通信原理之模拟调制系统
大学课程通信原理第5章-模拟调制系统课件
调制信号:原始基带信号
模拟调制:调制信号取值连续 数字调制:调制信号取值离散
正弦波模拟调制
载波:携带调制信号的信号
正弦波调制:正弦型信号作为载波 脉冲调制:脉冲串作为载波
正弦波数字调制 脉冲模拟调制 脉冲数字调制
2
1 调制的定义和分类(2)
正弦波模拟调制
调制信号:模拟信号:m(t)
0 0
A 2
M
c
M
c
已调信号的频谱是调制信号频谱的线性搬移。
线性调制
4
2.1 幅度调制的原理(2)
幅度调制器的一般模型
mt
ht
sm t
ht H
cos ct
sm t m t cos ct h t
Sm
1 2
M
c
M
c
H
m t ,ht 不同
双边带调幅(DSB) 标准调幅(AM)
载波分量
DSB分量
m ' t
sAM t
m0
S AM
m0
c
c
1 2
M
'
c
M
'
c
where m ' t M ' .
12
2.1 幅度调制的原理(8)
调幅系数
m ' t
AM
max 1 m0
已调信号的包络与调 制信号成比例变化.
m't
sAM t
m0
m0 m '(t )
sAM t m0 m '(t)
单边带调幅(SSB)
残留边带调幅(VSB) 5
常规调幅AM:H(ω)为全通网络,m(t) 有直流成 分。
通信原理第3章模拟调制技术
VS
高数据速率的调制技术
随着数据业务需求的爆炸式增长,高数据 速率的模拟调制技术成为研究热点。例如, QAM(Quadrature Amplitude Modulation,正交幅度调制)是一种常见 的高阶调制方式,通过增加星座点和调制 阶数,可以实现更高的数据传输速率。此 外,还有偏置QPSK、非线性调制等调制技 术,旨在提高频谱效率和数据传输速率。
通过调制将低频的模拟信号转换为高 频信号,以实现信号的远距离传输和 无线传输。
模拟调制技术的应用场景
广播通信
利用调频(FM)或调相(PM)技术, 将音频信号调制到载波上,实现广播 节目的传输。
电视信号传输
无线通信
在无线通信中,模拟调制技术被广泛 应用于移动通信、无线局域网 (WLAN)、无线广域网(WWAN) 等领域,以实现信号的无线传输。
THANKS FOR WATCHING
感谢您的观看
调频的缺点
占用带宽较宽,频带利用率较低。
调相的缺点
抗干扰能力较弱,对相位失真敏感,需要高 精度的相位控制系统。
03 模拟调制技术的分类
线性调制技术
01
调频(FM)
02
调相(PM)
03
调相而振幅不变(APM)
04
线性调制技术的特点:调制信号对载波的振幅、频率、相位同时进行 调制,使载波的振幅随调制信号的瞬时值呈线性变化。
软件定义无线电与模拟调制
软件定义无线电是一种新型的无线通信架构,通过软件编程的方式实现无线电功能的灵活配置和动态调整。在模 拟调制领域,软件定义无线电技术为调制方式的快速切换和自适应调整提供了可能。通过实时调整调制参数和算 法,可以根据信道状态和传输需求自适应地优化调制方案,提高通信系统的适应性。
第三章模拟调制系统-1DSB_SSB
则已调信号的频谱为: 则已调信号的频谱为:
1 SAM(ω) = πA0 [δ(ω − ωc ) + δ(ω + ωc )] + [F(ω − ωc ) + F(ω + ωc )] 2
12 教师:黄晗
1. 形状相同,位置搬移; 形状相同,位置搬移;
已调信号的频谱图: 已调信号的频谱图:
数字调制: 数字调制:ASK、FSK、PSK 、 、
3 教师:黄晗
调制的目的
提高无线通信时的天线辐射效率。 提高无线通信时的天线辐射效率。 传输频率: 传输频率:3kHz,天线高度:25km ,天线高度: 传输频率: 900MHz ,天线高度:8cm 传输频率: 天线高度: 把多个基带信号分别搬移到不同的载频处, 把多个基带信号分别搬移到不同的载频处,以 实现信道的多路复用,提高信道利用率。 实现信道的多路复用,提高信道利用率。 扩展信号带宽,提高系统抗干扰、抗衰落能力, 扩展信号带宽,提高系统抗干扰、抗衰落能力, 还可实现传输带宽与信噪比之间的互换。 还可实现传输带宽与信噪比之间的互换。
2 教师:黄晗
信号、传输方式、调制方式的分类
电信号
携带有用信息的信号,未调制) 基带信号 (携带有用信息的信号,未调制) 基带信号经过某种调制) 频带信号 (基带信号经过某种调制)
传输方式
