中考数学总复习 专题突破预测与详解 第三单元 函数 专题11 反比例函数试题 (新版)新人教版
中考数学总复习《反比例函数》专项测试卷-带参考答案
中考数学总复习《反比例函数》专项测试卷-带参考答案一、单选题(共12题;共24分)1.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═ k x(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4B.8C.12D.162.已知反比例函数y=k−2x的图象在第二、四象限内,则k的值不可能是()A.3B.1C.0D.−123.已知反比例函数y=k x的图象经过点(1,2),则函数y=-kx可为()A.y=-2x B.y=12x C.y=-12x D.y=2x4.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=−5x(x>0)和y=3x(x>0)的图象交于A,B两点.若点C是y轴上任意一点,点D是AP的中点,连接DC,BC,则△DBC的面积为()A.94B.4C.5D.11 45.如图,直线y=n交y轴于点A,交双曲线y=kx(x>0)于点B,将直线y=n向下平移2个单位长度后与y轴交于点C,交双曲线y=kx(x>0)于点D,若ABCD=13,则n的值()A.4B.3C.2D.56.如图,反比例函数y= yx(x<o)的图象经过点P,则k的值为()A.-6B.-5C.6D.57.函数y=ax(a≠0)与y=ax2-1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.8.反比例函数y=2x的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限9.如图,平面直角坐标系中,矩形OABC的边与函数y= 8x(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定10.已知二次函数y=ax2+bx+c的图象如图所示,则在同一直角坐标系中,一次函数y=ax+b和反比例函数y= cx的图象大致是()A.B.C.D.11.某反比例函数的图象过点(1,-3),则此反比例函数解析式为()A.y=3x B.y=-3x C.y=13x D.y=-13x12.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1二、填空题(共6题;共6分)13.如图,在反比例函数y1=4x和y2=k x的图象上取A,B两点,若AB//x轴,ΔAOB的面积为5,则k=.14.如图,点A是反比例函数y=k x的图象上的一点,过点A作AB△x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为3,则k的值=.15.如图,过原点的直线交反比例函数y=ax图象于P,Q两点,过点P分别作x轴,y轴的垂线,交反比例函数y=b x(x>0)的图象于A,B两点.若b−a=7,则图中阴影部分的面积为.16.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=k x的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE的面积是△OAB的面积2倍时,则k的值为.17.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF△BD于点F,AE△x轴于点E,连接OB,AD,若△OBD△△DAE,则点A的坐标是.18.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点P(2,3),且与函数y=2x(x>0)的图象交于点Q(m,n).若一次函数y随x的增大而增大,则m的取值范围是.三、综合题(共6题;共60分)19.制作一种产品,需先将材料加热达到60△后,再进行操作.设该材料温度为(△),从加热开始计算的时间为(分钟).据了解,该材料加热时,则温度与时间成一次函数关系;停止加热进行操作时,则温度与时间成反比例关系(如图8所示).已知该材料在操作加工前的温度为15△,加热5分钟后温度达到60△.(1)分别求出将材料加热和停止加热进行操作时,则与的函数关系式;(2)根据工艺要求,当材料的温度低于15△时,则须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.如图所示,直线y=12x与反比例函数y=kx(k≠0,x>0)的图象交于点Q(4,a),点P(m,n)是反比例函数图象上一点,且n=2m.(1)求反比例函数和直线PQ的解析式;(2)若点M在x轴上,使得△PMQ的面积为3,求点M的坐标.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.22.如图,一次函数y=﹣x+5的图象与反比例函数y= k x(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=k x (k≠0)的值时,则写出自变量x 的取值范围.23.如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (6,0),反比例函数的图象经过点C .(1)求点C 的坐标及反比例函数的解析式.(2)将等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,求n 的值.24.如图,在平面直角系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,△ABO =30°,AB =2,以AB 为边在第一象限内作等边△ABC ,反比例函数的图象恰好经过边BC 的中点D ,边AC 与反比例函数的图象交于点E .(1)求反比例函数的解析式; (2)求点E 的横坐标.参考答案1.【答案】B 2.【答案】A 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】D 13.【答案】14 14.【答案】-6 15.【答案】14 16.【答案】117.【答案】( √5 +1, 3√5−32)18.【答案】23<m <2 19.【答案】(1)解:材料加热时,则设由题意,有 ,解得 .材料加热时,则 与的函数关系式为:停止加热时,则设 ,由题意,有 ,解得停止加热进行操作时 与的函数关系式为:(2)解:把代入,得20+5=25(分钟)答:从开始加热到停止操作,共经历了25分钟20.【答案】(1)解:∵直线 y =12x 与反比例函数 y =kx(k ≠0,x >0) 的图象交于点 Q(4,a) ∴a =12×4=2, .则 Q(4,2)∴2=k 4∴k =8, ∴ 反比例函数的解析式为 y =8x(x >0)∵ 点 P(m,n) 是反比例函数图象上一点 ∴mn =8 ,且 n =2m,m >0 ∴m =2,n =4, ∴P(2,4) ; 设直线 PQ 的解析式为 y =kx +b,∴{2=4k +b4=2k +b解得 {k =−1b =6∴直线 PQ 的解析式为 y =−x +6 (2)解:∵直线 PQ 交x 轴于点A ∴令 y =0,−x +6=0 ,得 x =6 ,如图∴A(6,0) ,设 M(a,0)∵S △PQM =S △PAM −S △QAM 且 △PMQ 的面积为3∴3=12|6−a|×4−12|6−a|×2∴a =3 或 a =9∴点M 的坐标为 (3,0) 或 (9,0) .21.【答案】(1)解:由A (-2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4∴12OA•n=4; ∴n=4;∴点B 的坐标是(2,4);设该反比例函数的解析式为y= ax (a≠0),将点B 的坐标代入,得4= a2 ,∴a=8;∴反比例函数的解析式为:y= 8x;设直线AB 的解析式为y=kx+b (k≠0),将点A ,B 的坐标分别代入,得{−2k +b =02k +b =4 ,解得{k =1b =2;∴直线AB 的解析式为y=x+2(2)解:在y=x+2中,令x=0,得y=2.