基本不等式(测试卷)

合集下载

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式1.函数y=x+1x(x>0)的值域为().A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞)2.下列不等式:①a2+1>2a;②a+bab≤2;③x2+1x2+1≥1,其中正确的个数是().A.0 B.1 C.2 D.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为().A.12B.1 C.2 D.44.(2011·重庆)若函数f(x)=x+1x-2(x>2)在x=a处取最小值,则a=().A.1+ 2 B.1+ 3 C.3 D.45.已知t>0,则函数y=t2-4t+1t的最小值为________.利用基本不等式求最值【例1】►(1)已知x>0,y>0,且2x+y=1,则1x+1y的最小值为________;(2)当x>0时,则f(x)=2xx2+1的最大值为________.【训练1】(1)已知x>1,则f(x)=x+1x-1的最小值为________.(2)已知0<x<25,则y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.利用基本不等式证明不等式【例2】►已知a>0,b>0,c>0,求证:bca+cab+abc≥a+b+c.【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x =2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x , 即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·x y =18, 当且仅当4y x =xy ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +ab c ≥2 bc a ·abc=2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab c ≥a +b +c .【训练2】 证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +cb +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5 800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低. 【示例】.正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2b a ·2a b =3+2 2. 当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【试一试】尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式1.函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞)2.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是( ).A .0B .1C .2D .33.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+3C .3 D .45.已知t >0,则函数y =t 2-4t +1t的最小值为________.利用基本不等式求最值【例1】►(1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; (2)当x >0时,则f (x )=2xx 2+1的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x +1x -1的最小值为________. (2)已知0<x <25,则y =2x -5x 2的最大值为________.(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.利用基本不等式证明不等式【例2】►已知a >0,b >0,c >0,求证:bc a +ca b +abc ≥a +b +c .【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】(2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x=3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x=2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x , 即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·x y =18, 当且仅当4y x =xy ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +abc≥2bc a ·ab c =2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +abc ≥a +b +c .【训练2】证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +ca +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低. 【示例】.正解∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2b a ·2a b =3+2 2. 当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【试一试】尝试解答]a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab =2+2=4.当且仅当a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。

基本不等式例题

基本不等式例题

1、已知正数a, b满足a + b = 1,则下列不等式中成立的是?A. ab ≤ 1/4B. ab ≥ 1/4C. ab < 1/4D. ab > 1/2(答案:B)2、设x, y为正实数,且x + y = 2,则下列不等式中正确的是?A. xy ≤ 1B. xy ≥ 1C. xy < 1D. xy > 2(答案:A)3、若a, b, c为正数,且a + b + c = 3,则下列不等式中不成立的是?A. a2 + b2 + c2 ≥ 3B. abc ≤ (a + b + c)3 / 27C. (a + b + c)/3 ≥√(abc)D. a3 + b3 + c3 ≥ 9(答案:D)4、已知x > 0, y > 0,且x + y = 4,则下列不等式中错误的是?A. 1/x + 1/y ≥ 1B. xy ≤ 4C. √(xy) ≤ (x + y)/2D. x2 + y2 ≥ 8(答案:A)5、设a, b为正实数,且a + b = 5,则下列不等式中正确的是?A. ab ≤ 25/4B. ab ≥ 25/4C. ab < 25/4D. ab > 10(答案:A)6、若x, y为正数,且xy = 100,则下列不等式中不成立的是?A. x + y ≥ 20B. x2 + y2 ≥ 200C. 1/x + 1/y ≤ 1/10D. x + y ≤ 50(答案:D)7、已知a, b, c为正数,且a + b + c = 1,则下列不等式中正确的是?A. a3 + b3 + c3 ≥ 3(abc)2B. a2b + b2c + c2a ≤ 1/3C. abc ≥ (a + b + c)3 / 27D. 1/a + 1/b + 1/c ≤ 1(答案:B)8、设x, y为正实数,且x + y = 6,则下列不等式中错误的是?A. xy ≤ 9B. x2 + y2 ≥ 18C. √(xy) ≥ 3D. 1/x + 1/y ≤ 1/3(答案:D)9、若a, b为正数,且ab = 8,则下列不等式中不成立的是?A. a + b ≥ 4B. a2 + b2 ≥ 16C. 1/a + 1/b ≤ 1/2D. √(a) + √(b) ≤ 4(答案:D)10、已知x, y, z为正数,且x + y + z = 3,则下列不等式中正确的是?A. xyz ≤ 1B. x2 + y2 + z2 ≥ 3C. √(xyz) ≥ (x + y + z)/3D. 1/x + 1/y + 1/z ≥ 3(答案:B)。

基本不等式试题(含答案)

基本不等式试题(含答案)

