浙教版初二数学下册第一章知识点总结
浙教版数学八年级下册各章节知识点汇总
(1)因式分解法:适用于右边为 0 (或可化为 0 ),而左边易分解为两个一次因式积的方程,缺常数项或含有字母 系数的方程用因式分解法较为简便,它是一种最常用的方法.
【注意】应用因式分解法解一元二次方程时,方程的右边必须是零.
(2)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 b2 4ac 的值.
方程有整数根的条件: 如果一元二次方程 ax2 bx c 0 (a 0) 有整数根,那么必然同时满足以下条件: (1) b2 4ac 为完全平方数;(2) b b2 4ac 2ak 或 b b2 4ac 2ak ,其中 k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中 a 、 b 、 c 均为有理数)
对于关于 x 的方程 ax2 bx c 0 ,当 a 0 时,方程是一元二次方程;当 a 0 且 b 0 时,方程是一元一次方程. 二、一元二次方程的解法
1.一元二次方程的解法:直接开平方法、配方法、公式法和因式分解法
2.一元二次方程解法的灵活运用 直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.
第二章 一元二次方程
一、定义 1、只含有一个未知数,并且未知数的最高次数是 2 的方程叫做一元二次方程.
2、一般形式: ax2 bx c 0(a 0) ,其中,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数
项。 3、一元二次方程的根:使一元二次方程左右两边相等的值,叫做一元二次方程的根(解). 【注意】
中的 只能是一个非负数,否则 无意义.
5、简化二次根式的被开方数,主要有两个途径:
(1)因式的内移:因式内移时,若
(完整)最新浙教版初中数学八年级下册知识点总结(2),推荐文档
平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①;②平行四边形的对角线将四边形分成4个面积相等的三底高ah=⨯S=角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形第五章特殊的平行四边形1.几种特殊的平行四边形(1)矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形性质:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)性质:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:四条边都相等,四个角都是直角的四边形是正方形。
性质:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).2.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;3.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.所示.。
浙教版八下数学各章节知识点以及重难点
关注:梯形中常见的几种辅助线的画法.
补充:梯形的中位线定理,尤其关注其证明方法.
二.重点和难点:
重点:解方程的方法。
难点:建立方程模型解决实际问题。
第三章频数及其分布
一.知识点:
1.频数:所考察的对象出现的次数称为频数。频数的和等于总数。
2.频率:频数与总数的比值称为频率。频率的和等于1.
3.频数分布直方图:横半轴表示组别,纵半轴表示频数,用宽相等的长方形表示不同的频数分布情况,这样的图形称为频数分布直方图。
1)中心对称图形的定义以及常见的中心对称图形
定义:如果一个图形绕着某个点旋转180°后能和原图形重合,那么这个图形就叫做中心对称图形。常见的中心对称图形有:平行四边形,英文大写字母S、Z。
2)经过对称中心的直线一定把中心对称图形的面积二等分,对称点的连线段一定经过对称中心且被对称中心平分.
4.三角形的中位线以及中位线定理
被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:
化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
5.二次根式的运算
(1)(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
6.分母有理化:
3)菱形+有一个角是直角
注意:其他还有一些判定正方形的方法,但都不能作为定理使用.
5.梯形:一组对边平行,另一组对边不平行的四边形是梯形。
等腰梯形的性质:等腰梯形同一底边上的两个底角相等;等腰梯形的对角线相等.
