初中新人教版数学八年级上册12.3角的平分线的性质优质课公开课教学设计版本1.

合集下载

八年级数学上册 12.3 角的平分线的性质(第1课时)教案 (新版)新人教版-(新版)新人教版初中八

八年级数学上册 12.3 角的平分线的性质(第1课时)教案 (新版)新人教版-(新版)新人教版初中八

12.3 角的平分线的性质(第1课时)教学目标1.会用尺规作一个角的平分线,知道作法的合理性.2.探索并证明角的平分线的性质.3.能用角的平分线的性质解决简单问题.教学重点角平分线的性质定理,逆定理及它们的应用.教学难点角平分线定理和逆定理的应用.教学内容角平分线的画法及性质.教学过程一、导入新课教师提出问题:在练习本上画一个角,怎样得到这个角的平分线?学生可以借助用量角器度量,也可用折纸的方法得到这个角的平分线.教师指出在生产生活中,这些方法是不可取的.二、探究新知1.平分角的仪器右图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?让学生通过前面学过全等三角形的“边边边”判定法证明△ADC和△ABC全等,可以说明这个仪器的制作原理.2.角平分线的画法让学生思考刚才平分角的仪器原理,得到画角平分线的方法.在此过程中,教师可对学生在作图中的情况及时加以点评.已知:∠AOB.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.(2)分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线OC,射线OC•即为所求(下图).3.角平分线的性质如下图,让学生任意作一个角∠AOB,作出∠AOB的平分线OC,在OC上任取一点P,过点P画出OA,OB的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?通过动手实验比较,我们可以猜想角平分线有以下性质:角的平分线上的点到角的两边的距离相等.如上图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS).∴PD=PE.数学语言:∵ PD⊥OA,PE⊥OB,点P在∠AOB的平分线上(已知),∴ PD=PE.提示:角平分线的性质主要是用于判断和证明两条线段相等,与以前的方法相比,运用此性质不需要先证两个三角形全等.4.证明几何命题的一般步骤教师引导学生通过推导角的平分线的性质的过程,概括归纳出证明几何命题的一般步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程.三、课堂小结1.知道角平分线的画法及性质.2.能用角平分线的性质解决简单的问题.3.记住证明几何命题的一般步骤.四、布置作业习题第2题.教学反思:。

八年级数学上册 12.3 角的平分线的性质 第1课时 角的平分线的性质教案 (新版)新人教版

八年级数学上册 12.3 角的平分线的性质 第1课时 角的平分线的性质教案 (新版)新人教版

八年级数学上册12.3 角的平分线的性质第1课时角的平分线的性质教案(新版)新人教版一. 教材分析《角的平分线的性质》是八年级数学上册12.3节的内容,本节课的主要内容是让学生掌握角的平分线的性质,并能够运用角的平分线解决一些简单的几何问题。

在教材中,已经给出了角的平分线的性质的定义和证明,学生在学习本节课之前,已经掌握了角的概念、角的大小比较、角的平分线定义等知识。

二. 学情分析八年级的学生已经具备了一定的几何知识,对于角的概念、角的大小比较等知识有一定的了解。

但是,对于角的平分线的性质,学生可能还没有听说过,因此,教师需要通过导入环节,激发学生的学习兴趣,引导学生主动探索角的平分线的性质。

三. 教学目标1.了解角的平分线的性质,并能够运用角的平分线解决一些简单的几何问题。

2.培养学生的观察能力、推理能力、动手能力。

3.激发学生的学习兴趣,培养学生的合作意识。

四. 教学重难点1.角的平分线的性质的证明。

2.运用角的平分线解决几何问题。

五. 教学方法1.引导探究法:教师引导学生通过观察、推理、动手操作等方法,探索角的平分线的性质。

2.案例分析法:教师通过给出一些具体的几何问题,让学生运用角的平分线进行解决。

3.小组合作法:教师学生进行小组合作,共同探讨角的平分线的性质,并解决一些几何问题。

六. 教学准备1.教学PPT:教师需要准备角的平分线的性质的教学PPT,包括角的平分线的性质的定义、证明、应用等内容。

2.几何图形:教师需要准备一些几何图形,用于引导学生观察、推理。

3.练习题:教师需要准备一些练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾角的概念、角的大小比较等知识,然后引入角的平分线的概念,并提问:角的平分线有什么性质呢?2.呈现(15分钟)教师通过PPT呈现角的平分线的性质的定义和证明,让学生观察并理解角的平分线的性质。

