初一到初三数学必记重要知识点汇总汇总
初一到初三数学知识点总结汇总4篇
![初一到初三数学知识点总结汇总4篇](https://img.taocdn.com/s3/m/bc69a0ff5ebfc77da26925c52cc58bd631869391.png)
初一到初三数学知识点总结汇总4篇初一到初三数学知识点总结汇总4篇科学是现代最主要的知识形式。
技术是将科学应用于生产和社会生活的重要手段。
语言是知识传递和沟通的主要工具。
下面就让小编给大家带来初一到初三数学知识点总结,希望大家喜欢!初一到初三数学知识点总结1一、有理数加减法1.同号两数相加,取相同的符号,并把绝对值相加。
绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
2.互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.减去一个数,等于加上这个数的相反数。
二、乘除法法则1.两数相乘,同号得正,异号得负,并把绝对值相乘。
0乘以任何数,都得 0 。
2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为偶数时,积为正;负因数的个数为奇数时,积为负。
3.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得 0 。
4.有理数中仍然有:乘积是1的两个数互为倒数。
5.除以一个不等于0的数等于乘以这个数的倒数。
三、乘方乘方定义:求n个相同因数的积的运算,叫做乘方。
底数是a,指数是n,幂是乘方的结果;读作:的n次方或的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
四、运算律及混合运算1.加法交换律:a+b=b+a1.加法交换律:a+b=b+a2.乘法交换律:a·b=b·a3.加法结合律:a+(b+c)=(a+b)+c4.乘法结合律:a·(b·c)=(a·b)·c5.乘法分配律:a·(b+c)=ab+ac6.有理数混合运算顺序:先乘方;再乘除;最后算加减。
7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。
8.同级运算,从左到右进行。
五、近似数1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。
数学7-9年级知识点
![数学7-9年级知识点](https://img.taocdn.com/s3/m/ef533e7ca66e58fafab069dc5022aaea988f415c.png)
数学7-9年级知识点七年级知识点。
一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如: - 3是整数,属于有理数;0.5是有限小数,也是有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应。
例如,在数轴上表示2的点在原点右侧2个单位长度处。
3. 相反数。
- 只有符号不同的两个数叫做互为相反数。
0的相反数是0。
- 如3和 - 3互为相反数,它们到原点的距离相等。
4. 绝对值。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 例如, - 5 = 5,3 = 3。
二、整式的加减。
1. 整式。
- 单项式和多项式统称为整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
例如,3x, - 2,a。
- 多项式:几个单项式的和叫做多项式。
例如,x + 2y是多项式。
2. 同类项。
- 所含字母相同,并且相同字母的指数也相同的项叫做同类项。
- 例如,3x²y与 - 5x²y是同类项。
3. 整式的加减。
- 实质就是合并同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
- 例如,2x+3x=(2 + 3)x = 5x。
三、一元一次方程。
1. 方程的概念。
- 含有未知数的等式叫做方程。
- 例如,2x+3 = 7是方程。
2. 一元一次方程。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式是ax + b=0(a≠0),如3x - 5 = 0。
3. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
- 例如,x = 2是方程2x - 4 = 0的解。
4. 解方程。
- 移项:把方程中的某一项改变符号后,从方程的一边移到另一边。
- 例如,在方程2x+3 = 5x - 1中,把5x移到左边变为- 5x,3移到右边变为-3,得到2x - 5x=-1 - 3。