1. 若a ∈R ,下列不等式恒成立的是( )A .21a a +>B .2111a <+C .296a a +>D .2lg(1)lg |2|a a +>2. 若0a b<<且1a b +=,则下列四个数中最大的是( ) A.12B.22a b + C.2abD.a 3.设x >0,则133y x x=--的最大值为( )A.3 B.3- C.3-D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B.C. D.5. 若x , y 是正数,且141xy+=,则xy 有 ( )A.最大值16 B.最小值116C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥ C .111a b c++≥.a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+ B .111x y +≥ C 2≥ D .11xy≥ 8. a ,b 是正数,则2,2a b aba b++三个数的大小顺序是 ( )A.22a b aba b+≤≤+ 22a b aba b+≤+C.22ab a ba b +≤≤+ D.22ab a ba b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p qx +=B.2p qx +<C.2p qx +≤D.2p qx +≥10. 下列函数中,最小值为4的是 ( ) A.4y x x=+ B.4sin sin y x x=+(0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+11. 函数y =的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的值恒为正,对吗?答 . 15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 已知)R ,10(l o g )(+∈≠>=x a a x x f a 且.若1x 、+∈R2x , 试比较)]()([2121x f x f +与)2(21xx f +的大小,并加以证明.17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值.18. 设()13221+++⋅+⋅=n n a n .证明不等式 ()212)1(2+<<+n a n n n 对所有的正整数n 都成立.§3.4基本不等式经典例题:【 解析】 证法一 假设b a )1(-,c b )1(-,a c )1(-同时大于41,∵ 1-a>0,b>0,∴ 2)1(b a +-≥2141)1(=>-b a ,同理212)1(>+-c b ,212)1(>+-a c .三个不等式相加得2323>,不可能,∴ (1-a )b ,(1-b)c ,(1-c)a 不可能同时大于41.证法二 假设41)1(>-b a ,41)1(>-c b ,41)1(>-a c 同时成立, ∵ 1-a>0,1-b>0,1-c>0,a>0,b>0,c>0,∴641)1()1()1(>---a c c b b a , 即641)1()1()1(>---c c b b a a . (*) 又∵ a a )1(-≤412)1(2=⎥⎦⎤⎢⎣⎡+-a a , 同理b b )1(-≤41,c c )1(-≤41,∴c c b b a a )1()1()1(---≤641与(*)式矛盾, 故a c c b b a )1(,)1(,)1(---不可能同时大于41. 当堂练习:1.A;2.B;3.C;4.D;5.C;6.A;7.B;8.C;9.C; 10.C;11. 12; 12.3600 ;13. 12; 14. 对; 1516. 【 解析】 2121log log )()(x x x f x f a a +=+2log )2(),(log 12121xx x x f x x a a +=+=.∵ 1x 、+∈R x 2, ∴ 22121)2(x x x x +≤.当且仅当1x =2x 时,取“=”号.当1>a 时,有)2(log )(log 2121x x x x a a +≤.∴ ≤)(log 2121x x a )2(log 21x x a +≤.)2(log ]log [log 212121x x x x a a a +≤+. 即)2()]()([212121x x f x f x f +≤+.当10<<a 时,有a a x x log )(log 21≥⋅221)2(x x +. 即).2()]()([212121x x f x f x f +≥+17. (1)10,4⎛⎤ ⎥⎝⎦(2)17418.【 解析】 证明 由于不等式2122)1()1(+=++<+<k k k k k k 对所有的正整数k 成立,把它对k 从1到n(n ≥1)求和,得到212252321++++<<+++n a n n又因2)1(21nn n +=+++ 以及2)1()]12(531[2121225232+=+++++<++++n n n因此不等式()212)1(2+<<+n a n n n 对所有的正整数n 都成立.。

基本不等式训练习题

基本不等式训练习题

基本不等式训练习题一、选择题1. 若a > b,则下列不等式中正确的是()A. a b > 0B. a + b > 0C. a² > b²D. 1/a < 1/b2. 已知x > y,则下列不等式中一定成立的是()A. x y > 0B. x² > y²C. 1/x < 1/yD. x + 1 > y + 13. 若a < b < 0,则下列不等式中正确的是()A. a² < b²B. a b > 0C. ab > 0D. 1/a > 1/b二、填空题1. 若a > b,则a b __________ 0。

2. 已知x < y,且x, y均为正数,则1/x __________ 1/y。

3. 若a < b < 0,则a² __________ b²。

三、解答题1. 已知x > y,证明:x + 1 > y + 1。

2. 已知a > b,且a, b均为正数,证明:a² > b²。

3. 若a < b < 0,证明:ab > 0。

4. 已知x, y为实数,且x + y > 0,证明:x² + y² > 0。

5. 已知a, b为正数,且a > b,证明:1/a < 1/b。

四、综合题1. 已知x, y为实数,且x > y,求证:x² y² > 0。

2. 若a, b, c为实数,且a > b > c,证明:a c > b c。

3. 已知a, b为正数,且a > b,求证:a² + b² > 2ab。

4. 若x, y为实数,且x + y > 0,证明:x² + 2xy + y² > 0。

高中试卷-2.2 基本不等式 练习(1)(含答案)

高中试卷-2.2 基本不等式 练习(1)(含答案)