3.操练(10分钟)教师给出一些几何图形,让学生运用角的平分线的性质进行判断和解决。

人教版数学八年级上册教学设计12.3《角的平分线的性质》

人教版数学八年级上册教学设计12.3《角的平分线的性质》

人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。

本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。

这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。

教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。

但是,对于角的平分线的性质,学生可能较为陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。

三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:角的平分线的性质。

2.难点:如何运用角的平分线的性质解决实际问题。

五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。

2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。

3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。

六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。

2.学生准备:笔记本、尺子、圆规等学习工具。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。

2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。

同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。

3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。

人教版数学八年级上册12.3.1角的平分线的性质教学设计

人教版数学八年级上册12.3.1角的平分线的性质教学设计
-第2题:判断以下说法是否正确:一个角的平分线上的任意一点到这个角的两边的距离相等。
2.能力提升:完成课本练习题12.3.1第3、4题,培养学生运用角的平分线性质解决问题的能力。
-第3题:已知等腰三角形ABC,底边BC上的中线AD是角BAC的平分线,求证:AD垂直于BC。
-第4题:平行线l和m被第三条直线n所截,形成四个角,如果∠1是∠2的平分线,证明∠3等于∠4。
(三)情感态度与价值观
1.学生在探索角的平分线性质的过程中,体验数学发现的乐趣,激发学习数学的兴趣。
2.学生通过解决实际问题,体会数学在生活中的应用,增强数学学习的实用性。
3.学生在小组合作中,学会尊重他人,倾听他人意基础上,培养严谨、细致的学习态度,提高自信心。
b.练习二:结合其他几何知识,解决综合问题,提高学生的综合运用能力。
c.教师对学生的练习进行评价,及时反馈,指导学生改进。
(五)总结归纳
1.教学内容:总结本节课所学知识,形成知识体系。
2.教学方法:教师引导学生进行回顾、总结,提炼知识点。
3.教学过程:
a.教师提问:“本节课我们学习了哪些内容?角的平分线的性质是什么?”
(二)教学设想
1.教学方法:
(1)采用情境导入法,以实际问题引入本节课内容,激发学生学习兴趣。
(2)运用探究式教学法,引导学生观察、操作、探索,发现角的平分线性质。
(3)组织小组合作,让学生在交流讨论中巩固知识,提高解决问题的能力。
(4)通过练习和总结,巩固所学知识,形成知识体系。
2.教学策略:
(1)差异化教学:针对学生的认知水平和空间想象力差异,设计不同难度的问题,使每位学生都能在课堂上得到锻炼和提升。
3.实践应用:结合实际情境,设计一道角的平分线相关的实际问题,要求学生运用本节课所学知识解决。

人教版八年级数学上册12.3角平分线的性质优秀教学案例

人教版八年级数学上册12.3角平分线的性质优秀教学案例
3.小组合作:组织学生进行小组讨论和合作,培养了学生的团队合作能力和交流沟通能力,同时也提高了学生的学习效果。
4.反思与评价:教师引导学生进行自我反思和评价,让学生从他人的反馈中认识到自己的优点和不足,促进了学生的持续发展。
5.作业小结:布置具有针对性的作业,让学生巩固和应用所学知识,培养了学生的应用意识和实践能力。同时,教师对学生的作业进行及时批改和反馈,引导学生进行改进和提高。
四、教学内容与过程
(一)导入新课
1.利用多媒体平分线的实际意义。
2.提出问题:“你们在生活中有没有遇到过需要用到角平分线的情景?角平分线有什么特殊性质吗?”激发学生的好奇心和求知欲。
3.回顾已学过的角的相关知识,如角的概念、分类和度量,为学生学习角平分线的性质打下基础。
3.设计具有挑战性的练习题,让学生在解决问题的过程中,巩固和应用角平分线的性质,提高学生的解题能力。
(三)小组合作
1.组织学生进行小组讨论和合作,共同探索角平分线的性质,培养学生的团队合作能力和交流沟通能力。
2.引导学生相互启发、借鉴和补充,激发学生的创意思维,提高学生的学习效果。
3.鼓励学生展示自己的研究成果,培养学生的表达能力和自信心的同时,也让其他学生从中学习和借鉴。
(二)讲授新知
1.介绍角平分线的定义:角平分线是将一个角平分为两个相等角的线段。
2.讲解角平分线的性质,包括角平分线上的点到角的两边的距离相等,角平分线可以将角分为两个相等的角等。
3.通过几何图形和动画,直观地展示角平分线的性质,让学生理解和掌握。
4.引导学生发现和总结角平分线的性质规律,培养学生的逻辑思维能力。
2.利用多媒体展示角平分线的图形和动画,让学生直观地观察和理解角平分线的性质,激发学生的学习兴趣。

人教版数学八年级上册12.3角的平分线的性质(第一课时)优秀教学案例

人教版数学八年级上册12.3角的平分线的性质(第一课时)优秀教学案例
(三)小组合作
1.将学生分成小组,鼓励他们相互合作、共同探究角的平分线的性质。
2.设计小组活动,让学生通过实际操作、讨论交流等方式,共同完成任务,培养学生的团队合作能力和沟通能力。
3.引导学生互相评价、互相学习,培养学生的自我反思能力和批判性思维能力。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结学习经验和方法,提高学生的自我学习能力。
3.小组合作的教学方式:将学生分成小组,鼓励他们相互合作、共同探究角的平分线的性质。设计小组活动,让学生通过实际操作、讨论交流等方式,共同完成任务,培养学生的团队合作能力和沟通能力。这种小组合作的教学方式使学生在互动中学习,提高了学生的合作能力和团队精神。
4.反思与评价的环节:教师引导学生对自己的学习过程进行反思,总结学习经验和方法,提高学生的自我学习能力。同时,教师通过观察、提问、点评等方式,对学生的学习情况进行评价,给予肯定和指导,促进学生的成长和发展。这种反思与评价的环节使学生能够及时发现自己的不足,调整学习策略,提高学习效果。
4.学生能够在团队协作中,学会尊重他人,培养合作精神和团队意识。
5.学生能够认识到学习是一种责任,培养良好的学习习惯和态度。
三、教学策略
(一)情景创设
1.生活情境:通过展示实际生活中的图片或场景,让学生观察并发现其中的角的平分线现象,引发学生对角的平分线的兴趣和好奇心。
2.问题情境:提出与角的平分线相关的问题,激发学生的思考和探究欲望,引导学生主动参与学习活动。
本节课的教学目标如下:
1.让学生通过观察、操作和推理,掌握角的平分线的性质,并能运用其解决实际问题。
2.培养学生的观察能力、操作能力和推理能力,提高他们运用数学知识解决实际问题的能力。