基带传输 调制(频带) 调制(频带)传输
模拟调制
线性调制:AM、DSB、SSB、VSB 线性调制: 、 、 、 非线性调制: 非线性调制:PM、FM调制 、 调制
β AM = f (t ) max / A0
11 教师:黄晗
当载波初相为0时 已调信号为: 当载波初相为 时,已调信号为: sAM (t ) = [ A0 + f (t ) ] cosω ct 频 域 = A0 cosω ct + f (t )cosω ct 特 性 分 析 若有: 若有:
通信原理 模拟信号调制系统
m2t
PS
2
P AM
AM
A02
m2 t
2
2
m2 t
A02 m2
t
例题:当m(t) = Am cos mt 时,m2 (t) Am2 / 2
代入上式,得到
AM
m2 t
A02 m2 t
Am2
2
A02
Am2 2
Am2 2 A02 Am2
当|m(t)|max = A0时(100%调制),调制效率最高,这时
两式仅正负号不同
sUSB (t)
1 2
Am
cos(C
m )t
1 2
Am cosm cosct
1 2
Am sin m sin ct
若保留下边带,则有
sLSB (t)
1 2
Am
cos(C
m )t
1 2
Am
cos mt
cos ct
1 2
Am
sin mt
sin ct
16
第5章 模拟调制系统
将上两式合并:
c
)
(
c
)]
1 2
[M
(
c
)
M
(
c
)]
调制器模型
m t
A0
sm t
cos ct
6Байду номын сангаас
第5章 模拟调制系统
波形图
m t
由波形可以看出,当满足条件:
t
|m(t)| A0
A0 mt
时,其已调波的包络与调制信号波
形相同,因此用包络检波法很容易
t
载波
恢复出原 始调制信号。 t
通信原理2-模拟调制系统
载频分量
载频分量
上边带
下边带
上边带
调幅信号的平均功率为:
2 P s AM AM (t )
功 率 特 性 分 析
A0 f (t ) cos 2c t
2
A0 cos 2c t f 2 (t )cos 2c t 2 A0 f (t ) cos 2ct
2
因为
f (t ) 0
变化 – 角度调制(非线性调制):(t)或d (t) /dt 随f(t)成比例变化,分别称相位调制和频率 调制
第二章
本章讨论内容
模拟线性调制
– 各种调制信号(AM、DSB、SSB、
VSB)的时域和频域表达式
– 调制和解调的原理及方法
– 系统的抗噪声性能
– 各种调制的性能比较
一、常规调幅(AM)
– A0 |f(t)|max时,SAM(t)的最
小振幅总大于0,保证调幅波
的包络与调制信号变化规律 一致
– A0 |f(t)|max时,会出现过
调幅现象,若用包络检波进 行解调,其结果就会失真
一、常规调幅
调幅系数或调制度
AM=
= f(t)max - f(t)min f(t)max + f(t)min |f(t)|max A0
例2-3 用单边带方式传输模拟电话信号。设载频为
15MHz,电话信号的频带为300 Hz∼3400 Hz,滤波器归 一化值为10-3。试设计滤波器的方案。
B 600 5 4 10 解:单级方案时,过渡带归一化值为 f c 15106 归一化值太高,实际无法实现,所以,采用二级滤波 方案。 2 1 10 取第二级滤波器的归一化值为 。2
通信原理实验模拟调制系统(AM,FM)实现方法
实验一模拟调制系统(AM,FM)实现方法一、实验目的实现各种调制与解调方式的有关运算二、实验内容对DSB,抑制载波的双边带、SSB,FM等调制方式下调制前后的信号波形及频谱进行观察。
要求用system view 或Matlab中的基本工具组建各种调制解调系统,观察信号频谱。
三、实验原理AM:1)标准调幅就是常规双边带调制,简称调幅(AM)。
将调制信号m(t)与一个直流分量A叠加后与载波相乘可形成调幅信号。
AM信号的的频谱由载频分量、上边带、下边带组成。
上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。
2)DSB。
若在AM调制模型中将A0去掉,即得到双边带信号(DSB)。
与AM信号比较,因为不存在载波分量。
3)SSB。
单边带调制(SSB)是将双边带信号中的一个边带滤掉而形成的。
产生SSB信号的方法有:滤波法和相移法。
SSB调制包括上边带调制和下边带调制。