第二章 一元二次函数、方程和不等式2.2等式性质与不等式性质(共2课时)(第1课时)一、选择题1.(2019·内蒙古集宁一中高一期末)下列不等式一定成立的是( )A .a b2B .a b 2≤C .x +1x ≥2D .x 2+1x 2≥2【答案】D【解析】当a ,b ,x 都为负数时,A,C 选项不正确.当a ,b 为正数时,B 选项不正确.根据基本不等式,有x 2+1x 2≥=2,故选D.2.(2019山东师范大学附中高一期中)已知x >0,函数9y x x=+的最小值是( )A .2B .4C .6D .8【答案】C【解析】∵x >0,∴函数96y x x =+³=,当且仅当x=3时取等号,∴y 的最小值是6.故选:C .3.(2019广东高一期末)若正实数a ,b 满足a +b =1,则下列说法正确的是( )A .ab 有最小值14BC .1a +1b 有最小值4D .a 2+b 2【答案】C【解析】∵a >0,b >0,且a +b =1;∴1=a +b ≥∴ab ≤14;∴ab 有最大值14,∴选项A 错误;=a +b =1+1+=2,∴B 项错误.1a+1b ==1ab ≥4,∴1a +1b 有最小值4,∴C 正确;a 2+b 2=(a +b )2―2ab =1―2ab ≥1―2×14=12,∴a 2+b 2的最小值是12,不是∴D 错误.4.(2019·柳州市第二中学高一期末)若x >―5,则x +4x 5的最小值为( )A .-1B .3C .-3D .1【解析】x +4x5=x +5+4x 5―5≥2×2―5=―1,当且仅当x =―3时等号成立,故选A.5.(2019吉林高一月考)若()12f x x x =+- (2)x >在x n =处取得最小值,则n =( )A .52B .3C .72D .4【答案】B 【解析】:当且仅当时,等号成立;所以,故选B.6.(2019·广西桂林中学高一期中)已知5x 2³,则f(x)= 24524x x x -+-有A .最大值B .最小值C .最大值1D .最小值1【答案】D【解析】()()()2211112122222x f x x x x -+éù==-+³=ê--ëû当122x x -=-即3x =或1(舍去)时, ()f x 取得最小值1二、填空题7.(2019·宁夏银川一中高一期末)当1x £-时,1()1f x x x =++的最大值为__________.【答案】-3.【解析】当1x £-时,()11[(1)111f x x x x x =+=--+--++又1(1)21x x -+-³+,()11[(1)1311f x x x x x =+=--+--£-++,故答案为:-38.(2019·上海市北虹高级中学高一期末)若0m >,0n >,1m n +=,且41m n+的最小值是___.【答案】9【解析】∵0m >,0n >,1m n +=,4()5414519n m m n m n m n m n æö\+=++=+++=ç÷èø…,当且仅当12,33n m == 时“=”成立,故答案为9.9.(2019·浙江高一期末)已知0a >,0b >,若不等式212ma b a b+³+恒成立,则m 的最大值为【答案】9.【解析】由212m a b a b +³+得()212m a b a b æö£++ç÷èø恒成立,而()212225a b a b a b b a æö++=++ç÷èø5549³+=+=,故9m £,所以m 的最大值为9.10.(2019·浙江高一月考)设函数24()(2)(0)f x x x x x=-++>.若()4f x =,则x =________.【答案】2【解析】因为2(2)0y x =-³,当2x =时,取最小值;又0x >时,44y x x=+³=,当且仅当06(,),即2x =时,取最小值;所以当且仅当2x =时,24()(2)f x x x x=-++取最小值(2)4f =.即()4f x =时,2x =.故答案为2三、解答题11.(2016·江苏高一期中)已知a >0,b >0,且4a +b =1,求ab 的最大值;(2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值;(3)已知x <54,求f (x )=4x -2+145x -的最大值;【答案】(1)的最大值;(2)的最小值为5;(3)函数的最大值为【解析】(1),当且仅当,时取等号,故的最大值为(2),当且仅当即时取等号(3)当且仅当,即时,上式成立,故当时,函数的最大值为.12.(2019·福建高一期中)设0,0,1a b a b >>+= 求证:1118a b ab++³ 【答案】可以运用多种方法。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