人教版数学八年级上册12.3角的平分线的性质(第一课时)教学设计

人教版数学八年级上册12.3角的平分线的性质(第一课时)教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:角的平分线的定义、性质及其应用。
2.难点:
(1)角的平分线性质的推理与证明。
(2)运用角的平分线性质解决实际问题,如构造等腰三角形、解决角度分配问题等。
(二)教学设想
1.教学方法:
(1)采用直观演示法,通过动态图示、实际操作等方式,让学生直观感受角的平分线的形成过程,为理解性质打下基础。
2.教师总结:
(1)强调角的平分线的定义及性质。
(2)指出角的平分线在实际问题中的应用价值。
(3)鼓励学生继续探索几何知识,提高自己的空间观念和逻辑思维能力。
五、作业布置
为了巩固本节课所学的角的平分线的性质,提高学生的应用能力,特布置以下作业:
1.基础练习题:
(1)完成课本习题12.3第1题,判断下列各图中,哪些是角的平分线,并说明理由。
(1)联系生活实际,设计一道角的平分线性质的应用题,要求解题步骤详细,答案正确。
(2)运用角的平分线性质,解决一道实际生活中的问题,如角度分配、构造图形等。
4.思考题:
(1)思考:如何运用角的平分线性质求解等腰三角形的顶角?
(2)思考:在平面几何中,角的平分线有哪些重要性质?它们在解决实际问题中有什么作用?
3.生活实例导入:通过生活中的实例,如红绿灯的指示牌、墙壁上的挂钟等,让学生感受到角在生活中的应用,激发学生的学习兴趣。
4.提出问题:引导学生思考如何将一个角平均分成两个相等的角。从而引出本节课的主题——角的平分线。
(二)讲授新知
1.角的平分线的定义:介绍角的平分线的概念,强调角的平分线将一个角分成两个相等的角。
(2)新课:以直观演示、问题驱动方式引入角的平分线的定义和性质,让学生通过自主探究、小组合作等方式掌握性质。

八年级数学上册 12.3 角的平分线的性质 第1课时 角的平分线的性质教学设计 (新版)新人教版

八年级数学上册 12.3 角的平分线的性质 第1课时 角的平分线的性质教学设计 (新版)新人教版

八年级数学上册 12.3 角的平分线的性质第1课时角的平分线的性质教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.3节讲述了角的平分线的性质。

这部分内容是在学生已经掌握了角的概念、角的计算、线段的性质等基础知识的基础上进行讲解的。

角的平分线的性质是数学中的重要概念,对于学生理解和应用角的概念有重要意义。

本节课的内容包括角的平分线的定义、角的平分线的性质及其应用。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于角的概念和线段的性质有一定的了解。

但是,对于角的平分线的性质及其应用可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探究来理解角的平分线的性质,并能够运用角的平分线解决实际问题。

三. 教学目标1.知识与技能:使学生理解角的平分线的性质,能够运用角的平分线解决实际问题。

2.过程与方法:通过观察、思考、探究,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 教学重难点1.重点:角的平分线的性质。

2.难点:角的平分线的性质的应用。

五. 教学方法采用问题驱动法、合作探究法、讲解法等教学方法。

通过问题引导学生思考,合作探究来理解角的平分线的性质,讲解法来讲解角的平分线的性质及其应用。

六. 教学准备1.准备相关的教学材料,如PPT、黑板、粉笔等。

2.准备一些实际问题,用于引导学生运用角的平分线解决实际问题。

七. 教学过程1.导入(5分钟)通过复习角的概念、角的计算、线段的性质等基础知识,引导学生进入新的学习内容。

2.呈现(10分钟)讲解角的平分线的定义,角的平分线的性质。

通过PPT展示角的平分线的性质的图示和解释,让学生直观地理解角的平分线的性质。

3.操练(10分钟)讲解角的平分线的性质的应用。

通过一些实际问题,引导学生运用角的平分线解决实际问题。

让学生在解决问题的过程中,加深对角的平分线的性质的理解。

人教版数学八年级上册12.3角平分线的性质教学设计

人教版数学八年级上册12.3角平分线的性质教学设计
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成小组,并给出一些实际的几何问题,让学生运用角平分线的性质进行解决。例如,证明一条线段是某个角的平分线,或者求解一个角的度数等。学生会在小组内进行讨论和合作,共同解决问题。通过这样的讨论,学生能够更好地理解和运用角平分线的性质,并培养他们的合作和交流能力。
2.实践性作业:我会设计一些实际问题,让学生运用所学的角平分线性质进行解决。例如,设计一道题目要求学生测量一张纸张的某个角的平分线长度,或者求解一个实际图形中某个角的度数等。通过这样的实践性作业,学生能够将所学的知识运用到实际问题中,提高他们的实践操作能力。
3.合作性作业:我会设计一些需要学生合作完成的作业,让他们在小组内进行讨论和交流。例如,设计一道题目要求学生共同探究角平分线的性质,并用自己的语言进行描述和证明。通过这样的合作性作业,学生能够培养合作和交流的能力,提高他们的团队协作能力。
(三)情感态度与价值观
在本节课的教学中,学生将培养以下情感态度和价值观:
1.对数学学习的兴趣:学生通过观察和实验,发现角平分线的性质,增强对数学学习的兴趣;
2.探究精神:学生在探索角平分线的性质的过程中,培养独立思考和解决问题的能力;
3.合作意识:学生在与同伴的合作与交流中,培养团队协作的能力,提高沟通和表达能力;
4.严谨态度:学生在学习和证明角平分线的性质时,培养严谨的科学态度,注重细节和逻辑性。
二、学情分析
在开展人教版数学八年级上册12.3角平分线的性质的教学之前,对学生的学情进行分析是必要的。首先,学生在之前的学习中已经掌握了角的概念、线段的长度等基础知识,具备了一定的几何图形观察和推理能力。然而,对于角平分线的性质,他们可能还没有直观的认识,需要通过观察、实验和证明来建立。

