辽宁省锦州市2019-2020学年八年级(上)期末数学试卷

合集下载

锦州市八年级上学期数学期末考试试卷

锦州市八年级上学期数学期末考试试卷

锦州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2020八上·大洼期末) 下面四个手机应用图标中是轴对称图形的是()A .B .C .D .2. (1分)(2017·恩施) 下列计算正确的是()A . a(a﹣1)=a2﹣aB . (a4)3=a7C . a4+a3=a7D . 2a5÷a3=a23. (1分) (2020八上·安陆期末) 若分式有意义,则的取值范围是()A .B .C .D .4. (1分)下列运算正确的是()A . a+a=2aB . a6÷a3=a2C .D . (a﹣b)2=a2﹣b25. (1分) (2019七下·靖远期中) 下列运算正确的是()A .B .C .D .6. (1分)下列运算中,正确的是()A . 3a+2b=5abB . 2a3+3a2=5a5C . 5a2﹣4a2=1D . 5a2b﹣5ba2=07. (1分)长度为9、12、15、36、39的五根木棍,从中取三根依次搭成三角形,最多可搭成直角三角形的个数是()A . 1B . 2C . 3D . 48. (1分) (2015七下·绍兴期中) 若|x+y+1|与(x﹣y﹣2)2互为相反数,则(3x﹣y)3的值为()A . 1B . 9C . ﹣9D . 279. (1分)如右图,△ABC≌△FDE,∠C=40°,∠F=110°,则∠B等于()A . 20°B . 30°C . 40°D . 150°10. (1分)(2020·武汉模拟) 如图,在平面直角坐标系中,点、点在半径为的上,为上一动点,D为x轴上一定点,且当点P从A点逆时针运动到B点时,C点的运动路径长是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2020·余姚模拟) 分解因式:x²-4y²=________。

辽宁省锦州市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷

辽宁省锦州市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷

辽宁省锦州市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2014·韶关) 在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分)下列长度的各组线段,可以组成一个三角形三边的是()A . 1,2,3B . 3,3,6C . 1,5,5D . 4,5,103. (2分)下列运算正确的是()A .B .C .D .4. (2分)下列因式分解正确的是()A . x3﹣x=x(x﹣1)B . x2﹣y2=(x﹣y)2C . ﹣4x2+9y2=(2x+3y)(2x﹣3y)D . x2+6x+9=(x+3)25. (2分) (2017八上·阜阳期末) 如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A . ①③B . ①②④C . ①③④D . ①②③④6. (2分)(2017·山西模拟) 下列运算错误的是()A . (﹣a3)2=a6B . a2+3a2=4a2C . 2a3•3a2=6a5D . 3a3÷2a=a27. (2分)如图所示,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB、AC作垂线段,则能够说明△BDE≌△CDF的理由是()A . SSSB . SASC . ASAD . AAS8. (2分)如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A . (0,0)B . (, -)C . (,-)D . (-,)9. (2分)(2018·黄梅模拟) 如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A . 76°B . 78°C . 80°D . 82°10. (2分)正方形具有而菱形不一定具有的性质是()A . 对角线相等B . 对角线互相垂直C . 对角线互相平分D . 对角线平分一组对角二、填空题 (共6题;共6分)11. (1分)已知a+b=4,ab=2,则a2b+ab2的值为________ .12. (1分)(2013·苏州) 计算:a4÷a2=________.13. (1分)(2017·玄武模拟) 若一个正多边形的每一个外角都是30°,则这个正多边形的边数为________.14. (1分)(2017·增城模拟) 如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为________.15. (1分)(2017·和平模拟) 某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工________套运动服.16. (1分) (2017八上·乌审旗期中) 如图,已知△ABC≌△DEF,∠A=65°,∠E=45°,BC=12,DE=10,则∠C=________;EF=________.三、解答题 (共9题;共70分)17. (5分)(2018·黑龙江模拟) 先化简,再求值,其中x=2sin60°-tan45°18. (5分) (2020八上·许昌期末) 计算:(1)(2)19. (5分) (2020八上·龙岩期末) 解方程:.20. (5分) (2016八上·望江期中) 如图,A,D,F,B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:EF∥CD.21. (10分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:( 1 )所画的两个四边形均是轴对称图形.( 2 )所画的两个四边形不全等.22. (10分) (2018八上·浉河期末) 如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.求:(1) DE的长;(2)若CE在△ABC的外部(如图),其它条件不变,DE的长是多少?23. (5分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.24. (10分) (2018八上·长春月考) 如图,两个正方形边长分别为a、b,(1)求阴影部分的面积;(2)如果a+b=12,ab=30,求阴影部分的面积.25. (15分) (2019七下·阜阳期中) [探究]如图,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB,CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=________°,∠ FOH=________° (2)若∠AFH+∠CHF= 100°,求∠FOH的度数.(3)当∠FOH=________;°时,AB//CD.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8、答案:略9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共70分)17-1、18-1、18-2、19-1、20-1、21-1、22-1、22-2、23-1、24、答案:略25-1、25-2、25-3、。

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。

A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。

二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。

10.若一个正数的两个平方根是x-5和x+1,则x= 。

2019-2020学年辽宁省锦州市八年级(上)期末数学试卷

2019-2020学年辽宁省锦州市八年级(上)期末数学试卷

2019-2020学年辽宁省锦州市八年级(上)期末数学试卷一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的;本大题共8个小题,每小题2分,共16分)1.(2分)下列各数为无理数的是()A.﹣B.﹣1.5C.D.π2.(2分)估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间3.(2分)下列各组数不能作为直角三角形三边长的是()A.7,24,25B.8,15,17C.6,8,10D.4,5,64.(2分)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数5.(2分)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠FDC=∠CC.∠FDC=∠A D.∠C+∠ABC=180°6.(2分)下列命题,其中为真命题的是()①经过直线外一点,有且只有一条直线与已知直线平行;②同位角相等;③过一点有且只有一条直线与已知直线垂直;④对顶角相等.A.①②B.①③④C.①④D.②③④7.(2分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.308.(2分)实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.二、填空题(本大题共8个小题,每小题2分,共16分)9.(2分)﹣的立方根为.10.(2分)如果电影院的6排3号座位用(6,3)表示,那么该影院的7排5号座位可以表示为.11.(2分)已知点A(1,y1)和B(2,y2)在函数y=2x+3的图象上,则y1与y2的大小关系是.12.(2分)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机20016.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).13.(2分)已知方程组的解为,则一次函数y=3x与y=﹣2a+b图象的交点坐标是.14.(2分)某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物的利润率是11%,两种货物共获利315元,如果设该公司购进这两种货物所用的费用分别为x元,y元,则列出的方程组是.15.(2分)如图,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,C是x轴上一动点,连接BC,将△ABC沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为.16.(2分)如图,已知直线l:y=x,点A1(2,0),过点A1作x轴的垂线交直线l于点B1,以A1B1为边,向右侧作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边,向右侧作正方形A2B2C2A3,延长A3C2交直线l于点B3;以A3B3为边,向右侧作正方形A3B3C3A4,延长A4C3交直线l于点B4;…;按照这个规律继续作下去,点B n的横坐标为.(结果用含正整数n的代数式表示)三、解答题(本大题共2个题,17题8分,18题6分,共14分)17.(8分)计算题(1)+﹣+;(2)(2+)(2﹣).18.(6分)用适当方法解方程组:四、解答题(本大题共3个题,19,20题各6分,21题8分,共20分)19.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);(2)将△ABC的三个顶点的横、纵坐标都乘以﹣1,分别得到对应点A2,B2,C2,请画出△A2B2C2,并说明△A1B1C1和△A2B2C2是否是轴对称图形,如果是,那么它们的对称轴是什么?如果不是,请说明理由.20.(6分)运动会中裁判员使用的某品牌遮阳伞如图1所示,图2是其剖面图,若AG平分∠BAC与∠EDF,AB∥ED,求证:AC∥DF.请将横线上的证明过程和依据的定理补充完整.证明:∵AB∥DE,∴∠=∠()∵AG平分∠BAC,AG平分∠EDF(已知)∴∠DAC=∠DAB,∠GDF=∠GDE().∴∠DAC=∠GDF().∴AC∥DF().21.(8分)某学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制作了不完整的统计图表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数615a129学生借阅图书的次数扇形统计图请你根据统计图表中的信息,解答下列问题:(1)a=,b=;(2)该样本数据的中位数是次,众数是次;(3)请计算扇形统计图中“3次”所对应的扇形圆心角的度数;(4)若该校共有2400名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.五、解答题(本大题共2个题,每题8分,共16分)22.(8分)某大学组织“大手拉小手,义卖献爱心”活动,该校美术社团计划购买黑、白两种颜色的文化衫进行手绘创作后出售,并将所获利润全部捐给山区困难孩子.已知美术社团从批发市场花4800元购买了黑、白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表所示:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答)(2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润.23.(8分)某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.优惠期间,设某游客(或一个家庭)采摘草莓的重量为x(kg),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.(1)分别求y1,y2与x之间的函数关系式;(2)求点A的坐标,并解释坐标的实际意义;(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)六、(本大题共2个题,每题9分,共18分)24.(9分)如图,在平面直角坐标系中,函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,与函数y=x+b 的图象交于点C(﹣2,m).(1)求m和b的值;(2)函数y=x+b的图象与x轴交于点D,点E从点D出发沿DA方向,以每秒2个单位长度匀速运动到点A(到A停止运动).设点E的运动时间为t秒.①当△ACE的面积为12时,求t的值;②在点E运动过程中,是否存在t的值,使△ACE为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.25.(9分)学习第七章平行线的证明时,数学老师布置了这样一道作业题:如图1,在△ABC中,∠BAC=80°,在CB的延长线上取一点D,使∠ADB=∠ABC,作∠ACB的平分线交AD于点E,求∠CED的度数.善于归纳总结的小聪发现:借助平行线的性质可以“转化角的位置,不改变角的大小”.于是小聪得到的解题思路如下:过点B作BF∥AD(如图2),交CE于点F,将求∠CED的度数转化为求∠BFC的度数问题,再结合已知条件和相关的定理,证出BF是∠ABC的平分线,进而求出∠BFC的度数.(1)请按照上述小聪的解题思路,写出完整的解答过程;(2)参考小聪思考问题的方法,解决下面问题:如图3,在△ABC中,D是AB延长线上的一点,过点D作DE∥BC,∠ACB和∠ADE平分线交于点G,求证:∠G=∠A.2019-2020学年辽宁省锦州市八年级(上)期末数学试卷参考答案一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的;本大题共8个小题,每小题2分,共16分)1.D;2.B;3.D;4.D;5.B;6.C;7.C;8.C;二、填空题(本大题共8个小题,每小题2分,共16分)9.﹣;10.(7,5);11.y1<y2;12.乙;13.(,2);14.;15.(﹣6,0)或(,0);16.;三、解答题(本大题共2个题,17题8分,18题6分,共14分)17.;18.;四、解答题(本大题共3个题,19,20题各6分,21题8分,共20分)19.5;﹣3;20.DAB;GDE;两直线平行,同位角相等;角平分线定义;等量代换;同位角相等,两直线平行;21.18;20;2;2;五、解答题(本大题共2个题,每题8分,共16分)22.;23.;六、(本大题共2个题,每题9分,共18分)24.;25.;。