等腰梯形的判定:1)定义:两腰相等的梯形叫等腰梯形。
(完整word版)浙教版八下数学知识点,推荐文档
第一章 二次根式1. 二次根式的定义:形如 a (a ≥0)的代数式叫做二次根式。
(被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根)2.取值范围:二次根式被开方数大于等于0分式分母不为02. 二次根式的性质:1.二次根式有双重非负性(0a ≥,0a ≥)2.平方在根号里面(里平方)2(0)(0)a a a a a a ≥⎧==⎨-<⎩ 3平方在根号外面(外平方)2a a =区别:2a 表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根; 相同点:最后的值都是正数3. (0,0)ab a b a b =≥≥0,0)a a a b b b=≥> 根号里面只有乘除才能分开来,加减不能4: 最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母;⑶分母中不含根式。
满足这三个条件的二次根式称为最简二次根式。
5、分母有理化: 1aa 2a b+分子分母同乘以a b 3a b -a b题型:根式的化简和运算(简单题前几题,选择题,填空题)根式的定义、取值范围(选择题,填空题)第二章 一元二次方程1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。
通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。
2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。
(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。
新浙教版八年级下册数学知识点大全
新浙教版八年级下册数学知识点汇编第一章二次根式1. 像 b 3,2s , 5 , a ? a 4 这样表示算术平方根的代数式叫做二次根式。
2.二次根式根号内字母的取值范围一定知足被开方数大于或等于零。
3.二次根式的性质 1:a 2=a a0二次根式的性质2:a 2= a =a(a0)或 a ( a <0)4. 像7 , 5 ,14 ,2s , a 这样,在根号内不含分母,不含开得尽方的因数或因式,这样的二次根式我们就说它是最简二次根式。
二次根式的化简结果应为最简二次根式。
5. ab = a × b ( a 0 , b 0 )6. a = a ( a 0 ,b>0)b b7. a × b = ab ( a 0 , b 0 )8. a = a ( a 0 ,b>0)b b9. 3 2 不可以写成1122 210.二次根式运算的结果,假如能够化简,那么应把它化简为最简二次根式。
11.二次根式的加减法:先把每一个二次根式化简,再把同样的二次根式像归并同类项那样归并。
12.分母有理化分两种情况:对于单个的二次根式,分子分母都乘以这个二次根式。
对于含有二次根式的多项式,把它配成平方差式。
第二章一元二次方程1.两边都是整式,只含有一个未知数,而且未知数的最高次数是 2 次的方程叫做一元二次方程。
2.判断一个方程能否是一元二次方程,一定在化简后判断。
3.能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。
4.ax 2+bx+c=0(a、b、c 为常数, a≠0)称为一元二次方程的一般形式,此中 ax2,bx,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。
5.确立一元二次方程的各项及其系数一定在一般形式中进行。
6.解一元二次方程的步骤:①化为右侧为 0 的方程;②左侧因式分解;③化为两个一元一次方程;④得解。
7.用因式分解法求解的一元二次方程形式为:右侧为 0,左侧是一个能够因式分解的整式。
浙教版初二数学下册知识点及典型例题
浙教版八年级下册知识点及典型例题第一章:二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (bab a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 7.二次根式的除法法则: (1))0b ,0a (bab a >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式:a-与,ba+a与,ba m-a+与,它们也叫互为有理化因式.nnbbam9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第二章:一元二次方程 1. 认识一元二次方程:概念:只含有一个未知数,并且可以化为20ax bx c ++= (,,a b c 为常数,0a ≠)的整式方程叫一元二次方程。
浙教版八下数学知识整理
第一章二次根式1.二次根式:一般地,式子)0(≥a a 叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(如不存在√−3)(2)a 是一个重要的非负数,即a ≥0.(如√4=2)2.重要公式:(1))0()(2≥=a a a ,)0()(2≥=-a a a(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;(3))0a ()a (a 2≥=. 3.二次根式的性质:)0b ,0a (b a ab ≥≥⋅=;)0b ,0a (b a b a >≥=4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式的除法法则:(1))0,0(>≥=b a ba b a; (2))0,0(>≥÷=÷b a b a b a ; (3)分母有理化公式:)0,0(>≥b a①√a √b =√a×√b√b×√b =√ab(√b)2=√ab b (如:√2√5=√2×√5√5×√5=√105) ②√a +√b=√a √b)(√a +√b)×(√a −√b)=√a −√b (√a)2−(√b)2=√a −√b a −b 1√a −√b =1×(√a +√b)(√a −√b)×(√a +√b)=√a +√b (√a)2−(√b)2=√a +√b a −b 6.最简二次根式:(1)最简二次根式:①根号里不含能开的尽的因数或因式,如4、9等;② 根号内不含分数、小数;③分母中不含有根号。