初一到初三数学必记重要知识点汇总
![初一到初三数学必记重要知识点汇总](https://img.taocdn.com/s3/m/195c194731b765ce0508148e.png)
初一到初三数学必记重要知识点汇总1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初中数学7-9年级重点知识点汇总
![初中数学7-9年级重点知识点汇总](https://img.taocdn.com/s3/m/361d40a29a89680203d8ce2f0066f5335a816798.png)
初中重点知识点0 1 数与代数A、数与式:1.有理数■有理数:①整数→正整数/0/负整数②分数→正分数/负分数■数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
■绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
■有理数的运算:●加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
●减法:减去一个数,等于加上这个数的相反数。
●乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
●除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
●乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
●混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2.实数■无理数:无限不循环小数叫无理数■平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
■立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
数学七年级至九年级知识点
![数学七年级至九年级知识点](https://img.taocdn.com/s3/m/207fc707f6ec4afe04a1b0717fd5360cbb1a8d56.png)
数学七年级至九年级知识点
一、整数与有理数
1. 整数及加减运算
2. 乘法与除法运算
3. 整数的应用问题
4. 正数、负数与零
5. 有理数的概念与性质
6. 有理数的比较与大小
7. 有理数的加减运算
8. 有理数的乘法与除法
9. 有理数的应用问题
二、代数与方程式
1. 代数式与代数计算
2. 平方与平方根
3. 简单方程式的解法
4. 一次方程与一次方程组
5. 二元一次方程组
6. 代数式与图形
7. 不等式与不等式组
三、几何
1. 平面与平面图形
2. 角的概念与性质
3. 直线与直线间的关系
4. 三角形与三角形的特性
5. 四边形与四边形的特性
6. 圆与圆的性质
7. 空间与空间图形
8. 平面与空间图形的投影
9. 直线与平面的位置关系
四、测量与数据
1. 长度、面积与体积的测量
2. 单位换算与应用
3. 数据的收集与整理
4. 数据的表示与分析
5. 概率的基本概念与计算
以上是数学七年级至九年级的知识点概述,涵盖了整数与有理数、代数与方程式、几何以及测量与数据等方面的内容。
通过学习这些知识点,学生们可以逐步掌握数学的基本概念、运算技巧以及解题方法,为进一步深入学习和应用数学打下坚实基础。
希望同学们在学习数学的过程中能够勤于思考、勇于探索,善于运用所学知识解决实际问题,培养对数学的兴趣与自信,不断提高自己的数学素养。
初一到初三数学必记重要知识点汇总
![初一到初三数学必记重要知识点汇总](https://img.taocdn.com/s3/m/a7e24b58f56527d3240c844769eae009581ba26d.png)
初一到初三数学必记重要知识点汇总
一、初一:
1、数与式:绝对值、有理数、分数和小数、根号、百分数和分数的转换、简单的分
式和带分数的因式、无理数的表示与应用;
2、一元一次方程:一元一次方程的解法:利用公式法和简图法解一元一次方程及应用;
3、比:比的定义、可比性和不可比性、等比数列、比的简化、简化等比数的应用;
4、分数的加减法:分数的意义、分数加减法的等幂性、分数大小的比较;
5、角:角的单位、角的规范弧和极弧、正、任意角、三角形内角和外角和外心角、
三角函数。
二、初二:
1、线性一次函数:定义及特征、函数关系、一元一次函数图象和抛物线图象、函数
的性质;
3、几何:直线的性质及其几何性质、圆的定义及其圆的性质、图形面积与周长;
4、三角函数:正弦、余弦函数、三角函数的综合应用;