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P

M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111

八年级上册数学期末试卷(含答案)

八年级上册数学期末试卷(含答案)

八年级上册数学期末试卷(含答案)题目一一辆汽车从甲地驶向乙地,每小时行驶60公里。

另一辆汽车从乙地往甲地驶来,每小时行驶80公里。

两车相距480公里时,开始同时驶向彼此。

问他们相遇需要多长时间?答案:要计算相遇的时间,我们可以找到两辆车每小时的相对速度,然后用总距离除以相对速度来计算时间。

两辆车的相对速度是60公里/小时 + 80公里/小时 = 140公里/小时。

所以,相遇需要的时间是480公里 ÷ 140公里/小时 = 3.43小时。

:要计算相遇的时间,我们可以找到两辆车每小时的相对速度,然后用总距离除以相对速度来计算时间。

两辆车的相对速度是60公里/小时 + 80公里/小时 = 140公里/小时。

所以,相遇需要的时间是480公里 ÷ 140公里/小时 = 3.43小时。

题目二小明有一批铅笔,小明将这些铅笔按每盒装12支进行包装,结果剩余2支铅笔。

如果按每盒装10支包装,会剩余8支铅笔。

问小明有多少支铅笔?答案:设小明有x支铅笔。

根据题目的描述,我们可以列出以下方程::设小明有x支铅笔。

根据题目的描述,我们可以列出以下方程:- x ≡ 2 (mod 12)- x ≡ 8 (mod 10)解这个方程组,可以用中国剩余定理。

将方程组转换为:- x ≡ 2 (mod 6)- x ≡ 3 (mod 10)根据中国剩余定理,我们可以得到:- x ≡ 17 (mod 30)所以小明有17支铅笔。

以上是八年级上册数学期末试卷的一部分题目和答案。

更多题目请参考试卷。

辽宁省锦州市2020年八年级上学期数学期末考试试卷(I)卷

辽宁省锦州市2020年八年级上学期数学期末考试试卷(I)卷

辽宁省锦州市2020年八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·鱼台期末) 若分式有意义,则x的取值范围是()A . x≠3B . x=3C . x<3D . x>32. (2分) (2018八上·焦作期末) 小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用表示,左下角方子的位置用表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是A .B .C .D .3. (2分)(2017·临高模拟) (﹣am)5•an=()A . ﹣a5+mB . a5+mC . a5m+nD . ﹣a5m+n4. (2分)(2019·河南模拟) 如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N为圆心,以大于 MN的长为半径作弧,两弧相交于点O;③连接AP,交BC于点E.若CE=3,BE=5,则AC的长为()A . 4B . 5C . 6D . 75. (2分) (2020八下·兴城期末) 如图,在矩形中,点在边上,于,若,,则线段的长是()A . 5B . 4C .D .6. (2分)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A .B .C .D .7. (2分)(2019·海港模拟) 把一个数写成ax10n(1≤a<10,n为整数)的形式为3.57×10-5 ,则原数为()A . 0.0000357B . 0.000357C . 357000D . 35700008. (2分)下列各组图形有可能不相似的是()A . 各有一个角是50°的两个等腰三角形B . 各有一个角是100°的两个等腰三角形C . 各有一个角是50°的两个直角三角形D . 两个等腰直角三角形9. (2分)(2012·南通) 如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A . 360°B . 250°C . 180°D . 140°10. (2分)①对角线互相垂直且相等的平行四边形是正方形;②平行四边形、矩形、等边三角形、正方形既是中心对称图形,也是轴对称图形;③旋转和平移都不改变图形的形状和大小;④底角是45°的等腰梯形,高是h,则腰长是h;⑤一组对边平行,另一组对边相等的四边形是平行四边形.以上正确的命题是()A . ①②③④B . ①②④C . ①②③D . ①③④二、填空题 (共8题;共8分)11. (1分)(2018·崇仁模拟) 分解因式:x2y-y=________.12. (1分)将a=(﹣99)0 , b=(﹣0.1)﹣1 ,,这三个数从小到大的顺序排为________13. (1分) (2018八下·上蔡期中) 化简:的结果是________.14. (1分) (2020九上·台州月考) 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,AE=AB,连接DE,∠E=∠C,若AD=2DE,则S△AED:S△ADB的值为________.15. (1分) (2020八上·越秀期末) 如图,是等边三角形,,点、分别为边、上的动点,当的周长最小时,的度数是________.16. (1分) (2019八上·中山期中) 已知a2+b2=13,(a﹣b)2=1,则(a+b)2=________.17. (1分) (2020七上·遂宁期末) 已知,,则的值为________.18. (1分)(2020·南宁模拟) 如图,在△ABC中,AB=5,AC=4,若进行以下操作,边BC上从左到右依次取点D1 , D2 , D3 ,D4.…;过点D1作AB,AC的平行线分别交AC,AB于点E1 , F1;过点D2作AB,AC的平行线分别交AC,AB于点E2 , F2;过点D3作AB,AC的平行线分别交AC,AB于点E3 ,F3…,则4(D1E1+D2E2+…+D2020E2020)+5(D1F1+D2F2+…+D2020F2020)=________。