∴点C 的坐标是(0,2) ∴OC=2;∴S △OCB = 12 OC×2= 12×2×2=222.【答案】(1)解:∵一次函数y=﹣x+5的图象过点A (1,n )∴n=﹣1+5 ∴n=4∴点A 坐标为(1,4)∵反比例函数y=k x (k≠0)过点A (1,4)∴k=4∴反比例函数的解析式为y=4x;(2)解:联立{y =−x +5y =4x解得{x =1y =4或{x =4y =1即点B 的坐标(4,1)若一次函数y=﹣x+5的值大于反比例函数y=kx (k≠0)的值则1<x <4.23.【答案】(1)解:过C 点作CD△x 轴,垂足为D,设反比例函数的解析式为y= k x∵△ABC 是等边三角形 ∴AC=AB=6,△CAB=60°∴AD=3,CD=sin60°×AC= √32×6=3 √3∴点C 坐标为(3,3 √3 ) ∵反比例函数的图象经过点C ∴k=9 √3∴反比例函数的解析式y= 9√3x;第 11 页 共 11 (2)解:若等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上 则此时B 点的横坐标为6即纵坐标y= 9√36 = 3√32 ,也是向上平移n= 3√32. 24.【答案】(1)解:∵△ABO =30°,AB =2∴OA =1连接AD .∵△ABC 是等边三角形,点D 是BC 的中点∴AD△BC又△OBD =△BOA =90°∴四边形OBDA 是矩形∴D(1,√3)∴反比例函数解析式是 y =√3x. (2)解:由(1)可知,A (1,0), C(2,√3)设一次函数解析式为y =kx+b ,将A ,C 代入得 {k +b =02k +b =√3 ,解得 {k =√3b =−√3∴y =√3x −√3 .联立 {y =√3x −√3y =√3x,消去y ,得 √3x −√3=√3x 变形得x 2﹣x ﹣1=0解得 x 1=1+√52∵x E >1∴x E =1+√52.。
专题11反比例函数(共51题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题11反比例函数(共51题)一.选择题(共10小题)1.(2022•云南)反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限2.(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω3.(2022•德阳)一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.4.(2022•滨州)在同一平面直角坐标系中,函数y=kx+1与y=﹣(k为常数且k≠0)的图象大致是()A.B.C.D.5.(2022•扬州)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁6.(2022•邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A.1B.C.2D.7.(2022•天津)若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x38.(2022•武汉)已知点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y29.(2022•娄底)在平面直角坐标系中,O为坐标原点,已知点P(m,1)、Q(1,m)(m>0且m≠1),过点P、Q的直线与两坐标轴相交于A、B两点,连接OP、OQ,则下列结论中成立的有()①点P、Q在反比例函数y=的图象上;②△AOB为等腰直角三角形;③0°<∠POQ<90°;④∠POQ的值随m的增大而增大.A.②③④B.①③④C.①②④D.①②③10.(2022•怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为()A.8B.9C.10D.11二.填空题(共13小题)11.(2022•新疆)若点(1,2)在反比例函数y=的图象上,则k=.12.(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.13.(2022•江西)已知点A在反比例函数y=(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为.14.(2022•滨州)若点A(1,y1)、B(﹣2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系为.15.(2022•广元)如图,已知在平面直角坐标系中,点A在x轴负半轴上,点B在第二象限内,反比例函数y=的图象经过△OAB的顶点B和边AB的中点C,如果△OAB的面积为6,那么k的值是.16.(2022•随州)如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为.17.(2022•乐山)如图,平行四边形ABCD的顶点A在x轴上,点D在y=(k>0)上,且AD⊥x轴,CA的延长线交y轴于点E.若S△ABE=,则k=.18.(2022•株洲)如图所示,矩形ABCD顶点A、D在y轴上,顶点C在第一象限,x轴为该矩形的一条对称轴,且矩形ABCD的面积为6.若反比例函数y=的图象经过点C,则k的值为.19.(2022•湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=,则图象经过点D的反比例函数的解析式是.20.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D 都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC 的面积为9时,的值为,点F的坐标为.21.(2022•绍兴)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE 位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是.22.(2022•凉山州)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=.23.(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.三.解答题(共28小题)24.(2022•孝感)如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B (,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图象,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为.25.(2022•广元)如图,在平面直角坐标系xOy中,函数y=x+b的图象与函数y=(x>0)的图象相交于点B(1,6),并与x轴交于点A.点C是线段AB上一点,△OAC与△OAB的面积比为2:3.(1)求k和b的值;(2)若将△OAC绕点O顺时针旋转,使点C的对应点C′落在x轴正半轴上,得到△OA′C′,判断点A′是否在函数y=(x>0)的图象上,并说明理由.26.(2022•常德)如图,已知正比例函数y1=x与反比例函数y2的图象交于A(2,2),B两点.(1)求y2的解析式并直接写出y1<y2时x的取值范围;(2)以AB为一条对角线作菱形,它的周长为4,在此菱形的四条边中任选一条,求其所在直线的解析式.27.