【推荐下载】浙教版初二上册数学定义与命题知识点
浙教版八上第一章1.2定义与命题
1.2 定义与命题知识点梳理1、命题与定理1、判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、定理是真命题,但真命题不一定是定理.4、命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.5、命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE3、三角形的外角性质(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.题型梳理题型一真假命题的辨析1.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3 2.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.33.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A.3B.2C.1D.04.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个5.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行7.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形8.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=29.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直10.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°11.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.−12C.0D.1212.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.直角的补角仍然是直角D.垂线段最短13.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:√7,则△ABC是直角三角形14.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形题型二寻找“条件”与“结论”1.把命题“对顶角相等”改写成“如果…那么…”的形式:.2.把命题“等角的补角相等”改写成“如果…那么…”的形式是.3.命题“对顶角相等”的逆命题是.4.命题“对顶角相等”的逆命题是命题(填“真”或“假”).5.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:.6.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为.题型三角平分线性质的应用1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.42.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.23.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:54.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.√3B.2C.3D.√3+25.如图,△ABC中,∠ABC、∠EAC的角平分线P A、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③6.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD =4,则四边形ABCD的面积是()A.24B.30C.36D.427.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是.9.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.10.已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是度.11.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC =18cm,则DE的长为cm.题型四“燕尾模型”与三角形的外角性质1.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°2.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④4.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.5.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.6.如图,∠BCD=150°,则∠A+∠B+∠D的度数为.7.如图,在△ABC中,∠A、∠B的平分线相交于点I,若∠C=70°,则∠AIB=度,若∠AIB=155°,则∠C=度.8.已知:如图,在△ABC中,∠A=55°,H是高BD、CE的交点,则∠BHC=度.9.如图,CE平分∠ACD,交AB于点E,∠A=40°,∠B=30°,∠D=104°,则∠BEC 的度数为.10.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.11.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∠1=12∠ABC,∠2=12∠ACB∴∠1+∠2=12(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A∴∠1+∠2=12(180°−∠A)=90°−12∠A∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°−12∠A)=90°+12∠A探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC 与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC 与∠A有怎样的关系?(只写结论,不需证明)结论:.12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.13.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.题型五“拐点模型”与三角形的外角性质1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°2.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D 的度数是()A.24°B.59°C.60°D.69°3.如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°4.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.答案和解析题型一真假命题的辨析1.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选:B.2.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.3【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C ,则DF ∥AC ,可得:∠A =∠F ,即①②}⇒③;当①∠1=∠2,则∠3=∠2,故DB ∥EC ,则∠D =∠4,当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,故可得:∠C =∠D ,即①③}⇒②;当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,当②∠C =∠D ,则∠4=∠D ,故DB ∥EC ,则∠2=∠3,可得:∠1=∠2,即②③}⇒①,故正确的有3个.故选:D .3.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A.3B.2C.1D.0【分析】根据平行公理、图形的平移、平行线的性质定理判断即可.【解答】解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C.4.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据点到直线的距离的定义对④进行判断.【解答】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题;真命题的个数为0,故选:A.5.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行【分析】根据平行线的判定和性质、对顶角的性质、直角三角形的性质判断即可.【解答】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、对顶角相等,本选项说法是真命题;C、直角三角形两锐角互余,本选项说法是真命题;D、平行于同一直线的两条直线平行,本选项说法是真命题;故选:A.7.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.8.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.9.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.10.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.11.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.−12C.0D.12【分析】反例中的n满足n<1,使n2﹣1≥0,从而对各选项进行判断.【解答】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.12.