人教版数学八年级上册12.3角的平分线的判定教学设计

人教版数学八年级上册12.3角的平分线的判定教学设计
4.能够运用角的平分线性质解决相关问题,如求角的度数、证明线段相等或比例关系等。
(二)过程与方法
1.采用探究式教学方法,引导学生从实际操作中发现角的平分线的判定定理,培养学生的观察能力和逻辑思维能力。
2.通过小组合作、讨论交流等形式,让学生在合作中学习,提高解决问题的能力和团队协作精神。
3.设计具有梯度性的练习题,使学生在巩固基础知识的同时,逐步提高解题能力,培养良好的学习习惯。
(三)学生小组讨论
1.教学活动:教师给出几个实例,让学生分组讨论如何找出这些角的平分线。
2.小组讨论:学生在小组内分享自己的思考过程,讨论如何运用角的平分线判定定理解决问题。
3.教师指导:教师巡回指导,对学生的疑问进行解答,引导学生运用角的平分线性质解决问题。
(四)课堂练习
1.教学内容:教师布置以下练习题,让学生独立完成。
a.判断题:判断下列各题中,哪个是角的平分线。
b.解答题:已知一个角的度数,求这个角的平分线。
c.应用题:运用角的平分线性质解决实际问题。
2.解答与讲解:教师选取部分学生的答案进行展示和讲解,指出解题过程中的关键步骤和注意事项。
(五)总结归纳
1.教学内容:教师引导学生回顾本节课所学内容,总结角的平分线的定义、性质和判定定理。
1.学生在空间想象力方面的发展水平,引导他们通过实际操作,将抽象的角的平分线概念具体化、形象化。
2.学生在逻辑推理能力上的差异,针对不同水平的学生设计不同难度的问题,使他们在解决问题的过程中逐步提高推理能力。
3.学生在团队合作中的表现,鼓励他们积极参与讨论,学会倾听他人意见,提高沟通能力和团队协作精神。
4.培养学生的创新意识,鼓励他们敢于尝试、勇于探索,形成独立思考的能力。

12.3 角的平分线的性质(1) 人教版八年级数学上学期教案

12.3 角的平分线的性质(1) 人教版八年级数学上学期教案

放在角的顶点,ADBA(3)画射线AC.∴射线AC 即为所求.【三】巩固练习已知:OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E (课本图11.3─4)求证:PD=PE .证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO=∠PEO=90°在△PDO 和△PEO 中,∴△PDO ≌△PEO (AAS ) ∴PD=PE如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =120°,求∠MAB 的度数.解析:根据AB ∥CD ,∠ACD =120°,得出∠CAB =60°,再根据AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:∵AB ∥CD ,∴∠ACD +∠CAB =180°,又∵∠ACD =120°,∴∠CAB =60°,由作法知,AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC =12×4×2+12AC ×2=7,解得AC =3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.拓展延伸,巩固强化知识。

【五】布置作业1.课本练习2.同步练习对应习题OCN别为点D、E.∴ PD=PE二次备课。

人教版八年级数学上册12.3.1《角的平分线的性质》教学设计

人教版八年级数学上册12.3.1《角的平分线的性质》教学设计
(二)过程与方法
在学习《角的平分线的性质》的过程中,引导学生:
1.通过实际操作,观察和思考,发现角的平分线的性质,培养观察能力和探究精神;
2.学会运用尺规作图法,提高动手操作能力;
3.通过小组讨论、合作交流,培养学生的团队协作能力和口头表达能力;
4.运用角的平分线性质解决实际问题,提高学生分析问题和解决问题的能力。
2.尺规作图技巧不够熟练,影响角的平分线的准确作出;
3.在运用角的平分线性质解决实际问题时,分析问题和解决问题的能力有待提高。
针对以上学情,教师在教学过程中应关注以下几点:
1.强化角的平分线概念的教学,通过直观演示和实例分析,帮助学生深入理解;
2.注重尺规作图技巧的培养,引导学生动手实践,提高作图能力;
4.请同学们撰写学习心得,总结自己在学习《角的平分线的性质》这一章节过程中的收获和困惑,以及对今后学习的期望。
5.选做作业(拓展提高):
a.了解并掌握其他几何作图方法,如:等分线段、作垂线等;
b.阅读相关数学资料,了解角的平分线在古代建筑、艺术等方面的应用;
c.探究角的平分线与对称轴的关系,以及它们在实际问题中的应用。
二、学情分析
八年级学生在学习《角的平分线的性质》这一章节时,已经具备了角的初步认识、相交线与平行线的基础知识,以及简单的几何推理能力。在此基础上,他们对角的平分线的概念和性质的学习具备了一定的基础。然而,由于学生对几何图形的认识和理解程度不同,他们在掌握角的平分线性质方面可能存在以下问题:
1.对角的平分线概念的理解不够深入,容易与相似概念混淆;
3.教师引导学生观察作的平分的角,角的平分线上的点到角的两边的距离相等。
4.教师给出相关性质的定义和符号表示,让学生学会如何用数学语言描述角的平分线。