(2022•湘潭)已知A(3,0)、B(0,4)是平面直角坐标系中两点,连接AB.(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P的反比例函数表达;(2)如图②,点N是线段OB上一点,连接AN,将△AON沿AN翻折,使得点O与线段AB上的点M 重合,求经过A、N两点的一次函数表达式.28.(2022•台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式.(2)若火焰的像高为3cm,求小孔到蜡烛的距离.29.(2022•苏州)如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=(m≠0,x>0)的图象交于点A(2,n),与y轴交于点B,与x轴交于点C(﹣4,0).(1)求k与m的值;(2)P(a,0)为x轴上的一动点,当△APB的面积为时,求a的值.30.(2022•眉山)已知直线y=x与反比例函数y=的图象在第一象限交于点M(2,a).(1)求反比例函数的解析式;(2)如图,将直线y=x向上平移b个单位后与y=的图象交于点A(1,m)和点B(n,﹣1),求b 的值;(3)在(2)的条件下,设直线AB与x轴、y轴分别交于点C,D,求证:△AOD≌△BOC.31.(2022•乐山)如图,已知直线l:y=x+4与反比例函数y=(x<0)的图象交于点A(﹣1,n),直线l′经过点A,且与l关于直线x=﹣1对称.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.32.(2022•衡阳)如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于A(3,1),B(﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.33.(2022•株洲)如图所示,在平面直角坐标系xOy中,点A、B分别在函数y1=(x<0)、y2=(x>0,k>0)的图象上,点C在第二象限内,AC⊥x轴于点P,BC⊥y轴于点Q,连接AB、PQ,已知点A 的纵坐标为﹣2.(1)求点A的横坐标;(2)记四边形APQB的面积为S,若点B的横坐标为2,试用含k的代数式表示S.34.(2022•宁波)如图,正比例函数y=﹣x的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.35.(2022•杭州)设函数y1=,函数y2=k2x+b(k1,k2,b是常数,k1≠0,k2≠0).(1)若函数y1和函数y2的图象交于点A(1,m),点B(3,1),①求函数y1,y2的表达式;②当2<x<3时,比较y1与y2的大小(直接写出结果).(2)若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值.36.(2022•泰安)如图,点A在第一象限,AC⊥x轴,垂足为C,OA=2,tan A=,反比例函数y=的图象经过OA的中点B,与AC交于点D.(1)求k值;(2)求△OBD的面积.37.(2022•温州)已知反比例函数y=(k≠0)的图象的一支如图所示,它经过点(3,﹣2).(1)求这个反比例函数的表达式,并补画该函数图象的另一支.(2)求当y≤5,且y≠0时自变量x的取值范围.38.(2022•武威)如图,B,C是反比例函数y=(k≠0)在第一象限图象上的点,过点B的直线y=x﹣1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.(1)求此反比例函数的表达式;(2)求△BCE的面积.39.(2022•江西)如图,点A(m,4)在反比例函数y=(x>0)的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.(1)点B的坐标为,点D的坐标为,点C的坐标为(用含m的式子表示);(2)求k的值和直线AC的表达式.40.(2022•金华)如图,点A在第一象限内,AB⊥x轴于点B,反比例函数y=(k≠0,x>0)的图象分别交AO,AB于点C,D.已知点C的坐标为(2,2),BD=1.(1)求k的值及点D的坐标.(2)已知点P在该反比例函数图象上,且在△ABO的内部(包括边界),直接写出点P的横坐标x的取值范围.41.(2022•连云港)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.42.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.43.(2022•重庆)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.44.(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.45.(2022•重庆)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B (n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.46.(2022•德阳)如图,一次函数y=﹣x+1与反比例函数y=的图象在第二象限交于点A,且点A的横坐标为﹣2.(1)求反比例函数的解析式;(2)点B的坐标是(﹣3,0),若点P在y轴上,且△AOP的面积与△AOB的面积相等,求点P的坐标.47.(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.48.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.49.(2022•遂宁)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.(1)求双曲线y=上的“黎点”;(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.50.(2022•遂宁)已知一次函数y1=ax﹣1(a为常数)与x轴交于点A,与反比例函数y2=交于B、C两点,B点的横坐标为﹣2.(1)求出一次函数的解析式并在图中画出它的图象;(2)求出点C的坐标,并根据图象写出当y1<y2时对应自变量x的取值范围;(3)若点B与点D关于原点成中心对称,求出△ACD的面积.51.(2022•自贡)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(m,﹣1)两点.(1)求反比例函数和一次函数的解析式;(2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C 的坐标.。
2024年中考数学总复习考点梳理专题三反比例函数综合题
∵点F在直线CD上,
∴-
3 2
×
20 3
+b=0,
∴b=10,
∴直线CD的表达式为y=- 3 x+10.
2
H
第1题图
∟
专题三 反比例函数综合题
2. (2023甘肃省卷)如图,一次函数y=mx+n的图象与y轴交于点
A,与反比例函数y=
6 x
(x>0)的图象交于点B(3,a).
(1)求点B的坐标;
解:(1)∵点B(3,a)在反比例函数y= 6 (x>0)
∴k=-1×4=-4,
∴反比例函数的表达式为y2=-
4 x
;
第4题图
专题三 反比例函数综合题
(2)在第二象限内,当y1<y2时,直接写出x的取值范围; 【解法提示】由题图易得在第二象限内,当y1<y2时,-1<x <0. (2)-1<x<0;
第4题图
专题三 反比例函数综合题
(3)点P在x轴负半轴上,连接PA,且PA⊥AB,求点P坐标.
∵B(4,-6),∴BG=4, ∵S△OBE=12 OE·BG=20, ∴OE=10,
∴E(0,10),
∴直线AB向上平移10个单位得到直线CD,
∴直线CD的表达式为y=-
3 2
x+10.