辽宁省锦州市2019届数学八上期末学业水平测试试题

辽宁省锦州市2019届数学八上期末学业水平测试试题

辽宁省锦州市2019届数学八上期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.要使分式52x x +有意义,则x 的取值满足的条件是( ) A.2x =- B.2x ≠- C.0x = D.0x ≠ 2.若关于x 的方程223ax a x =-的解为1x =,则a 等于( ) A .12- B .2 C .12 D .-23.数据0.000063用科学记数法表示应为( )A .6.3×10-5B .0.63×10-4C .6.3×10-4D .63×10-54.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A .M N =B .M N >C .M N <D .M 与N 的大小由x 的取值而定 5.下列计算正确的是( )A.a•a 2=a 2B.(x 3)2=x 5C.(2a)2=4a 2D.(x+1)2=x 2+1 6.下列多项式中,能用提公因式法因式分解的是( )A. B. C. D. 7.如图,边长为24的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连结MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连结HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12B .6C .3D .18.如图,在平行四边形ABCD 中,130A ∠=︒,在AD 上取DE DC =,则ECB ∠的度数是( )A .60︒B .65︒C .70︒D .75︒9.下列命题:①若|a|>|b|,则a >b ;②若a+b =0,则|a|≠|b|;③等边三角形的三个内角都相等.④线段垂直平分线上的点到线段两个端点的距离相等.以上命题的逆命题是真命题的有( )A .0 个B .1 个C .2 个D .3 个10.如图,在△ABC 中,AC ⊥BC,AE 为∠BAC 的平分线,DE ⊥AB,AB=7cm,AC=3cm ,则BD 等于A.1cmB.2cmC.3cmD.4cm11.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A.75B.100C.120D.12512.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠BDC=∠BAC ;④∠DAF=∠CBD.其中正确的结论有( )A.4个B.3个C.2个D.1个 13.一个多边形的内角和是7200,则这个多边形的边数是( ) A .2B .4C .6D .8 14.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形15.将一副直角三角板按如图所示方式放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A.45°B.65°C.70°D.75°二、填空题 16.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设学生骑车速度为x 千米/时,则根据题意列出的方程为_____.17.计算:2(3)(39)a a a -++=__________.18.已知A(0,0),B(2,0),C(3,3),如果在平面直角坐标系中存在一点D ,使得△ABD 与△ABC 全等,那么点D 的坐标为______.19.ABC ∆的高3AD =,且6BD =,2CD =,则ABC ∆的面积是_____.20.在平面直角坐标系xOy 中,点()2,5M -关于x 轴对称的点的坐标是________.三、解答题21.解分式方程:2312142x x x -+=--- 22.分解因式(1)a 3b ﹣9ab(2)4ab 2﹣4ab+a23.小明遇到这样一个问题,如图,△ABC 中,∠BAC=120°,AD ⊥BC 于D ,且AB+BD=DC.求∠C 的度数。

辽宁省锦州市2020年八年级上学期数学期末考试试卷(II)卷

辽宁省锦州市2020年八年级上学期数学期末考试试卷(II)卷

辽宁省锦州市2020年八年级上学期数学期末考试试卷(II)卷辽宁省锦州市2020年八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个2. (1分) (2017九下·简阳期中) 下列运算正确的是()A . (ab)5=ab5B . a8÷a2=a6C . (a2)3=a5D . (a﹣b)2=a2﹣b23. (1分)等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A . 4cm,10cmB . 7cm,7cmC . 4cm,10cm或7cm,7cmD . 无法确定4. (1分)(2019九上·偃师期中) 如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=7,MN =3,则AC的长为()A . 14B . 13C . 12D . 115. (1分)分式的值为0时,x的值是()A . 0B . 1C . -1D . -26. (1分) (2019八上·江阴期中) 如图,△ABC中,AB=AC,DE 垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A . 35°B . 40°C . 45°D . 60°7. (1分)(2017·昆山模拟) 下列计算正确的是()A . =﹣4B . (a2)3=a5C . a?a3=a4D . 2a﹣a=28. (1分)如图,已知∠A=33°,∠B=75°,点C在直线AD上,则∠BCD为()A . 147°B . 108°C . 105°D . 以上答案都不对9. (1分)下来运算中正确的是()A .B . ()2=C .D .10. (1分)若分式的值为负,则x的取值是()A . x<3且x≠0B . x>3C . x<3D . x>-3且x≠0二、填空题 (共5题;共5分)11. (1分) (2018七下·乐清期末) 如图,放置在水平操场上的篮球架的横梁EF始终平行于AB,EF与上拉杆CF形成的∠F=150°,主柱AD垂直于地面,通过调整CF和后拉杆BC的位置来调整篮筐的高度。

2020-2021学年辽宁省锦州市八年级(上)期末数学试卷 (含解析)

2020-2021学年辽宁省锦州市八年级(上)期末数学试卷 (含解析)