人教版八年级数学上册12.3角的平分线的性质(第1课时)一等奖优秀教学设计

人教版八年级数学上册12.3角的平分线的性质(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级上册
11.3 角的平分线的性质(1) (第1课时)教学设计
一、教材分析
(一)、地位作用:角平分线的性质反映了角的平分线的基本特征,也是证明两条线段相等的常用方法。

角的平分线的性质的研究过程为以后学习线段垂直平分线的性质提供了思路和方法。

本节内容是全等三角形知识的运用和延续。

用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质。

角平分线的性质证明提供了使用角的平分线的一种重要模式---利用角平分线构造两个全等的直角三角形,进而证明相关元素对应相等。

(二)、教学目标
(1)会用尺规作一个角的平分线,知道作法的合理性;
(2)探索并证明角的平分线的性质;
(3)能角的平分线的性质解决简单问题。

(三)、教学重、难点
基于以上分析,确定本节课的教学重难点是:探索并证明角的平分线的性质。

二、教学准备:多媒体课件、导学案、长方形纸片
三、教学过程。

人教版-数学-八年级上册-12.3 角的平分线的性质(1) 教案

人教版-数学-八年级上册-12.3 角的平分线的性质(1)  教案

12.3 角的平分线的性质一、教学目标(一)核心素养(二)学习目标会用尺规作一个角的平分线,知道作法的合理性;探索并证明角平分线的性质;能用角的平分线的性质解决简单问题.(三)学习重点角的平分线的性质的证明及应用.(四)学习难点角的平分线的性质的探究.二、教学设计(一)课前设计预习任务用尺规作图作一个角的平分线的方法,其依据是SSS .角的平分线上的点到角的两边的距离相等.预习检测一、填空题1.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=8cm,BD=5cm,则点D到AB的距离为.答案:3cm解析:根据题意画出图形,过点D作DE⊥AB,交AB于点E,D点到AB的距离即为DE 的长.∵∠BCA=90°∴AC⊥BC∵AC⊥BC,DE⊥AB,AD平分∠CAB∴CD=DE∵BC=8cm,BD=5cm,CD=DE,BC=CD+BD∴DE=3cm即D点到直线AB的距离是3cm.点拨:根据角平分线的性质添加辅助线作答2.∠AOB的平分线上一点P,P到OA的距离为2.5cm,则P到OB的距离为cm.答案:2.5解析:∵P是∠AOB平分线上一点,点P到OA的距离是2.5cm,∴P到OB的距离等于点P到OA的距离,为2.5cm.因此,本题正确答案是:2.5.点拨:根据角平分线上的点到角的两边的距离相等解答.二、选择题3.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PEB.OD=OEC.∠DPO=∠EPOD.PD=OD答案:D解析:A项;由角分线性质,正确B项;由角分线性质知PD=PE,由HL知Rt△OEP≌△ODP,则两三角形全等知OD=OE,正确.C项;同B项,由两三角形全等知∠DPO=∠EPOD项;错误点拨:由题设可知OP为∠AOB的角平分线,PE为P到OB的距离,PD为P到OA的距离,再由角的平分线性质判断即可.可由角分线的性质找出相应的结论.(二)课堂设计1.知识回顾(1)三角形的判断方法有哪些?SSS,SAS,AAS,ASA,HL(2)三角形中有哪些重要线段?三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.(3)从直线外一点到这条直线的垂线段的长叫做点到直线的距离.2.问题探究探究一角的平分线的作法●活动①请同学们拿出准备好的角,用你自己的方法画出它的角平分线,然后与大家交流分享.【设计意图】通过学生动手实践,寻找作已知角的平分线的方法,目的是为了引入尺规作图作已知角的平分线.12BD●活动②如图是一个平分角的仪器,其中AB=AD ,BC=DC.将点A 放在角的顶点,AB 和AD 沿着角的两边放下,画一条射线AE ,AE 就是∠DAB 的平分线. 你能说明它的道理吗?让同学们把推理过程写在课堂作业本上,老师巡查学生完成情况,对个别学生进行引导,最后教师把有典型错误的解答过程展示出来,让同学们去纠正错误.【设计意图】为如何用尺规作图作已知角的平分线作铺垫.●活动③老师提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:已知:∠MAN求作:∠MAN 的角平分线.作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.(2)分别以 B.D 为圆心,大于 的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC.∴射线AC 即为所求.分组讨论: 1.在上面作法的第二步中,去掉“大于12BD的长”B这个条件行吗?2.第二步中所作的两弧交点一定在∠MAN的内部吗?学生讨论结果总结:1.去掉“大于12BD的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以B.D为圆心,大于12BD的长为半径画两弧,两弧的交点可能在∠MAN的内部,也可能在∠MAN的外部,而我们要找的是∠MAN内部的交点,否则两弧交点与顶点连线得到的射线就不是∠MAN的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练:任意画一角∠AOB,作它的平分线.【设计意图】设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯探究二角的平分线的性质●活动①如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,三条折痕分别表示什么?你能得出什么结论?学生回答后师生归纳:OC表示∠AOB的角平分线,PD和PE分别表示P到OA和OB的距离,P到角两边的距离相等(PD=PE)【设计意图】让学生感知角平分线的性质.