 (-1)n-1t2n-12 因为sint=∑t∈(-∞,+∞) , 2分 (2n-1)!n=1∞(-1)n-1t4n-22 则sint=∑t∈(-∞,+∞) . 2分n=1(2n-1)!将上式两端逐项积分,得⎛∞(-1)n-1t4n-2⎫ f(x)=⎰sintdt=⎰ ∑⎪dt (2n-1)!⎭00⎝n=1∞x(-1)n-1t4n-2=∑⎰dt (2n-1)!n=102xx(-1)n-1x4n-1=∑ (-∞<x<+∞) . 4分 2n-1!(4n-1)n=0∞六、(本题满分12分).∑ 2解:令∑1为z=4被z=x2+y2所截得部分的上侧, 则原式=由高斯公式z=4∑+∑1-⎰⎰∑1, 2分⎰⎰∑∑+=⎰⎰⎰[(x)'x+(y)'y+(z(x+y))'z]dv=13322ΩD=(⎰⎰Ωdxdy)xyz=x2+y2⎰[4(x2+ y2)]dz2π2z=422=⎰dθ⎰rdr⎰[4r]dz=2π⎰r[4r2](4-r2)dr=00z=r2012π8 . 6分 3由曲面积分计算公式得2π2222=0+0+4(x+y)dxdy=dθ4(r⎰⎰⎰⎰⎰⎰)rdr=32π, 2分∑1D00128π32π . 2分 -32π=33七、(本题满分8分)某工厂生产两种型号的机床,其产量分别为x台和y台,成本函数为故原式= c(x,y)=x2+2y2-xy (万元)若市场调查分析,共需两种机床8台,求如何安排生产,总成本最少?最小成本为多少?解:即求成本函数c(x,构造辅助函数 F(x,y)在条件x+y=8下的最小值. y)=x2+2y2-xy+λ(x+y-8) 2分⎧Fx'=2x-y+λ=0⎪解方程组⎨Fy'=-x+4y+λ=0⎪F'=x+y-8=0⎩λ解得λ=-7,x=5,y=3 4分这唯一的一组解,即为所求,当这两种型号的机床分别生产5台和3台时,总成本最小,最小成本为: c(5,3)=52+2⨯32-5⨯3=28(万) 2分八、(本题满分16分,其中1题为10分,2题为6分)1 设可导函数ϕ(x)满足ϕ(x)cosx+2⎰ϕ(t)sintdt=x+1,求ϕ(x). 0x2 设函数f(u)具有二阶连续的导函数,而且z=fesiny满足方程 x()∂2z∂2z2x+=ez,22∂x∂y试求函数f(u).解1 在ϕ(x)cosx+2⎰x0ϕ(t)sintdt=x+1两端对x求导得,ϕ'(x)+tanxϕ(x)=secx. 4分解上述一阶线性微分方程得通解为.ϕ(x)=six+nC. cxo 4分由ϕ(x)cosx+2⎰x0ϕ(t)sintdt=x+1得,ϕ(0)=1,则C=1故ϕ(x)=sinx+cosx. 2分2 设u=exsiny,则有∂z∂z=f'(u)exsiny,=f'(u)excosy ∂x∂y∂2z2x2x所以,2=f''(u)esiny+f'(u)esiny ∂x∂2z=f''(u)e2xco2sy-f'(u)exsiny 2分2∂x∂2z∂2z代入方程 +2=e2xz,2∂x∂y2x2x2x2x2x得,f''(u)esiny+f'(u)esiny+f''(u)ecosy-f'(u)esiny=ez 即,f''(u)e2x=f(u)e2x由此得微分方程 f''(u)-f(u)=0 2分解此二阶线性微分方程,得其通解为f(u)=C1e+C2eu-u (C1与C2为任意常数) 2分此即为所求函数.。
高等数学下期末试卷A
《 高等数学》第二 学期期末试卷(A )3×6=18分)1、 690y y y '''-+=的特征方程是2、sin(23),z x y dz =+=则3、(,), ( (,)0 )Df x y dxdy f x y >⎰⎰的几何意义4、计算()121233⎛⎫ ⎪= ⎪ ⎪⎝⎭5、已知向量()()12122,231,αα==-则1223αα-=6、线性方程组Ax b =有解的充要条件是2×6=12分) 1、二重积分{}⎰⎰≤+==Dy x y x D d y x f I 1|),(,),(22其中σ,则可将I 化为累次积分( ) A 、⎰⎰--dy y x f dx x ),(21011 B 、⎰⎰----dy y x f dx x y ),(221111C 、⎰⎰--dy y x f dx ),(1111D 、⎰⎰rdr r r f d )sin ,cos (1020θθθπ2、方阵 A 可逆的充分必要条件是( )A 0≠AB 0≠AC 0*≠A D 0>A3、下列命题成立的是( )A 、若AB AC =,则B C = B 、若0AB =,则00A B ==或 C 、若0A ≠,则0A ≠D 、若0A ≠,则0A ≠4、设A 为34⨯矩阵,且()2R A =,则下列结论中,不正确的是( )A 、A 的所有3阶子式都为零B 、A 的所有2阶子式都不为零C 