∟
G
第1题图
专题三 反比例函数综合题
【一题多解】如图,连接BF,过点B作BH⊥x轴于点H,
∵A(-4,6)在正比例函数y=kx上,
2
(1)求这两个函数的解析式;
解:(1)∵反比例函数图象过点A(4,1),
标轴于点 E,F,连接 OD,BD,若 △OBD的面积为20,求直
线 CD的表达式. (2)如图,连接BE,
过点B作BG⊥y轴于点G,
专题11 反比例函数系数k的几何意义(提优)-冲刺2021年中考数学(原卷版)
专题11 反比例函数系数k的几何意义(提优)1.已知:A(a,y1),B(2a,y2)是反比例函数y=kx(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数y=﹣2x+b第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且S△OAB=12,求a的值;(3)在(2)的条件下,如果m=﹣2x+12,n=16x,求使得m>n的x的取值范围.2.如图,点P为x轴负半轴上的一个点,过点P作x轴的垂线,交函数y=−1x的图象于点A,交函数y=−4x的图象于点B,过点B作x轴的平行线,交y=−1x于点C,连接AC.(1)当点P的坐标为(﹣1,0)时,求△ABC的面积;(2)若AB=BC,求点A的坐标;(3)连接OA和OC.当点P的坐标为(t,0)时,△OAC的面积是否随t的值的变化而变化?请说明理由.3.如图,在平面直角坐标系xOy中,函数y=kx(其中k<0,x<0)的图象经过平行四边形ABOC的顶点A,函数y=2x(其中x>0)的图象经过顶点C,点B在x轴上,若点C的横坐标为1,△AOC的面积为32(1)求k的值;(2)求直线AB的解析式.4.如图,在平面直角坐标系中,菱形ABDC的顶点D,C在反比例函数y=kx上(k>0,x>0),横坐标分别为12和2,对角线BC ∥x 轴,菱形ABDC 的面积为9.(1)求k 的值及直线CD 的解析式; (2)连接OD ,OC ,求△OCD 的面积.5.如图所示,在平面直角坐标系中,等腰Rt △OAB 的一条直角边OA 在x 轴的正半轴上,点B 在双曲线y =k x(k ≠0)上,且∠BAO =90°,S △AOB =2. (1)求k 的值及点A 的坐标;(2)△OAB 沿直线OB 平移,当点A 恰好在双曲线上时,求平移后点A 的对应点A '的坐标.6.如图,点A (a ,b )是双曲线y =8x(x >0)上的一点,点P 是x 轴负半轴上的一动点,AC ⊥y 轴于C 点,过A 作AD ⊥x 轴于D 点,连接AP 交y 轴于B 点. (1)△P AC 的面积是 ;(2)当a =2,P 点的坐标为(﹣2,0)时,求△ACB 的面积;(3)当a =2,P 点的坐标为(x ,0)时,设△ACB 的面积为S ,试求S 与x 之间的函数关系.7.已知反比例函数y =w+3x 的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求w 的取值范围;(2)点A 在该反比例函数位于第一象限的图象上,点B 与点A 关于x 轴对称,点C 与点A 关于原点O对称,若△ABC 的面积为4,求w 的值.8.如图,双曲线y =kx 上的一点A (m ,n ),其中n >m >0,过点A 作AB ⊥x 轴于点B ,连接OA . (1)已知△AOB 的面积是3,求k 的值;(2)将△AOB 绕点A 逆时针旋转90°得到△ACD ,且点O 的对应点C 恰好落在该双曲线上,求mn 的值.9.如图,反比例函数y =kx (k >0)与长方形OABC 在第一象限相交于D 、E 两点,OA =2,OC =4,连结OD 、OE 、DE .记△OAD 、△OCE 的面积分别为S 1、S 2. (1)填空:①点B 坐标为 ;②S 1 S 2(填“>”、“<”、“=”);(2)当S 1+S 2=2时,求:k 的值及点D 、E 的坐标;试判断△ODE 的形状,并求△ODE 的面积.10.如图,平行四边形OABC 的顶点O 在原点上,顶点A ,C 分别在反比例函数y =−k x(k ≠0,x >0),y =−10x(x <0)的图象上,对角线AC ⊥y 轴于D ,已知点D 的坐标为D (0,5) (1)求点C 的坐标;(2)若平行四边形OABC 的面积是55,求k 的值.11.如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数y =kx (x >0)的图象与边BC 交于点F (1)若△OAE 的面积为S 1,且S 1=1,求k 的值;(2)若OA =2,OC =4,反比例函数y =kx (x >0)的图象与边AB 、边BC 交于点E 和F ,当△BEF 沿EF 折叠,点B 恰好落在OC 上,求k 的值.12.如图,双曲线y =k x(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3),BE ⊥x 轴,垂足为E . (1)确定k 的值;(2)若点D (3,m )在双曲线上,求直线AD 的解析式; (3)计算△OAB 的面积.13.如图,在矩形OABC 中,OA =3,OC =4,点E 是BC 上的一个动点,CE =a (14≤a ≤52),过点E 的反比例函数y =k x的图象与AB 边交于点F . (1)当a =2时求k 的值;(2)若OD =1,设S 为△EFD 的面积,求S 的取值范围.14.如图,△ABC 的边BC 在x 轴上,且∠ACB =90°.反比例函数y =k x(x >0)的图象经过AB 边的中点D ,且与AC 边相交于点E ,连接CD .已知BC =2OB ,△BCD 的面积为6. (1)求k 的值;(2)若AE =BC ,求点A 的坐标.15.如图,O 为坐标原点,点A (﹣1,5)和点B (m ,﹣1)均在反比例函数y =kx 图象上 (1)求m ,k 的值;(2)当x 满足什么条件时,﹣x +4>−5x ;(3)P 为y 轴上一点,若△ABP 的面积是△ABO 面积的2倍,直接写出点P 的坐标.16.如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=12x(x>0)图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.17.如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数y=−2x(x<0)的图象于B点,交函数y=6x(x>0)的图象于C,过C作y轴和平行线交BO的延长线于D.(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?18.如图1,在平面直角坐标系中,正方形ABCD的两个顶点A,C在反比例函数y=6x图象上,且对角线AC经过原点,AB与x轴交于点E,若△BCE的面积等于△AOE面积的2倍,则点A的坐标为.19.反比例函数y=kx在一象限上有两点A、B.(1)如图1,AM⊥y轴于M,BN⊥x轴于N,求证:△AMO的面积与△BNO面积相等;(2)如图2,若点A(2,m),B(n,2)且△AOB的面积为16,求k值.20.如图,直角三角板ABC放在平面直角坐标系中(AC过O点),直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=4√3x的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.。