5、不等式:一元不等式的性质、一元不等式的解法、一元不等式的解集及应用。
三、初三:
1、三角形:三角形的性质与三角函数、相似三角形的性质与结论、余弦定理的应用、海伦公式的应用;
2、统计:分类数据的描述性统计量,频率分布表、算术平均数、几何平均数、各种
概率和几何平均数的比较等;
3、概率与组合:定义和特征、概率的计算、条件概率、独立事件、互斥事件、组合
中的顺序;
4、函数:函数的性质、函数的值域、函数图象、曲线在函数图象中的位置;
5、几何图形:圆柱体、立体结构、图形中的折线、体积、表面积、体积体积系数等。
七年级至九年级数学知识点
![七年级至九年级数学知识点](https://img.taocdn.com/s3/m/6af9dc0e66ec102de2bd960590c69ec3d5bbdbb0.png)
七年级至九年级数学知识点数学作为一门重要的学科,是学生在学习过程中必不可少的一部分,为了帮助七年级至九年级的学生更好更深入地掌握数学知识点,本篇文章将重点探讨七年级至九年级数学知识点,希望对大家有所帮助。
一、七年级数学知识点1. 整数与运算:包括正数、负数、相反数的概念,以及加、减、乘、除等运算。
2. 基本数学运算:加减乘除法则、分数、小数、百分数等。
3. 代数式和方程:代数式和方程的定义、基本性质及解法。
4. 几何初步:几何基本概念,如线段、角、三角形、四边形、圆等。
5. 比例与图像:包括比例的概念,数据的图像表示法等。
二、八年级数学知识点1.命题及命题的关系:包括命题、逻辑运算、命题的分类和命题的关系。
2.函数:函数的定义、表达法,以及函数的性质和应用。
3.平面几何:平面图形的性质,如三角形的周长、面积,圆等。
4.三角函数:三角函数概念及应用,如正弦,余弦和正切等。
5.立体几何:包括平行四边形、三棱柱、四棱锥、圆柱和圆锥等。
三、九年级数学知识点1.向量:向量的概念及运算法则,向量的坐标表示法等。
2.解析几何:二维和三维坐标系的表示及其坐标系及图形的性质和应用。
3.三角变化与相似:平面图形的旋转变化、变形变换及相似关系的定义及判定。
4.概率统计:事件、随机事件、概率、条件概率、事件间的相互关系及概率的应用等。
5.数学证明:数学证明的意义、方法和常用证明方法等。
以上就是七年级至九年级数学知识点的详细介绍,希望对各位同学有所帮助。
在日常的学习中,我们需要不断巩固和扩大数学知识面,积极思考与实践,提高数学应用能力,从而在数学领域中大显身手,取得优异的成绩和学习成果。
数学知识点七年级到九年级
![数学知识点七年级到九年级](https://img.taocdn.com/s3/m/246abbd65ff7ba0d4a7302768e9951e79a896963.png)
数学知识点七年级到九年级一、整数的概念与运算1. 整数的定义及表示方法整数是由正整数、零和负整数组成,用正负号来表示。
2. 整数的加法和减法运算整数的加法运算按数轴上的运算规律进行,正数和正数相加得到正数,负数和负数相加得到负数,正数和负数相加则根据绝对值大小确定正负。
3. 整数的乘法和除法运算整数的乘法运算规律:同号得正,异号得负。
整数的除法运算规律:同号得正,异号得负。
0除以任何非零整数都等于0。
二、代数式与方程式1. 代数式的定义与常见形式代数式是由数、字母和运算符号组成的式子,常见形式有单项式、多项式和恒等式。
2. 代数式的加减和乘除运算代数式的加减运算要考虑变量的同类项进行合并,乘法运算要按照分配律进行展开,除法运算可通过分子有理化简化。
3. 方程式的定义及解法方程式是含有一个或多个未知数的等式,通过移项和合并同类项的方法可以解方程。
解方程的过程中需检查解是否合法。
三、几何图形的认识与性质1. 线段、角的定义及性质线段是两点间的部分,角是由两条射线共同起始于同一点的部分。
直角、钝角和锐角的性质及判断方法。
2. 三角形的定义与分类三角形是由三条线段组成的图形,按边长和角度可以分为等边三角形、等腰三角形、直角三角形、等腰直角三角形以及一般三角形。
3. 平行线与平行四边形平行线的定义及性质,判断两条线是否平行的几种方法。
平行四边形的定义、性质和判定方法。
四、分数与比例1. 分数的定义及表示方法分数由分子和分母组成,表示为分子/分母的形式。
分数的相等性、约分和通分方法。
2. 分数的加减乘除运算分数的加减运算要找到通分的分母,乘法运算将分子和分母分别相乘,除法运算将除数倒置后与被除数相乘。
3. 比例与比例的应用比例的定义及性质,比例的四种关系:等比例、反比例、逆比和复合比。
比例在实际问题中的应用,如比例尺、生活中的比例问题等。
五、数据统计与概率1. 统计图表的读取与制作柱状图、折线图、饼图的读取,根据给定数据制作统计图表。
初一至初三数学知识点汇总大全
![初一至初三数学知识点汇总大全](https://img.taocdn.com/s3/m/bd13470bad51f01dc381f14d.png)