、A 的列向量线性相关D 、A 的行向量线性相关5、向量()()()()1234100,010,000,110αααα====的极大线性无关组为( )A 、123,,ααα B 、124,,ααα C 、12,αα D 、34,αα6、若非齐次线性方程组Ax b =中方程个数少于未知数个数,那么( )A 、Ax b =必有无穷多解B 、0Ax =必有非零解C 、0Ax =仅有零解D 、0Ax =一定无解三、求下列微分方程的通解:(6分) 1、dxdy =yx e -,四、解答下列各题:(2×5=10分)1、已知向量→a ={1,2,3},→b ={1,0,1},求→a ∙→b ,→a ×→b2、已知平面π与平面2340x y z -+=平行,且过点(1,2,-1).求平面π的方程。
高等数学下册试卷及答案
高等数学下册试卷及答案高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=loga(x+y)的定义域为D={(x,y)|x+y>0}。
2、二重积分∬|x|+|y|≤1 2ln(x+y)dxdy的符号为负。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(e+1-x)dx dy,其值为e-1.4、设曲线L的参数方程表示为{x=φ(t)。
y=ψ(t)} (α≤t≤β),则弧长元素ds=√[φ'(t)²+ψ'(t)²]dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∫∫∑(x²+y²+1)ds=18√2.6、微分方程y'=x/(y²+1)的通解为y=1/2ln(y²+1)+1/2x²+C。
7、方程y''-4y=tanx的通解为y=C1e^(2x)+C2e^(-2x)-1/2cosxsinx。
8、级数∑n=1∞1/(n(n+1))的和为1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x²+y²等于(A)x+y。
3、设Ω:x+y+z≤1.z≥0,则三重积分I=∭ΩzdV等于(D)∫0^1∫0^(1-z)∫0^(1-x-y)zdxdydz。
4、球面x²+y²+z²=16a²与柱面x²+y²=2ax所围成的立体体积V=(C)8∫0^π/2∫0^(2acosθ)∫0^√(16a²-r²)rdzdrdθ。
注:原文章中第一题的符号“>”应该是“≥”,已进行更正。
高等数学上、下册考试试卷及答案6套[1]
高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。
六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。
10-11高数二(A卷)期未考答案1 北京信息科技大学
4分
7分 四.7 分*2=14 分
1、计算曲线积分 ∫
L
2 y d s ,其中 L 是抛物线 y = x 上点(0,0)与点(1,1)之间的弧.
2、 用格林公式计算 ∫ ( 2 x − y + 4 )d x + ( 5 y + 3 x − 6 )d y , 其中 L 为三顶点分别为
L
( 0, 0) , ( 3, 0) , (3,2)的三角形正向边界。
∫∫
D
∂ 2u ∂ 2u ( 2 + ) dxdy ∂x ∂y 2
v 证明:设 n 与 x 轴正方向夹角为 α ,则曲线的切向量与 x 轴正方向夹角为 π ---2 分 θ =α + 2
所以, v =
∂u ∂n
∂u ∂u ∂u ∂u cosα + sinα = sinθ − cosθ ∂y ∂x ∂y ∂x
北京信息科技大学 2010-2011学年第2学期 《高等数学》176学时课程期末考试试卷标准答案(A卷) 一.7 分*2=14 分 1. 已知函数 z = x 2 y + y 2 , 求全微分 dz 。
解 :dz =
∂z ∂z dx + dy LLLLL (2) ∂x ∂y
= 2 xydx + (x 2 + 2 y)dy LL (7)
(
3
a,3 a,3 a
)
7分
由于问题的实质是在曲面 xyz = a 位于第一卦限内的部分上求一点,使其到原点 的距离平方为最小,而最小距离是存在的。因此应把 a 分成三个 等的正数,即 x = y = z = 3 a ,这时它们的平方和为最小。 2.设 f ( x, y) 是连续函数,其中 a, m 为常数,且 a > 0. 证明
安徽大学10-11(1)高数A(一)、B(一)答案
一、 填空题(本题共 5 小题,每小题 2 分,共 10 分)
1 1. 2
2. y = x + e 2
π
3.
π
2
4.0
5.