中考数学复习《反比例函数》专项练习题--带有答案
中考数学复习《反比例函数》专项练习题--带有答案一、单选题1.关于反比例函数y=﹣3x,下列说法错误的是()A.图象经过点(1,﹣3)B.图象分布在第一、三象限C.图象关于原点对称D.图象与坐标轴没有交点2.已知反比例函数y=kx的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3.当k>0时,反比例函数y= kx和一次函数y=kx+2的图象大致是()A.B.C.D.4.如图,已知点A,B分别在反比例函数y= 2x (x>0),y= −8x(x>0)的图象上且OA⊥OB,则OA:OB为()A.√2B.12C.√3D.135.如图,正比例函数y=k1x与反比例函数y=k2x 的图象交于A(1,m)、B两点,当k1x≤k2x时,x的取值范围是()A.−1≤x<0或x≥1B.x≤−1或0<x≤1C.x≤−1或x≥1D.−1≤x<0或0<x≤16.如图,在平面直角坐标系中,矩形OABC的面积为10,反比例函数y=kx(x>0)与AB、BC分别交于点D、E,若AD=2BD,则k的值为()A.53B.103C.203D.527.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1) b2−4ac>0;(2) c>1;(3) a−b+c>0;(4) a+b+c<0.你认为其中错误的有()A.2个B.3个C.4个D.1个8.如图,在平面直角坐标系中,点P( 1 , 4 )、Q (m ,n )在函数y=kx(x>0)的图象上.当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E.随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小二、填空题9.若反比例函数y=k的图象经过点A(4,1),则当y<1时,x的取值范围是.x10.已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系式为,它位于第象限.11.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=k的图象上,则k的值为.x的图象上,观察图象可知,当x>1时,y的取值范围12.如图,已知点P(1,2)在反比例函数y=kx是.13.如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴,点C在y轴的正半轴上,点F的图象上,OA=2,OC=6,则正方形ADEF的边长为.再AB上,点B,E在反比例函数y= kx三、解答题(k≠0)的图象在第一象限交于A(2,3)和14.如图,一次函数y=ax+b(a≠v)与反比例函数y=kxB(3,m)两点,与x轴交于点C.(1)求反比例函数和一次函数的解析式;(2)连接OA,OB求△OAB的面积.(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x 15.如图,直线y=−x+2与反比例函数y=kx轴于点G,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=−x+2上,且S△ACP=S△BDP,请求出此时点P的坐标.(m<0)图象的两个交16.如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数y=mx点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.17.如图,在平面直角坐标系中,直线AB与函数y= k(x>0)的图象交于点A(m,2),B(2,n).过xOC,且△ACD的面积是6,连接点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD= 12BC.(1)求m,k,n的值;(2)求△ABC的面积.18.为预防传染病,某校定期对教室进行“药熏消毒”.已知某种药物在燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;一次性燃烧完以后,y与x成反比例(如图所示).在药物燃mg.烧阶段,实验测得在燃烧5分钟后,此时教室内每立方米空气含药量为72(1)若一次性燃烧完药物需10分钟.①分别求出药物燃烧时及一次性燃烧完以后y关于x的函数表达式.mg时,对人体方能无毒害作用,那么从消毒开始,在哪个时间段学生②当每立方米空气中的含药量低于75不能停留在教室里?(2)已知室内每立方米空气中的含药量不低于0.7mg时,才能有效消毒,如果有效消毒时间要持续120分钟,问要一次性燃烧完这种药物需多长时间?答案1.B 2.B 3.C 4.B 5.A 6.C 7.D 8.B 9.x<0或x>4 10.a=12ℎ;一 11.12 12.0<y <2 13.√13 ﹣114.(1)解:∵点A(2,3)在反比例函数y =kx 的图象上∴k =2×3=6∴反比例函数的解析式为y =6x又∵B(3,m)在反比例函数y =6x 的图象上∴m =2∴点B(3,2)由于直线y =ax +b 过点A(2,3),B(3,2)∴{2k +b =33k +b =2解得{k =−1b =5∴一次函数的解析式为y =−x +5答:反比例函数的解析式为y =6x ,一次函数的解析式为y =−x +5; (2)解:如图,分别过点A 、B 分别作x 轴垂线,垂足分别为D ,E直线y=−x+5与x轴的交点C(5,0)即OC=5∴S△AOB=S△AOC−S△BOC=12×5×3−12×5×2=52.15.(1)解:∵直线y=−x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点∴−a+2=3,−3+2=b∴a=−1,b=−1∴A(−1,3),B(3,−1)∵点A(−1,3)在反比例函数y=kx上∴k=−1×3=−3∴反比例函数解析式为y=−3x.(2)解:设点P(n,−n+2)∵A(−1,3)∴C(−1,0)∵B(3,−1)∴D(3,0)∴S△ACP=12AC×|x P−x A|=12×3×|n+1|S△BDP=12BD×|x B−x P|=12×1×|3−n|∵S△ACP=S△BDP∴12×3×|n+1|=12×1×|3−n|∴n=0或n=−3∴P(0,2)或(−3,5).16.解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A (﹣4,0.5),B (﹣1,2)代入y=kx+b 得 {−4k +b =0.5−k +b =2,解得{k =12b =52 所以一次函数解析式为y=12x+52;把B (﹣1,2)代入y=mx ,得m=﹣1×2=﹣2; (3)连接PC 、PD ,如图,设P 点坐标为(t ,12t+52). ∵△PCA 和△PDB 面积相等 ∴12•12•(t+4)=12•1•(2﹣12t ﹣52) 解得t=﹣52∴P 点坐标为(﹣52,54).17.