(结果必须是最简的二次根式)7. 利用“”外的因数化简“” ①a aa a a ==1)0(≥a ; ②)0,0(2≥≥=b a b a b a 8.二次根式比较大小的方法:(1)利用近似值比大小; √2≈1.414;√3≈1.732∴√2<√3(2)把二次根式的系数移入二次根号内,然后比大小; 2√3=√22×3=√12,3√2=√32×2=√18∴12<18∴√12<√18(3)分别平方,然后比大小.(√3+√5)2=3+2√15+5=8+2√15=8+√60(√3×√5)2=3×5=15=8+7=8+√49∴√3+√5>√3×√59.同类二次根式:几个二次根式化成最简二次根式后,如果根号里面的数字或字幕相同,这几个二次根式叫做同类二次根式.如√3与2√3。
浙教版八下数学知识点(完整版)
浙教版八年级数学下册知识点汇总八年级(下册)第1章二次根式1.1二次根式1.2二次根式的性质1.3二次根式的运算第2章一元二次方程2.1一元二次方程2.2一元二次方程的解法2.3一元二次方程的应用2.4一元二次方程根与系数的关系第3章数据分析初步3.1平均数3.2中位数和众数3.3方差和标准差第4章平行四边形4.1多边形4.2平行四边形及其性质4.3中心对称4.4平行四边形的判定定理4.5三角形的中位线4.6反证法第5章特殊平行四边形5.1矩形5.2菱形5.3正方形第6章反比例函数6.1反比例函数6.2反比例函数的图像和性质第一章 二次根式1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。
1.2. 二次根式的性质()()0a 2≥=a a ()()⎩⎨⎧<-≥==00a 2a a a a a ()0,0a ab ≥≥⨯=b a b()0,0a >≥=b a ba b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。
1.3. 二次根式的运算()0,0ab a ≥≥=⨯b a b()0,0a >≥=b a b ba第二章一元二次方程2.1一元二次方程像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。
能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。
任何一个关于x 的一元二次方程都可以化为ax 2+bx+c=0的形式。
ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。
2.2一元二次方程的解法1、因式分解法:利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程,常见ax 2+bx=0(无常数项)、及类似3x(x -1)=x -1等也可以使用因式分解法。
(完整)最新浙教版初中数学八年级下册知识点总结,推荐文档
浙教版八年级下册知识点总结第一章二次根式1•二次根式:一般地,式子...a, (a 0)叫做二次根式•注意:(1 )若a 0这个条件不成立,贝U ,a不是二次根式;(2).、a是一个重要的非负数,即;..a 刃2 •重要公式:(1 ) G.a)2a (a 0) , ( 2) .a2 a a (:賈;注意使用a (a 0)■ oa ( . a) (a 0).3•积的算术平方根:.ab .a b (a 0, b 0),积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求4 .二次根式的乘法法则:.a .. b •、ab (a 0, b 0).5 .二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3 )分别平方,然后比大小•6.商的算术平方根:b a (a 0, b 0),商的算术平方根等于被除式的算术平方根除以除式的算术平方根•7 .二次根式的除法法则:<'a f a(1) b ■■b(a。
小°);(2) a - b a b (a 0,b 0);(3 )分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式•&常用分母有理化因式:\ a与\ a ,a . b与 a \ b , m. a n •、b与m . a m. b ,它们也叫互为有理化因式•9 .最简二次根式:(1 )满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2 )最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3 )化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式10 .二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题•11 .同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式•12 .二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2 )二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等第二章一元二次方程1. 认识一元二次方程:概念:只含有一个未知数,并且可以化为ax2 bx c 0 (a,b,c为常数,a 0)的整式方程叫一元二次方程。