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.直角的补角仍然是直角D.垂线段最短【分析】根据线段、垂线段的公理、平行线的性质以及直角的概念判断即可.【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、直角的补角仍然是直角,是真命题;D、垂线段最短,是真命题;故选:B.13.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:√7,则△ABC是直角三角形【分析】根据勾股定理的逆定理和直角三角形的判定解答即可.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:√7,32+(√7)2=42,则△ABC是直角三角形,正确;故选:D.14.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连接菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.题型二寻找“条件”与“结论”1.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.2.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么这两个角相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:它们相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么这两个角相等.故答案为:如果两个角是等角的补角,那么这两个角相等.3.命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.4.命题“对顶角相等”的逆命题是假命题(填“真”或“假”).【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【解答】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.5.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:如果两条直线都与第三条直线平行,那么这两条直线互相平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线都与第三条直线平行,那么这两条直线互相平行”.故答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行.6.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为如果两条直线平行于同一条直线,那么这两条直线相互平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线相互平行”.题型三角平分线性质的应用1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC•EF=12×5×2=5,故选:C.2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得P A=PE,PD=PE,那么PE=P A=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=12•AB•OE:12•BC•OF:12•AC•OD=AB:BC:AC=2:3:4,故选:C.4.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.√3B.2C.3D.√3+2【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选:C.5.如图,△ABC中,∠ABC、∠EAC的角平分线P A、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③【分析】过点P分别作AB、BC、AC的垂线段,根据角平分线上的点到角的两边的距离相等可以证明点P到AC、BC的垂线段相等,再根据到角的两边距离相等的点在角的平分线上即可证明①正确;根据四边形的内角和等于360°可以证明②错误;根据①的结论先证明三角形全等,再根据全等三角形对应边相等即可证明③正确;利用三角形的一个外角等于与它不相邻的两个内角的和利用△ABC 与△PBC 写出关系式整理即可得到④正确.【解答】解:如图,过点P 作PM ⊥AB ,PN ⊥BC ,PD ⊥AC ,垂足分别为M 、N 、D , ①∵PB 平分∠ABC ,P A 平分∠EAC ,∴PM =PN ,PM =PD ,∴PM =PN =PD ,∴点P 在∠ACF 的角平分线上(到角的两边距离相等的点在角的平分线上),故本小题正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,很明显∠MPN ≠∠APC ,∴∠ABC +∠APC =180°错误,故本小题错误;③在Rt △APM 与Rt △APD 中,{AP =AP PM =PD, ∴Rt △APM ≌Rt △APD (HL ),∴AD =AM ,同理可得Rt △CPD ≌Rt △CPN ,∴CD =CN ,∴AM +CN =AD +CD =AC ,故本小题正确;④∵PB 平分∠ABC ,PC 平分∠ACF ,∴∠ACF =∠ABC +∠BAC ,∠PCN =12∠ACF =∠BPC +12∠ABC ,∴∠BAC =2∠BPC ,故本小题正确.综上所述,①③④正确.故选:B .6.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD =4,则四边形ABCD的面积是()A.24B.30C.36D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30,故选:B.7.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°【分析】过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,依据角平分线的性质,即可得到DE=DG,再根据三角形外角性质,以及角平分线的定义,即可得到∠ADB=∠DBE﹣∠BAD=12(∠CBE﹣∠BAC)=12∠ACB.【解答】解:如图所示,过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DF=DE,又∵∠ACD=136°,∠BCD=44°,∴∠ACB=92°,∠DCF=44°,∴CD平分∠BCF,又∵DF⊥AC于F,DG⊥BC于G,∴DF=DG,∴DE=DG,∴BD平分∠CBE,∴∠DBE=12∠CBE,∵AD平分∠BAC,∴∠BAD=12∠BAC,∴∠ADB=∠DBE﹣∠BAD=12(∠CBE﹣∠BAC)=12∠ACB=12×92°=46°,故选:D.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12×4×2+12AC •2=7,解得AC =3.故答案为:3.9.如图,在Rt △ABC 中,∠A =90°,∠ABC 的平分线BD 交AC 于点D ,AD =3,BC =10,则△BDC 的面积是 15 .【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,根据三角形的面积求出即可.【解答】解:过D 作DE ⊥BC 于E ,∵∠A =90°,∴DA ⊥AB ,∵BD 平分∠ABC ,∴AD =DE =3,∴△BDC 的面积是12×DE ×BC =12×10×3=15, 故答案为:15.10.已知如图,∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,则∠EAB 是 35 度.【分析】过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,进而得到∠CDA和∠DAB的度数,即可求得∠EAB的度数.【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∵∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,∴∠CDA=110°,∵∠B=∠C=90°,∴DC∥AB,∴∠CDA+∠DAB=180°,∴∠DAB=70°,∴∠EAB=35°.故答案为:35.11.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC =18cm,则DE的长为 2.4cm.【分析】过点D作DF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△BCD列出方程求解即可.【解答】解:如图,过点D作DF⊥AB于F,∵BD是∠ABC的平分线,DE⊥BC,∴DE=DF,S△ABC=S△ABD+S△BCD,=12AB•DF+12BC•DE,=12×12•DE+12×18•DE,=15DE,∵△ABC=36cm2,∴15DE=36,解得DE=2.4cm.故答案为:2.4.题型四“燕尾模型”与三角形的外角性质1.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P 的度数,即可求出结果.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.2.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=12∠ABC、∠ECM=12∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=12∠ACM,则∠BEC=∠ECM﹣∠EBM=12×(∠ACM﹣∠ABC)=12∠A=30°,故选:B.3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【分析】依据角平分线的性质以及三角形外角性质,即可得到∠1=2∠2,∠BOC=90°+12∠1,∠BOC=90°+∠2.【解答】解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=12∠ACD,∠DBE=12∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=12(∠ACD﹣∠ABC)=12∠1,故①正确;∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12ABC,∠OCB=12∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠1)=90°+12∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=12∠ACB,∠ACE=12ACD,∴∠OCE=12(∠ACB+∠ACD)=12×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.4.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=30°.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.5.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是75°.【分析】先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,∴∠α=30°+45°=75°.故答案为:75°.6.如图,∠BCD=150°,则∠A+∠B+∠D的度数为150°.。
