高三第一轮复习 简单的三角恒等变换.ppt
合集下载
高考数学一轮复习 简单的三角恒等变换课件
第六节 简单的三角恒等变换
1.
的值等于
(
)
解析: tan150 tan(75 75 )
2 tan 75 , 1 tan 75
答案:D
2.如果α∈( (α+ ) =
, )且
,那么sin(α+
)+cos ( )
解析:∵sinα= <α<π,∴cosα= sin( ) cos( ) 2 sin( )
所以 tan( )
(2)tan(α+2β)=tan[(α+β)+β]=
又0
2
,0
2
, 故0 2
3 , 2
从而由tan(α+2β)=-1得
3 2 . 4
1 13 , 且0 , 2.已知cos ,cos( ) 7 14 2
求证: tan 2 x
观察左、右两边式子间的差异,若选择“从左
证到右”,则“切化弦”的方法势在必行;若选择
“从右证到左”,则倍角公式应是必用公式.
【证明】法一:左边
法二:右边
=左边.
3.求证:
证明:左边
=右边. 故原等式成立
从近几年高考试题来看,本节内容主要灵活运用公 式,利用恒等变换进行三角函数的化简与求值,其考查
或具有某种关系.
3.“给值求角”:实质上是转化为“给值求值”,关键也是变 角,把所求角用含已知角的式子表示,由所得的函数值 结合该函数的单调区间求得角.
(2008· 江苏高考)如图,在平面直角坐标系xOy中, 以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆 交于A、B两点,已知A、B的横坐标分别为 (1)求tan(α+β)的值; (2)求α+2β的值.
1.
的值等于
(
)
解析: tan150 tan(75 75 )
2 tan 75 , 1 tan 75
答案:D
2.如果α∈( (α+ ) =
, )且
,那么sin(α+
)+cos ( )
解析:∵sinα= <α<π,∴cosα= sin( ) cos( ) 2 sin( )
所以 tan( )
(2)tan(α+2β)=tan[(α+β)+β]=
又0
2
,0
2
, 故0 2
3 , 2
从而由tan(α+2β)=-1得
3 2 . 4
1 13 , 且0 , 2.已知cos ,cos( ) 7 14 2
求证: tan 2 x
观察左、右两边式子间的差异,若选择“从左
证到右”,则“切化弦”的方法势在必行;若选择
“从右证到左”,则倍角公式应是必用公式.
【证明】法一:左边
法二:右边
=左边.
3.求证:
证明:左边
=右边. 故原等式成立
从近几年高考试题来看,本节内容主要灵活运用公 式,利用恒等变换进行三角函数的化简与求值,其考查
或具有某种关系.
3.“给值求角”:实质上是转化为“给值求值”,关键也是变 角,把所求角用含已知角的式子表示,由所得的函数值 结合该函数的单调区间求得角.
(2008· 江苏高考)如图,在平面直角坐标系xOy中, 以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆 交于A、B两点,已知A、B的横坐标分别为 (1)求tan(α+β)的值; (2)求α+2β的值.