基本不等式(同步检测)(含解析)—2024-2025学年高一上学期数学必修第一册

基本不等式(同步检测)(含解析)—2024-2025学年高一上学期数学必修第一册

2.2 基本不等式(同步检测)一、选择题1.(多选)已知实数a ,b ,下列不等式一定正确的有( )A.a +b 2≥abB.a +1a ≥2C.|ab +ba|≥2 D.2(a 2+b 2)≥(a +b)22.(多选)下列条件可使b a +ab ≥2成立的是( )A .ab>0 B.ab<0C .a>0,b>0D.a<0,b<03.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2C.22D.44.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A.6.5 m B.6.8 m C.7 mD.7.2 m5.“ab <a 2+b 22”是“a >b >0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知x >0,y >0,且x +y +xy =3,则x +y 的最小值为( )A.2B.3C.22D.237.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )A .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一B .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一C .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一D .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一8.已知a>1,则a +12,a ,2a a +1三个数的大小顺序是( )A.a+12<a<2aa+1B.a<a+12<2aa+1C.2aa+1<a<a+12D.a<2aa+1≤a+129.若-4<x<1,则y=x2-2x+22x-2( )A.有最小值1B.有最大值1C.有最小值-1D.有最大值-1二、填空题10.已知x>3,则x+4x-3的最小值为________11.设x>0,则函数y=x+22x+1-32的最小值为________12.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是________m2.13.二十大报告中提到:“我国制造业规模稳居世界第一”.某公司为提高产能,购买一批新型设备,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则当每台机器运转______年时,年平均利润最大,最大值是______万元.三、解答题14.设a,b,c都是正数,求证:b+ca+c+ab+a+bc≥6.15.已知a,b,c都是正数,且abc=1,证明:1a+1b≥2c.16.已知正数x,y满足4x+y-xy+8=0.求:(1)xy的最小值;(2)x+y的最小值.参考答案及解析:一、选择题1.CD 解析:当a<0,b<0时,a+b2≥ab不成立;当a<0,时,a+1a≥2不成立;因为|a b+b a|=|a b|+|b a|≥2,故C正确;因为2(a2+b2)-(a+b)2=a2+b2-2ab=(a-b)2≥0,所以2(a2+b2)≥(a+b)2,故D正确.故选CD.2.ACD 解析:当且仅当ba=ab>0,即a,b同号时等号成立.故选ACD.3.C 解析:由ab=1a+2b≥22ab,得ab≥22,当且仅当1a=2b时取“=”.4.C 解析:设两直角边分别为a,b,直角三角形的框架的周长为l,则12ab=2,所以ab=4,l=a+b+a2+b2≥2ab+2ab=4+22≈6.828(m).因为要求够用且浪费最少,所以选7 m最合理.5.B 解析:∵a2+b2≥2ab,当且仅当a=b时,等号成立,∴ab<a2+b22⇒a≠b,a,b∈R,∴充分性不成立.∵a>b>0⇒a2+b2>2ab,∴必要性成立.故选B.6.A 解析:∵x+y+xy=3,∴y+1=4x+1,∴x+y=x+1+4x+1-2≥2(x+1)4x+1-2=2,当且仅当x+1=4x+1,即x=y=1时取等号.故选A.7.A 解析:由a+b≥2ab可知ab≤4,当且仅当a=b=2时等号成立,又cd≤(c+d2)2,故c+d≥4,当且仅当c=d=2时等号成立,∴c+d≥ab.故选A.8.C 解析:当a,b是正数时,2aba+b≤ab≤a+b2≤a2+b22,令b=1,得2aa+1≤a≤a+12.又a>1,即a≠b,故上式不能取等号,故选C.9.D 解析:y=x2-2x+22x-2=12[(x-1)+1x-1],又∵-4<x<1,∴x-1<0.∴-(x-1)>0.故y=-12[-(x-1)+1-(x-1)]≤-1.当且仅当x-1=1x-1,即x=0时等号成立.故选D.二、填空题10.答案:7解析:∵x>3,∴x-3>0,4x-3>0.∴x+4x-3=x-3+4x-3+3≥2(x-3)·4x-3+3=7,当且仅当x-3=4x-3,即x=5时,x+4x-3取得最小值7.11.答案:0 解析:y=x+22x+1-32=(x+12)+1x+12-2≥2(x+12)·1x+12-2=0,当且仅当x+1 2=1x+12,即x=12时等号成立.所以函数的最小值为0.12.答案:25 解析:设矩形的一边为x m,矩形场地的面积为y m2,则另一边为12×(20-2x)=(10-x)m,则y=x(10-x)≤[x+(10-x)2]2=25,当且仅当x=10-x,即x=5时,y取最大值25.13.答案:5,8 解析:每台机器运转x年的年平均利润为yx=18-(x+25x),且x>0,故y x≤18-225=8,当且仅当x=5时等号成立,此时年平均利润最大,最大值为8万元.三、解答题14.证明:因为a>0,b>0,c>0,所以ba+ab≥2,ca+ac≥2,cb+bc≥2,所以(b a+a b)+(c a+a c)+(c b+b c)≥6,当且仅当b a=a b,c a=a c,c b=b c,即a=b=c时,等号成立,所以b+ca+c+ab+a+bc≥6.15.证明:因为a,b,c都是正数,且abc=1,所以c=1 ab.所以1a+1b≥21ab=2c,当且仅当1a=1b,即a=b=1c时取等号.故1a+1b≥2c成立.16.解:(1)由题意知x,y为正数,xy-8=4x+y≥24xy=4xy,当且仅当4x=y,即x=1+3,y=4+43时等号成立,则(xy)2-4xy-8≥0,解得xy≥2+23或xy≤2-23(舍去),所以xy≥(2+23)2=16+83,即xy的最小值为16+83.(2)由题意知x,y为正数,4x-xy=-y-8,故x=y+8 y-4,因为x>0,y>0,所以y>4,则x+y=y+8y-4+y=y+12y-4+1=(y-4)+12y-4+5.因为y>4,y-4>0,12y-4>0,(y-4)+12y-4+5≥43+5,即x+y≥43+5,当且仅当y-4=12y-4,即y=4+23时等号成立.所以x+y的最小值为5+43.。

基本不等式练习题(带答案)

基本不等式练习题(带答案)