浙教版八年级上册数学知识点
浙教版八年级数学上册知识点第一章三角形的初步认识一、三角形的基本概念三角形:不在同一条直线上的三条线段首尾相接所组成的图形。
二、三角形的分类:1.按角分:锐角三角形、直角三角形、钝角三角形(定义,区别)。
2.按边分:不等边三角形、等腰三角形、等边三角形。
三、三角形的基本性质1.三角形的内角和是180°。
2.三角形的任何两边的和大于第三边(由两点之间线段最短得到)。
三角形的任何两边的差小于第三边三角形的任何两边之和大于第三边大于两边之差。
应用:知两条确定第三条范围;知三条判断能否组成三角形;知四条及以上3.三角形的外角:由三角形一条边的延长线和另一条相邻的边组成的角。
三角形的一个外角等于和他不相邻的两个内角的和(教材P7做一做)。
四、几条重要的线1.三角形的角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和对边中点;三条角平分线都在三角形内且相交于一点;等量关系式∠1=∠2=二分之一∠α;2.三角形的中线:连接一个顶点和它对边的中点的线段;三条中线都在三角形内且相交于一点;等量关系式AP=BP=二分之一AB 。
等积三角形;周长差三角形3.三角形的高;从三角形的一个顶点向它对边所在的直线作垂线段。
锐角三角形的三条高在三角形的内部相交于一点。
直角三角形的直角边上的高分别与另一条直角边重合,三条高在三角形的直角顶点处相交于一点。
钝角三角形中,夹钝角两边上的高都在三角形的外部,三条高在三角形的外部相交于一点。
会带来面积问题、直角、直角三角形4. 线段的垂直平分线(中垂线):垂直并平分一条线段的直线。
中垂线性质:线段的中垂线上的点到线段两端点的距离相等。
逆定理:到线段两端的距离相等的点在这条线段的垂直平分线上。
5. 角平分线的性质定理:角平分线上的点到角两边的距离相等。
逆定理:角的内部,到角两边距离相等的点在这个角的平分线上。
五、全等三角形1.全等图形:能够完全重合的两个图形。
形状相同、大小相等的图形;2.全等三角形:能够完全重合的两个三角形。
第2课定义与命题(学生版)八年级数学上册讲义(浙教版)
第2课定义与命题目标导航学习目标1.了解定义、命题、定理的含义;2.了解命题的结构,会把一个命题写成“如果…那么…”的形式;3.了解真命题和假命题的概念,会判定命题的真假;知识精讲知识点01 定义、命题、定理的含义1.定义:一般地,能清楚地规定某一名词或者术语的意义的语句叫做该名词或术语的定义.2.命题:一般地,判断某一件事情的句子叫做命题.3.定理:用推理方法判断为正确的命题叫做定理注:定理是真命题,但不是全部真命题都可以称为定理,通常只把一些常用的真命题列为定理.知识点02 命题的结构1.命题的结构:命题一般由条件和结论两部分组成,条件是已知事项,结论是由已知事项推出的事项.2.命题的一般形式:“如果…,那么…”,“如果”后面接的部分是题设,“那么”后面接的部分是结论.知识点03 真命题与假命题1.真命题:正确的命题叫真命题,2.假命题:不正确的命题叫做假命题.注:要判定一个命题是真命题,常常通过推理的方式,即根据已知事实来推断未知事实;也有一些命题是人们经过长期实践,公认为正确的.要判定一个命题是假命题,通常只需给出一个反例能力拓展考点01 定义、命题、定理的含义【典例1】下列选项中不是命题的是()A.过直线外一点作这条直线的垂线B.带根号的数都是无理数C.三角形任意两边之和大于第三边D.在同一平面内,垂直于同一条直线的两条直线平行【即学即练1】下列语句中:(1)你去哪里?(2)2022年北京冬奥会;(3)对顶角相等;(4)3不是奇数.命题共有()A.1个B.2个C.3个D.4个考点02 命题的结构【典例2】命题“如果∠1=∠2,∠2=∠3,那么∠1=∠3”的题设是,结论是,它是命题.【即学即练2】把下列命题改成“如果…那么…”的形式.(1)不相交的两条直线是平行线(2)相等的两个角是对顶角(3)经过一点有且只有一条垂线(4)直角都相等.考点03 判断命题的真假【典例3】下列命题中是真命题的是()A.同位角相等B.平行于同一条直线的两直线平行C.垂直于同一条直线的两直线平行D.过一点作已知直线的平行线,有且只有一条【即学即练2】下列语句是假命题的有()A.同角的余角相等B.平行于同一条直线的两条直线平行C.同位角相等D.同一平面内,垂直于同一条直线的两直线平行分层提分题组A 基础过关练1.下列句子中是命题的是()A.画∠A=30°B.您好!C.对顶角不相等D.谁?2.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.其中真命题有()个A.1 B.2 C.3 D.43.下列命题是假命题的是()A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被4整除,那么它也能被2整除D.内错角相等4.下列命题中,为真命题的是()A.内错角相等B.对顶角相等C.同位角相等D.互补的两个角是邻补角5.命题一般都由条件和结论两部分组成,命题“对顶角相等”的条件是.6.一个命题由“题设”和“结论”两部分组成.则命题“如果同旁内角互补,那么两直线平行”的题设是.7.命题:直线a、b、c,若a⊥b,c⊥b,则a∥c;则此命题为命题.(填真或假)8.把下面的命题改写成“如果…那么…”形式:两条平行线被第三条直线所截,内错角相等9.下面语句是那个定义的特征?(1)连接三角形的顶点和对边中点的线段;(2)三角形一边的延长线和另一边组成的角;(3)不等式组中各个不等式的解集的公共部分;(4)点到直线的垂线段的长度.10.指出下列命题的题设和结论:(1)“平行于同一直线的两条直线互相平行”命题的题设、结论.题设是:,结论是:.(2)“两个负数的和是负数”命题的题设、结论.题设是:,结论是:.(3)“相交的两条直线一定不平行”命题的题设、结论.题设是:,结论是:.(4)“任意两个偶数之差是偶数”命题的题设、结论.题设是:,结论是:.题组B 能力提升练11.下列命题中,属于真命题的是()A.同旁内角互补B.若a<1,则a2﹣1<0 C.直角都相等D.相等的角是对顶角12.能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A.x=B.x=3 C.x=﹣D.x=π13.下列命题中①相等的角是对顶角;②无理数就是开方开不尽的数;③同旁内角互补;④数轴上的点与实数一一对应.是真命题的有()A.1 个B.2个C.3个D.4个14.将命题“两个锐角的和是钝角”改写成“如果……那么……”的形式是15.判断下列语句是否是命题.如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.16.写出下列命题的条件和结论.(1)两条直线被第三条直线所截,同旁内角互补;(2)绝对值等于3的数是3;(3)如果∠DOE=2∠EOF,那么OF是∠DOE的平分线.题组C 培优拔尖练17.下列语句中,不是命题的是()A.如果b<a,那么a>b B.同旁内角互补C.反向延长射线MN D.垂线段最短18.下列命题中是真命题的是()A.同位角相等B.若a2=b2,则a=b C.等角的补角相等D.两条直线不相交就平行19.对顶角相等是(真或假)命题,此命题的题设是结论是.20.请举出一个关于角相等的定理:.21.已知下列语句:①平角都相等;②画两个相等的角;③两直线平行,同位角相等;④等于同一个角的两个角相等吗;⑤邻补角的平分线互相垂直;⑥等腰三角形的两个底角相等,其中是命题的有(填序号)22.指出下列命题的条件和结论.(1)一个锐角的补角大于这个角的余角;(2)不相等的两个角不是对顶角;(3)异号两数相加得零.23.举反例说明下列命题是假命题.(1)如果a+b>0,那么a>0,b>0;(2)无限小数是无理数;(3)两直线被第三条直线所截,同位角相等.。
1.2+定义与命题+课件+++2024—2025学年浙教版数学+八年级上册
1
则S△ABD= BD×AG= DC×AG
2
2
B
=S△ACD
D
E
G
C
例题精讲
例2 判断下列命题的真假 ,并说明理由.
(1)三角形一条边的两个顶点到这条边上的中线所在直线的距离
续:
1
又∵S△ABD= AD×BE,
2
∴
1
AD×BE
2
A
1
S△ACD = AD×CF
2
1
= AD×CF
2
∴BE=CF.
F
B
D
所以这个命题是真命题
E
G
C
例题精讲
例2 判断下列命题的真假 ,并说明理由.
(2) 一组对边平行,另一组对边相等的四边形是平行四边形.
(3) 2=a(a为实数).
A
解:(2)是假命题.理由如下:
D
如图,在四边形ABCD中,AD//BC,AB=DC.
但四边形ABCD不是平行四边形,
所以这个命题是假命题.
(2)假命题.钝角三角形的三条高线不交于三角形内的一点.
板书设计
1.2 定义与命题
真命题:
假命题:
举反例:
基本事实:
定理:
习题讲解书写部分
解:
(2)条件:三角形的三个内角相加
结论:等于180°
(3)条件:过两点作直线
结论:有且只有一条直线
(4)条件:x为任何实数
结论:x2<0
上述命题中,哪
些正确?哪些不
正确?
新课探究
正确的命题称为真命题;不正确的命题称为假命题.