2 (2 2 −,每小题 2 分,共 10 分) 6. C 7. C 8. D 9. B 10. A
+∞
+∞
2
dx x −1=t = x x −1
2
∫
+∞
1
2dt π +∞ = 2 arctan t |1 = ,收敛 2 (t + 1) 2
1
dx =π x x −1
四、综合分析题(本题共 2 小题,每小题 8 分,共 16 分) x dy 18. = 1 + ∫ [t − y (t )]dt , y (0) = 1 0 dx 方程两边求导有: 对应齐次方程为 y " + y = 0
[‰Y'•Q~ÜNf^—
19. (1) 若 a = 0 时
A = ∫ ax + b dx = ∫ b dx = b ,
0 0 1 1
则 V = π A2 。 (2) 若 a ≠ 0 时,由几何对称性仅需讨论 a > 0 情形: 设直线与 x 截距为 t ,则直线可表为 y = a ( x − t ) , ⎧a( 1 2 − t ), t < 0 ⎪ 2 1 A = ∫ a x − t dx = ⎨a[(t − 1 2 ) + 4 ], 0 ≤ t ≤ 1 0 ⎪a (t − 1 ), t > 1 2 ⎩ 再由几何对称性, t < 0 与 t > 1 情形相同, i) 当 t < 0 时: 1 1 1 1 V = π a 2 ∫ ( x − t ) 2 dx = π a 2 [(t − ) 2 + ] = π A2 + π a 2 > π A2 0 2 12 12 ii) 当 0 ≤ t ≤ 1 时,可得 2 A ≤ a ≤ 4 A , 1 1 3 4 V = π a 2 ∫ ( x − t ) 2 dx = − π (a − 3 A) 2 + π A2 ≥ π A2 。 0 6 2 3
高等数学下期末考试试卷
清华大学试卷《 高等数学A (二)》(A 卷)一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分5小题, 每小题4分, 共20分)1、设f x y x y xy x y (,)=+-+-32231,则f y '(,)32=( ) (A) 41 (B) 40 (C) 42 (D) 392、设圆域D :x 2+y 2≤1,f 是域D 上的连续函数,则答 ( )3、如果81lim1=+∞→nn n a a ,则幂级数∑∞=03n n n x a (A)当2<x 时,收敛; (B) 当8<x 时,收敛;(C) 当81>x 时,发散; (D) 当21>x 时,发散;答( )4、设Ω为球体x 2+y 2+z 2≤1,f (x ,y ,z )在Ω上连续,I =x 2yzf (x ,y 2,z 3),则I =(A) 4x 2yzf (x ,y 2z 3)d v (B) 4x 2yzf (x ,y 2,z 3)d v(C) 2x 2yzf (x ,y 2,z 3)d v (D) 0 5、设L 是圆周 x 2+y 2=a 2 (a >0)负向一周,则曲线积分--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------( )二、填空题(将正确答案填在横线上) (本大题分5小题, 每小题4分, 共20分)1、设)ln(),,(222z y x z y x f ++=,则=-)2,1,1(f d gra2、=-=+++dz z y x xyz 处全微分在)1,0,1(,22223、设L 为圆周122=+y x ,则⎰=Lds x 24、如果幂级数n n x a ∑在x = -2处条件收敛,则收敛半径为R=5、曲面32=+-xy e z z 在(1,2,0)处切平面方程为三 计算题(必须有解题过程) (本大题分7小题,共 60分) 1、(本小题8分)已知22)1()1(ln -+-=y x u ,试求:2222yux u ∂∂∂∂+2、(本小题8分)求函数223333y x y x z --+=的极值。
大学专业试卷高等数学试卷A
《高等数学》(下)试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 判断题(每小题2分,共10分)1.二元函数(),z f x y =在平面区域上的积分为二重积分。
( )2.二元函数(),z f x y =的极值点只能是使得0z zx y∂∂==∂∂的点。
( )3.二元函数z =在()0,0点连续但偏导数不存在。
( )4.闭区域上的二元连续函数一定存在最大最小值,且一定可积。
( )5.二元函数z =在()0,0点连续但偏导数不存在。
( )二.单项选择题(每小题2分,共20分)1.平面2y = ( ) A.垂直于xOz 平面 B.平行于xOy 平面 C.平行于xOz 平面 D. 平行于Oy 轴2. 二元函数(),z f x y =在某点()00,x y 连续,那么(),z f x y =在该点一定 ( )A .极限存在 B.两个偏导存在 C.可微 D.以上都不对3. 极限()(),0,0lim x y xyx y→+的结果为 ( )A.0B.∞C. 12D.不存在4.若区域D 是由1x y +≤与12x y +≥所围成,则积分()22ln Dx y d σ+⎰⎰的值( )A.大于零B. 小于零C.等于零D. 不存在5.下列绝对收敛的级数是 ( ) A.∑∞=--1n nn1n 23)1( B.∑∞=--1n 1n n )1(C.