《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( )A.3 B.3- C.3- D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B.C.D. 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .111abc++≥ D .a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y +≥ C 2≥ D .11xy ≥8. a ,b 是正数,则2,2a baba b++三个数的大小顺序是 ( )A.22a b ab a b ++ 22a b aba b+≤≤+C.22ab a b a b ++ D.22ab a ba b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x=+B.4sin sin y x x =+ (0)x π<<C.e 4e x x y -=+ D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上.11. 函数y =的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 . 14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的最小值为 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤.15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值.18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题二.填空题11.12 12.3600 13. 14.对 三、解答题15 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式1.函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞)D .(2,+∞)2.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是( ).A .0B .1C .2D .33.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1t的最小值为________.利用基本不等式求最值【例1】►(1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; (2)当x >0时,则f (x )=2xx 2+1的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x +1x -1的最小值为________. (2)已知0<x <25,则y =2x -5x 2的最大值为________.(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.利用基本不等式证明不等式【例2】►已知a >0,b >0,c >0,求证:bc a +ca b +abc ≥a +b +c .【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x=3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x=2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝ ⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x ,即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·x y =18, 当且仅当4y x =xy ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +abc ≥2bc a ·ab c =2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a+b +c ),即bc a +ca b +abc ≥a +b +c .【训练2】 证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +ca +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低.【示例】.正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2b a ·2a b =3+2 2.当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【试一试】尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab =2+2=4.当且仅当a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式11 .函数y=x+ -(x>0)的值域为().XA. 2] U [2,+x)B. (0,+x)C. [2 ,+x) D . (2,+x)a +b i2. 下列不等式:①a2+ 1>2a;②- -<2;③/ +三 > 1,其中正确的个数是p ab x 十3().A. 0 B . 1 C. 2 D . 33. 若a>0, b>0,且a + 2b — 2 = 0,则ab的最大值为().1B. 1C. 2D. 414. (2011重庆)若函数f(x) = x+ (x>2)在x= a处取最小值,则a=( ).X —2A. 1+ 2B. 1+ 3C. 3D. 4t2—4t+ 15. 已知t>0,则函数y= t 的最小值为利用基本不等式求最值1 1【例1】?(1)已知x>0, y>0,且2x+y= 1,则x + y的最小值为X y2x2(2)已知0v x v 5,贝U y= 2x—5x2的最大值为________ .⑶若x, y€ (0,+x)且2x+ 8y—xy= 0,贝U x+ y的最小值为_________ .利用基本不等式证明不等式【例2] ?已知a>0, b>0, c>0,求证:bC+ 学+ ab>a+ b+ c.a b c3 1(2010四川)设a>b>0,贝U a2+ + 的最小值是().ab a a—bC. 3⑵当x>0时,贝U f(x)= x2+ 1的最大值为1【训练1】(1)已知x> 1,则f(x) = x+一的最小值为_____________x—I【训练2】已知a>0, b>0, c>0,且a+ b+ c= 1.1 1 1 求证:一+匚+ 9.a b c利用基本不等式解决恒成立问题x【例3】?(2010 山东)若对任意x>0, x2+3x+[三a恒成立,则a的取值范围是 3 1【训练3】(2011宿州模拟)已知x>0, y>0, xy= x+ 2y,若xy>m—2恒成立, 则实数m的最大值是________ .考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为 5 800元,如果墙高为3m,且不计房屋背面的费用•当侧面的长度为多少时,总造价最低?双基自测1.答案 C1 12•解析 ①②不正确,③正确,/ +孑亍二(x 2+ 1) + 齐1 — 1>2—1二1.答案 B13. 解析 v a >0, b >0, a + 2b = 2,二 a + 2b = 2>2.2ab ,即 ab <㊁.答案 A4. 解析 当 x >2 时,x — 2>0, f(x)= (x — 2) + x-—2 + 2>2 寸 x — 2 X ^—^+ 21二4,当且仅当x — 2二严(x >2),即x = 3时取等号,即当f(x)取得最小值时,xx ——2 =3,即a = 3.答案 C t 2—4t + 1 15.解析 v t >0,二 y = t = t +1 — 4>2 — 4= — 2,当且仅当t = 1 时取等 号.答案 —2【例 1】解析(1) v x >0, y >0,且 2x +y = 1,••」+J4 + 4= 3 + y +生3+ 2頁.当且仅当匕空时,取等号.x y x y x y x y2x 2 2 12x十w 2= 1,当且仅当x = J 即x = 1时取等号.答 x +x案(1)3+ 2 2 (2)1 1【训练 1].解析(1) V x > 1,二 f(x)= (x — 1) + — + 1>2+ 1 = 3 当且仅当 xx — 12 1=2 时取等号.(2)y = 2x — 5X 2= x(2 - 5x) = 55x(2 — 5X),5x + 2 一 5x 1—5x >0,.°. 5x(2 — 5x) < 2= 1 ,• y <5 当且仅当 5x = 2— 5x ,2 511 2 8即 x =5时,y max = 5.(3)由 2x + 8y — xy = 0,得 2x + 8y =xy ,「.~ + ~ = 1, 8 2 8y 2x 4y x /4y x• x + y = (x + y) + = 10+ +—= 10 + 2 +_ > 10+ 2X 2X = 18,x y x y x y . x y , 当且仅当 4y = x,即 x = 2y 时取等号,又 2x + 8y — xy = 0,「. x = 12, y = 6, xy•••当 x = 12, y = 6 时,x + y 取最小值 18.答案 (1)3 (2# (3)18【例 2】证明■/a >0, b >0, c >0, • bc + 甲》2 bcca= 2c ; bc + ab >2a b \ a b a c:加2b ; -+瞥2 - Ob - 2a.以上三式相加得:2齐?+学>2(abc ca ab , + b + c),即 + , + 》a + b + c. ’ a b c111a + b + c 【训练2] 证明 ■/ a >0, b >0, c >0,且 a + b + c = 1,二一+乙+一= +a b c a a+七+a+± 二 3+b +c +b +?+a +」3+ ?+a +a +a + e +b b c a a b b c c a b a c b c⑵ v x >0,「. f(x) = x 2+ 2一••• 5x v 2,21> 3+ 2+ 2+ 2= 9,当且仅当a = b = c =3时,取等号. X X 解析 若对任意x > 0x 2+ 3x + [ w a 恒成立,只需求得 尸x 2 + 3x +〔的最大值即 1 ■ x x 1 5当且仅当 可,因为 x > 0,所以 y =x 2+ 3x + 1 = —口W x +—+3 2 x1 1 等号,所以a 的取值范围是5,+^答案 5,+^ 【训练3】解析 由x >0,y >0,xy = x + 2y >2 - 2xy,得 xy > 8,于是由 恒成立,得m — 2<8, m < 10,故m 的最大值为10.答案 10 一 12 【例3.解 由题意可得,造价y = 3(2x X 150+ — X400)+ 5 800= 900 x x = 1时取 m — 2< xy x +16 + 5 x 16 800(0< x < 5),贝U y = 900 x +丁 + 5 800>900X 2入x =号,即x =4时取等号.故当侧面的长度为4米时,总造价最低.正解 Ta >0,b >0, 且 a + b = 1, 1,2 b 2a b 2a a + b (a +b )=1+ 2 + a + 3 + 2 aF = 3 + 22・a +b =1, b = 2a a = b ,当且仅当 【示例】. 1 2 •••_+==a b当且仅当 x X16+ 5 800= 13 000(元),a = 2—1, 1 2即b =2—2时,a +b 的最小值为3+2 2.1 1 1 1 【试一试】 尝试解答]a2 +1 + ~ = a 2 — ab + ab +1 + ~ = a(a — b)+ aba a —b ab a a — b —+ ab+W >2 气 /a a — b •+ 2、/ab^= 2+ 2= 4.当且仅当 a(a — a a — b ab . a a — b ;ab ' 1 1b)=—且ab = ab ,即a = 2b 时,等号成立.答案 D a a — b ab。