要判定一个命题是真命题,常常通过推理的方式,即根据已知事实来
浙教版八年级数学上册知识点汇总
浙教版八年级数学上册知识点汇总八年级(上册)1.三角形的初步知识1.1.认识三角形三角形内角和为180度。
三角形任何两边之和大于第三边。
在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
连结三角形的一个顶点与该顶点的对边中点的线段,叫做三角形的中线。
从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线。
1.2.定义与命题定义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。
命题:判断某一件事情的句子叫命题。
正确的命题成为真命题,不正确的命题称为假命题。
用推理的方法判断为正确的命题叫做定理,定理也可以作为判断其他命题真假的依据。
1.3.证明要判断一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步步推得结论成立。
这样的推理过程叫做证明。
三角形一边的延长线和另一条相邻的边组成的角,叫做该三角形的外角。
三角形的外角和即是它不相邻的两个内角的和。
1.4.全等三角形能够重合的两个图形称为全等图形。
能够重合的两个三角形叫做全等三角形。
两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。
全等三角形的对应边相称,对应角相称。
1.5.三角形全等的断定三边对应相称的两个三角形全等(简写成“边边边”或“SSS”)当三角形的三条边长确定时,三角形的形状、大小完全确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。
两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。
线段垂直平分线上的点到线段两端的距离相等。
两个角及其夹边对应相称的两个三角形全等(简写成“角边角”或“ASA”)两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)角平分线上的点到角两边的距离相等。
浙教版初二上册数学定义与命题知识点
浙教版初二上册数学定义与命题知识点命题是指一个判定(陈述)的语义(实际表达的概念),那个概念是能够被定义并观看的现象,查字典数学网为大伙儿预备了定义与命题知识点,期望同学们不断取得进步!知识点1.对名称与术语的含义加以描述,作出明确的规定,也确实是给出他们的定义。
2.对情况进行判定的句子叫做命题(分真命题与假命题)。
3.每个命题是由条件和结论两部分组成。
4.要说明一个命题是假命题,通常举出一个例子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
5.把原命题的结论作为命题的条件,原命题的条件作为命题的结论,所组成的命题叫原命题的逆命题。
课后练习1.下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的垂线;D.两点确定一条直线.2.下列句子中,是命题的是( )A.今天的天气好吗B.作线段AB∥CD;C.连结A、B两点D.正数大于负数3.下列命题是真命题的是( )A.假如两个角不相等,那么这两个角不是对顶角;B.两互补的角一定是邻补角C.假如a2=b2,那么a=b;D.假如两角是同位角,那么这两角一定相等4.下列命题是假命题的是( )A.假如a∥b,b∥c,那么a∥c;B.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等;D.矩形的对角线相等且互相平分5.判定下列命题的真假:(1)一个三角形假如有两个角互余,那么那个三角形是直角三角形;(2)假如│a│=│b│,那么a3=b3.(3)假如AC=BC,那么点C是AB的中点6.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)假如两个三角形全等,那么它们对应边上的高也相等;我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
浙教版八年级关于上数学知识点
浙教版八年级上数学知识点第一章三角形的初步知识复习总目1、掌握三角形的角均分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判断方法知识点纲要1、三角形的定义:由不在同向来线上的三条线段首尾按序相接构成的图形叫做三角形.三角形有三条边,三个内角,三个极点.构成三角形的线段叫做三角形的边;相邻两边所构成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角AC的小写字母c表示,AC可用b表示,BC可用a表示.注意:(1)三条线段要不在同向来线上,且首尾按序相接;B C2)三角形是一个关闭的图形;3)△ABC是三角形ABC的符号标志,独自的△没存心义.2、三角形的分类:按角分类:直角三象形三角形锐角三角形斜三角形钝角三角形按边分类:底边和腰不相等的等腰三角形等腰三角形三角形等边三角形不等边三角形3、三角形的主要线段的定义:(1)三角形的中线A三角形中,连结一个极点和它对边中点的线段.B D C表示法:1.AD 是△ABC 的BC 上的中线. 12.BD=DC=BC.2注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点;④中线把三角形分红两个面积相等的三角形.(2)三角形的角均分线A2 1三角形一个内角的均分线与它的对边订交, 这个角极点与交点之间的线段BDC表示法:1.AD 是△ABC 的∠BAC 的均分线.2.∠1=∠2=1∠BAC.2注意:①三角形的角均分线是线段;②三角形三条角均分线全在三角形的内部; ③三角形三条角均分线交于三角形内部一点; ④用量角器画三角形的角均分线. (3)三角形的高 A从三角形的一个极点向它的对边所在的直线作垂线,极点和垂足之 间的线段.BDC表示法:1.AD 是△ABC 的BC 上的高线. 2.AD ⊥BC 于D.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点. 4、三角形的三边关系三角形的随意两边之和大于第三边 ;随意两边之差小于第三边 . 注意:(1)三边关系的依照是:两点之间线段是短; (2)围成三角形的条件是随意两边之和大于第三边. 5、三角形的角与角之间的关系:三角形三个内角的和等于180;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.直角三角形的两个锐角互余.6、三角形的稳固性:三角形的三边长确立,则三角形的形状就独一确立,这叫做三角形的稳固性.注意:(1)三角形拥有稳固性;2)四边形没有稳固性.7、全等三角形1)全等三角形的观点能够完整重合的两个三角形叫做全等三角形。
浙教版八年级上册第一章1.2定义、 命题、证明 课件(21张PPT)
三 证明与举反例
三、基本事实的概念
1.数学中有些命题的正确性是人们在长期实践中总结出
来的,并把它们作为判断其他命题真假的原始依据,
这样的真命题叫做基本事实.
直线:
两点确定一条直线.
线段:
两点间线段最短.
平行线:
经过直线外的一点有且仅有一条直线
与已知直线平行.
平行线性质: 两直线平行,同位角相等.
平行线判定: 同位角相等,两直线平行.
二、命题的结构 观察下列命题,你能发现这些命题有什么共同的结构特 征?与同伴交流. (1)如果两个三角形的三条边相等,那么这两个三角
形的周长相等; (2)如果两个数的绝对值相等,那么这两个数也相等; (3)如果一个数的平方等于9,那么这个数是3.
都是“如果……那么……”的形式
命题一般都可以写成“如果……那么……”的形式. 1.“如果”后接的部分是题设, 2.“那么”后接的部分是结论. 如命题:熊猫没有翅膀.改写为: 如果这个动物是熊猫,那么它就没有翅膀.
定义、命题、证明
讲授新课
一 定义 一、定义的概念
一般地,能清楚的规定某一名称或术语的意义 的句子叫做该名称或术语的定义. 例如: 物体单位面积受到的压力叫做压强; 在同一平面内,不相交的两条直线叫做平行 线。
导入新课
观察与思考
下列语句在表述形式上,有什么共同特点? (1)如果两条直线都与第三条直线平行,那么这
3.举反例说明下列命题是假命题. (1)若两个角不是对顶角,则这两个角不相等; (2)若ab=0,则a+b=0.
解:(1)两条直线平行形成的内错角,这两个角不 是对顶角,但是它们相等;
(2)当a=5,b=0时,ab=0,但a+b≠0.