2019届高三一轮:3.5《简单的三角恒等变换》ppt课件
2, 2
□
□
4.辅助角公式 asinx+bcosx= a2+b2sin(x+φ),其中 sinφ= b a , cos φ = 。 a2+b2 a2+b2
1 组关系——两角和与差的正弦、余弦、正切公式与倍角公式的关系
2 个技巧——拼角、凑角的技巧 (1)用已知角表示未知角 2α=(α+β)+(α-β);2β=(α+β)-(α-β); α=(α+β)-β=(α-β)+β; α+β α-β α+β α-β α= 2 + 2 ,β= 2 - 2 ;
答案:D
π 4.设 sin2α=-sinα,α∈ 2,π ,则 tan2α 的值是__________。
π 1 3 解析: ∵sin2α=2sinαcosα=-sinα, ∴cosα=-2。 又 α∈2,π , ∴ sin α = tanα 2,
பைடு நூலகம்
∴ 3- 3tan20° tan40° =tan20° +tan40° , 即 tan20° +tan40° + 3tan20° tan40° = 3。 答案: 3
课堂学案
考点通关
考点例析 通关特训
考点一 2+ 3 B. 2
三角函数的化简与求值
【例 1】 (1)4cos50° -tan40° =( C ) A. 2 C. 3
2 1 - 2sin α 2cos α-1 cos α-sin α cos2α= 5 _______________ = 6 _____________ = 7 _____________ ,
□
□
□
2
2
□
2
□
tan2α= 8 _______________
□
3.有关公式的逆用、变形 (1)tanα± tanβ=tan(α± β)(1∓tanαtanβ); (2)cos2α= 9 __________,sin2α= 10 __________; π (3)1+sin2α=(sinα+cosα) 1-sin2α=(sinα-cosα) ,sinα± cosα= 2sin α± 。 4
□
□
4.辅助角公式 asinx+bcosx= a2+b2sin(x+φ),其中 sinφ= b a , cos φ = 。 a2+b2 a2+b2
1 组关系——两角和与差的正弦、余弦、正切公式与倍角公式的关系
2 个技巧——拼角、凑角的技巧 (1)用已知角表示未知角 2α=(α+β)+(α-β);2β=(α+β)-(α-β); α=(α+β)-β=(α-β)+β; α+β α-β α+β α-β α= 2 + 2 ,β= 2 - 2 ;
答案:D
π 4.设 sin2α=-sinα,α∈ 2,π ,则 tan2α 的值是__________。
π 1 3 解析: ∵sin2α=2sinαcosα=-sinα, ∴cosα=-2。 又 α∈2,π , ∴ sin α = tanα 2,
பைடு நூலகம்
∴ 3- 3tan20° tan40° =tan20° +tan40° , 即 tan20° +tan40° + 3tan20° tan40° = 3。 答案: 3
课堂学案
考点通关
考点例析 通关特训
考点一 2+ 3 B. 2
三角函数的化简与求值
【例 1】 (1)4cos50° -tan40° =( C ) A. 2 C. 3
2 1 - 2sin α 2cos α-1 cos α-sin α cos2α= 5 _______________ = 6 _____________ = 7 _____________ ,
□
□
□
2
2
□
2
□
tan2α= 8 _______________
□
3.有关公式的逆用、变形 (1)tanα± tanβ=tan(α± β)(1∓tanαtanβ); (2)cos2α= 9 __________,sin2α= 10 __________; π (3)1+sin2α=(sinα+cosα) 1-sin2α=(sinα-cosα) ,sinα± cosα= 2sin α± 。 4
高考数学一轮复习第三章第四讲简单的三角恒等变换课件
又 α∈(0,π),所以-π4<α-π4<34π.
所以 α-π4=π2.故 α=34π.
因此,tan
α+π3=tan
34π+π3=1t-anta3n4π+34πttaann
π 3π=-11++
3
3= 3
2- 3.
【反思感悟】三角恒等变换综合应用的解题思路
(1)将 f(x)化为 a sin x+b cos x 的形式.
(2)构造 f(x)=
a2+b2
a a2+b2·sin
x+
b a2+b2·cos
x.
(3)和角公式逆用,得 f(x)= a2+b2sin (x+φ)(其中 φ 为辅助
角).
(4)利用 f(x)= a2+b2sin (x+φ)研究三角函数的性质.
(5)反思回顾,查看关键点、易错点和答题规范.
【高分训练】
(2)用辅助角公式变形三角函数式时: ①遇两角和或差的三角函数,要先展开再重组; ②遇高次时,要先降幂; ③熟记以下常用结论:
sin α±cos α= 2sin α±π4; 3sin α±cos α=2sin α±π6; sin α± 3cos α=2sin α±π3.
2.半角公式
(1)sin α2=±
【题后反思】(1)解决三角函数的求值问题的关键是把“所求 角”用“已知角”表示.①当“已知角”有两个时,“所求角”一 般表示为两个“已知角”的和或差的形式;②当“已知角”有一 个时,此时应着眼于“所求角”与“已知角”的和或差的关系.
(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β, β=α+2 β-α-2 β,α=α+2 β+α-2 β,α-2 β=α+β2-α2+β等.
答案:B
三角恒等变换复习公开课精华ppt课件
例3 :已知 A、B、C是△ABC三内角,向量
m (1 , 3) , n (cos A , sin A) , m n 1 .
(1)求角
A;(2)若
1 sin2B cos2 B sin2
B
3
,
求
tanC
.