(完整版)基本不等式练习题(带答案)

(完整版)基本不等式练习题(带答案)

A. 1 B. a2 b2 C.2ab D.a 2
3. 设 x>0,则 y 3 3x 1 的最大值为 x
( )
A.3 B. 3 3 2 C. 3 2 3 D.-1
4. 设 x, y R, 且x则 y 5, 3x 3y 的最小值是(
2
2
2
2
10. 下列函数中,最小值为 4 的是
( )
A. y x 4 x
B. y sin x 4 (0 x ) sin x
C. y ex 4ex
D. y log3 x 4 logx 3
11. 函数 y x 1 x2 的最大值为
.
The shortest way to do many things is
()
A. a2 b2 c2 2
B. (a b c)2 3
111 C. 2 3
abc
D. a b c 3
7. 若 x>0, y>0,且 x+y 4,则下列不等式中恒成立的是
()
A.
x
1
y
1 4
B. 1 1 1 xy
C. xy 2
D. 1 1 xy
8. a,b 是正数,则 a b , ab, 2ab 三个数的大小顺序是 ( )
12. 建造一个容积为 18m3, 深为 2m 的长方形无盖水池,如果池底和池壁每 m2 的造价为
200 元和 150 元,那么池的最低造价为
元.
13. 若直角三角形斜边长是 1,则其内切圆半径的最大值是
.
14.
若 x, y 为非x2
8( x y
y ) 15 的值恒为正,对吗?答 x
)
A. 10
B. 6 3

基本不等式练习题(带答案)

基本不等式练习题(带答案)

基本不等式练习题(带答案)基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若 $a\in R$,下列不等式恒成立的是()A。

$a^2+1>a$B。

$\frac{1}{2}<a<1$C。

$a^2+9>6a$D。

$\log_{a+1}。

\log_{|2a|}$2.若 $|a|<|b|$ 且 $a+b=1$,则下列四个数中最大的是()A。

$1$B。

$2$C。

$a^2+b^2$D。

$a$3.设 $x>0$,则 $y=3-\frac{3}{x}$ 的最大值为()A。

$3$B。

$\frac{3}{2}$C。

$\frac{3}{4}$D。

$-1$4.设$x,y\in R$,且$x+y=5$,则$3x+3y$ 的最小值是()A。

$10$B。

$6\sqrt{3}$C。

$4\sqrt{10}$D。

$18$5.若 $x,y$ 是正数,且 $\frac{1}{4x^2}+\frac{1}{9y^2}=1$,则 $xy$ 有()A。

最小值 $\frac{1}{36}$B。

最大值 $\frac{1}{36}$C。

最小值 $\frac{16}{9}$D。

最大值 $\frac{16}{9}$6.若 $a,b,c\in R$,且 $ab+bc+ca=1$,则下列不等式成立的是()A。

$a^2+b^2+c^2\ge 2$XXX 3$C。

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge 2$D。

$a+b+c\le 3$7.若 $x>0,y>0$,且 $x+y\le 4$,则下列不等式中恒成立的是()A。

$\frac{x}{x+1}+\frac{y}{y+1}\le 1$B。

$\frac{x}{x+1}+\frac{y}{y+1}\ge 1$C。

$xy\ge 2$D。

$xy\le 1$8.若 $a,b$ 是正数,则$\frac{a+b}{2},\sqrt{ab},\frac{2ab}{a+b}$ 三个数的大小顺序是()A。

基本不等式基础测试题

基本不等式基础测试题
A.1B. C. D.
6.若a>b>0,则下列不等式成立的是()
A.
B.
C.
D.
7.设x>0,则y=3-3x- 的最大值是()
A.3B.3-2
C.3-2 D.-1
8.已知 ,若 ,则 的最小值为()
A.3B.2C. D.1
9.已知 ,则 的最小值为()
A.3B.2
C.4D.1
10.若正实数 ,满足 ,则 的最小值为()
A.2B. C.5D.
11.下列不等式恒成立的是()
A. B.
C. D.
12.若正数 , 满足 ,则 的最小值为 ()
A. B. C. D.2
二、填空题
13.已知x>1,则 的最小值是____.
14.已知 ,当 ___________时, 的最小值为4.
15.若 , ,则 的最小值为__________.
(II)由(I)知,当 时, 的最小值是9,
要使不等式 恒成立,只需

解得 或
实数 的取值范围是
(2)由 知 .
当 或 时, ;
当 时, ,由基本不等式可得 .
当且仅当 ,即当 时等号成立.
综上, 的最大值为 .
【点睛】
本题考查利用基本不等式求最值,在应用基本不等式时,要注意“一正二定三相等”三个条件的成立,考查计算能力,属于基础题.
21.(1) ;(2)
【分析】
利用“一正”,“二定”,“三相等”,关键构造出定值,即可求解.
【详解】
因为
又 , ,所以 ,
所以 ;
当且仅当 时,即 时取等号.
故答案为: .
【点睛】
本题主要考查了基本不等式在求最值中的应用,属于基础题.