●活动②学生活动:作已知∠AOB的平分线,过平分线上一点P,作两边的垂线段.投影出下面两个图形,让学生评一评.结论:同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点作两边的垂线段,所以他的画法不符合要求.问题1:如何用文字语言叙述所画图形的性质?师生共同归纳:角平分线上的点到角的两边的距离相等.问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话?已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D.E为垂足.由已知事项推出的事项:PD=PE.【设计意图】进一步理解角平分线的题设和结论.●活动③以上结论成立吗?让同学们独立进行证明,然后展示学生的证明过程:证明:∵PD⊥OA,PE⊥OB (已知)∴∠PDO = ∠PEO=90°(垂直的定义)在△PDO和△PEO中∠PDO = ∠PEO(已证)∠AOC = ∠BOC (已知)OP=OP (公共边)∴△PDO ≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)于是我们得角的平分线的性质:角的平分线上的点到角的两边的距离相等.符号语言:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,垂足分别为点D.E.(已知)∴PD=PE(角的平分线上的点到角的两边的距离相等)【设计意图】展示符号语言的目的在于规范学生的书写过程,培养学生严谨的推理能力.探究三用角的平分线的性质解决简单问题●活动①应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.例1(1) 下面四个图中,点P都在∠AOB的平分线上,则图形( )中PD=PE.A B C D【知识点】角平分线的性质.【思路点拨】利用角平分线的性质时,非常重要的条件是PD和PE是到角两边的距离.【解答过程】选项A中如果增加一个条件OD=OE,就能得出PD=PE;选项B和C中PD不是到OA的距离;选项D中P到OA和OB的距离为PD和PE.【答案】D(2)下图中,PD⊥OA,PE⊥OB,垂足分别为点D.E,则图中PD=PE吗?【知识点】角平分线的性质.【思路点拨】已知没有告诉OC为∠AOB的平分线,由此PD与PE不相等.【解答过程】PD与PE不相等,因为OC不是∠AOB的平分线.(3)如图,△ABC中,∠C=90°,BD平分∠ABC,CD=2cm,则点D到AB的距离为cm.【知识点】角平分线的性质.【思路点拨】过D作AB的垂线段DE,垂足为E,由BD平分∠ABC,可得DC=DE=2.【解答过程】解:过D作AB的垂线段DE,垂足为E,∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴DC=DE∵CD=2cm,∴DE=2cm,即点D到AB的距离为2cm【答案】2练习:如图,△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB,垂足为点E,AC=7cm,则AD+DE= cm.EDCBA【知识点】角平分线的性质.【思路点拨】由BD平分∠ABC,可得DC=DE,AD+DE=AD+DC=AC.【解答过程】解:∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴DC=DE∴AD+DE=AD+DC=AC.∵AC=7cm,∴AD+DE=7cm.【答案】7【设计意图】通过练习,理解角平分线的性质.●活动②例2如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?【知识点】角平分线的性质【思路点拨】1.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常以厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1 m=100 cm,所以比例尺为1:20 000,其实就是图中1 cm表示实际距离200 m的意思.作图如下:【答案】第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=2.5 cm,确定C点,C点就是集贸市场所建地了.练习:在S区有一个贸易市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?【知识点】角平分线的性质【思路点拨】过P分别作公路和铁路的垂线段,这两条垂线段就是P点到公路和铁路的最短距离.【答案】过P点分别作铁路和公路的垂线段,它们的数量关系为相等.●活动3例3如图,△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,F在BC上,AD=DF 求证:CF=EA【知识点】角平分线的性质和三角形的判定和性质S公路铁路P初中-数学-打印版【思路点拨】证CF和EA所在的两个三角形全等【解答过程】证明:∵∠C=90°,BD平分∠ABC,DE⊥AB于E,∴DC=DE又∵AD=DF∴△DCF≌△DEA(HL)∴CF=EA练习:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:OB=OC.【知识点】角平分线的性质和全等三角形的判定【思路点拨】利用角平分线的性质可得OD=OE,证明△BOD ≌△COE可得OB=OC 【答案】证明:∵CD⊥AB,BE⊥AC,AO平分∠BAC,∴OD=OE,∠BDO=∠CEO=90°.∵∠BOD=∠COE,∴△BOD ≌△COE.∴OB=OC.3. 课堂总结知识梳理(以课堂内容为根据,结合教学目标的几点要求,对涉及到的知识细致梳理)(1)会用尺规作一个角的平分线,知道作法的理论依据;(2)探索并证明角平分线的性质;(3)能用角的平分线的性质解决简单问题.重难点归纳(本节课的中心知识点在此进行回顾,对课堂上的典型方法、特殊例题进行归纳点拨)(1)角的平分线的性质的探究.(2)角的平分线的性质的证明及应用.(3)证明线段相等通常证明线段所在的两个三角形全等.初中-数学-打印版。