解:(1) m n 1 ,
(1 , 3 ) (cos A , sin A) 1 ,
tan2 sin Asin B tan (sin Acos B cos Asin B) cos Acos B 2
5
典型例题
tan2 sin Asin B tan sin( A B) cos Acos B 2 ①
5
因为 C 3π ,A+B= π , 所以 sin(A+B)= 2 ,
θ
为第二象限角,若
tan
π 4
1 2
,则
sin θ+cos θ=__________.
分析:由 tan
π 4
1 1
tan tan
1 ,得 2
tan
θ= 1 , 3
即 sin θ= 1 cos θ. 3
将其代入 sin2θ+cos2θ=1,得 10 cos2 1 .
9
因为 θ 为第二象限角,所以 cos θ= 3 10 ,sin θ= 10 ,
4
4
2
因为 cos(A+B)=cos Acos B-sin Asin B,
即 3 2 -sin Asin B= 2 ,解得 sin Asin B= 3 2 2 2 .
5
2
5 2 10
由①得 tan2 5 tan 4 0
解得 tan 1或tan 4.
变式3:
(2013·辽宁理)设向量 a
高考数学一轮单元复习:简单的三角恒等变换PPT共36页
高考数学一轮单元复习:简单的三角 恒等变换
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
ቤተ መጻሕፍቲ ባይዱ
谢谢!
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
ቤተ መጻሕፍቲ ባይዱ
谢谢!
简单的三角恒等变换课件-2025届高三数学一轮复习
10° 10°
=2
cos
2 2
10°+60° sin 20°
=2
s2inco2s07° 0°=2
2
cos 90°−20° sin 20°
=2
s2insi2n02°0°=2
2,故选D.
(2)计算sin 10°·sin 30°·sin 50°·sin 70°=________.
答案: 1
16
解析:令m=sin 10°sin 50°sin 70°,n=cos 10°cos 50°·cos 70°, 则mn=sin 10°cos 10°sin 50°cos 50°sin 70°cos 70° =12sin 20°·12sin 100°·12sin 140° =18sin 20°·sin 80°·sin 40° =18cos 70°·cos 10°·cos 50°=18n, 而n≠0, ∴m=18,从而有sin 10°·sin 30°·sin 50°·sin 70°=116.
巩固训练3 已知f(x)=4cos x·sin (x+π6)-1. (1)求f(x)的周期; (2)若f(α)=65,其中α∈(0,π4),求cos 2α.
1.[2024·山西吕梁模拟]tan 67.5°-1=( )
A. 2 C.1+2 2
B. 5
2
D.1+2 5
答案:A
解析:因为tan 135°=-1,所以tan 135°=tan (67.5°×2)=12−ttaann26677.5.5° °=-1, 整理得tan267.5°-2tan67.5°-1=0, 解得tan 67.5°=1+ 2或tan 67.5°=1- 2(舍去), 所以tan 67.5°-1= 2.故选A.
三角恒等变换简单的三角恒等变换ppt
电磁学
在电磁学中,三角恒等变换可以用来描述电场和 磁场的变化规律。
光学
在光学中,三角恒等变换可以用来描述光的干涉 和衍射等现象。
05
总结与展望
总结
内容详尽
该PPT详细讲述了三角恒等变换的基本概念、公式和技巧,内容 全面且易于理解。
实用性强
通过丰富的例题和练习题,帮助学生掌握三角恒等变换的运用, 提高解题能力。
揭示函数性质
通过三角恒等变换,可以 进一步揭示三角函数的性 质和特点,为研究三角函 数提供有力的工具。
三角恒等变换的应用
解析几何
在解析几何中,常常需要 用到三角恒等变换来研究 点、线、圆等几何对象的 性质和位置关系。
微积分
在微积分中,三角恒等变 换被广泛应用于解决与极 坐标有关的问题,如计算 面积、体积等。
等变换的应用。
感谢您的观看
THANKS
总结词