浙教版八年级数学上册.2 定义与命题(二).docx
1.2 定义与命题(二)1.基本事实是真命题,定理是真命题,定义是真命题.(填“真”或“假”.)2.已知∠1+∠2=90°,∠3+∠4=90°,当∠1=∠3时,∠2=∠4成立.3.下列说法错误的是(D )A. 错误的判定也是命题B. 命题有真命题和假命题两种C. 定理是命题D. 命题是定理4.有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的个数是(D )A .1B .2C .3D .45.下列命题中,是真命题的是(A )A .若互补的两角相等,则这两个角都是直角B .直线是平角C .不相交的两条直线叫做平行线D .和为180°的两个角叫做邻补角6.下列命题中,属于假命题的是(C )A. 若a 3<0,则a 是一个负数B. 若a 2=b 2,则a =b 或a =-bC. 若ab >0,则a >0,b >0D. 若|a |=a ,则a ≥07.判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)若a >b ,则1a <1b; (2)如果一个数是偶数,那么这个数是4的倍数;(3)两个负数的差一定是负数.【解】 (1)假命题.如:+1>-2,1+1>1-2,故是假命题. (2)假命题.如:6是偶数,但6不是4的倍数,故是假命题.(3)假命题.如:(-5)-(-8)=+3,故是假命题.8.下列命题中,是假命题的为(C )A .邻补角的平分线互相垂直B .平行于同一直线的两条直线互相平行C .如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等D .平行线的一组内错角的平分线互相平行【解】 如果一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故C 错误.A ,B ,D 均正确.9.甲,乙,丙三位老师,他们分别来自北京,上海,广州三个城市,在中学教不同的课程:语文,数学,外语.已知:(1)甲不是北京人,乙不是上海人;(2)北京人不教外语,上海人教语文;(3)乙不教数学.你知道这三位老师各自的籍贯和所教的课程吗?【解】 甲是上海人,教语文;乙是广州人,教外语;丙是北京人,教数学.10.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.(第10题解)【解】 假命题.如解图所示,AB ⊥BD 于点B ,CD ⊥BD 于点D ,AB =CD ,但AC 与BD 相交.11.如图,已知BE 平分∠ABD ,DE 平分∠BDC ,DG 平分∠CDF ,∠1+∠2=90°,则:(1)AB ∥CD ;(2)BE ∥DG ;(3)ED ⊥GD .用推理的方法说明以上命题是真命题.(第11题)【解】 (1)∵BE 平分∠ABD ,DE 平分∠BDC ,∴∠2=∠ABE ,∠1=∠CDE.又∵∠1+∠2=90°,∴∠1+∠2+∠CDE +∠ABE =180°,即∠ABD +∠CDB =180°.∴AB ∥CD .(2)∵AB ∥CD ,∴∠ABD =∠CDF .∵BE 平分∠ABD ,DG 平分∠CDF ,∴∠2=12∠ABD =12∠CDF =∠GDF . ∴BE ∥DG .(3)∵∠2=∠GDF ,∠1+∠2=90°,∴∠1+∠GDF =90°,∴∠EDG =∠CDE +∠CDG =180°-(∠1+∠GDF )=90°.∴ED ⊥DG .12.材料:把一个命题的条件和结论交换,并且同时否定,那么所得命题是原命题的逆否命题.判断下列命题的真假,并写出它的逆否命题,同时也判断逆否命题的真假,并观察(1)(2)(3)的结论,总结出原命题的真假与它的逆否命题的真假关系.(1)若a 2>b 2,则a >b ;(2)若x ,y 为实数,且x 2+y 2=0,则x =0,y =0;(3)若m ≥0或n ≥0,则m +n ≥0.【解】 (1)假命题.它的逆否命题是:若a ≤b ,则a 2≤b 2,它是假命题.(2)真命题.它的逆否命题是:若x ,y 为实数,且x ,y 不全为0,则x 2+y 2≠0,它是真命题.(3)假命题.它的逆否命题是:若m +n <0,则m <0且n <0,它是假命题.观察(1)(2)(3)可知:原命题与它的逆否命题的真假是一致的,即原命题为真,则其逆否命题为真;原命题为假,它的逆否命题为假.13.A ,B ,C ,D ,E 五名学生猜测自己的数学成绩: A 说:“如果我得优,那么B 也得优.”B 说:“如果我得优,那么C 也得优.”C 说:“如果我得优,那么D 也得优.”D 说:“如果我得优,那么E 也得优.”大家都没说错,但只有三个人得优,请问:得优的是哪三个人?说出你的理由.【解】C,D,E三个人得优.理由:由于大家都没说错,所以假如A得优,可推出B得优,由于B得优,可推出C也得优,由C得优,可推出D得优,由D得优,可推出E得优,这样A,B,C,D,E五人都得优,不可能,所以A得优不可能,同样可推出B得优不可能,所以只能是C,D,E三人得优.初中数学试卷。
八年级上册数学定义与命题浙教版
八年级上册数学定义与命题浙教版【实用版】目录1.八年级上册数学定义与命题浙教版的概念2.定义与命题的区别与联系3.命题的分类4.如何判断命题的真假5.运用实例加深理解正文一、八年级上册数学定义与命题浙教版的概念在浙教版八年级上册数学教材中,定义与命题是两个重要的概念。
定义是对数学概念或性质的阐述,是对概念内涵的明确。
命题则是对事情的陈述,可以判断为真或假。
二、定义与命题的区别与联系定义与命题在数学中有着密切的联系,但又有所区别。
定义是对某个概念或性质的描述,是一个陈述句,通常没有判断真假的问题。
而命题则是对某个事情的陈述,可以判断为真或假。
从这个角度看,定义与命题的区别在于是否需要判断真假。
然而,在实际运用中,定义与命题往往相互联系,定义常常是命题的基础。
三、命题的分类在数学中,命题可以根据其真假性质进行分类,主要分为真命题和假命题。
真命题是指在所有情况下都为真的命题,而假命题则是指至少存在一种情况使其为假的命题。
此外,还有一种特殊的命题,即无法判断真假的命题,称为未定命题。
四、如何判断命题的真假要判断一个命题的真假,通常需要运用数学定理、公式或逻辑推理。
对于一些简单的命题,可以直接通过观察或实验得出结论。
而对于复杂的命题,则需要运用数学知识进行分析和判断。
五、运用实例加深理解例如,我们来看一个命题:“所有动物都需要氧气呼吸。
”这是一个全称命题,可以通过列举反例来证明其为假命题。
比如,有些细菌不需要氧气就能生存,这就说明并非所有动物都需要氧气呼吸。
通过以上讲解,相信大家对八年级上册数学定义与命题浙教版有了更深入的理解。
浙教版八年级数学上册知识点梳理
第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。
命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。
正确的命题叫真命题,不正确的命题叫假命题。
基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。
定理:用逻辑的方法判断为正确并作为推理的根据的真命题。
注意:基本事实和定理一定是真命题。
[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。
[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形[三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形 [三角形按内角分类] 三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角钝角三角形:有一个内角是钝角[三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形三内角和等于180°。
三角形的一个外角等于与它不相邻的的两个内角之和。