解调:解调是调制的逆过程,其作用是从接受的已调信号中恢复调制信号。
解调的方法可分为两类:相干解调和非相干解调(包络检波)。
1)相干解调。
解调与调制的实质一样,均是频谱搬移。
即把在载频位置的已调信号的浦搬回到原始基带位置。
2)包络检波。
包络检波器就是直接从已调信号的幅度中提取预案调制信号。
FM:调制中,若载频的频率随调制信号变化,称为频率调制或调频(FM)。
调频信号的产生方法有两种:直接调频和间接调频。
1)直接调频。
用调制信号直接控制载波振荡器的频率,使其按调制信号的规律线性变化。
2)间接调频。
先将调制信号积分,然后对载波进行调相,即可产生一个NBFM信号,再经n次频倍器得到WBFM信号。
解调:调频信号的解调也分为相干解调和非相干解调。
相干解调仅适用于NBFM信号,而非相干解调对于NBFM和WBFM信号均适用。
四、实验内容(一)标准调幅信号实验代码:f=5;T=1/f;fc=500;A=1.5;ts=0.001;fs=1/ts;t=0:ts:2*T;mt=cos(2*pi*f*t)+cos(2*pi*2*f*t);%调制信号ft=cos(2*pi*fc*t);%载波yt=(mt+A).*ft;%调幅信号N=2*T/ts;%设置抽样点数Mf=abs(fft(mt,N));%求调制信号频谱Ff=abs(fft(ft,N));%求载波频谱Yf=abs(fft(yt,N));%求调幅信号频谱ff=fs*(0:N-1)/N;%将调制信号与其频谱在同一图中作出figure(1);subplot(2,1,1);plot(t,mt);title('调制信号');subplot(2,1,2);plot(ff,Mf(1:N));title('调制信号频谱');%将载波与其频谱在同一图中作出figure(2);subplot(2,1,1);plot(t,ft);title('载波');subplot(2,1,2);plot(ff,Ff(1:N));title('载波频谱');%将调幅信号与其频谱在同一图中作出figure(3);subplot(2,1,1);plot(t,yt);title('调幅信号');subplot(2,1,2);plot(ff,Yf(1:N)); title('调幅信号频谱'); 生成图像如下:放大后看到,在4HZ,8HZ处有冲击,符合要求。
通信原理模拟调制系统
通信原理模拟调制系统一、模拟调制系统的基本原理模拟调制系统的基本原理是将数字信号通过调制技术转换为模拟信号,然后通过信道传输,并在接收端使用解调技术将模拟信号还原为数字信号。
模拟调制系统由三个基本组成部分组成,分别是源编码器、调制器和信道。
源编码器将输入的数字信号进行编码处理,调制器将编码后的数字信号转换为模拟信号,并通过信道传输,接收端的解调器将模拟信号还原为数字信号。
二、常用的调制技术1.幅度调制(AM)幅度调制是一种常用的调制技术,通过改变载波信号的幅度来传输数字信号。
具体实现时,将载波信号与数据信号相乘,得到一个幅度变化的信号,然后通过信道传输。
发射端的解调器使用包络检测器将幅度调制信号解调为原始数据。
2.频率调制(FM)频率调制是一种将数字信号转换为模拟信号的调制技术。
频率调制有两种常用的方式,即调频调制(FM)和相位调制(PM)。
在调频调制中,数字信号的变化会导致载波信号频率的变化,而振幅保持不变。
接收端的解调器使用频率解调器将模拟信号还原为数字信号。
3.相位调制(PM)相位调制也是一种将数字信号转换为模拟信号的调制技术。
在相位调制中,数字信号的变化会导致载波信号相位的变化,而频率和振幅保持不变。
接收端的解调器使用相位解调器将模拟信号还原为数字信号。
三、调制解调器调制解调器是模拟调制系统中的关键设备,用于实现数字信号与模拟信号的相互转换。
调制解调器在发射端将数字信号转换为模拟信号,并通过信道传输。
在接收端,调制解调器将模拟信号还原为数字信号,以便进行解码和处理。
四、模拟调制系统的应用模拟调制系统广泛应用于音频和视频信号的传输。
在电视广播中,模拟调制系统被用于将图像和声音信号转化为模拟信号,然后通过无线或有线信道传输。
在手机通信中,模拟调制系统被用于将语音信号转化为模拟信号,然后通过无线信道传输。
总结:模拟调制系统是一种将数字信号转换为模拟信号的技术,常用于音频和视频信号的传输。