2020-2021学年辽宁省锦州市八年级第一学期期末数学试卷一、选择题(共8小题).1.下列各数为无理数的是()A.﹣1B.0C.D.2.下列命题为假命题的是()A.对顶角相等B.同位角相等C.互补的两个角不一定相等D.两点之间,线段最短3.某书店与一所山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量如下(单位:本):300,200,200,300,300,500,则这组数据的众数、中位数分别是()A.300,150B.300,200C.300,300D.600,3004.下面四个数与最接近的是()A.2B.2.5C.2.6D.35.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为()A.36°B.54°C.72°D.73°6.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm7.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.8.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸二、填空题(共8小题).9.的平方根是.10.若点P(﹣1,y1)和点Q(﹣2,y2)是一次函数y=﹣x+b的图象上的两点,则y1,y2的大小关系是:y1y2(填“>,<或=”).11.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),目标B的位置为(4,210°),则目标C的位置为.12.如表记录了甲、乙、丙、丁四名同学最近五次数学考试成绩的平均分与方差:甲乙丙丁平均分93969693方差(s2) 5.1 5.1 1.2 1.2要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择.13.李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,则可列方程组为.15.已知直线y=x﹣2与y=mx﹣n相交于点M(3,b),则关于x,y的二元一次方程组的解为.16.如图,在平面直角坐标系中,边长为1的正方形A1B1C1D1(记为第1个正方形)的顶点A1与原点重合,点B1在y轴上,点D1在x轴上,点C1在第一象限内,以C1为顶点作等边△C1A2B2,使得点A2落在x轴上,A2B2⊥x轴,再以A2B2为边向右侧作正方形A2B2C2D2(记为第2个正方形),点D2在x轴上,以C2为顶点作等边△C2A3B3,使得点A3落在x轴上,A3B3⊥x轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为.三、计算题(本大题共15分)17.(1)计算:;(2)计算:(+1)2+(+2)(﹣2);(3)用适当的方法解方程组:.四、解答题(本大题共3个题,第18,19题各6分,第20题7分,共19分)18.争创全国文明城市,从我做起.某校在八年级开设了文明礼仪校本课程,为了解学生的学习情况,该校举办了八年级全体学生参加的《创文明城,做文明人》知识竞赛,从中随机抽取了30名学生的成绩(单位:分),整理数据后得到下列不完整的频数分布表和频数直方图:成绩/分人数(频数)78≤x<58282≤x<a8686≤x<129090≤x<b9494≤x<298请根据图表提供的信息回答下列问题:(1)频数分布表中a=,b=;(2)补全频数直方图;(3)若成绩不低于90分为优秀,估计该校八年级600名学生中达到优秀等级的人数.19.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.20.请将下列题目的证明过程补充完整:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF.∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°.∴FG∥().∴∠3=∠().又∵∠1=∠2,∴=∠2+∠4,即∠=∠EFC.∴DE∥BC().五、解答题(本大题共2个题,每题8分,共16分)21.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?22.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.六、解答题(本大题共2个题,每题9分,共18分)150-023.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.24.已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.参考答案一、选择题(共8小题).1.下列各数为无理数的是()A.﹣1B.0C.D.解:A、﹣1是有理数,故本选项不符合题意;B、0是有理数,故本选项不符合题意;C、是有理数,故本选项不符合题意;D、是无理数,故本选项符合题意.故选:D.2.下列命题为假命题的是()A.对顶角相等B.同位角相等C.互补的两个角不一定相等D.两点之间,线段最短解:A、对顶角相等,是真命题;B、∵两直线平行,同位角相等,∴本选项说法是假命题;C、互补的两个角不一定相等,是真命题;D、两点之间,线段最短,是真命题;故选:B.3.某书店与一所山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量如下(单位:本):300,200,200,300,300,500,则这组数据的众数、中位数分别是()A.300,150B.300,200C.300,300D.600,300解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是=300;故选:C.4.下面四个数与最接近的是()A.2B.2.5C.2.6D.3解:∵2.42=5.76,2.52=6.25,∴2.42<6<2.52,∴,∴给出的四个数中,与最接近的是2.5.故选:B.5.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为()A.36°B.54°C.72°D.73°解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.6.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.7.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k<0,∴﹣k>0,∴一次函数y=﹣kx+k的图象经过一、三、四象限;8.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.二、填空题(本大题共8个小题,每小题2分,共16分)9.的平方根是.解:的平方根是,故答案为:±.10.若点P(﹣1,y1)和点Q(﹣2,y2)是一次函数y=﹣x+b的图象上的两点,则y1,y2的大小关系是:y1<y2(填“>,<或=”).解:∵k=﹣1<0,∴y随x的增大而减小,又∵﹣1>﹣2,∴y1<y2.故答案为:<.11.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),目标B的位置为(4,210°),则目标C的位置为(3,150°).解:由题意,点C的位置为(3,150°).故答案为(3,150°).12.如表记录了甲、乙、丙、丁四名同学最近五次数学考试成绩的平均分与方差:甲乙丙丁平均分93969693方差(s2) 5.1 5.1 1.2 1.2要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.解:∵1.2<5.1,∴丙和丁的最近几次数学考试成绩的方差最小,发挥稳定,∵96>93,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故答案为:丙.13.李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.14.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,则可列方程组为.解:依题意得:.故答案为:.15.已知直线y=x﹣2与y=mx﹣n相交于点M(3,b),则关于x,y的二元一次方程组的解为.解:∵直线y=x﹣2经过点M(3,b),∴b=3﹣2,解得b=1,∴M(3,1),∴关于x,y的二元一次方程组的解为,故答案为.16.如图,在平面直角坐标系中,边长为1的正方形A1B1C1D1(记为第1个正方形)的顶点A1与原点重合,点B1在y轴上,点D1在x轴上,点C1在第一象限内,以C1为顶点作等边△C1A2B2,使得点A2落在x轴上,A2B2⊥x轴,再以A2B2为边向右侧作正方形A2B2C2D2(记为第2个正方形),点D2在x轴上,以C2为顶点作等边△C2A3B3,使得点A3落在x轴上,A3B3⊥x轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为22020.解:∵正方形A1B1C1D1(称为第1个正方形)的边长为1,∴C1D1=1,∵C1A2B2为等边三角形,∵∠B2A2C1=60°,∵A2B2⊥x轴,∴∠C1A2D1=30°,∴A2B2=2C1D1=2=22﹣1,同理得A3B3=4=23﹣1,A4B4=8=24﹣1,…由上可知第n个正方形的边长为:2n﹣1,∴第2021个正方形的边长为:22021﹣1=22020.故答案为:22020.三、计算题(本大题共15分)17.(1)计算:;(2)计算:(+1)2+(+2)(﹣2);(3)用适当的方法解方程组:.解:(1)原式=2﹣+=;(2)原式=2+2+1+3﹣4=2+2;(3)①×3+②得3x+4y=9+5,解得x=2,把x=2代入①得2﹣y=3,解得y=﹣1,所以方程组的解为.四、解答题(本大题共3个题,第18,19题各6分,第20题7分,共19分)18.争创全国文明城市,从我做起.某校在八年级开设了文明礼仪校本课程,为了解学生的学习情况,该校举办了八年级全体学生参加的《创文明城,做文明人》知识竞赛,从中随机抽取了30名学生的成绩(单位:分),整理数据后得到下列不完整的频数分布表和频数直方图:成绩/分人数(频数)78≤x<58282≤x<a8686≤x<129090≤x<b9494≤x<298请根据图表提供的信息回答下列问题:(1)频数分布表中a=5,b=6;(2)补全频数直方图;(3)若成绩不低于90分为优秀,估计该校八年级600名学生中达到优秀等级的人数.解:(1)由频数分布直方图知b=6,则a=30﹣(5+12+6+2)=5,故答案为:5,6;(2)补全频数分布直方图如下:(3)600×=160(人),答:该校八年级600名学生中达到优秀等级的人数约为160人.19.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.解:(1)点A(2,4),如图所示:(2)∵函数y=mx的图象经过点A,∴4=2m,∴m=2;(3)由(2)可得经过点A的函数为y=2x,∵一次函数y=kx+b的图象由函数y=2x经过平移,且经过点B,∴,解得,∴这个一次函数的表达式为y=2x+7,依题意画出图象如图所示;20.请将下列题目的证明过程补充完整:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF.∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°.∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠DEF=∠EFC.∴DE∥BC(内错角相等,两直线平行).【解答】证明:连接EF.∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°.∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠DEF=∠EFC.∴DE∥BC(内错角相等,两直线平行).故答案为:HE,同位角相等,两直线平行;4,两直线平行,内错角相等;∠1+∠3,DEF,内错角相等,两直线平行.五、解答题(本大题共2个题,每题8分,共16分)21.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是甲工程队修建的天数,,未知数q表示的是乙工程队修建的天数,;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?解:(1)方程组中未知数p表示的是:甲工程队修建的天数,未知数q表示的是:乙工程队修建的天数,列出正确的方程组应该是:.故答案为:甲工程队修建的天数,乙工程队修建的天数,;(2)设甲工程队修建了xm村路,乙工程队修建了ym村路,根据题意,得,解得,所以甲工程队修建的天数==12(天),乙工程队修建的天数==6(天).答:甲、乙两个工程队分别修建了12天、6天.22.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是300km,小明爸爸驾车返回时平均速度是60km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A 到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).六、解答题(本大题共2个题,每题9分,共18分)150-023.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.【解答】(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).24.已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.解:(1)①如图1,连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,∵一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,∴点A(1,0),点B(0,3),∵点D与点C关于y轴对称,点C(3,0),∴点D(﹣3,0),∵EG⊥OC,EH⊥OB,∴OE平分∠BOC,又∵OB=OC=3,∴OE=BE=EC,∴点E(,);②△AOB≌△FOD,理由如下:设直线DE解析式为y=kx+b,由题意可得:,解得:,∴直线DE解析式为y=x+1,∵点F是直线DE与y轴的交点,∴F(0,1),∴OF=OA=1,又∵OB=OD=3,∠AOB=∠FOD=90°,∴△AOB≌△FOD(SAS);(3)∵点G与点B关于x轴对称,点B(0,3),∴点G(0,﹣3),∵点G(0,﹣3),点C(3,0),∴直线GC的解析式为y=x﹣3,∵点B(0,3),点A(1,0),∴AB2=1+9=10,设点P(a,a﹣3),若AB=AP时,则10=(a﹣1)2+(a﹣3﹣0)2,∴a=0或4,∴点P(0,﹣3)或(4,1);若AB=PB时,则10=(a﹣0)2+(a﹣3﹣3)2,∴a2﹣6a+13=0,∵△<0,∴方程无解,若AP=BP时,则(a﹣1)2+(a﹣3﹣0)2=(a﹣0)2+(a﹣3﹣3)2,∴a=,∴点P(,),综上所述:点P(0,﹣3)或(4,1)或(,).。

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(4)

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(4)