利用泰勒级数展开式,将一个函数展开成幂级数形式。
详细描述
泰勒级数展开式是一种将一个函数展开成幂级数形式的方法。通过选择不同的幂级数展开式,我们可以得到不 同的形式的结果。在三角恒等变换中,我们常常利用泰勒级数展开式来进行幂级数展开式的计算,从而得到我 们需要的结论。
04
三角恒等变换在解题中的 应用
在几何中的应用
证明三角形全等
利用三角恒等变换可以证明两 个三角形全等,从而得出它们
的对应边和对应角相等。
计算角度和长度
通过三角恒等变换,可以计算出 三角形中的角度和边的长度,以 及三角形的高和中线等。
证明平行和垂直
利用三角恒等变换可以证明两条直 线平行或垂直,从而得出线段之间 的比例关系。
在代数中的应用
积化和差与和差化积公式可以将两个角度的积与和差表示为只含有一个角度的三角函数形式。积化和 差与和差化积公式可以用于解决一些涉及两个不同角度的乘积或和差的问题,例如求两个角的积、证 明恒等式等。
在电磁学中,三角恒等变换可以用来描述电场和 磁场的变化规律。
光学
在光学中,三角恒等变换可以用来描述光的干涉 和衍射等现象。
05
总结与展望
总结
内容详尽
该PPT详细讲述了三角恒等变换的基本概念、公式和技巧,内容 全面且易于理解。
实用性强
通过丰富的例题和练习题,帮助学生掌握三角恒等变换的运用, 提高解题能力。
揭示函数性质
通过三角恒等变换,可以 进一步揭示三角函数的性 质和特点,为研究三角函 数提供有力的工具。
三角恒等变换的应用
解析几何
在解析几何中,常常需要 用到三角恒等变换来研究 点、线、圆等几何对象的 性质和位置关系。
微积分
在微积分中,三角恒等变 换被广泛应用于解决与极 坐标有关的问题,如计算 面积、体积等。
等变换的应用。
感谢您的观看
THANKS
总结词
利用泰勒级数展开式,将一个函数展开成幂级数形式。
详细描述
泰勒级数展开式是一种将一个函数展开成幂级数形式的方法。通过选择不同的幂级数展开式,我们可以得到不 同的形式的结果。在三角恒等变换中,我们常常利用泰勒级数展开式来进行幂级数展开式的计算,从而得到我 们需要的结论。
04
三角恒等变换在解题中的 应用
在几何中的应用
证明三角形全等
利用三角恒等变换可以证明两 个三角形全等,从而得出它们
的对应边和对应角相等。
计算角度和长度
通过三角恒等变换,可以计算出 三角形中的角度和边的长度,以 及三角形的高和中线等。
证明平行和垂直
利用三角恒等变换可以证明两条直 线平行或垂直,从而得出线段之间 的比例关系。
在代数中的应用
积化和差与和差化积公式可以将两个角度的积与和差表示为只含有一个角度的三角函数形式。积化和 差与和差化积公式可以用于解决一些涉及两个不同角度的乘积或和差的问题,例如求两个角的积、证 明恒等式等。
人教版高中数学必修1《简单的三角恒等变换》PPT课件
α2,cos
α2,tan
α 2
的值;
1-sin (2)化简:
α-2c-os2αcossiαnα2+cosα2(-π<α<0).
[解] (1)∵sin α=-187,π<α<32π,∴cos α=-1157.
∵cos2α=1-2sin2α2=2cos2α2-1,又π2<α2<34π,
∴sin α2=
1-cos 2
6 A. 3
B.-
6 3
C.±
6 3
解析:∵cos θ=13,且 θ∈(0,π),
D.±
3 3
∴θ2∈0,π2,∴cosθ2>0,
∴cos θ2=
cos2θ2=
1+cos 2
θ=
1+2 13= 36.
答案:A
()
3.已知 cos α=45,α∈32π,2π,则 sin α2等于
A.-
10 10
10 B. 10
【学透用活】
[典例 2] (1)求证:1+2cos2θ-cos 2θ=2;
(2)求证:
sin
x+cos
2sin xcos x-1sin
x x-cos
x+1=1+sincoxs
x .
[证明] (1)左边=1+2cos2θ-cos 2θ=1+2×1+c2os 2θ-cos 2θ=2=右边,
所以原等式成立.
• (一)教材梳理填空 • 1.半角公式:
半角公式
正弦 sinα2= ±
1-cos α 2
余弦 cosα2= ±
1+cos α 2
续表
正切 tan α2=±
1-cos 1+cos
αα,tanα2=1+sincoαs
= α