它包括源编码器、调制器和信道等组成部分,并通过调制解调器实现数字信号与模拟信号的相互转换。
现代通信原理模拟调制系统
现代通信原理
第四章 模拟调制系统
-1-
本章知识点
4.1 引言 调制的概念 调制的分类 调制的作用 4.2 幅度调制(线性调制) 幅度调制基本原理 线性调制系统性能分析 4.3 角度调制(非线性调制) 基本概念 调频信号表达式 调相信号表达式 单音调制 调频信号的产生与解调方法 4.5 频分复用FDM 4.6 复合调制与多级调制
用滤波发产生SSB信号
m(t) hSSB(t) sSSB(t)
cos(ct)
HSSB()
滤波法
sssb t mt cosct hssb t
1 S SSB ( ) [ M ( c ) M ( c )]H SSB ( ) 2
-25-
现代通信原理 Principle of Modern Communications
-2-
现代通信原理 Principle of Modern Communications
现代通信原理 Principle of Modern Communications
4.1 引言
调制的基本概念 m(t) 调制信号
调制器 sm(t) 已调信号
c(t) 载波信号 调制:按 调制(基带)信号的变化规律去改变高频 载波某一(些)参数,把基带信号搬移到给定信道 通带(处在较高频段)内的过程。
T 2
T 2
m(t )dt
PAM
载波功率Pc
2 m0 m'2 t 2 2
边带功率PS
-19-
现代通信原理 Principle of Modern Communications
通信原理教程5-模拟调制系统
调制 信号
s(t) H(f)
已调 信号
滤波输出: s(t)
m(t)
s(t)
用“”表示傅里叶变换:
Acos0t
m(t) M ( f ) 式中, m(t) Acos0t S ( f )
M(f)
S (
f
)
A [M ( 2
f
f0)
M(
f
f0 )]
S(f)
f
0
(a) 输入信号频谱密度
-f0
S(
f
)
A[M ( 2
f
f0)
M(
f
f0 )]H (
f
)
现在,求出为了得到VSB信号, H( f )应满足的条件:
若仍用右图解调器, 接收
则接收信号和本地载波相乘
信号 s(t)
r(t)
H’(f)
基带 信号
m(t)
后得到的r (t)的频谱为:
cos0t
1 S( f
2
f0) S( f
f0 )
将已调信号的频谱
r0 ri
E
1 2
m'2 (t) A2
1 m'(t)2
/ nc2 (t) A2 / n2
(t)
E
2m'2 [1 m'
(t) (t)]2
由于m(t) 1,显然上式比值r0/ri小于1,即检波后信噪比下降 了。
这是因为检波前信号中的大部分功率被载波占用,它没 有对检波后的有用信号做贡献.
-2f0
-fm 0 fm
f 2f0
【例】已知线性调制信号表示式如下
(1)
cos t cos w0t
通信原理总结
4)VSB:抗噪声性能和频带利用率与SSB相当。在电视广播等系统中得到了广泛应用。
5)FM:抗干扰能力强,广泛应用于长距离高质量的通信系统中。缺点是频带利用率低,存在门限效应。
>>角度调制(非线性调制):
或 随m(t)成比例变化,前者称为相位调制,后者称为频率调制。从频谱上来说,已调信号的频谱结构与基带信号的频谱结构不同,出现了新的频率分量,因此也称非线性调制。
2.幅度调制的原理
(1)标准调幅(AM)信号
>>模型图
图2.1
>>表达式
其中 对应载波项, 对应边带项。
为了防止过调制,要求调幅系数
第六章数字基带传输系统
一、概述
本章介绍了数字基带传输结构,数字基带及其频谱特性,包括数字基带的各种类型及它们的特点,基带传输常用的码型以及各种码型的特点和适用范围。了解引起码间干扰的原因以及如何减弱码间干扰。
二、知识点归纳
(1)数字基带系统的组成
(2)常用的基带信号波形
(3)基带传输的常用码型
(4)码间串扰和信道噪声是影响基带传输性能的两个主要因素。因此如何减弱码间串扰和消除噪声是研究两个重点。
4.非线性调制
5.各种模拟调制系统的比较
>>所有系统在“同等条件”下进行比较:
解调器输入信号功率为Si
信道噪声均值为0,单边功率谱密度为n0
基带信号带宽为fm
其中AM的调幅度为100%,正弦型调制信号
1)抗噪声性能:FM最好,DSB/SSB、
VSB次之,AM最差;
通信原理第三章 模拟调制系统