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(4)一、选择题1.若分式31x x -+的值等于0,则x 的取值是( ). A .1x=-B .-1x ≠C .3x =D .3x ≠ 2.能使分式4723x x +-值为整数的整数x 有( )个. A .1B .2C .3D .4 3.若221,13a b a b -=+=,则ab 等于( )A .6B .7C .-6D .-74.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买图书平均每本书的价格是( )A .20元B .18元C .15元D .10元5.多项式241a +再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有( )A .2种B .3种C .4种D .多于4种 6.下列计算正确的是()A.(a 3)2=a 5B.(a-b)2=a 2-b 2C.a ・a 3=a 4D.(-3a)3=-9a 3 7.如图,A 、B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且△ABC 是等腰三角形,则符合条件是点C 共有( )个.A .8B .9C .10D .11 8.如图,已知△ABC 的面积为16,BP 是∠ABC 的平分线,且AP ⊥BP 于点P ,则△BPC 的面积是( )A.10B.8C.6D.49.如图,点A ,C ,D ,E 在Rt △MON 的边上,∠MON=90°,AE ⊥AB 且AE=AB ,BC ⊥CD ,BH ⊥ON 于点H ,DF ⊥ON 于点F ,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为( )A .30B .50C .66D .8010.如图,在△ABC 中,∠ACB =45°,AD ⊥BC 于点D ,点E 为AD 上一点,连接CE ,CE =AB ,若∠ACE =20°,则∠B 的度数为( )A .60°B .65°C .70°D .75°11.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于( )A .B .C .D .12.平面直角坐标系中,点P(﹣2,3)关于x 轴对称的点的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,3)13.小芳有两根长度为6cm 和9cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条.A .2cmB .3cmC .12cmD .15cm14.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,若∠BOC =70°,则∠COE 的度数是( )A .110°B .120°C .135°D .145°15.在下列4种正多边形的瓷砖图案中不能铺满地面的是( )A. B. C. D.二、填空题16.若关于x 的分式方程x 2322m m x x ++=--的解为正实数,则实数m 的取值范围是____. 17.分解因式:3a 2-3__.18.如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是______(只需添加一个条件即可)19.一个等腰三角形的周长为20,一条边的长为6,则其两腰之和为__________.20.如图,在平面直角坐标系中,11POA ∆,212P A A ∆,323P A A ∆,…都是等腰直角三角形,其直角顶点()1233,3,,,P P P …均在直线143y x =-+上.设11POA ∆,212P A A ∆,323P A A ∆,…的面积分别为123,,S S S ,…,依据图形所反映的规律,2018S =____________.三、解答题21.小明要把一篇社会调查报告录入电脑,当他以100字/分的速度录入文字时,经240分钟能完成录入,设他录入文字的速度为v 字/分时,完成录入的时间为t 分。

锦州市2020年八年级上学期数学期末考试试卷(I)卷

锦州市2020年八年级上学期数学期末考试试卷(I)卷

锦州市2020年八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图形中是中心对称图形的是A .B .C .D .2. (2分) (2019七下·交城期中) 的平方根是()A .B .C .D .3. (2分)如图,△AOC≌△BOD,∠A和∠B,∠C和∠D是对应角,下列几组边中是对应边的是()A . AC与BDB . AO与ODC . OC与OBD . OC与BD4. (2分)下列各数是无理数的是()A .B . -C . πD . -15. (2分) (2019八下·博乐月考) 已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是()A . △ABC是直角三角形,且AC为斜边B . △ABC是直角三角形,且∠ABC=90°C . △ABC的面积为60D . △ABC是直角三角形,且∠A=60°6. (2分) (2018八上·江海期末) 在平面直角坐标系中,点(4,﹣3)关于x轴对称的点的坐标是()A . (4,3)B . (-4,3)C . (3,-4)D . (-3,-4)7. (2分) (2019八下·丹江口期末) 已知函数的图象经过原点,则的值为()A .B .C .D .8. (2分)(2020·鹿城模拟) 小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为,,, < < ,则小亮同学骑车上学时,离家的路程s与所用时间t 的函数关系图象可能是()A .B .C .D .二、填空题 (共10题;共10分)9. (1分) (2020八下·永春月考) 一次函数经过第一、二、三象限,则的取值范围是________.10. (1分) (2017七下·仙游期中) 在平面直角坐标系中,点P(-1,2)向右平移3个单位长度得到的点的坐标是________ .11. (1分) |﹣0.7|的相反数是________.12. (1分) (2018八上·常州期中) 如图,△ABC中,∠A=∠ABC,AC=6,BD⊥AC于点D,E为BC的中点,连接DE.则DE=________.13. (1分) (2016八下·万州期末) 如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是________.14. (1分)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)________15. (1分) (2017八下·丰台期中) 在平面直角坐标系中,点在第四象限,则实数的取值范围是________.16. (1分)将函数y=﹣6x的图象l1向上平移5个单位得直线l2 ,则直线l2与坐标轴围成的三角形面积为________.17. (1分) (2019八下·大石桥期中) 如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为________.18. (1分) (2016八上·罗田期中) 如图,在直角平面坐标系中,AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),以AB为直角边在AB边的上方作等腰直角△ABE,则点E的坐标是________.三、解答题 (共9题;共74分)19. (10分) (2019七上·凤山期末) 计算(1) -12-(1-0.5)× ×[3-(-3)2](2)(-2ab+3a)-2(2a-b)+2ab20. (10分) (2019七下·梁子湖期中) 解方程:(1);(2) .21. (5分) (2018八上·云安期中) 如图,己知∠A=∠D,CO=B0,求证:△AOC≌△DOB.22. (10分)(2019·滨城模拟) (本题满分13分)某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2) B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?23. (5分) (2018八上·淮南期末) 如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.24. (7分) (2016八下·和平期中) 如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x 轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2﹣18x+80=0的两根,将边BC折叠,使点B落在边OA上的点D处.(1)求线段OA、OC的长;(2)求直线CE与x轴交点P的坐标及折痕CE的长;(3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.25. (10分) (2019八下·武侯期末) 如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.(1)求证:∠DEF=∠ABF;(2)求证:F为AD的中点;(3)若AB=8,AC=10,且EC⊥BC,求EF的长.26. (15分)类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P是斜坐标系xOy中的任意一点,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,如果M、N在x轴、y轴上分别对应的实数是a、b,这时点P的坐标为(a,b).(1)如图2,在斜坐标系xOy中,画出点A(﹣2,3);(2)如图3,在斜坐标系xOy中,已知点B(5,0)、C(0,4),且P(x,y)是线段CB上的任意一点,则y 与x之间的等量关系式为;(3)若(2)中的点P在线段CB的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.27. (2分)如图,菱形ABCD中,对角线AC , BD相交于点O ,且AC=6cm,BD=8cm,动点P , Q分别从点B , D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP , AQ , PQ .设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=________cm,AB与CD之间的距离为________ cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共74分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、25-3、27-1、27-2、27-3、。

辽宁省锦州市2020年八年级上学期数学期末考试试卷C卷

辽宁省锦州市2020年八年级上学期数学期末考试试卷C卷

辽宁省锦州市2020年八年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019七下·宁都期中) 如图,小手盖住的点的坐标可能是().A . (﹣3,4);B . (5,2)C . (﹣3,﹣6);D . (6,﹣4).2. (1分)(2019·长春模拟) 不等式3x≥﹣6的解集在数轴上表示为()A .B .C .D .3. (1分)(2020·北京模拟) 下列图形中,为轴对称图形的是A .B .C .D .4. (1分) (2019八上·响水期末) 若分式有意义,则实数的取值范围是()A . =3B . =0C . ≠3D . ≠05. (1分)(2018·齐齐哈尔) 一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A . 10°B . 15°C . 18°D . 30°6. (1分)下列各组几何图形中结论不正确的是()A . 有一边和一个锐角相等的两个直角三角形全等B . 斜边和一个锐角对应相等的两个直角三角形全等C . 两条直角边对应相等的两个直角三角形全等D . 斜边和直角边对应相等的两个直角三角形全等7. (1分) (2017七下·东城期末) 如图,为估计池塘岸边A,B的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离可能是()A . 30米B . 25米C . 20米D . 5米8. (1分)如图:有一钢架AOB,∠AOB=10°,为了加固这一钢架,现有长度与OC相等的钢管若干根,焊接在钢架AOB的内部,则最多用去钢管()根.A . 6B . 7C . 8D . 99. (1分)小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了()A . 32元B . 36元C . 38元D . 44元10. (1分)已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP以点A 为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+,其中正确的结论有()A . ①②④B . ①③④C . ①②③D . ②③④二、填空题 (共8题;共8分)11. (1分)用不等式表示“x与5的差不小于4”:________.12. (1分)命题“不是对顶角的两个角不相等”的逆命题是________.13. (1分)如图,AB=AC , BD=CD ,∠B=20° ,则∠C=________°.14. (1分)(2017·鞍山模拟) 点P(m﹣1,2m+1)在第一象限,则m的取值范围是________.15. (1分) (2019八上·丹徒月考) 若直角三角形斜边上的中线是6cm,则它的斜边是________ cm.16. (1分) (2019七上·大庆期末) 等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为________cm.17. (1分) (2017·广州模拟) 若三角形三个内角的度数之比为2:3:5,则这个三角形一定是________三角形.18. (1分) (2017八下·新野期末) 已知直线y1=x,y2= x+1,y3=﹣ x+5的图象如图所示,若无论x 取何值,y总取y1 , y2 , y3中的最小值,则y的最大值为________.三、解答题 (共7题;共13分)19. (1分) (2017七下·巢湖期末) 解不等式组:,并在数轴上表示不等式组的解集.20. (1分) (2017八上·伊宁期中) 如图所示,107国道OA和320国道OB在某巿相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹,写出结论)21. (1分) (2016八上·宁海月考) 尺规作图画线段AB的中垂线CD(E为垂足)时,为了方便起见,通常把四段弧的半径取成相等;其实不必如此,如图,若能确保弧①、②的半径相等(即AC=BC),再确保弧③、④的半径相等(即AD=BD),直线CD同样是线段AB的中垂线.请你给出证明.22. (2分) (2018七上·广东期中) 数轴上的点A、B、C、D、E分别对应的数是:+5,﹣1.5,,﹣4,0.(1)画数轴,并在数轴上将上述的点表示出来,并用“<”连接;(2)问A、B两点间是多少个单位长度?23. (2分) (2020七上·武昌期末) 公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班超过40人,不足50人,经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?24. (3分) (2020八上·牡丹期末) 小明和爸爸从家步行去公园,爸爸先出发,一直匀速前进,小明的出发,家到公园的距离为2500m,如图是小明和爸爸所走路程s(m)与步行时间t(min)的函数图象。