(完整)浙教版八年级数学下册第1章二次根式知识点总结,推荐文档
x -3 - m mn x - 5 5 - x a x -1 1 - x 2a +1 5 5 17 - x + 2x -1 飞驰教育个性化辅导讲义知识点一:二次根式的概念【知识要点】二次根式的定义:形如 的式子叫二次根式,其中 叫被开方数,只有当 是一个非负数时, 才有意义.1【例 2】若式子有意义,则 x 的取值范围是.举一反三:1、使代数式2有意义的 x 的取值范围是+12、如果代数式有意义,那么,直角坐标系中点 P (m ,n )的位置在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例 3】若 y=+ +2009,则 x+y=⎧⎨x - 5 ≥ 0解题思路:式子(a≥0), ⎩5 - x ≥ 0 , x = 5,y=2009,则 x+y=2014举一反三:1、若 - = (x + y )2 ,则 x -y 的值为()A .-1B .1C .2D .33、当 a 取什么值时,代数式+1取值最小,并求出这个最小值。
a +已知 a 是整数部分,b 是的小数部分,求 1 b + 2 的值。
若 的整数部分为 x ,小数部分为 y ,求x 2 + 1y 的值.知识点二:二次根式的性质【知识要点】1. 非负性:是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2. ( a )2= a(a ≥ 0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a 2 a 2 a 2b -3 y 2 - 5 y + 6 a + 2b + 4 a 2 5 a 2 x 2- 4x + 4 4x 2 - 4x +14 + (a - 1)2a ⎨-a(a < 0) ⎨ 则.= a = 0)) =|a|= ⎧a(a ≥ 0)3.⎩注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.a2 =|a|= ⎧a(a ≥ 0) -a(a < 0) ( a ) 2 = a(a ≥ 0) 4. 公式 ⎩ 与 的区别与联系(1)表示求一个数的平方的算术根,a 的范围是一切实数.(2)(2 表示一个数的算术平方根的平方,a 的范围是非 负数. (3) 和( 2 的运算结果都是非负的.【典型例题】a - 2 + 【例 4】若+ (c - 4)2 = 0a -b +c =举一反三:1、已知直角三角形两边 x 、y 的长满足|x 2-4|+=0,则第三边长为______.a -b +12、若与(a - b )2005 =互为相反数,则。
浙教版八年级数学下册第1章二次根式知识点总结计划
知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【例 2】假设式子有意义,那么x 的取值范围是.举一反三:1、使代数式21有意义的 x 的取值范围是x 2x2、如果代数式m 1P〔 m, n〕的位置在〔〕有意义,那么,直角坐标系中点mnA、第一象限B、第二象限C、第三象限D、第四象限【例 3】假设 y=++2021,那么 x+y=解题思路:式子〔举一反三:a≥0〕,,y=2021,那么x+y=20211、假设,那么x-y 的值为〔〕A.- 1 B.1C.2D.33、当取什么值时,代数式取值最小,并求出这个最小值。
a 是5整数局部,b 是 5 的小数局部,求1的值。
假设17的整数局部为 x,小数局部为y,求x21a的值 .b 2y知识点二:二次根式的性质【知识要点】1.非负性:是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.( a ) 2 a(a 0) .注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a2a( a0)3.a注意:〔 1〕字母不一定是正数.| |a( a0)(2〕能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3〕可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式2a( a0)2| |与(a)a(a )0 a( a0)〔1〕a2表示求一个数的平方的算术根, a 的范围是一切实数.〔2〕( a ) 2表示一个数的算术平方根的平方, a 的范围是非负数. 〔 3〕a 2和 ( a) 2的运算结果都是非负的.【典型例题】【例 4】假设那么.举一反三: 1、直角三角形两边x 、 y 的长满足| x 2 -4|+y 2 5y 6 = 0,那么第三边长为______ .2、假设与互为相反数,那么。
〔公式 (a ) 2 a( a0) 的运用〕【例 5】 化简:的结果为〔〕A 、 4— 2aB 、 0C 、 2a — 4D 、4举一反三:3 直角三角形的两直角边分别为2和5 ,那么斜边长为〔公式 a2aa( a 0)a(a的应用〕0)【例 6】 x2 , 那么化简x 2 4x 4 的结果是A 、 x 2B 、 x2C 、 x 2D 、 2 x2、化简4x22举一反三: 4x 12x 3得〔〕〔 A 〕 2 〔 B 〕4x 4 〔 C 〕- 2〔 D 〕4x 43、,化简求值:【例 7】如果表示 a ,b 两个实数的点在数轴上的位置如下图,那么化简│a -b │+ 的结果等于〔〕A .- 2bB.2bC.- 2a D . 