当载波为cosωct时
1 1 ) S ( t ) = m ( t ) cos t m ( t ) sin t LSB c c 2 2
1 1 ) S ( t ) = m ( t ) cos t m ( t ) sin t U SB c c 2 2 当载波为sinωct时
w
w
w
w
1 1 ) S ( t ) = m ( t ) sin t m ( t ) cos t L SB c c 2 2 1 1 ) S ( t ) = m ( t ) sin t m ( t ) cos t U SB c c 2 2
w) , h(t) = H(w) = jsgn(
1
t
3)、Hilbert变换的性质: (1)、信号和它的希尔波特变换具有相同的能量谱密度或相 同的功率谱密度。 推论: (2)、信号和它的希尔波特变换的能量(或功率)相同。 (3)、信号和它的希尔波特变换具有相同的自相关函数。 (4)、信号和它的希尔波特变换互为正交。 4)、Hilterb变换的用途: 在单边带调制中,用来实现相位选择,以产生单边带信号
1 S ( w ) = A w w w w [ M ( w w ) M ( w w )] A M c c c c 2
c(t) 载波 调制 信号 已调 信号 m(t)
-f
H
C(f)
-f c 0 fc
f
M(f)
f
-fL 0 f
L
fH
sm(t)
第三章 模拟调制系统
引言 3.1 幅度调制 标准调幅(AM) 双边带调幅(DSB) 单边带调幅(SSB) 残留边带调幅(VSB) 3.2 角度调制原理 3.3 抗噪声性能 各种幅度调制系统的噪声性能 非线性调制系统的抗噪性能 模拟系统比较
樊昌信《通信原理》(第7版)章节题库(模拟调制系统)【圣才出品】
4 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】FM、SSB/DSB、AM
【解析】在模拟通信系统中,可靠性的指标为解调器输出信噪比 S0/N0,信噪比越大,
可靠性越高。
即为窄带调频的带宽。
3.AM 系统在______情况下会出现门限效应。 【答案】包络检波且小信噪比 【解析】门限效应是由包络检波器的非线性解调作用所引起的,AM 系统在包络检波的 非线性解调作用中,当输入信噪比低于门限值时(输入信号幅度远小于噪声幅度),将会出 现门限效应,这时解调器的输出信噪比将急剧恶化,有用信号被噪声扰乱,系统无法正常工 作。
2.下面列出的方式当中,( )属于非线性调制。 A.单边带调制 SSB B.双边带调制 DSB C.残留边带调制 VSB D.频率调制 FM 【答案】D 【解析】线性调制是指已调信号的频谱是调制信号频谱的搬移。ABC 三项,均属于线
1 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
号取 4kHz 作为标准带宽。
二、填空题 1.残留边带滤波器的传输特性 H(ω)应满足______。 【答案】H(ω+ωc)+H(ω-ωc)=常数,|ω|≤ωH;或者说,在载频两边具有 互补对称特性 【解析】残留边带滤波器的 H(ω)应在载频两边具有互补对称(奇对称)特性,即需 满足 H(ω+ωc)+H(ω-ωc)=常数,|ω|≤ωH。
5.在多路载波电话系统中,采用单边带方式进行频分多路复用,其一个标准的 12 路 基群信号的副载波间隔是( )。
2 / 63
圣才电子书
A.3.8kHz
十万种考研考证电子书Hz
(通信原理课件)第5章模拟调制系统
数字调制技术与模拟调制技术的对比
模拟信号
频率范围宽广,传输距离有限,信号易受噪声和干扰。
数字信号
信号质量稳定,传输距离远,可以进行纠错和加密处理。
模拟调制系统的应用场景
1 广播电视
2 电信网络
3 药物反应分析
模拟广播电视、卫星传输等 是模拟调制系统最典型的应 用场景。
手机号码的拨叫、语音通信 等都是通过模拟调制信号进 行传输的。
2
调制指数
反映基带信号对载波相位影响程度的实数。
3
调制解调
用相位调制解调器进行信号的解调,得到原始的基带信号。
相位调制电路实现
移相调制电路
加上一个可调的移相网络来实现相 位调制电路,具有较广泛的应用。
频率鉴别器
在解调中进行频率鉴别器,将相位 调制信号转化为幅度调制信号。
锁相环电路
利用反馈来使输出信号的相位与设 定相位保持一致,实现恒定的相位 调制。
模拟调制系统