(1)解:∵点A 的坐标为(m ,2),AC 平行于x 轴,∴OC=2,AC ⊥y 轴,∵OD= 12 OC ,∴OD=1,∴CD=3,∵△ACD 的面积为6,∴12 CD •AC=6 ∴AC=4,即m=4则点A 的坐标为(4,2),将其代入y= kx 可得k=8 ∵点B (2,n )在y= 8x 的图象上,∴n=4; (2)解:如图,过点B 作BE ⊥AC 于点E ,则BE=2∴S △ABC = 12AC •BE= 12×4×2=4即△ABC 的面积为4.18.(1)解:①设药物燃烧时的函数解析式为y =k 1x ,药物燃烧后的解析式为y =k 2x把(5,72)代入y =k 1x 中得:72=5k 1 ∴k 1=710∴药物燃烧时的函数解析式为y =710x(0≤x ≤10)∴药物刚好燃烧完时教室内每立方米空气含药量为10×710=7mg 把(10,7)代入y =k 2x 中得:7=k210∴k 2=70∴药物燃烧后的解析式为y =70x(x ≥10);②在y =710x(0≤x ≤10)中,当y =75时x =2 ∵710>0∴当0≤x ≤10时,y 随x 增大而增大 ∴当2≤x ≤10时,学生不能在教室停留; 在y =70x (x ≥10)中,当y =75时x =50 ∵70>0∴当x ≥10时,y 随x 增大而减小∴当10≤x ≤50时,学生不能在教室停留; 综上所述,当2≤x ≤50时,学生不能在教室停留; (2)解:设要一次性燃烧完这种药物需t 分钟 同理可得当0≤x ≤t 时y =710x(0≤x ≤t)当药物刚好燃烧完时教室内每立方米空气含药量为t×710=7t10mg同理可得x≥t时y=7t 210x(x≥t)在y=710x(0≤x≤t)中,当y=0.7时x=1∴当1≤x≤t时为有效消毒时间;在y=7t 210 x (x≥t)中,当y=7t10x=0.7时x=t2∴当t≤x≤t2时为有效消毒时间;综上所述,当1≤x≤t2时为有效消毒时间∵有效消毒时间为120分钟∴t2−1=120解得t=11(负值舍去)∴要一次性燃烧完这种药物需11分钟第11 页共11 页。
中考数学复习 专题靶向练 反比例函数 专题
中考数学复习为专题靶向练(《反比例函数》专题)一、选择题。
题号 1 2 3 4 5 6 7 8 选项1. 一反比例函数的图象经过点(-2,3),则此函数的图象也经过点( ) A .(2,-3) B .(-3,-3) C .(2,3) D .(-4,6)2. 若反比例函数y =ax 的图象分布在第一、三象限,则a 的值可以是( )A. -3B. 2C. 0D. -1 3. 在同一直角坐标系中,函数y =kx -k 与y =k|x |(k ≠0)的大致图象是( )A. ①②B. ②③C. ②④D. ③④4. 如图,点A 在反比例函数y =kx (x >0)的图象上,AB ⊥x 轴于点B ,C 是OB 的中点,连接AO ,AC ,若△AOC 的面积为2,则k =( )A. 4B. 8 C .12 D. 165. 在同一平面直角坐标系中,一次函数y 1=k 1x +b 与反比例函数y 2=k 2x (x >0)的图象如图所示,则当y 1>y 2时,自变量x 的取值范围为( )A. x <1B. x >3C. 0<x <1D. 1<x <3 6. 如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x ⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为( )A .2B .322C .94D .227. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为I =13RB. 蓄电池的电压是18 VC. 当I ≤10 A 时,R ≥3.6 ΩD. 当R =6 Ω时,I =4 A8. 如图,在平面直角坐标系中,点A 、B 在函数y =k x(k >0,x >0)的图象上,过点A 作x 轴的垂线,与函数y =-k x(x >0)的图象交于点C ,连接BC 交x 轴于点D.若点A 的横坐标为1,BC =3BD ,则点B 的横坐标为( )A. 32B. 2C. 52D. 39. 如图,△AOB 和△ACD 均为等边三角形,且顶点B 、D 均在反比例函数y =k x(x >0)的图象上,若图中S △OBP =23,则k 的值为( )A. 4B. 6C. 2 3D. 3 3 二、填空题。
部编数学九年级上册专题11反比例函数的图象和性质之八大题型(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题11反比例函数的图象和性质之八大题型根据定义判断是否是反比例函数【变式训练】判断点是否在反比例函数上【变式训练】比较反比例函数值或自变量的大小【变式训练】1.(2023下·浙江金华·八年级统考期末)已知点1(A x ,3)-,2(B x ,1)-,3(C x ,4)都在反比例函数【变式训练】已知比例系数求特殊图形的面积【答案】2【变式训练】【答案】5【分析】过点B 作BD ^到矩形ACBD 的面积等于【详解】解:过点B 作BD∵∥BC y 轴,AC BC ^,∴ACB CBD BDA Ð=Ð=Ð【答案】6【分析】根据点D的坐标利用反比例函数图象上点的坐标特征即可求出的中点即可找出点B的坐标,根据【详解】∵D坐标为(2,3),点【点睛】本题考查了反比例函数图象上点的坐标特征以及反比例函数系数的坐标利用反比例函数图象上点的坐标特征求出反比例函数已知反比例函数经过的象限或增减性求参数【变式训练】一次函数与反比例函数图象综合判断..C.D.【答案】B【分析】分别利用k的取值,进而分析一次函数与反比例函数图象的位置,进而得出答案.【变式训练】....【答案】D【分析】根据反比例函数及一次函数的性质对四个选项进行逐项分析即可.k<;而一次函数的图象经过二、四象限【详解】解:A.由反比例函数的图象在二、四象限可知,0.B .C .D .【答案】A【分析】根据a 、b 与0的大小关系对图象即可作出判断.【详解】解:A 、一次函数y ax b +的图象经过一、二、四象限,则a<0,0>,反比例函数()00ab y a b x=¹,经过二、四象限,则0ab <,正确,符合题意;一次函数与反比例函数交点问题(1)求一次函数与反比例函数的解析式;(2)若点D 是y 轴上一点,且6ABD S =V 【答案】(1)1112y x =-;24y x =(2)()0,1D 或()0,3-【分析】(1)把点()4,1A 代入2m y x=【变式训练】(1)求k ,b 的值;(2)观察函数图象,直接写出不等式(3)连接OA ,OB ,求OAB V 的面积.【答案】(1)4k =-,2b =(2)1x <-或02x <<(3)3【点睛】本题主要考查一次函数和反比例函数的综合应用,正确求出表达式是解题的关键.2.