∑∞=--1n 51n n)1(D.∑∞=--1n n 21)1(6. 下列无穷级数中发散的无穷级数是 ( )A.∑∞=+1n 221n 3n B. ∑∞=+-1n n 1n )1(C. ∑∞=--3n 1n n ln )1(D. ∑∞=+1n 1n n32 7. 点(0,0,1)到平面z=1的距离为 ( ) A .0 B .1 C .2 D .38. 积分2011dx x +∞+⎰的结果为 ( )A.0B. 2π C. 2π- D.不存在9. 函数()arctan f x x =在 []0,1上,使拉格朗日中值定理成立的ξ是( )A.-D.10.设()f x 在(),a b 内满足()'0f x <,()''0f x >,则曲线()f x 在(),a b 内是( )A.单调上升且是凹的B. 单调下降且是凹的C.单调上升且是凸的D. 单调下降且是凸的三.填空题(每小题2分,共10分) 1. 设函数z x y =-,则xz∂∂=___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:__________ 大 连 理 工 大 学 学号:__________
课程名称: 高等数学A (二) 试卷: A 考试形式: 闭卷
学院(系):_______ 授课院(系):数学科学学院 考试日期:2011年 6月16 日 试卷共 6 页 _____ 级_____ 班
教师:__________
装 一、填空题 (每题6分,共30分)
1. 曲线cos t x e t =,sin t y e t =,2t z e =在点(1,0,2)处的切线方程 是___ _____ _____,法平面方程是___ _____ _____。
2. 设函数
(,)f u v 具有二阶连续偏导数, (,)z f xy x y =+,则
z
x ∂=∂___ _____,2z x y
∂∂∂=___ ________ _____。
3.积分 I=
2
1
1
y x
dx e dy --+
⎰
⎰2
11
y x
dx e
dy =⎰⎰ 。
4. 若L 为2
2
2
x y R +=,则25
22
L
ds x y
=+⎰
_____ ___ 。
5.设1,01
() 2, 1x x f x x π
-≤≤⎧=⎨<<⎩的傅里叶级数为1()sin n n S x b nx ∞
==∑,
2
()s i n ,1,2,n b f x n x d x n ππ=
=⎰
,则(1)S =____ ,(10)S π=____ 。
二、单项选择题 (每题4分,共20分) 1.设
1
n
n a
∞
=∑收敛,则下列级数必收敛的是 ( );
(A ) 1
1n
n
n a n ∞
=∑(-) ; (B )
2
1
n n a ∞
=∑;
(C ) 21
1
n n a
∞
-=∑ ; (D )
11
()n
n n a
a ∞
+=+∑ 。
2.设L 为不经过点(0,0)O 的简单光滑闭曲线,逆时针方向,则积分:22
L xdy ydx
x y -+⎰
( )
(A )恒为零;
(B )L 环绕(0,0)O 时值为零,不环绕(0,0)O 时,值为2π; (C )L 环绕(0,0)O 时值为2π,不环绕(0,0)O 时,值为零; (D )以上结论均不对。
3.设D 是以xoy 平面上的点(1,1),(-1,1),(-1,-1)为顶点的三角形域。
D 1是D 在第一象限部分,则2
(sin()sin )x D
xy e y dxdy +⎰⎰等于( );
(A )
2
1
2s i n x D e
y d x d y ⎰⎰ ; (B ) 1
2s i n ()D x y d x d y ⎰⎰;
(C ) 2
1
4
(sin()sin )x D xy e
y dxdy +⎰⎰; (D )
0。
4.设有数量场ln u =,则div(grad )u =( ) (A )2221/21()x y z ++; (B )2223/2
1
()
x y z ++; (C )2221x y z ++; (D )2222
1
()
x y z ++.
5.设曲线积分(())sin ()cos x C
f x e ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续
导数,且(0)0f =,则()f x 等于( )。
(A )2x x e e --; (B )2
x x
e e --;
(C )2x x e e -+; (D )12
x x
e e -+-。
三.(10分)计算22()I x y x y dS ∑
=+++⎰⎰,其中∑为锥面z =及平面1z =所围立体的全表面。
四、(10分)设函数)(x y y =满足微分方程x e y y y 223=+'-'',且其图形在点)1,0(处的切线与曲线
12+-=x x y 在该点的切线重合,求函数)(x y y =。
五、(10分)将函数2
()ln(32)f x x x =++展开为2x -的幂级数。
六、(10分)计算曲面积分23xzdydz zydzdx xydxdy ∑
++⎰⎰,其中∑为曲面221z x y =--
(01)z ≤≤的上侧。
七、(10分)在椭球面
222
222
1
x y z
a b c
++=(,,0)
a b c>的第一卦限部分上点
000
(,,)
P x y z处作切平面,
使此切平面与三个坐标面所围成的四面体之体积最小,求点P坐标。