[三角形的三种线]顶角的角平分线:三条,交于一点三角形的中线:三条,交于一点三角形的高线:三条,交于一点。
思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形.[全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.[全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。
还有其它推出来的性质:全等三角形的周长相等、面积相等。
全等三角形的对应边上的对应中线、角平分线、高线分别相等。
[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角角边:两个角和其中一个角的对边对应相等的两个三角形全等.(AAS)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等.(HL)证明两个三角形全等的基本思路:方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS )找夹角(SAS )(2):已知一边一角---已知一边和它的邻角找是否有直角(HL )已知一边和它的对角找这边的另一个邻角(ASA )找这个角的另一个边(SAS)找这边的对角(AAS )找一角(AAS )已知角是直角,找一边(HL )(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS )练习 [角平分线的作法]尺规作图 [角平分线的性质] 在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN[角平分线的判定]角的内部到角的两边的距离相等的点在角的平分线上。
浙教版初中数学八年级上册定义、命题与证明 知识讲解
定义、命题与证明知识讲解【学习目标】1.了解定义、命题、定理的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假;2.能用基本的逻辑术语、几何证明的步骤、格式和规范进行几何证明;3.了解证明的含义,理解证明的必要性,体会证明的过程要步步有据.【要点梳理】要点一、定义、命题、基本事实与定理1.定义一般地,能清楚的规定某一名称或术语的意义的句子叫做该名称或术语的定义.2.命题一般地,判断某一件事情的句子叫命题.正确的命题叫做真命题;不正确的命题叫做假命题.命题通常由条件、结论两个部分组成,条件是已知事项,结论是由已知事项得到的事项.通常命题可以写成“如果……那么……”的形式,其中以“如果“开始的部分是条件,”那么“后面的部分是结论.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.当证明一个命题是假命题时只要举出一个反例就可以.3.基本事实人们经过长期实践后公认为正确的命题,作为判断其他命题的依据,也可称为公理.4.定理用推理的方法判断为正确的命题.定理也可以作为判断其他命题真假的依据.要点诠释:满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.要点二、证明1.证明从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步推得结论成立,这样的推理过程叫做证明.2.证明表述格式证明几何命题时,表述格式一般如下:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.要点诠释:在解决几何问题时,有时需要添加辅助线,添辅助线的过程要写入证明中,辅助线通常要画出虚线.【典型例题】类型一、命题1. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4)a ,b 两条直线平行吗?(5)鸟是动物; (6)若24a =,求a 的值;(7)若22a b =,则a =b .【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. 句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.【总结升华】主要考察命题的定义.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a b <,则<-b a -;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程2230x x --=;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.2. (2016春•南陵县期末)下列命题中,(1)一个锐角的余角小于这个角;(2)两条直线被第三条直线所截,内错角相等;(3)a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥c ;(4)若a 2+b 2=0,则a ,b 都为0.是假命题的有 .(请填序号)【思路点拨】利用锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.【答案】(1)(3)【解析】解:(1)一个锐角的余角小于这个角,错误,是假命题;(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;(3)a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ∥c ,故错误,是假命题;(4)若a 2+b 2=0,则a ,b 都为0,正确,为真命题,【总结升华】本题考查了命题与定理的知识,解题的关键是了解锐角的定义、平行线的性质、垂直的定义等知识,难度不大.举一反三:【变式】下列命题中,真命题的个数有( )①对顶角相等②同位角相等③4的平方根是2 ④若a>b,则-2a>-2b A.3个B.1个C.4个D.2个【答案】B3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。
八年级定义与命题知识点
八年级定义与命题知识点在数学学科中,定义是指对某一概念进行准确、明确的解释,通常采用“定义”这个词语进行提示,并构成一个句子。
而命题是指可判断真假的陈述句,通常由主语和谓语构成,是数学基本思维和判断能力的重要表现。
在八年级数学学科中,定义与命题知识点占据着重要的地位,下面将从具体的知识点进行论述。
1.定义的类型与构成要素在数学学科中,定义可以分为实质定义、规定定义、举例定义三种类型,在构成上一般由“名称”、“概念”、“特征”三个要素组成。
实质定义:直接给出事物的本质特征。
规定定义:根据使用权和传统习惯,一般规定某个概念代表什么。
举例定义:通过具体的举例子或具体事实来定义概念。
例如,在八年级数学中,成等比数列的定义为:若一个数列从第二项开始,每一项都是前一项的公比,则这样的数列称为等比数列。
2. 命题的构成要素和常见形式在数学学科中,命题具有陈述句的形式,一般由主语和谓语等构成,同时命题还有“真命题”和“假命题”的分类,下面将介绍命题的构成要素和常见形式。
构成要素:命题主语、谓语、附加条件、所有限定词等。
常见形式:单句命题:指仅由一个陈述句构成的命题。
复句命题:指由两个或多个单句命题构成的命题。
常见的复句命题有永真命题、永假命题、充分必要命题等。
在八年级数学中,例如“3+4=7”就是一个单句命题,而“若一个数是偶数,则它的平方必定是偶数”则是一个复句命题,同时这个复句命题还是一个充分必要命题。
3. 定义和命题的联系在数学学科中,定义和命题是密不可分的。
作为数学概念的基础,定义能够规定概念的本质特征,从而使得命题得以在严谨性上保证。
同时命题也是在定义的基础上进行推广和应用的主要形式。
例如,在八年级数学中,一个等差数列的定义是指一个数列从第二项开始,每一项依次减去前一项所得到的差值相等。
而由此所引申出的命题包括等差数列项数的计算、等差数列求和公式的推导等等。
综上所述,八年级数学学科的定义和命题知识点是数学学科中的基础和重点,对学生的综合素质具有重要的影响作用。