在通信原理中,模拟调制系统是通信系统的基础。本次演示将介绍模拟调制 的各种技术和应用场景,并展示其未来的发展趋势。
模拟调制系统概述
定义
模拟调制系统,指通过调制信号的幅度、频率或相位,将基带信号转换为通信信号的一种系 统。
作用
模拟调制系统可以将语音、图像等信息转化为高频信号,方便远距通信,具有广泛的应用。
直接调频电路
使用直接的变容二极管调制电路进行频率调制,未 使用任何电感元件,在射频前端应用较广。
电容调制电路
通过改变电容的大小来调制载波频率,调制范围相 对较小,但制造相对简单。
相位锁定环电路
使用恒振幅恒频率的信号进行相位锁定,能够获得 较高的调制精度。
相位调制原理
通信原理实验报告实验一
实验一模拟线性调制系统仿真实验1实验目的掌握常规AM调制、DSB调制、单边带调制(SSB)的原理和方法,并验证这三种方法的可行性。
并掌握Commsim的常用使用方法。
2实验内容和结果2.1模拟线性调制系统(AM)2.2抑制载波双边带调制(DSB)2.3单边带调制(SSB)3 实验分析3.1模拟线性调制系统(AM)的分析:任意AM 已调信号可以表示为Sam(t)=c(t)m(t)当)()(0t f A t m +=,)cos()(0θω+=t t c c 且A0不等于0时称为常规调幅,其时域表达式为:)cos()]([)()()(00θω++==t t f A t m t c t s c am 3.2抑制载波双边带调制(DSB ):任意DSB 已调信号都可以表示为DSB S )()()(t m t c t =当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0等于0时称为抑制载波双边带调制。
其时域表达式为t t f t m t c t s c DSB ωcos )()()()(==;频域表达式为:C DSB F t s ωω+=([)(C F ωω-+()2)]÷3.3单边带调制(SSB ):设调制信号为单边带信号f(t)=A m cosωm t ,载波为c(t)=cosωc t 则调制后的双边带时域波形为:2/])cos()cos([cos cos )(t A t A t t A t S m c m m c m c m m DSB ωωωωωω-++==保留上边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m USB ωωωωωω-=+=保留下边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m LSB ωωωωωω+=-=4 实验体会通过此次实验我进一步理解了AM 、DSB 、SSB 的调制方法的原理和方法,以及如何通过Commsim 软件来模拟这一调制的过程。
通信原理第5章模拟调制系统
10
第五章 模拟调制系统
当调制信号无直流分量时,x(t)=0,且当x(t)是与
载波无关的较为缓慢变化的信号时, 有
PAM
A02 2
x2 (t) 2
Pc
Ps
式中,Pc=A20/2为载波功率,Ps x2 (t) / 2 为边带功率。 由上式可知,AM信号的平均功率是由载波功率和
的 互 补 对 称 性 就 意 味 着 将 HVSB(ω) 分 别 移 动 - ωc 和 ωc就可以到如图9 (c)所示的HVSB(ω+ωc)和HVSB(ω -ωc),将两者叠加,即
HVSB ( c ) HVSB ( c ) 常数
式中,ωm是调制信号的最高频率。
|ω|≤ωm
30
第五章 模拟调制系统
经双边带调制
i 1
n
sDSB (t) x(t) cosct xi cosit cosct
i 1
如果通过上边带滤波器HUSB(ω), 则得到USB信号
sUSB (t)
n i 1
1 2
xi
cos(i
c )t
1 2
x(t)
cosct
1 2
xˆ(t)
sin
ct
21
第五章 模拟调制系统
如果通过下边带滤波器HLSB(ω), 则得到LSB信号
第五章 模拟调制系统
第五章 模拟调制系统
5.1 模拟信号的线性调制 5.2 模拟信号的非线性调制 5.3 模拟调制方式的性能比较
1
第五章 模拟调制系统
5.1 模拟信号的线性调制
5.1.1 常规双边带调制(AM) 常规双边带调制就是标准幅度调制,它用
通信原理(第五章)模拟调制系统
n i =1
mi cos wit
