初一到初三数学知识点总结汇总4篇

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一到初三数学知识点总结汇总4篇

初一到初三数学知识点总结汇总4篇

科学是现代最主要的知识形式。技术是将科学应用于生产和社会生活的重要手段。语言是知识传递和沟通的主要工具。下面就让小编给大家带来初一到初三数学知识点总结,希望大家喜欢!

初一到初三数学知识点总结1

一、有理数加减法

1.同号两数相加,取相同的符号,并把绝对值相加。

绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

2.互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

4.减去一个数,等于加上这个数的相反数。

二、乘除法法则

1.两数相乘,同号得正,异号得负,并把绝对值相乘。 0乘以任何数,都得 0 。

2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为偶数时,积为正;负因数的个数为奇数时,积为负。

3.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得 0 。

4.有理数中仍然有:乘积是1的两个数互为倒数。

5.除以一个不等于0的数等于乘以这个数的倒数。

三、乘方

乘方定义:求n个相同因数的积的运算,叫做乘方。

底数是a,指数是n,幂是乘方的结果;读作:的n次方或的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

四、运算律及混合运算

1.加法交换律:a+b=b+a

1.加法交换律:a+b=b+a

2.乘法交换律:a·b=b·a

3.加法结合律:a+(b+c)=(a+b)+c

4.乘法结合律:a·(b·c)=(a·b)·c

5.乘法分配律:a·(b+c)=ab+ac

6.有理数混合运算顺序:先乘方;再乘除;最后算加减。

7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。

8.同级运算,从左到右进行。

五、近似数

1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。

2.近似数的分类

(1)具体近似数(如30.2、58.0 …)

(2)带单位近似数(如2.4万…)

(3)科学记数法

3.精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。

4.有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。

求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。

例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011。

初一到初三数学知识点总结2

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:

(1)方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。

(2)方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质

(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么a±c=b±c

(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移项法则:

把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则

1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同

2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变

五、解方程的一般步骤

1.去分母(方程两边同乘各分母的最小公倍数)

2.去括号(按去括号法则和分配律)

3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4.合并(把方程化成ax=b(a≠0)形式)

5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

六、用方程思想解决实际问题的一般步骤

1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

2.设:设未知数(可分直接设法,间接设法)。

3.列:根据题意列方程。

4.解:解出所列方程。

5.检:检验所求的解是否符合题意。

6.答:写出答案(有单位要注明答案)。

初一到初三数学知识点总结3

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

相关文档
最新文档