初一至初三数学知识点汇总大全七年级上册知识点汇总目录1第一章丰富的图形世界 1 第二章有理数及其运算 2 第三章字母表示数 4 第四章平面图形及位置关系 6 第五章一元一次方程8 第六章生活中的数据8七年级下册知识点总结第一章整式的运算9 第二章平行线与相交线13 第三章生活中的数据14 第四章概率15 第五章三角形15 第六章变量之间的关系18 第七章生活中的轴对称20八年级上册知识点汇总22第一章勾股定理22第二章实数22 第三章图形的平移与旋转23 第四章四平边形性质探索23 第五章位置的确定25 第六章一次函数26第七章二元一次方程组27 第八章数据的代表27八年级下册知识点汇总21第一章一元一次不等式和一元一次不等式组29 第二章分解因式31 第三章分式34 第四章相似图形36 第五章数据的收集与处理38 第六章证明(一)38九年级上册知识点汇总40第一章证明(二)40 第二章一元二次方程41 第三章证明(三)42 第四章视图与投影44 第五章反比例函数45 第六章频率与概率46九年级下册知识点汇总48第一章直角三角形边的关系48第二章二次函数51 第三章圆54 第四章统计与概率63七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章丰富的图形世界柱体⎧圆柱: 底面是圆面、侧面是曲面¤1.⎨⎨ ⎨ ⎩⎩棱体: 底面是多边形、 侧面是正方形或长方形锥体⎧圆锥: 底面是圆面、 侧面是曲面 ¤2. ⎩棱锥: 底面是多边形、 侧面都是三角形 ¤3. 球体:由球面围成的(球面是曲面) ¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。
※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。
初一到初三数学知识点
![初一到初三数学知识点](https://img.taocdn.com/s3/m/bf043958cd7931b765ce0508763231126edb7797.png)
初一到初三数学知识点一、初一数学知识点1. 数的性质•自然数和整数的概念•有理数和无理数的区别和性质•相反数和绝对值2. 整式与分式•简单整式的加减乘除运算•分式的概念与运算法则3. 平方根与立方根•平方根的概念与性质•立方根的概念与计算4. 计算•两数四则运算•带括号的四则运算•用珠心算解四则运算5. 图形的认识•点、线、面等基本概念•直线、折线、封闭曲线等的特点和性质•常见图形的名称和特征二、初二数学知识点1. 代数•代数表达式的概念•代数式的化简与展开•一元一次方程的解法•四则运算的应用问题2. 几何•线段、角、三角形的性质•直线、平行线和垂直线的关系•三角形的分类与特征•平面镜形和旋转镜形的基本形状•面积和体积的计算3. 数据统计•数据的整理与统计•直方图、折线图、饼图的绘制与分析•平均数、中位数和众数的计算与应用4. 函数•函数的概念与性质•函数的表示与运算•一次函数和二次函数的图像与性质•函数的应用问题三、初三数学知识点1. 平面几何•直线、线段、角的性质•同位角、内错角、补角、余角的关系•直角三角形、等腰三角形、等边三角形的特征•圆的性质与公式•圆的切线与切点的性质2. 空间几何•立体图形的性质与分类•长方体、正方体、棱柱、棱锥、圆柱、圆锥和球体的特征•空间几何图形的表面积和体积计算3. 概率与统计•事件与概率的概念与计算•试验、样本空间、随机事件的概念•概率与分数、百分数的关系•几何概率与排列组合的应用4. 三角函数•弧度制与角度制的转换•正弦、余弦、正切、余切的定义与计算•三角函数的图像与性质•解三角函数方程的方法与应用以上是初一到初三数学的主要知识点,通过系统的学习和练习,可以帮助学生打下坚实的数学基础,为高中数学的学习奠定良好的基础。
学生在学习过程中,应注重理解和应用,通过练习提高自己的解题能力和思维能力。
希望本文档对您的学习有所帮助!。
初一到初三所有数学知识点归纳
![初一到初三所有数学知识点归纳](https://img.taocdn.com/s3/m/f41cbcb28662caaedd3383c4bb4cf7ec4afeb698.png)
初一到初三所有数学知识点归纳初一到初三数学知识点:1、有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。
[注]"大"减"小"是指绝对值的大小。
2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
初一到初三数学知识点1、有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。
[注]"大"减"小"是指绝对值的大小。