(2023上·重庆万州·九年级统考期末)如图,一次函数()20k y k x=¹的图象交于()1A a -,,D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的一次函数图象上有一点(3)当12y y £时,直接写出x 的取值范围.【答案】(1)一次函数的解析式为(2)点P 的坐标为()86-,;...D.两种情况,分别判断出一次函数图象和反比例函数图象所过的象限,结合【点睛】本题考查反比例函数和一次函数图象的点的坐标特征及解一元二次方程,熟练掌握反比函数上的点的横坐标与纵坐标的积等于反比例的比例系数是解题的关键.二、填空题6.(2023下·江苏连云港·八年级统考期末)若反比例函数的取值范围是.3由图可知:60kx b x++>的解集为:31x -<<-或x >故答案为:31x -<<-或0x >【点睛】本题考查图象法解不等式,解题的关键是正确的画出一次函数和反比例函数的就图象.9.(2023下·浙江金华·八年级统考期末)如图,已知和9(0)y x x=>的图像上,且AB x P 轴.若OAB V 的面积为【答案】3【分析】根据题意,设角坐标系中三角形面积的求法列方程求解即可得到答案.【详解】解:Q OAB V 的顶点综合性较强,难度适中.三、解答题(1)求b与m的值;P a为x轴上一点,连接AP (2)(,0)【答案】(1)b的值为2,m的值为-(2)a=2或10(1)求一次函数和反比例函数的解析式;(2)求AOB V 的面积;(3)观察图像,直接写出一次函数值大于反比例函数值时自变量【答案】(1)2y x =-+,y (2)6∵点B 的横坐标为4,∴()41,4,14y B ==,∵点()1,4A ,∴A 关于y 轴的对称点(1,A ¢-(4)请写出函数1x y x =-的一条性质.【答案】(1)1x ¹(2)2-,32(4)①图象无限接近直线1x =,但与直线1x =永不相交;②1y ¹;③图象关于点()1,1中心对称;④当1x <或1,x y >随x 的增大而减小.【点睛】本题考查了反比例函数的性质以及函数图象, 根据给定数据描点、 连线画出函数图象是解题的关键 .。
中考数学总复习《反比例函数的性质》练习题及答案
中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
D.当y增大时,BE·DF的值不变。
8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。
中考数学真题分类函数专题(反比例函数)试题及答案详解
中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。
中考数学备考专题复习反比例函数含解析
反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。
中考数学综合题专题复习【反比例函数】专题解析附答案
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。
人教版九年级数学中考总复习 第11课时 反比例函数 含解析及答案
1第11课时 反比例函数知能优化训练一、中考回顾1.(2020海南中考)下列各点中,在反比例函数y=8x图象上的点是( ) A.(-1,8) B.(-2,4)C.(1,7)D.(2,4)2.(2021天津中考)若点A (-5,y 1),B (1,y 2),C (5,y 3)都在反比例函数y=-5x 的图象上,则y 1,y 2,y 3的大小关系是( ) A.y 1<y 2<y 3 B.y 2<y 3<y 1 C.y 1<y 3<y 2 D.y 3<y 1<y 23.(2020青海中考)若ab<0,则正比例函数y=ax 与反比例函数y=b x 在同一平面直角坐标系中的大致图象可能是( )4.(2020内蒙古包头中考改编)如图,在平面直角坐标系中,直线y=-32x+3与x 轴、y 轴分别交于点A 和点B ,C 是线段AB 上一点,过点C 作CD ⊥x 轴,垂足为D ,CE ⊥y 轴,垂足为E ,S △BEC ∶S △CDA =4∶1.若函数y=k x(x>0)的图象经过点C ,则k 的值为( )A.43 B.34C.25D.525.(2021云南中考)若反比例函数的图象经过点(1,-2),则该反比例函数的解析式(解析式也称表达式)为 . y=-2x6.(2020四川南充中考)如图,反比例函数y=k x(k ≠0,x>0)的图象与y=2x 的图象相交于点C ,过直线上一点A (a ,8)作AB ⊥y 轴于点B ,交反比例函数图象于点D ,且AB=4BD.(1)求反比例函数的解析式; (2)求四边形OCDB 的面积.由点A (a ,8)在直线y=2x 上,则a=4,∴A (4,8). ∵AB ⊥y 轴,与反比例函数图象交于点D ,且AB=4BD , ∴BD=1,即D (1,8),∴k=8,反比例函数解析式为y=8x .(2)∵C 是直线y=2x 与反比例函数y=8x 图象的交点,∴2x=8x , ∵x>0,∴x=2,则C (2,4).∴S △ABO =12×4×8=16,S △ADC =12×3×4=6, ∴S 四边形OCDB =S △ABO -S △ADC =10.二、模拟预测1.已知函数y=(m+2)x m 2-10是反比例函数,且图象在第二、第四象限内,则m 的值是( )A.3B.-3C.±3D.-132.如图,直线y=kx (k>0)与双曲线y=2x交于A ,B 两点,若A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1y 2+x 2y 1的值为( )3A.-8B.4C.-4D.03.如图,直线l 与x 轴、y 轴分别交于A ,B 两点,与反比例函数y=k x的图象在第一象限相交于点C.若AB=BC ,△AOB 的面积为3,则k 的值为( )A.6B.9C.12D.184.如图,在平面直角坐标系中,反比例函数y=k x(x>0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM+PN 的最小值是( )A.6√2B.10C.2√26D.2√295.已知点A (x 1,y 1),B (x 2,y 2)都在反比例函数y=6x 的图象上.若x 1x 2=-3,则y 1y 2的值为 .126.如图,点A 1,A 2,A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1,A 2,A 3作y 轴的平行线,与反比例函数y=8x (x>0)的图象分别交于点B 1,B 2,B 3,分别过点B 1,B 2,B 3作x 轴的平行线,分别与y 轴交于点C 1,C 2,C 3,连接OB 1,OB 2,OB 3,那么图中阴影部分的面积之和为 .7.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.某天恒温系统从开启到关闭及关闭后,大棚内温度y (单位:℃)随时间x (单位:h)变化的函数图象如图所示,其中BC 段是双曲线y=k x的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18 ℃的时间有多少小时? (2)求k 的值.(3)当x=16 h 时,大棚内的温度约为多少摄氏度?恒温系统在这天保持大棚内温度为18℃的时间为10h . (2)∵点B (12,18)在双曲线y=kx 上, ∴18=k 12.∴k=216. (3)当x=16时,y=21616=13.5.∴当x=16h 时,大棚内的温度约为13.5℃.。