有 m ˆ (t ) = å
n i =1
mi sin wit
二、幅度调制的原理(6)(VSB)
残留边带(VSB) :信号带宽B介于单边带(SSB)信号和双边带 (DSB)信号之间。 如何确定残留边带滤波器的特性H(ω )? 先考虑如何解调,即如何从接收信号中来恢复原基带信号? 设采用同步解调法进行解调,其组成方框图如图5-8 输入信号为 Sm(w) = 1 [ M (w - wc) + M (w +wc)] H (w)
2 (5.1 - 24)
载波为:
s(t ) = cos wct ? S (w) p [d (w +wc) +d (w - wc)]
1 1 [ Sm(w) * S (w)] = [ M (w + 2wc) + M (w)] H (w + wc) 2p 4 1 + [ M (w) + M (w - 2wc )] H (w - wc ) (5.1 - 26) 4
max max
- [ m(t )] min +[ m(t )] min
二、幅度调制的原理(5)(SSB)
SSB信号:
在DSB调制信号的基础上,仅保留一个边带。 将图5-4中的带通滤波器设计成如图5-5b所示的传输特 性。将产生上边带信号,相应的频谱如图5-5c所示。 信号带宽B=fx,其中fx是信号的最高频率)。 如何描述?产生下边带SSB信号的理想低通滤波器可表 示为: ì 1 t >0 ï 1
sm(t ) = A0 cos wct + m(t )cos wct
Sm(w) = p A0[d (w - wc) +d (w +wc)] +
第三章 模拟调制系统(通信原理)
例题
21
单边带调幅—SSB
DSB信号虽然节省了载波功率,调制效率提高了, 但频带宽度仍是调制信号带宽的两倍,同AM信号 DSB信号的上、下两个边带是完全对称的,它们都 携带了调制信号的全部信息 仅传输双边带信号中一个边带。 节省发送功率,节省一半传输频带。 产生SSB信号的方法:
c
下边带(LSB)调制
23
SSB—滤波法
SSB信号的频谱
SSSB ( ) S DSB ( ) H
SDSB
上边带频谱图:
c
0
c
H USB
c
0
S USB
c
c
0
c
24
SSB—滤波法(技术难点)
用滤波法形成SSB信号的技术难点是:
滤波法产生SSB的多级频率搬移过程
26
SSB—相移法
1 H ( ) sgn( c ) sgn( c ) 2
S SSB ( ) 1 M ( c ) M ( c )H ( ) 2 1 M ( c ) sgn( c ) M ( c ) sgn( c ) 4 1 M ( c ) sgn( c ) M ( c ) sgn( c ) 4 1 M ( c ) M ( c ) 4 1 M ( c ) sgn( c ) M ( c ) sgn( c ) 4
滤波法 相移法
22
SSB—滤波法
m t
sDSB t
H
sSSB t
载波 c t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 线性调制
三、双边带(DSB)调制
1.原理: 调制信号m(tቤተ መጻሕፍቲ ባይዱ没有直流分量时,得到DSB信号。 2. 频谱:两个边带包含相同的信息。 上边带
下边带 M(f ) S’(f )
0
f
-f0
0
f0
17
双边带调制信号的频谱
3.2 线性调制-双边带(DSB)调制
3. 解调:需要本地载波
设接收的DSB信号为
2
主要内容
3.1 概述 3.2 线性调制 3.3 非线性调制 小结 思考题、习题
3
3.1 概述
一、模拟调制的定义:
1. 定义
用来自信源的基带模拟信号去调制某个载波。 载波是一个确知的周期性波形。
余弦波载波的表达式:
c(t ) A cos(0t 0 )
式中,A为振幅;
设: m(t) = [1+m(t)], |m(t)| 1, m(t)|max = m - 调幅度,
则有调幅信号: s(t) = [1+m(t)]Acos0t,
式中, [1+m(t)] 0,即s(t) 的包络是非负的。
m (t ) 1+m(t)
+1 =
1+m(t)
1
1
0
1 2 ri E 1 m' (t ) A 2 / n 2 (t ) 2
∴检波前后信噪功率比之比为
2 2 2 2m' 2 (t ) r0 m' (t ) A / nc (t ) E E 2 1 ri 2 [ 1 m ' ( t )] 2 2 1 m' (t ) A / n (t ) 2 由于m(t) 1,显然上式比值r0/ri小于1,即检波后信噪比下降了