浙教版八年级数学上册.2 定义与命题
1.2 定义与命题一、选择题(共10小题;共50分)1. 下列语句中,不是命题的是( )A. 如果a>b,那么b<aB. 同位角相等C. 垂线段最短D. 反向延长射线OA2. 下列命题中,不正确的是( )A. 两条直线相交形成的对顶角一定相等B. 两条平行线被第三条直线所截,同旁内角一定相等C. 三角形的第三边一定大于另两边之差并且小于另两边之和D. 三角形一边上的高的长度一定不大于这条边上的中线的长度3. 下列语句是命题的有 ( ) 个.①两点之间线段最短;②不平行的两条直线有一个交点;③x与y的和等于0吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段AB.A. 1B. 2C. 3D. 44. 下列命题:①若x≠0,则x2>0;②锐角都相等;③一个角的补角大于这个角;④两条直线被第三条直线所截,同位角相等.其中,真命题的个数是( )A. 1B. 2C. 3D. 45. 下列语句是命题的是 ( )A. 画两条相等的线段B. 在线段AB上取点PC. 等腰三角形是轴对称图形D. 垂线段最短吗?6. 下列语句不是命题的有 ( )①两点之间,线段最短;②不许大声讲话;③连接A,B两点;④鸟是动物;⑤不相交的两条直线叫做平行线;⑥无论n为怎样的自然数,式子n2−n+11的值都是质数吗?A. 2个B. 3个C. 4个D. 5个7. 下列句子属于命题的是 ( )A. 正数大于一切负数吗?B. 将16开平方C. 钝角大于直角D. 作线段AB的中点8. 甲、乙、丙、丁四个小朋友在院里玩球,忽听"砰"的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:"是谁闯的祸?"甲说:"是乙不小心闯的祸."乙说:"是丙闯的祸."丙说:"乙说的不是实话."丁说:"反正不是我闯的祸."如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸 ( )A. 甲B. 乙C. 丙D. 丁9. 唐寅点秋香的故事家喻户晓了,现在来玩个游戏:“唐伯虎点秋香”.【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是:春香、夏香、秋香、冬香.【所给人物】A,B,C,D;①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是夏香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香.若上面的命题都是真命题,问谁是秋香 ( )?A. AB. BC. CD. D10. 下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数x,代数式x2−6x+10总是正数;④若三条线段a,b,c满足a+b>c,则三条线段a,b,c一定能组成三角形.其中正确命题的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(共10小题;共50分)11. 判断下列命题的真假(在括号内填上“真”或“假”):(1)两个负数的积是正数;( )(2)如果a∥b,b∥c,那么a∥c;( )(3)如果a3=b3,那么a=b;( )(4)在平面内,没有交点的两直线互相平行;( )(5)三点半时,钟面上的时针与分针所成的角是直角.( )12. 将“对顶角相等”改写成“如果……那么……”的形式为.13. 命题“若a=b,则∣a∣=∣b∣”的逆命题是,它是命题(填“真”或“假”).14. 把命题“等角的余角相等”改写成“如果⋯,那么⋯”的形式是.15. 举反例说明下面的命题是假命题:“若a,b都是正数,且c=ab,则c≥a.”你举的反例是:.16. “如果AB⊥CD,垂足是O,那么∠AOC=90∘”中,条件是,结论是.17. 若命题“对于任意实数x,x2+3x的值都是正数”是假命题,则其中一个反例是x= .18. 把命题“对顶角相等”写成“如果⋯那么⋯”的形式:.19. 请你举一个反例,说明命题‘‘两个锐角的和还是锐角”是错误的,反例为:.20. 命题“对顶角相等”中,题设是,结论是.三、解答题(共5小题;共65分)21. 下列说法中,哪些是真命题?哪些是假命题?Ⅰ互为邻补角的两角之和等于180∘;Ⅱ如果ab>0,那么a+b>0;Ⅲ如果一个有理数既不是正数,又不是负数,那么它一定是0.22. 下列命题的条件是什么?结论是什么?并判断命题的真假.Ⅰ如果∠A=∠B,∠B=∠C,那么∠A=∠C;Ⅱ同角的余角相等.23. 将下列命题改写成“如果……那么……”的形式,并指出它们的题设和结论,判断其真假.Ⅰ有理数一定是自然数;Ⅱ负数之和仍为负数;Ⅲ平行于同一条直线的两条直线平行.24. 命题"两直线平行,内错角的平分线互相平行"是真命题吗?如果是,请给出证明;如果不是,请举出反例.25. 如图,定义:直线l1与l2交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p,q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,求“距离坐标”是(1,2)的点的个数.答案第一部分 1. D 2. B 3. D 4. A 5. C6. B7. C8. D9. C10. B第二部分 11. (1)真; (2)真; (3)真; (4)真; (5)假.12. 如果两个角是对顶角,那么这两个角相等 13. 若 ∣a∣=∣b∣,则 a =b ;假14. 如果两个角相等,那么这两个角的余角也相等. 15. a =12,b =13,c =16,显然 c <a16. AB ⊥CD ,垂足是 O ;∠AOC =90∘ 17. 018. 如果两个角是对顶角,那么这两个角相等19. ∠A =60∘,∠B =50∘,∠A +∠B =110∘ .(答案不唯一) 20. 两个角是对顶角;这两个角相等 第三部分21. (1) 真命题. (2) 假命题. (3) 真命题.22. (1) 条件:∠A =∠B ,∠B =∠C , 结论:∠A =∠C .这个命题是真命题.(2)条件:两个角都是同一个角的余角,结论:这两个角相等.这个命题是真命题.23. (1)如果一个数是有理数,那么它一定是自然数.题设:一个数是有理数.结论:这个数一定是自然数.命题为假命题.(2)如果一个数是某两个负数之和,那么这个数是负数.题设:有一个数是某两个负数之和.结论:这个数是负数.命题为真命题.(3)如果两条直线都与同一条直线平行,那么这两条直线互相平行.题设:若两条直线都与同一条直线平行.结论:这两条直线互相平行.命题是真命题.24. 是真命题.证明如下:已知:AB∥CD,BE,CF分别平分∠ABC和∠BCD.求证:BE∥CF.证明:∵AB∥CD,∴∠ABC=∠BCD.∵BE,CF分别是∠ABC,∠BCD的角平分线,∴∠2=12∠ABC,∠3=12∠BCD.∴∠2=∠3.∴BE∥CF.25. “距离坐标”是(1,2)的点表示的含义是该点到直线l1,l2的距离分别为1,2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1或a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1或b2上,它们有4个交点,即为如解图所示的点M1,M2,M3,M4.故满足条件的点的个数为4 .初中数学试卷。
浙教版八年级数学上册.2 定义与命题.docx