基本不等式试题

基本不等式试题

基本不等式试题一、试卷内容1. (10分)若\(a,b\in R^{+}\),且\(a + b = 1\),求\(ab\)的最大值。

2. (10分)已知\(x>0\),求\(y = x+\frac{1}{x}\)的最小值。

3. (10分)若\(a,b\in R^{+}\),\(ab = 1\),求\(a + b\)的最小值。

4. (15分)设\(x,y\in R^{+}\),且\(2x + y = 1\),求\(\frac{1}{x}+\frac{1}{y}\)的最小值。

5. (15分)已知\(a>0,b>0\),\(a + b = 4\),求证:\(\sqrt{ab}\leqslant2\)。

6. (20分)若\(x\in(0,+\infty)\),求函数\(y = \frac{x^{2}+3x + 3}{x + 1}\)的最小值。

7. (10分)设\(a,b\in R^{+}\),\(a^{2}+\frac{b^{2}}{2}=1\),求\(a\sqrt{1 + b^{2}}\)的最大值。

二、答案与解析1. 因为\(a,b\in R^{+}\),根据基本不等式\(ab\leqslant(\frac{a + b}{2})^{2}\),当且仅当\(a = b\)时等号成立。

已知\(a + b = 1\),则\(ab\leqslant(\frac{1}{2})^{2}=\frac{1}{4}\),所以\(ab\)的最大值为\(\frac{1}{4}\)。

2. 因为\(x>0\),根据基本不等式\(y=x+\frac{1}{x}\geqslant2\sqrt{x\times\frac{1}{x}} = 2\),当且仅当\(x=\frac{1}{x}\)即\(x = 1\)时等号成立,所以\(y\)的最小值为\(2\)。

3. 因为\(a,b\in R^{+}\),根据基本不等式\(a + b\geqslant2\sqrt{ab}\),已知\(ab = 1\),则\(a + b\geqslant2\),当且仅当\(a = b = 1\)时等号成立,所以\(a + b\)的最小值为\(2\)。

基本不等式试题

基本不等式试题
不等式
利用矩形对角 线性质证明基
本不等式
利用圆内弦长 与半径关系证 明基本不等式
利用平行四边 形对角线性质 证明基本不等

实际证明
代数证明:利用代数方法,通过变形和推导证明基本不等式 几何证明:利用几何意义,通过图形和面积关系证明基本不等式 函数证明:利用函数性质,通过构造函数和求导证明基本不等式 实际应用证明:利用基本不等式的性质,解决实际问题并验证其正确性
题目:已知 a > 0,b > 0,且 a + b = 1,求证:(a^2 + b^2)/2 ≥ (a + b)^2/4
感谢您的观看
汇报人:XX
基本不等式试题
XX,a click to unlimited possibilities
汇报人:XX
目录
CONTENTS
01 基本不等式概念 02 基本不等式应用 03 基本不等式证明 04 基本不等式变式
05 基本不等式综合题
基本不等式概念
第一章
定义与性质
添加项标题
定义:基本不等式是数学中一个重要的概念,表示两个正数的 平均数总是大于或等于它们的几何平均数。
平方和公式: a²+b²=(a+b)²2ab
算术平均数-几何 平均数: AM≥GM
变形实例
完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$
平方差公式:$a^2 - b^2 = (a+b)(a-b)$
平方和公式:$a^2 + b^2 \geq 2ab$
均值不等式: $\frac{a+b}{2} \geq
平方和与平 方差形式
平方和与积 的和形式

最新基本不等式试题(含答案)

最新基本不等式试题(含答案)