2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
6、完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
7、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
8、"代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)9、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
初一到初三数学重点知识点
![初一到初三数学重点知识点](https://img.taocdn.com/s3/m/aaa41d021fd9ad51f01dc281e53a580216fc50a7.png)
初一到初三数学重点知识点初一到初三的数学学习是中学数学教育的基础阶段,涵盖了许多重要的数学概念和技能。
以下是这一阶段的数学重点知识点概述:1. 数与代数- 有理数的运算:包括加、减、乘、除以及它们的混合运算。
- 代数表达式:学习如何使用字母表示数,以及如何进行代数表达式的简化和求值。
- 一元一次方程:解方程的基本步骤,包括移项、合并同类项等。
- 二元一次方程组:通过代入法或加减消元法求解方程组。
- 因式分解:提取公因式、平方差公式和完全平方公式等。
2. 几何- 线段、射线和直线:理解它们的定义和性质。
- 角度:锐角、直角、钝角和周角的概念及其度量。
- 三角形:三角形的分类、内角和定理以及三角形的边长关系。
- 四边形:平行四边形、矩形、菱形和正方形的性质和判定。
- 圆:圆的基本概念,如半径、直径、圆周率等,以及圆的周长和面积的计算。
3. 统计与概率- 数据的收集和整理:学习如何收集数据并将其整理成图表。
- 平均数、中位数和众数:计算数据集的平均数、中位数和众数。
- 概率:理解概率的基本概念,计算简单事件的概率。
4. 函数- 一次函数:学习一次函数的图像和性质,包括斜率和截距。
- 二次函数:掌握二次函数的图像,包括顶点式和标准式。
5. 解题技巧- 数学思维:培养逻辑思维和抽象思维能力,提高解题效率。
- 画图辅助:利用图形来帮助理解和解决数学问题。
- 转化思想:将复杂问题转化为简单问题,或者将不熟悉的问题转化为熟悉的问题。
这些知识点构成了初一到初三数学学习的核心内容,为学生进一步学习高中数学打下坚实的基础。
掌握这些知识点不仅有助于提高数学成绩,还能培养学生的数学思维和解决问题的能力。
初一到初三数学必记重要知识点汇总
![初一到初三数学必记重要知识点汇总](https://img.taocdn.com/s3/m/c22dd01f0740be1e650e9a4f.png)
初一到初三数学必记重要知识点汇总1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初一至初三数学知识点汇总大全
![初一至初三数学知识点汇总大全](https://img.taocdn.com/s3/m/7f653ed3680203d8ce2f24d9.png)
第四章统计与概率63整数分数数轴的三要素:原点、正方向、单位长度(三者缺一不可)※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数a,都有|a|≥0.②若|a|=0,则|a|=0,反之亦然.③若|a|=b,则a=±b.④对任何有理数a,都有|a|=|-a|※有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
※有理数减法法则:减去一个数,等于加上这个数的相反数。
¤有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。
在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也
(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多
通过配方解决数学问题的方法叫配方法。其中,用的最多的是配
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2
h
83、(1)比例的基本性质:
如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正
101、圆是定点的距离等于定长的点的集合
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条
、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d>R+r
②两圆外切 d=R+r
③两圆相交 R-rr)