2a举一反三: 实数 a 在数轴上的位置如下图:化简: a 1 (a2)2______.a【例 8】化简1 xx 2 8x16 的结果是 2x -5 ,那么 x 的取值范围是〔〕112〔 A 〕 x 为任意实数〔 B 〕 1≤x ≤ 4〔C 〕 x ≥1 〔D 〕 x ≤ 1举一反三:假设代数(a 4)2的值是常数2,那么 a 的取值范围是〔〕式(2a)2A.a≥ 4B. a ≤ 2C. 2 ≤ a ≤ 4D.a 2 或 a 4【例 9】如果a a 22a11,那么 a 的取值范围是〔〕 A. a=0 B. a=1 C. a=0或 a=1 D. a≤ 1举一反三:1、如果a a26a9 3 成立,那么实数a 的取值范围是〔〕A . a0B . a 3 ;C . a 3 ;D . a32、假设( x3) 2x30,那么 x 的取值范围是〔〕〔 A〕x 3〔B〕x3〔C〕x3〔 D〕x 3【例 10】化简二次根式a a2的结果是a2〔 A〕a2(B)a2(C) a 2(D)a21、把根号外的因式移到根号内:当b> 0 时,bx =; (a1)11 =。
浙教版八年级数学下册第1章二次根式知识点总结
的结果为(
a b 1|+ y a
0) 。 4x 1 4x 1 a( a a( a
,则斜边长为 5 举一反三:
、、 a
a
)2
a( a x+y=2014 2
(
a a 2a
B
3 a B
、0
C a 、2a—的应用)
、4
a 3 32 22 和
0) a 2取什么值时,代数式 a
取值最小,并求出这个最小值。
5 a( a a(a0)
C. 2
D. 或 为一切实数
6. 6. 6. 4a4a2 6. C. )
D. 4a 或 6.
a
为一切实数 成立,则
、 、x ______为一切实数
【例D. 的正确结果为(
7.
mn
7. 】)
A. x
y 2y
A. x
y≤ y≤≤
7.
mn
7. xy f 2
B. x ,3m 2n y
≤ < 0 00 3m 2n D. 的正确结果为(
5 (C)
6
(D)
5
1 、把根号外的因式移到根号内:当
>
b 0 时,
b
=
x
;
(a 1) 1 =
。
x
1a
知识点三:最简二次根式和同类二次根式 【知识要点】
1 、最简二次根式: ( 1 )最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式.
2 、同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。 【典型例题】
,小数部分为
,求 的一元二次方程是 x y 的值,使得 2,求
浙教版初中数学八年级下册知识点及典型例题-(1)
浙教版八年级下册知识点及典型例题第一章二次根式1.二次根式:一般地,式子 叫做二次根式.注意:(1)若 这个条件不成立,则a 不是二次根式;(2)a 是一个重要的非负数,即;a .2.重要公式:(1)=2)(a ,(2)⎩⎨⎧<≥==)0(_______)0(_______2a a a a ;注意使用)0a ()a (a 2≥=. 3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则:)0,0(_____≥≥=⋅b a b a .5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3) . 6.商的算术平方根:)0b ,0a (ba ba >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0,0(_______>≥=b a ba; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式. 8.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式.9.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题. 10.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先 ,例如:化为同类二次根式才能合并;除法运算有时转化为 或 更为简便;使用 公式等.第二章 一元二次方程1. 认识一元二次方程:概念:只含有一个未知数,并且可以化为 (,,a b c 为常数, )的整式方程,叫一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初二数学下册第一章知识点总结
一、二次根式
1、定义:一般地,形如radic;ā(age;0)的代数式叫做二次根式.当agt;0时,radic;a表示a的算数平方
根,radic;0=0
2、概念:式子radic;ā(age;0)叫二次根
式.radic;ā(age;0)是一个非负数.
3.二次根式radic;ā的简单性质和几何意义
二、二次根式的性质
形如radic;a(age;0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以age;0是radic;a为二次根式的前提条件,如radic;5,radic;(x2+1),
radic;(x-1) (xge;1)等是二次根式,而radic;(-2),radic;(-x2-7)等都不是二次根式。
三、二次根式的运算
二次根式的运算主要是研究二次根式的乘除和加减.
(1)二次根式的加减:
需要先把二次根式化简,然后把被开方数相同的二次
根式(即同类二次根式)的系数相加减,被开方数不变。
注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.
(2)二次根式的乘除:
注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.
浙教版初二数学下册第一章知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家可以更好的学习,取得优异的成绩。