1.若a R ,下列不等式恒成立的是D.— 14. 设x,y • R ,且x • y =5,则3x 3y 的最小值是( )A. 10B. 63C.4.6D.18 35. 若x , y 是正数,且1- =1,则 xy 有 x y()A .最大值16B.最小值丄16C.最小值16D . 最大值丄166. 若 a , b , C €R ,且 ab +bc +ca =1, 则下列不等式成立的是()A. a 2b 2C 2 _2 B 2.(a ■ b ■ C ) - 3C. 1 丄丄_2“3D. a b c_、. 3a b c( A )c . 2ab1 2B .a 2b 2D. a3. 设 x >0,则y =3 —3x —丄的x最 大 值为()A .3B . 3 一 3 -2c . 3- 2. 32. 若 0 ::: a ::: b 且 a • b = 1 , 则下列四个数中最大的是A. a 2 1 aC. a 2 ■ 9 6aD . lg(a 2 1) . lg | 2a |7. 若 x >0, y >0,且 x +y 空4,则下列不等式中恒成立的是A .1 1B .x y 4 丄丄1x yC .,刃一2D 11 xy8. a,b是正数,则a b, ,0b, 2ab三个数的大小顺序是()2 a ba b 2abA. ab <B .•.矶a %2ab2 a+b 2 a b2ab a bC. ab <D. . a^ 2ab a b<a +b 2 a +b 29. 某产品的产量第一年的增长率为P,第一年的增长率为q,设这两年平均增长率为X,则有()A. x = p qB. x :::P qC. qD.x_p q2 2 2 2 10. 下列函数中,最小值为4的是(). 4A. y 二xB. y _sin x 4(0 :::x sin xC. y 二e x 4e丛D. y =log3 x 4log x311. 函数y =x .1「x2的最大值为12. 建造一个容积为18m3,深为2m的长方形无盖水池,如果池底和池壁每m的造价为200元和150元,那么池的最低造价为元. 13. 若直角三角形斜边长是1,则其内切圆半径的最大值是_____ .2 214. 若x, y为非零实数,代数式15的值恒为正,对吗?y x y x15.已知:x2 y2 =a, m2 n2 =b(a,b 0),求m)+ny 的最大值.16.已知f(x) =logx(a ・0且a=1,x R ).若花、x< R ,试比较扣区)")]与f (宁)的大小,并加以证明17.已知正数a,b 满足出=1( 1)求ab的取值范围;(2)求abab的最小值.对所有的正整数n 都成立.§ 3.4基本不等式经典例题:【解析】 证法一 假设(1-a)b ,(1-b)c ,(1-c)a 同时大于寸, T 1 — a >0, b>0,「. (1 一? b > (1 -a)b •,:二寸,18.设a . = .,1 2 • i 2 3 •…一 n n 1 .证明不等式n(n 1) 2:::a nn 12 2同理—丄,(―丄.三个不等式相加得2 .2,不可能,2 2 2 2 2 2二(1 — a )b , (1 — b)c , (1 — c) a 不可能同时大于-.4证法二 假设(1_a)b , (1-b)c 1, (1-c)a 1 同时成立,4441 — a>0 , 1 — b>0 , 1 — c>0 , a>0 , b>0 , c>0 ,1 (1 -a)b(1 -b)c(1 -c)a •64即(1-a)a(1-b)b(1-c)c 右.(*) 又 T (1-a)a < (1 ? a —,11 同理(1 — b)b < , (1-c)c <44(1 —a)a(1 —b)b(1 —c)c < 丄与( * )式矛盾,64故(1 _a)b,(1 _b)c,(1 _c)a 不可能同时大于1.4当堂练习:1.A;2.B;3.C;4.D;5.C;6.A;7.B;8.C;9.C; 1O.C;11.1; 12.23600 ; 13. 2 1;14.2对;15.. ab当且仅当X 1 = X 2时,取“=”号.16. 【解析】为+x 2 f (xj f(X 2)=log a X 1 log a X 2 =log a (X 1X 2), f (2 )=log aX 1 X 2X 1、 X 2 R ,X 1X 2 乞(xX 2)22 )当 a 1 时,有loga^x?) _ log a(X泸).. , 、%+ X2 1 X<H x2…—lo g a(X i X2)乞叮og a (—-). [log a % log a X2]岂log a(- -).2 2 2 2 即![f(X!) f(X2)]乞f(X^^2).2 2当0 .: a :: 1 时,有log a(x i X2)_ log a (勺X2)2•1 为X2即二[f(xj f(X2)] — f (—-).2 217. (1) 0, 1 (2)1 4」17 418.【解析】证明由于不等式k-k(k 1)「(k化2—1对所有的正整数k成立,把它对k从1到n(n > 1)求和,得到又因 1 2「n』如2-3 5 2n -1 1 (n -1)23■ 5潜…卜2^ :::丄[1 3 5 •…(2n 1)]=丄・2 2 2 2 2因此不等式叫」y:丄二】对所有的正整数n都成立.2 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:设xy=k,代入整理得10= x+ ≥2 ,解得1≤k≤ .
5.已知函数y= + 的最大值为M,最小值为m,则 的值为________.
6.(2017·天津卷)若a,b∈R,ab>0,则 的最小值为________.
解析: ≥ =4ab+ ≥2 =4,
当且仅当 即a2= ,b2= 时取等号.
7.(2017·山东卷)若a>b>0,且ab=1,则下列不等式成立的是________.
13.在△ABC中,角A,B,C的对边分别是a,b,c, = ,边c=1,求△ABC的面积最大值.
3.已知正数a,b满足a+b+ + =10,则a+b的取值范围是________.
解析:令a+b=t,则 + =10-t,那么(a+b) =10t-t2=10+ + ≥16,得到不等式t2-10t+16≤0,解得2≤t≤8,即a+b的取值范围是[2,8].
4.已知正实数x,y满足x+ +3y+ =10,则xy的取值范围为________.
1.已知正实数x,y满足x+y=1,则 + 的最小值为________.
解析:令m=x+2,n=y+1,则m+n=4, + = + = + -2;又(m+n) =5+ + ≥9,则 + -2≥ -2= .
2.已知实数x- = -y,则x+y的最大值为________.
解析:由题意有x+y= + ≤2 ,则x+y≤4.
解析:由(2xy-1)2=(5y+2)(y-2)可知 = ,其中y≥2.
那么,得到x- =± ,则x+ = ± ,故只要计算f(y)= + 的最大值即可.
又f(y)= + ,设t= ,则f(t)=t+ =t+ ;再设t+1= cosα,那么f(t)= (cosα+sinα)-1≤ -1,当且仅当t= -1,即y=8+6 时,等号成立
8.若△ABC的三边长a,b,c成等差数列,且a2+b2+c2=84,求实数b的取值范围.
解析:由a+c=2b,(a+c)2≤2(a2+c2)得到a2+c2≥2b2,故84≥3b2,得b≤2 ;又(a-c)2+(a+c)2=2(a2+c2),-b<a-c<b,则2(84-b2)-4b2=(a-c)2<b2,解得b>2 .综上可知b∈(2 ,2 ].
11.已知函数f(x)=2ax2+3b(a,b∈R).若对于任意x∈[-1,1],都有|f(x)|≤1成立,则ab的最大值是________.
解析:由题意不妨设a>0,b>0,此时有 ;
那么,ab≤ b(1-3b)= ·3b(1-3b)≤ · = .
12.若正实数x,y满足(2xy-1)2=(5y+2)(y-2),则x+ 的最大值为________.
9.若正数a,b,c满足 + = +1,则 的最小值是_____b,满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是________,最大值是________.
解析:设向量a,b的夹角为θ,由余弦定理有|a+b|= ,|a-b|= ,令t= + ,则t2=10+2 ∈[16,20],由此可知|a+b|+|a-b|的最大值为2 ,最小值为4.
(1)a+ < <log2(a+b)
(2) <log2(a+b)<a+
(3)a+ <log2(a+b)<
(4) log2(a+b)<a+ <
解析:由题意a>1,0<b<1, <1,log2(a+b)>log22 =1,
2 >a+ >a+b>log2(a+b),所以a+ >log2(a+b),可知(2)正确.
相关文档
最新文档