2019年锦州市八年级数学上期末一模试题含答案

2019年锦州市八年级数学上期末一模试题含答案
17.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法
解析:3(a+3b)(a﹣3b).
【解析】
【分析】
先提取公因式3,然后再利用平方差公式进一步分解因式.
15.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.
16.三角形三边长分别为3,1﹣2a,8,则a的取值范围是_______.
17.因式分解:3a2﹣27b2=_____.
18.正六边形的每个内角等于______________°.
19.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
【详解】
∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,
则2∠A+(180°-∠2)+(180°-∠1)=360°,
∴可得2∠A=∠1+∠2.
故选:B
【点睛】
本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.
12.A
解析:A
【解析】
【分析】
将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答
【详解】
设第三边长度为a,根据三角形三边关系
解得 .
只有B符合题意故选B.
【点睛】
本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.
2.D
解析:D
【解析】
已知 成立,根据比例的性质可得选项A、B、C都不成立;选项D,由 = 可得 ,即可得 ,选项D正确,故选D.

辽宁省锦州市2020年(春秋版)八年级上学期数学期末考试试卷A卷

辽宁省锦州市2020年(春秋版)八年级上学期数学期末考试试卷A卷

辽宁省锦州市2020年(春秋版)八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·江汉模拟) 若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A . ﹣3B . ﹣1C . 1D . ﹣3或12. (2分) (2018八上·嵊州期末) 关于的叙述正确的是()A . 在数轴上不存在表示的点B . = +C . =±2D . 与最接近的整数是33. (2分) (2018八上·梁子湖期末) 下列运算正确的是A .B .C .D .4. (2分) (2019八上·黄陂期末) 下列因式分解错误的是()A . 2ax-a=a(2x-1)B . x2-2x+1=(x-1)2C . 4ax2-a=a(2x-1)2D . ax2+2ax-3a=a(x-1)(x+3)5. (2分)若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A . p=1,q=﹣12B . p=﹣1,q=12C . p=7,q=12D . p=7,q=﹣126. (2分)如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A . 50°B . 51°C . 51.5°D . 52.5°7. (2分)已知样本:10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么在频率分布表中,频率为0.2的组是()A . 5.5~11.5B . 7.5~9.5C . 9.5~11.5D . 11.5~13.58. (2分)(2018·凉山) 下列运算正确的是()A .B .C .D .9. (2分)如图所示,△ABC中,AB=BC=AC,BD=CE,AD与BE相交于点P,则∠APE的度数是()A . 45°B . 55°C . 75°D . 60°10. (2分)(2016·宜宾) 如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A .B . 2C . 3D . 2二、解答题 (共11题;共65分)11. (2分)如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A . 6 cmB . 7 cmC . 8 cmD . 9 cm12. (2分)如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A . 1B .C .D . 213. (2分)为了了解一批数据在各个小范围内所占比例的大小,将这批数据分组,落在各个小组里的数据的个数叫做()A . 频率B . 样本容量C . 频数D . 频数累计14. (2分)如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A . (3+2)cmB . cmC . cmD . 9cm15. (1分)已知两线段长分别为6cm,10cm,则当第三条线段长为________ cm时,这三条线段能组成直角三角形.16. (10分) (2017七下·苏州期中) 分解因式:(1) x3-2x2y+xy2(2) 6a(x-1)2-2(1-x)2(a-4b)17. (10分) (2017七下·萧山期中) 计算题(1)先化简,再求值:,其中 .(2)已知,,求的值.18. (5分)(2012·河南) 某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).19. (5分)若x﹣y=8,xy=10.求x2+y2的值.20. (16分)(2017·洛宁模拟) 2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题(1)该记者本次一共调查了________名司机.(2)求图甲中④所在扇形的圆心角,并补全图乙.(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率.(4)请估计开车的10万名司机中,不违反“酒驾“禁令的人数.21. (10分)(2018·毕节模拟) 如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC 于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD,求∠C.三、填空题 (共3题;共4分)22. (2分) (2018七下·龙湖期末) ﹣8的立方根是________,9的算术平方根是________.23. (1分)4x2•(﹣3x3)=________.24. (1分)(2017·滨州) 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AD=8,AE=4,则△EBF周长的大小为________.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、解答题 (共11题;共65分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、17-1、17-2、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、三、填空题 (共3题;共4分)22-1、23-1、24-1、第11 页共11 页。

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(2)

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(2)