3.2 线性调制-基本概念
A S ( f ) [ M ( f f 0 ) M ( f f 0 )] 2
相乘器输入信号m(t)和输出信号s’(t)的频谱密度图
M(f)
S’(f)
0 输入信号频谱密度
-f 0
0 输出信号的频谱密度
f0
10
3.2 线性调制
二、振幅调制(AM)
1.基本原理
1
0
A
t
c (t ) t s(t)
-m -f fm
fm
f
C(f)
-f0 f0
f
-A
S(f)
载波功率
上边带功率
下边带功率
t
-f0 2fm
f0 2fm
f
调幅信号的波形与频谱分析13
3.2 线性调制-振幅调制(AM)
3. AM信号的接收:包络检波
(1)原理:
整流器
低通滤波器
包络检波器解调调幅信号
14
目标要求
一、 基本要求
1.掌握模拟调制、载波、调制信号、已调信号、 调制器的定义;
2.掌握调制的目的及模拟调制的分类;
3.掌握线性调制器的原理模型,会分析AM、 DSB、SSB、VSB调制与解调特性; 4.掌握非线性调制器的原理,及非线性已调信号 的频谱和带宽特性。
1
目标要求
二、重点和难点
1. 重点是: 掌握线性调制与解调的原理模型,及其数学分 析、波形分析、频谱分析,理解各种调制方式 的特点。 2. 难点是: 非线性调制频谱和带宽特性的分析和理解。
0为载波角频率; 0为初始相位。
4
3.1 概述
2. 组成
调制信号 m(t) 调制 器
已调信号 s(t)
调制信号m(t)-自信源来的基带信号 已调信号s(t)-调制后的载波称为已调信号 调制器-进行调制的部件
5
3.1 概述
二、调制的目的:
1. 频谱搬移 :容易辐射
实现频率分配 多路复用 2. 提高抗干扰性 3. 还与传输效率有关
返回
7
3.2 线性调制
一、基本概念
设载波为: c(t)=Acos0t=Acos2f0t 调制信号为能量信号m(t),则线性调制器的原理模 型如图所示。
调制信号 m(t)
s(t)
H(f)
已调信 号s(t)
Acos0t
8
3.2 线性调制-基本概念
调制信号 m( t)
s ( t ) H (f) 已调信 号s(t)
3.2 线性调制-振幅调制(AM)
(2)性能:设输入电压为:
式中,
y(t ) {[1 m' (t )]A nc (t )}cos0t ns (t ) sin 0t
nc (t ) cos0t 为检波器输入噪声电压 ns (t ) sin 0t
y(t)的包络: 在大信噪比下
V y (t ) {[1 m' (t )] A nc (t )} 2 ns2 (t )
Acos0t
相乘结果:s(t)=m(t)Acos2f0t
用“”表示傅里叶变换: m(t ) M ( f )
m(t ) A cos 0t S ( f )
又
1 cos 0t [ ( 0 ) ( 0 )] 2
2 2
9
所以, s( f ) M ( f ) A [ ( f f 0 ) ( f f 0 )] A [ M ( f f 0 ) M ( f f 0 )]
6
3.1 概述
三、模拟调制的分类:
1. 线性调制:
已调信号的频谱结构和调制信号的频谱结构相 同,其频谱是调制信号频谱沿频率轴平移的 结果。包括:调幅、单边带、双边带、残留 边带…
2. 非线性调制(角度调制): 已调信号的频谱结构和调制信号的频谱结构有 很大的不同,除了频谱搬移外,还增加了许 多新的频率成分。包括:频率调制、相位调 制
=
11
0
3.2 线性调制-振幅调制(AM)
2.频谱密度
M’(f) S’(f)
0
-f 0
0 输出信号的频谱密度
f0
输入信号频谱密度
含离散载频分量;
当m(t)为余弦波,且m=100%时,
两边带功率之和 = 载波功率之半。
12
3.2 线性调制-振幅调制(AM)
m (t)m(t) 1+
M(f)
Vy (t ) [1 m' (t )]A nc (t )
v(t ) m' (t ) A nc (t )
15
检波后(已滤除直流分量):
3.2 线性调制-振幅调制(AM)
输出信号噪声功率比:
2 r0 E[m'2 (t ) A2 / nc (t )]
∵在检波前的信号噪声功率比等于
m(t ) cos 0t
接收端的本地载波为
接收信号 s( t )
r ( t ) H(f) cos0t