人教版八年级上册12.3角的平分线的性质公开课教案

人教版八年级上册12.3角的平分线的性质公开课教案
下结论:射线OC即为所求.
练习1如图,点D在△ABC的AB边上,且∠ACD=∠A.
(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,判断直线DE与直线AC的位置关系并证明.
(请学生上台板演)
(三)探究:角的平分线的性质
问题4请同学们测量PD,PE并作比较,你得到什么结论?在OC上再任意取两个点试一试,并把数据填表格中.写出你的猜想!
回顾知识,引入新课。
通过教师演示,学生模仿,发现并说出理由,锻炼学生应用所学知识解决问题的能力。
启发学生,学生自行尝试,自我探究,培养学生自我解决问题的能力.
及时巩固练习,使知识内化,形成能力。练习1巩固角平分线的尺规作图,(2)是基于九班的学生基础较好,所以加深了难度,另一个意图是想趁学生思考第二小题的时间,教师好全班过一遍,看学生作图是否全掌握.
作图,巩固作图方法。
学生动手,在图形上取几点,测量长度,进行对比。得出结论
,并记录,学会表述实验的结果.
学生写出完整证明过程,注意全等条件的准备,思路顺畅,格式规范。
学生记录,定理的文字语言,符号语言,和图形语言的归纳统一.学生要掌握这三步骤
学生独自思考
交流讨论
集体交流,共同归纳总结。
学生反思整节课,学到了什么,并且做出自我总结.
思考题如图:AD∥BC,DC⊥AD,AE平分∠BAD,且E是DC的中点,问AD,BC与AB之间的关系.
四、课堂小结
(1)角的平分线的尺规作图
(2)角的平分线的性质:
角的平分线上的点到角的两边的距离相等.
∵点P在∠AOB的平分线上
PD⊥OA,PE⊥OB
∴PD=PE
(3)如何证明一个几何命题

人教版八年级数学上册12.3.1角的平分线的性质优秀教学案例

人教版八年级数学上册12.3.1角的平分线的性质优秀教学案例
四、教学内容与过程
(一)导入新课
1.教师可以通过回顾上节课的内容,如等腰三角形的性质,引导学生复习相关知识,为新课的学习做好铺垫。
2.教师可以利用多媒体展示一些与角的平分线相关的实际问题,如修剪花草、设计建筑等,激发学生的学习兴趣,引出本节课的主题。
3.教师可以通过提问的方式,引导学生思考角的平分线的定义,如“你们认为什么是角的平分线?”,“角的平分线有什么作用?”。
(三)学生小组讨论
1.教师可以将学生分成若干小组,每组学生共同探讨角的平分线的性质,通过小组合作,培养学生的合作意识和团队精神。
2.教师可以设计一些小组讨论的问题,如“角的平分线与角的大小有何关系?”,“如何在几何图形中找到角的平分线?”。
3.教师可以组织小组合作的活动,如每个小组制作一个角的平分线的模型,通过动手实践,加深学生对角的平分线性质的理解。
三、教学策略
(一)情景创设
1.生活情境:教师可以引入一些生活中的实际问题,如修剪花草时如何找到角的平分线,让学生感受到角的平分线在现实生活中的应用,激发学生的学习兴趣。
2.几何情境:教师可以设计一些几何图形的问题,如在等腰三角形中,如何找到高的平分线,让学生在解决实际问题的过程中,自然引出角的平分线的概念。
(二)讲授新知
1.教师可以通过讲解、示范的方式,向学生介绍角的平分线的定义,如“角平分线是从角的顶点出发,将这个角平分成两个相等的角的射线”。
2.教师可以通过几何画板等教学工具,直观展示角的平分线的性质,如“角的平分线上的点到角的两边的距离相等;角的平分线垂直于角的两边”。
3.教师可以通过讲解一些典型的例题,让学生了解角的平分线在几何图形中的应用,如“如何利用角的平分线证明等腰三角形的性质?”,“如何利用角的平分线判断两条直线是否平行?”。

新人教版初中数学八年级上册12.3第1课时角平分线的性质2公开课优质课教学设计

新人教版初中数学八年级上册12.3第1课时角平分线的性质2公开课优质课教学设计

12.3 角的平分线的性质第1课时角平分线的性质一、教学目标(一)知识与技能1.会作已知角的平分线;2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;3.会利用角的平分线的性质进行证明与计算.(二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验. 二、教学重点、难点重点:角的平分线的性质的证明及应用;难点:角的平分线的性质的探究.三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式.四、教与学互动设计(一)激情导课如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)民主导学1、探究一:角的平分线的作法Ⅰ、议一议BD21ABO问题1请你拿出准备好的角,用你自己的方法画出它的角平分线.问题2如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?问题3通过上面的探究,你有什么启发?你能用尺规作图作已知角的平分线吗?请你试着做一做,并与同伴交流.已知:∠MAN求作:∠MAN的角平分线.作法:(1)以A为圆心,适当长为半径画弧,交AM于B,交AN于D.(2)分别以B、D为圆心,大于的长为半径画弧,两弧在∠MAN的内部交于点C.(3)画射线AC.∴射线AC即为所求.Ⅱ、练一练平分平角∠AOB.通过上面的步骤得到射线OC以后,把它反向延长得到直线CD.直线CD与直线AB是什么关系?思考:你能总结出“过直线上一点作这条直线的垂线”的方法吗?请说明你的方法。