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(2)一、选择题1.非洲猪瘟病毒的直径达0.0000002米,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学计数法表示为( )A .7210-⨯B .6210-⨯C .80.210-⨯D .7210-⨯2.若21()3a -=-,20.3b =-,23c -=-,01()3d =-,则它们的大小关系是( )A .a<b<c<dB .b<c<d<aC .a<d<c<bD .c<b<d<a 3.若(-2x+a)(x-1)的展开式中不含x 的一次项,则a 的值是( )A .-2B .2C .-1D .任意数 4.已知分式1x y xy +-,若给x ,y 都添加一个负号,得到新分式()()1()()x y x y -+----,则分式的值( ) A .为原来的相反数 B .变大C .变小D .不变 5.已知4x y +=-,2xy =,则22x y +的值( )A .10B .11C .12D .16 6.若x 2+8x+m 是完全平方式,则m 的值为( )A .4B .﹣4C .16D .﹣167.如图,过边长为1的等边ABC △的边AB 上一点,作PE AC ⊥于,E Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 于D ,则DE 的长为( )A .13B .12C .23D .348.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD//BE ,∠1=40°,则∠2的度数是( )A .70°B .55°C .40°D .35°9.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为( )A .100B .80C .50或80D .20或8010.如图,在△ABC 中,边AC 的垂直平分线交边AB 于点D ,连结CD .若∠A =50°,则∠BDC 的大小为( )A .90°B .100°C .120°D .130°11.如图△ABC 中,AB 、BC 垂直平分线相交于点 O ,∠BAC =70°,则∠BOC 度数为( )A.140°B.130°C.125°D.110°12.若图中的两个三角形全等,图中的字母表示三角形的边长,则∠1的度数为( )A .40°B .50°C .60°D .70° 13.已知△ABC 的三条边长都是整数,其中两条边长分别为12a b 、,==则第三条边长c 等于( ) A .1 B .2 C .3 D .1或2 14.一个三角形的两条边长分别为3和7,则第三边的长可能是( )A .3B .7C .10D .1115.一个三角形的两边长分别为3和4,且第三边长为整数,则这样的三角形周长的最大值是( )A .12B .13C .14D .15二、填空题16.计算:23611a a a a -++=++________. 17.因式分解:3a 2﹣27=_____.18.如图所示,在ABC 中,90C ∠=,BE 平分ABC ∠,ED AB ⊥于D ,若6AC cm =,则AE DE +=________.19.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.20.如图△ABC 中,AB =AC ,∠BAC =58°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,使C 与点O 恰好重合,则∠OEB =_______三、解答题21.(1)解不等式13(1)42x x +--…;并把解集表示在数轴上 (2)解方程: 242111x x x++=--- 22.下面是某同学对多项式()()222221x xx x --++进行因式分解的过程:解:设22x x y -= 原式()21y y =++ (第一步)221y y =++ (第二步)()21y =+ (第三步) ()2221x x =-+ (第四步) 请问:(1)该同学因式分解的结果是否彻底?______(填“彻底”或“不彻底”),若不彻底,则该因式分解的最终结果为______;(2)请你模仿上述方法,对多项式()()222221x x x x --++进行因式分解.23.如图1,已知△ABC 三个顶点的坐标分别是A (﹣3,1),B (﹣1,﹣1),C (﹣2,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标;(2)画出△ABC 绕点B 逆时针旋转90°所得到的△A 2B 2C 2.24.如图,AD ∥BC ,连接BD ,点E 在BC 上,点F 在DC 上,连接EF ,且∠1=∠2.(1)求证:EF ∥BD ;(2)若BD 平分∠ABC ,∠A=130°,∠C =70°,求∠CFE 的度数.25.O 为直线AB 上的一点,OC ⊥OD ,射线OE 平分∠AOD.(1)如图①,判断∠COE 和∠BOD 之间的数量关系,并说明理由;(2)若将∠COD 绕点O 旋转至图②的位置,试问(1)中∠COE 和∠BOD 之间的数量关系是否发生变化?并说明理由;(3)若将∠COD 绕点O 旋转至图③的位置,探究∠COE 和∠BOD 之间的数量关系,并说明理由.【参考答案】***一、选择题16.317.3(a+3)(a ﹣3)18.6cm19.7220.64°三、解答题21.(1)3x ≤;(2)13x =22.(1)不彻底,()41x -;(2)(x −1)4.23.(1) A 1(3,0),B 1(1,﹣1),C 1(2,2),画图见解析;(2)画图见解析.【解析】【分析】(1)根据题意画出即可,关于y 轴对称点的坐标纵坐标不变,横坐标互为相反数;(2)根据网格结构找出点A 、B 、C 以点B 为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.【详解】解:(1)如图所示:A 1(3,0),B 1(1,﹣1),C 1(2,2);(2)如图所示:故答案为:(1) A 1(3,0),B 1(1,﹣1),C 1(2,2),画图见解析;(2)画图见解析.【点睛】本题考查的是轴对称和旋转变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.24.(1)证明见解析;(2)∠CFE=85°.25.(1)BOD 2COE ∠=∠,见解析;(2)不发生变化,见解析;(3)2360BOD COE ∠+∠=,见解析.【解析】【分析】(1)根据垂直定义可得∠COD=90°,再根据角的和差关系可得90BOD AOC ︒∠=-∠,9090222AOD AOC AOC COE AOE AOC AOC AOC ︒︒∠∠-∠∠=∠-∠=-∠=-∠=+,进而得BOD 2COE ∠=∠;(2)由∠COD 是直角,OE 平分∠AOD 可得出90COE DOE ︒∠=-∠,1802BOD DOE ︒∠=-∠,从而得出∠COE 和∠DOB 的度数之间的关系;(3)根据(2)的解题思路,即可解答.【详解】解:(1)BOD 2COE ∠=∠,理由如下:OC OD ⊥,090COD ∴∠=,90BOD AOC ︒∴∠=-∠,90902222AOD AOC AOC BOD COE AOE AOC AOC AOC ︒︒∠∠-∠∠∠=∠-∠=-∠=∠==+-2BOD COE ∴∠=∠;(2)不发生变化,证明如下:OC OD ⊥,90COD ︒∴∠=,()90,1802290COE DOE BOD DOE DOE ︒︒︒∠=-∠∠=-∠=-∠,2BOD COE ∴∠=∠;(3)2360BOD COE ∠+∠= ,证明如下:OC OD ⊥,90COD ︒∴∠=,90+COE DOE ︒∴∠=∠,90BOD BOC ︒∠+∠=180********=3602DOE COE COE ︒︒=-∠=∠∠+---(), 2360BOD COE ∴∠+∠=.【点睛】此题考查的知识点是角平分线的性质、旋转性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(1)

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(1)