1.2 定义与命题一、选择题(共10小题;共50分)1. 下列语句中,不是命题的是( )A. 如果a>b,那么b<aB. 同位角相等C. 垂线段最短D. 反向延长射线OA2. 下列命题中,不正确的是( )A. 两条直线相交形成的对顶角一定相等B. 两条平行线被第三条直线所截,同旁内角一定相等C. 三角形的第三边一定大于另两边之差并且小于另两边之和D. 三角形一边上的高的长度一定不大于这条边上的中线的长度3. 下列语句是命题的有( ) 个.①两点之间线段最短;②不平行的两条直线有一个交点;③x与y的和等于0吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段AB.A. 1B. 2C. 3D. 44. 下列命题:①若x≠0,则x2>0;②锐角都相等;③一个角的补角大于这个角;④两条直线被第三条直线所截,同位角相等.其中,真命题的个数是( )A. 1B. 2C. 3D. 45. 下列语句是命题的是( )A. 画两条相等的线段B. 在线段AB上取点PC. 等腰三角形是轴对称图形D. 垂线段最短吗?6. 下列语句不是命题的有( )①两点之间,线段最短;②不许大声讲话;③连接A,B两点;④鸟是动物;⑤不相交的两条直线叫做平行线;⑥无论n为怎样的自然数,式子n2−n+11的值都是质数吗?A. 2个B. 3个C. 4个D. 5个7. 下列句子属于命题的是( )A. 正数大于一切负数吗?B. 将16开平方C. 钝角大于直角D. 作线段AB的中点8. 甲、乙、丙、丁四个小朋友在院里玩球,忽听"砰"的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:"是谁闯的祸?"甲说:"是乙不小心闯的祸."乙说:"是丙闯的祸."丙说:"乙说的不是实话."丁说:"反正不是我闯的祸."如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸( )A. 甲B. 乙C. 丙D. 丁9. 唐寅点秋香的故事家喻户晓了,现在来玩个游戏:“唐伯虎点秋香”.【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是:春香、夏香、秋香、冬香.【所给人物】A,B,C,D;①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是夏香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香.若上面的命题都是真命题,问谁是秋香( )?A. AB. BC. CD. D10. 下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数x,代数式x2−6x+10总是正数;④若三条线段a,b,c满足a+b>c,则三条线段a,b,c一定能组成三角形.其中正确命题的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(共10小题;共50分)11. 判断下列命题的真假(在括号内填上“真”或“假”):(1)两个负数的积是正数;( )(2)如果a∥b,b∥c,那么a∥c;( )(3)如果a3=b3,那么a=b;( )(4)在平面内,没有交点的两直线互相平行;( )(5)三点半时,钟面上的时针与分针所成的角是直角.( )12. 将“对顶角相等”改写成“如果……那么……”的形式为.13. 命题“若a=b,则∣a∣=∣b∣”的逆命题是,它是命题(填“真”或“假”).14. 把命题“等角的余角相等”改写成“如果⋯,那么⋯”的形式是.15. 举反例说明下面的命题是假命题:“若a,b都是正数,且c=ab,则c≥a.”你举的反例是:.16. “如果AB⊥CD,垂足是O,那么∠AOC=90∘”中,条件是,结论是.17. 若命题“对于任意实数x,x2+3x的值都是正数”是假命题,则其中一个反例是x= .18. 把命题“对顶角相等”写成“如果⋯那么⋯”的形式:.19. 请你举一个反例,说明命题‘‘两个锐角的和还是锐角”是错误的,反例为:.20. 命题“对顶角相等”中,题设是,结论是.三、解答题(共5小题;共65分)21. 下列说法中,哪些是真命题?哪些是假命题?Ⅰ互为邻补角的两角之和等于180∘;Ⅱ如果ab>0,那么a+b>0;Ⅲ如果一个有理数既不是正数,又不是负数,那么它一定是0.22. 下列命题的条件是什么?结论是什么?并判断命题的真假.Ⅰ如果∠A=∠B,∠B=∠C,那么∠A=∠C;Ⅱ同角的余角相等.23. 将下列命题改写成“如果……那么……”的形式,并指出它们的题设和结论,判断其真假.Ⅰ有理数一定是自然数;Ⅱ负数之和仍为负数;Ⅲ平行于同一条直线的两条直线平行.24. 命题"两直线平行,内错角的平分线互相平行"是真命题吗?如果是,请给出证明;如果不是,请举出反例.25. 如图,定义:直线l1与l2交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p,q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,求“距离坐标”是(1,2)的点的个数.答案第一部分1. D2. B3. D4. A5. C6. B7. C8. D9. C 10. B第二部分11. (1)真;(2)真;(3)真;(4)真;(5)假.12. 如果两个角是对顶角,那么这两个角相等13. 若∣a∣=∣b∣,则a=b;假14. 如果两个角相等,那么这两个角的余角也相等.15. a=12,b=13,c=16,显然c<a16. AB⊥CD,垂足是O;∠AOC=90∘17. 018. 如果两个角是对顶角,那么这两个角相等19. ∠A=60∘,∠B=50∘,∠A+∠B=110∘ .(答案不唯一)20. 两个角是对顶角;这两个角相等第三部分21. (1)真命题.(2)假命题.(3)真命题.22. (1)条件:∠A=∠B,∠B=∠C,结论:∠A=∠C .这个命题是真命题.(2)条件:两个角都是同一个角的余角,结论:这两个角相等.这个命题是真命题.23. (1)如果一个数是有理数,那么它一定是自然数.题设:一个数是有理数.结论:这个数一定是自然数.命题为假命题.(2)如果一个数是某两个负数之和,那么这个数是负数.题设:有一个数是某两个负数之和.结论:这个数是负数.命题为真命题.(3)如果两条直线都与同一条直线平行,那么这两条直线互相平行.题设:若两条直线都与同一条直线平行.结论:这两条直线互相平行.命题是真命题.24. 是真命题.证明如下:已知:AB∥CD,BE,CF分别平分∠ABC和∠BCD.求证:BE∥CF.证明:∵AB∥CD,∴∠ABC=∠BCD.∵BE,CF分别是∠ABC,∠BCD的角平分线,∴∠2=12∠ABC,∠3=12∠BCD.∴∠2=∠3.∴BE∥CF.25. “距离坐标”是(1,2)的点表示的含义是该点到直线l1,l2的距离分别为1,2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1或a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1或b2上,它们有4个交点,即为如解图所示的点M1,M2,M3,M4.故满足条件的点的个数为4 .初中数学试卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初二上册数学定义与命题知识点
命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象,精品学习网为大家准备了定义与命题知识点,希望同学们不断取得进步!
知识点
1.对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。
2.对事情进行判断的句子叫做命题(分真命题与假命题)。
3.每个命题是由条件和结论两部分组成。
4.要说明一个命题是假命题,通常举出一个例子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
5.把原命题的结论作为命题的条件,原命题的条件作为命题的结论,所组成的命题叫原命题的逆命题。
课后练习
1.下列句子中,不是命题的是( )
A.三角形的内角和等于180度;
B.对顶角相等;
C.过一点作已知直线的垂线;
D.两点确定一条直线.
2.下列句子中,是命题的是( )
A.今天的天气好吗
B.作线段AB∥CD;
C.连结A、B两点
D.正数大于负数
3.下列命题是真命题的是( )
A.如果两个角不相等,那么这两个角不是对顶角;
B.两互补的角一定是邻补角。