2、探究二:角的平分线的性质Ⅰ、做一做如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.(1)角的平分线的性质角的平分线上的点到角的两边的距离相等. (2)角的平分线性质的证明步骤: ① 明确命题中的已知和求证;已知一个点在一个角的平分线上. 结论这个点到这个角两边的距离相等.②M 根据题意,画出图形,并用数学符号表示已知和求证;已知:如图,∠AOC=∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E. 求证 PD=PE.③M 经过分析,找出由已知推出求证的途径,写出证明过程.证明:∵ PD ⊥OA ,PE ⊥ OB (已知)∴ ∠PDO= ∠PEO=90°(垂直的定义)在△PDO 和△PEO 中 ∠PDO= ∠PEO (已证) ∠AOC= ∠BOC (已证) OP=OP (公共边) ∴ △PDO ≌ △PEO (AAS )∴ PD=PE (全等三角形的对应边相等)符号语言:∵∠AOC=∠BOC, PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E.(已知) ∴ PD=PE (角的平分线上的点到角的两边的距离相等) Ⅱ、练一练 (1) 下面四个图中,PACDPACDPACDBPOACEDPOACDCDBBE F EB 点P 都在∠AOB 的平分线上,则图形_____ 中PD =PE.(2)下图中,PD ⊥OA,PE ⊥OB ,垂足分别为点D 、E ,则图中PD =PE 吗?(3)在S 区有一个贸易市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?思考:角的平分线的性质在应用时应该注意什么问题?3、角的平分线性质的应用(1)如图,△ABC 中,∠C =90°,BD 平分∠ABC ,CD =3cm ,则点D 到AB 的距离为 cm .C DBECD公路DEPAOBC(第1题图) (第2题①图) (第2题②图)(2)变式训练,深化新知变式①,如图,△ABC 中,∠C =90°,BD 平分∠ABC ,DE ⊥AB ,垂足为点E ,AC=8cm , 则AD+DE= cm.变式②,如图,△ABC 中,∠C =90°,BD 平分∠ABC ,DE ⊥AB 于E ,F 在BC 上,AD=DF 求证:CF=EA (三)检测导结1、目标检测 (本测试题共三道题,相信大家一定会做得非常棒!)(1)如图,OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=4cm ,则PE=_____cm.(第1题图) (第2题图) (第3题图)(2)如图,点C 为直线AB 上一点,过点C 作直线MN ,使MN ⊥AB.(不写作法,保留作图痕迹,写出结论)(3)已知如图,在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F.求证EB=FC.2、请你谈谈学习这节课的收获.(四)布置作业1.必做题:习题2.思考题如图,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(在图上标出它的位置,比例尺1:20000)? (五)结束寄语严格性之于数学家,犹如道德之于人.条理清晰,因果相应,言必有据,是学习者谨记和遵循的原则. 希望每一个同学都能用聪明和智慧编织出更加精彩的人生!五、板书设计第1课时 角的平分线的性质1. 角的平分线的作法2. 角的平分线的性质:角的平分线上的点到角的两边的距离相等.3.应用已知:∠MAN 已知:如图,∠AOC=∠B OC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,求作:∠MAN 的角平分线垂足分别为点D 、E. 求证 PD=PE.BPOACED∴射线AC即为所求. 符号语言:∵∠AOC=∠BOC, PD⊥OA,PE⊥OB,垂足分别为点D、E.∴ PD=PE六、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.3.1 等腰三角形(第1课时)教学设计
授课老师李晓
【学习目标】
1.知识与技能:了解等腰三角形的有关概念,掌握等腰三角形的两条性质.
2.过程与方法:经历观察、与推理的探究过程,养成验证、推理、创新等能力.
3.情感态度与价值观:进一步体会等腰三角形的对称美和数学魅力.
【重点难点】
重点:等腰三角形的性质及应用.
难点:等腰三角形性质的探究及证明.
预习案
教材助读
1.有两条边相等的三角形,叫做_____________,相等的两条边叫做________,另一条边叫做_____,两腰所夹的角叫做______,底边与腰的夹角叫做________.
2.等腰三角形是轴对称图形,它的对称轴是()
A. 过顶点的直线
B.底边的垂线
C.顶角的平分线所在的直线
D.腰上的高所在的直线
3.等腰三角形的两底角_________,简写成___________________________。

4.等腰三角形的__________,__________,____________互相重合。

预习自测
1.等腰三角形的两边为4cm和9cm,那么它的周长______。

2.△ABC中AB=AC,∠A=300,∠B=_______。

3.等腰三角形的一底角的外角为1050,那么它的顶角为______。

探究案
学习建议:请同学们认真思考这些问题,并结合预习中自己的疑问
开始下面的探究学习。

性质探究如图,△ABC中AB=AC,求证:∠B=∠C.
结论:性质一等腰三角形的两个底角_________。

(简写成“_____________”)性质二等腰三角形____________、_______________、_____________
互相重合。

(简写成“_____________”)
应用探究1
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
应用探究2
如左图,在△ABC中,AB=AC,点D是边BC上任意一点,DE⊥AB,BG⊥AC,DF⊥AC.
试探究线段BG、DE、DF三者的数量关系。

如右图若点D在直线BC
上呢?
测 评 案
(A 组)
1.若等腰三角形顶角是底角的2倍,那么它的底角的度数是_____..
2.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数(

A.200
B.1200
C.200或1200
D.360
3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( )
A.40°
B.50°
C.60°
D.30°
4.如图AB=AD ,AD ∥BC ,求证:BD 平分∠ABC .
4题图
(B 组)
1.填空:如图1,在△ABC 中 (1)∵AB=AC ,∠BAD=∠CAD ∴BD = , ⊥ 。

A
C B D
(2)∵AB=AC ,BD=CD ∴∠BAD= , ⊥ .
(3)∵AB=AC ,AD ⊥BC ∴∠BAD= , BD= .
2.已知:如图,CD 是△ABC 的中线,且AB=2CD 。

求证:∠ACB=900
3.已知:如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE. A 求证:BD=CE
E D C B AA
B E D C。

相关文档
最新文档