辽宁省锦州市2019-2020学年数学八上期末模拟教学质量检测试题(1)一、选择题1.分式2111,,225x y xy -的最简公分母为 ( ) A.2xy 2B.5xyC.10xy 2D.10x 2y 2 2.若关于x 的方程4233x m x x +=+--有增根,则m 的值是( ) A .7 B .3 C .5 D .03.下列计算中正确的是( )A .23325x x x +=B .()34312x x --=-+C .224(3)412x x x -⋅=-D .623x x x ÷= 4.已知ab =2,a ﹣2b =3,则4ab 2﹣2a 2b 的值是( ) A .6B .﹣6C .12D .﹣12 5.已知:a =(12)﹣3,b =(﹣2)2,c =(π﹣2018)0,则a ,b ,c 大小关系是( ) A.b <a <c B.b <c <a C.c <b <a D.a <c <b6.下列运算正确的是( )A.236•a a a =B.()325a a =C.23•a ab a b -=-D.532a a ÷=7.若点A (1+m ,1﹣n )与点B (﹣3,2)关于x 轴对称,则m+n 的值是( )A .﹣1B .﹣3C .1D .38.如图,在△ABC 中,∠B =∠C =60°,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E .如果AD =1,BC =6,那么CE 等于( )A .5B .4C .3D .29.等腰三角形的腰长为5cm,底边长为6cm,则该三角形的面积是( ) A .16321y x =+ B .224cm C .3232(2)131y =⨯-+=-≠D .212cm 10.如图,BC ∥EF ,BC=BE ,AB=FB ,∠1=∠2,若∠1=55°,则∠C 的度数为( )A.25°B.55°C.45°D.35°11.下列命题是真命题的是( )A .将点A (﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)B .三角形的三条角平分线的交点到三角形的三个顶点的距离相等C .三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等D .平行四边形的对角线相等12.如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF ,下列结论错误的是( )A .∠C =∠B B .DF ∥AEC .∠A+∠D =90° D .CF =BE13.某中学阅览室在装修过程中,准备用边长相等的正方形、正三角形两种地砖铺满地面,在每个顶点的周围正方形、正三角形地砖的块数分别是( )A.1、2B.2、1C.2、2D.2、314.一个多边形内角和是1080o ,则这个多边形的对角线条数为( )A .26B .24C .22D .2015.已知,如图,D 、B 、C 、E 四点共线,∠ABD +∠ACE=230°,则∠A 的度数为( )A.50°B.60°C.70°D.80° 二、填空题16.已知21a =+,21b =-,则代数式11a b +的值为________. 17.因式分解:()()22x y y x y +-+=______.18.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=22°,∠2=34°,则∠3=___.19.如图ABC △中,AD 是BC 边上的中线,BE 是ABC △中AD 边上的中线,若ABC △的面积是24,6AE =,则点B 到ED 的距离是___.20.如图,Rt △ABC 中,∠ACB =90°,D 为AB 上的点,BD =CD =5,则AD =_______.三、解答题21.(1)计算﹣(﹣2)+(π﹣3.14)0+327+(﹣13)﹣1 (2)求值:(2x+3y)(2x-3y )﹣(2x+3y )2,其中x=﹣1,y=2.22.计算:(1)23()a -·(b 3)2·()ab 4 (2)2(3)x y -·243x xy -() (3)(22)(22)x y x y +-++ (4)2(5)(2)(3)x x x +---23.如图,E 是正方形ABCD 的边AD 上的动点,F 是边BC 延长线上的一点,且BF EF =,12AB =,设AE x =,BF y =.(1)当BEF ∆是等边三角形时,求BF 的长;(2)求y 与x 的函数解析式,并写出它的定义域;(3)把ABE ∆沿着直线BE 翻折,点A 落在点A '处,试探索:A BF '∆能否为等腰三角形?如果能,请求出AE 的长;如果不能,请说明理由.24.如图,∠AOB=90°,OE 、OF 分别平分∠BOC 、∠AOB ,如果∠EOF=60°,求∠AOC 的度数.25.将两个大小不同的含30°角的三角板的直角顶点O 重合在一起,保持△COD 不动,将△AOB 绕点O 旋转,设射线AB 与射线DC 交于点F .(1)如图①,若∠AOD=120°,①AB 与OD 的位置关系 .②∠AFC 的度数= .(2)如图②当∠AOD=130°,求∠AFC 的度数.(3)由上述结果,写出∠AOD 和∠AFC 的关系 .(4)如图③,作∠AFC 、∠AOD 的角平分线交于点P ,求∠P 的度数.【参考答案】***一、选择题16.17.(x+y )(x-y ).18.56°.19.220.三、解答题21.(1)3;(2)-48.22.:(1)1010a b - ;(2)() 1333129x y x y -+;(3)22444x xy y ++-;(4)1519x +.23.(1)2)2144(012)2x y x x+=<<;(3)答案见解析. 【解析】【分析】(1)当△BEF 是等边三角形时,有∠ABE=∠ABC-∠EBC=90°-60°=30°,则可解Rt △ABE ,求得BF 即BE 的长.(2)作EG ⊥BF ,垂足为点G ,则四边形AEGB 是矩形,在Rt △EGF 中,由勾股定理知,EF 2=(BF-BG )2+EG 2.即y 2=(y-x )2+122.故可求得y 与x 的关系. (3)当把△ABE 沿着直线BE 翻折,点A 落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF 成为等腰三角形,必须使A'B=A'F=AB=12,有FA′=EF -A′E=y -x=12,故可由(2)得到的y 与x 的关系式建立方程组求得AE 的值.【详解】解:(1)当BEF ∆是等边三角形时,30ABE ∠=︒,∵12AB =,∴AE =∴BF BE ==;(2)作EG BF ⊥,垂足为点G ,根据题意,得12EG AB ==,FG y x =-,EF y =.∴222()12y y x =-+. ∴所求的函数解析式为2144(012)2x y x x+=<<; (3)∵=AEB FBE FEB ∠=∠∠,∴点A '落在EF 上,∴A E AE '=,090BA F BA E A ''∠=∠=∠=,∴要使A BF '∆成为等腰三角形,必须使F A B A '='.而12A A B B '==,A EF A E BF A E F '''-=-=,∴12y x -=,由(2)关系式可得:2144122x x x+-=, 整理得2241440x x +-=,解得12122x =-±,经检验:12122x =-±都原方程的根,但12122x =--不符合题意,舍去,所以当12212AE =-时,A BF '∆为等要三角形.【点睛】本题利用了等边三角形和正方形、矩形、等腰三角形的性质,勾股定理求解.24.120°【解析】【分析】先由角平分线定义求出∠BOF 的大小,再求出∠BOE=15°,由OE 平分∠BOC ,求出∠BOC=30°,即可得出∠AOC 的度数.【详解】解:∵∠AOB=90°OF 平分∠AOB∴∠BOF=12∠AOB=45° 又∵∠EOF=60°∴∠BOE=60°-45°=15°.∵OE 平分∠BOC∴∠BOC=2∠BOE=30°.∴∠AOC=∠AOB+∠BOC=120°【点睛】本题主要考查了角平分线的定义、角的和差以及运算,熟练掌握角平分线定义,弄清各个角之间的关系是解决问题的关键.25.(1)①AB ∥OD ;②30°;(2)40°;(3)∠AOD=∠AFC+90°;(4)15°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年八年级(上)期末数学试卷
一.选择题(共8小题)
1.下列各数为无理数的是()
A.﹣B.﹣1.5 C.D.π
2.估计的值应在()
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
3.下列各组数不能作为直角三角形三边长的是()
A.7,24,25 B.8,15,17 C.6,8,10 D.4,5,6
4.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()
A.众数B.方差C.平均数D.中位数
5.如图,下列条件能判定AD∥BC的是()
A.∠C=∠CBE B.∠FDC=∠C
C.∠FDC=∠A D.∠C+∠ABC=180°
6.下列命题,其中为真命题的是()
①经过直线外一点,有且只有一条直线与已知直线平行;
②同位角相等;
③过一点有且只有一条直线与已知直线垂直;
④对顶角相等.
A.①②B.①③④C.①④D.②③④
7.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()
A.12 B.15 C.20 D.30
8.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()
A.B.
C.D.
二.填空题(共8小题)
9.﹣的立方根为.
10.如果电影院的6排3号座位用(6,3)表示,那么该影院的7排5号座位可以表示为.11.已知点A(1,y1)和B(2,y2)在函数y=2x+3的图象上,则y1与y2的大小关系是.12.某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:
平均数(g)方差
甲分装机200 16.23
乙分装机200 5.84
则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).
13.已知方程组的解为,则一次函数y=3x与y=﹣2a+b图象的交点坐标是.
14.某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物
的利润率是11%,两种货物共获利315元,如果设该公司购进这两种货物所用的费用分别为x元,y元,则列出的方程组是.
15.如图,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,C是x轴上一动点,连接BC,将△ABC沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为.
16.如图,已知直线l:y=x,点A1(2,0),过点A1作x轴的垂线交直线l于点B1,以A1B1为边,向右侧作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边,向右侧作正方形A2B2C2A3,延长A3C2交直线l于点B3;以A3B3为边,向右侧作正方形A3B3C3A4,延长A4C3交直线l于点B4;…;按照这个规律继续作下去,点B n的横坐标为.(结果用含正整数n的代数式表示)
三.解答题(共9小题)
17.计算题
(1)+﹣+;
(2)(2+)(2﹣).
18.用适当方法解方程组:
19.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);
(2)将△ABC的三个顶点的横、纵坐标都乘以﹣1,分别得到对应点A2,B2,C2,请画出△A2B2C2,并说明△A1B1C1和△A2B2C2是否是轴对称图形,如果是,那么它们的对称轴是什么?如果不是,请说明理由.
20.运动会中裁判员使用的某品牌遮阳伞如图1所示,图2是其剖面图,若AG平分∠BAC 与∠EDF,AB∥ED,求证:AC∥DF.
请将横线上的证明过程和依据的定理补充完整.
证明:∵AB∥DE,
∴∠=∠()
∵AG平分∠BAC,AG平分∠EDF(已知)
∴∠DAC=∠DAB,∠GDF=∠GDE().
∴∠DAC=∠GDF().
∴AC∥DF().
21.某学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制作了不完整的统计图表.
学生借阅图书的次数统计表
借阅图书的次数0次1次2次3次4次及以上人数 6 15 a12 9
学生借阅图书的次数扇形统计图
请你根据统计图表中的信息,解答下列问题:
(1)a=,b=;
(2)该样本数据的中位数是次,众数是次;
(3)请计算扇形统计图中“3次”所对应的扇形圆心角的度数;
(4)若该校共有2400名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.
22.某大学组织“大手拉小手,义卖献爱心”活动,该校美术社团计划购买黑、白两种颜色的文化衫进行手绘创作后出售,并将所获利润全部捐给山区困难孩子.已知美术社团从批发市场花4800元购买了黑、白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表所示:
批发价(元)零售价(元)
黑色文化衫25 45
白色文化衫20 35
(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答)
(2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润.
23.某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.
甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;
乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.
优惠期间,设某游客(或一个家庭)采摘草莓的重量为x(kg),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.
(1)分别求y1,y2与x之间的函数关系式;
(2)求点A的坐标,并解释坐标的实际意义;
(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)
24.如图,在平面直角坐标系中,函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,与函数y=x+b的图象交于点C(﹣2,m).
(1)求m和b的值;
(2)函数y=x+b的图象与x轴交于点D,点E从点D出发沿DA方向,以每秒2个单位长度匀速运动到点A(到A停止运动).设点E的运动时间为t秒.
①当△ACE的面积为12时,求t的值;
②在点E运动过程中,是否存在t的值,使△ACE为直角三角形?若存在,直接写出t
的值;若不存在,请说明理由.
25.学习第七章平行线的证明时,数学老师布置了这样一道作业题:
如图1,在△ABC中,∠BAC=80°,在CB的延长线上取一点D,使∠ADB=∠ABC,作∠ACB的平分线交AD于点E,求∠CED的度数.
善于归纳总结的小聪发现:借助平行线的性质可以“转化角的位置,不改变角的大小”.于是小聪得到的解题思路如下:过点B作BF∥AD(如图2),交CE于点F,将求∠CED 的度数转化为求∠BFC的度数问题,再结合已知条件和相关的定理,证出BF是∠ABC的平分线,进而求出∠BFC的度数.
(1)请按照上述小聪的解题思路,写出完整的解答过程;
(2)参考小聪思考问题的方法,解决下面问题:
如图3,在△ABC中,D是AB延长线上的一点,过点D作DE∥BC,∠ACB和∠ADE平分线交于点G,求证:∠G=∠A.。

相关文档
最新文档