2019年中考数学专题复习小练习专题11反比例函数
专题11 反比例函数1.2018·柳州已知反比例函数的解析式为y =|a |-2x,则a 的取值范围是( )A .a ≠2 B.a ≠-2 C .a ≠±2 D.a =±22.2018·绥化已知反比例函数y =3x,下列结论中不正确的是( )A .其图象经过点(3,1)B .其图象分别位于第一、三象限C .当x >0时,y 随x 的增大而减小D .当x >1时,y >33.2018·扬州已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3x的图象上,则下列关系式一定正确的是( )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 14.2018·黄石已知一次函数y 1=x -3和反比例函数y 2=4x的图象在平面直角坐标系中交于A ,B 两点,当y 1>y 2时,x 的取值范围是( )A .x <-1或x >4B .-1<x <0或x >4C .-1<x <0或0<x <4D .x <-1或0<x <45.2018·上海已知反比例函数y =k -1x(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是________.6.2018·邵阳如图Z -11-1所示,A 是反比例函数y =k x的图象上一点,过点A 作AB ⊥x 轴,垂足为B .若△AOB 的面积为2,则k 的值是________.图Z -11-17.2018·随州如图Z -11-2,一次函数y =x -2的图象与反比例函数y =k x(k >0)的图象相交于A ,B 两点,与x 轴交于点C .若tan∠AOC =13,则k 的值为________.图Z -11-28.2018·大庆如图Z -11-3,A (4,3)是反比例函数y =k x在第一象限图象上一点,连接OA ,过点A 作AB ∥x 轴,截取AB =OA (点B 在点A 右侧),连接OB ,交反比例函数y =k x的图象于点P .(1)求反比例函数y =k x的解析式; (2)求点B 的坐标; (3)求△OAP 的面积.图Z -11-3详解详析1.C 2.D 3.A 4.B 5.k<1 6.4 7.38.解:(1)∵A(4,3)是反比例函数y =kx 图象上的一点,∴3=k 4,解得k =12.∴反比例函数的解析式为y =12x.(2)如图,过点A 作AM⊥x 轴于点M.∵A(4,3),∴AM=3,OM =4. 在Rt △AMO 中,OA =AM 2+OM 2=32+42=5. 又∵AB=OA ,∴AB=5.∵AB∥x 轴,∴点B 的坐标为(9,3). (3)设OB 的函数解析式为y =ax , ∴3=9x ,解得x =13,∴y=13x.联立⎩⎪⎨⎪⎧y =12x ,y =13x ,解得⎩⎪⎨⎪⎧x =6,y =2或⎩⎪⎨⎪⎧x =-6,y =-2.∵点P 在第一象限,∴点P 的坐标为(6,2). 过点P 作PN⊥x 轴于点N ,连接AP. ∴PN=2,ON =6. ∴S △OAP =S △OAM +S梯形AMNP-S △OPN =12AM·OM+12(AM +PN)·(ON-OM)-12PN·ON=12×3×4+12×(2+3)×(6-4)-12×2×6=5, 即△OAP 的面积为5.。
2022最新中考数学一轮复习《第11讲:反比例函数》精练(含答案)
第11讲反比例函数A组基础题组一、选择题1.已知点A(-1,1)是反比例函数y=m+1x的图象上一点,则m的值为()A.-1B.-2C.0D.12.(2022最新四川自贡)一次函数y1=k1x+b和反比例函数y2=k2x(k1·k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<13.(2022最新日照)反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的大致图象是()4.一次函数y=kx+b与反比例函数y=2x 的图象如图所示,则方程kx+b=2x的解为()A.x1=1,x2=2B.x1=-2,x2=-1C.x1=1,x2=-2D.x1=2,x2=-15.若反比例函数y=kx(k<0)的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1<y2<0B.y1>y2>0C.y2<y1<0D.y2>y1>06.若式子√-k 有意义,则函数y=kx+1和y=k2-1x的图象可能是()7.(2022最新云南)如图,A,B两点在反比例函数y=k1x的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1-k2的值是()A.6B.4C.3D.28.(2022最新广东)如图所示,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于点A,B两点,已知点A的坐标为(1,2),则点B的坐标是()A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)二、填空题9.(2022最新东营)如图,B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.(k是常数,k≠0)的图象经过10.(2022最新上海)如果反比例函数y=kx点(2,3),那么这个函数图象在的每个象限内,y的值随x的值的增大而.(填“增大”或“减小”)11.(2022最新湖南长沙)如图,点M是函数y=√3x与y=k的图象在第一x象限内的交点,OM=4,则k的值为.12.(2022最新福建)已知矩形ABCD的四个顶点均在反比例函数y=1的x 图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题13.(2022最新菏泽)如图,已知点D在反比例函数y=a(a≠0)的图象上,x过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b(k≠0)经过点A(5,0),与y轴交于点C,且BD=OC,OC OA=2 5.和一次函数y=kx+b的表达式;(1)求反比例函数y=ax(2)直接写出关于x的不等式a>kx+b的解集.x的图象14.(2022最新湖北武汉)如图,直线y=2x+4与反比例函数y=kx交于A(-3,a)和B两点.(1)求k的值;的图象交于(2)直线y=m(m>0)与直线AB交于点M,与反比例函数y=kx点N,若MN=4,求m的值;>x的解集.(3)直接写出不等式6x-5B组提升题组一、选择题1.函数y=kx与y=-kx2+k(k≠0)在同一平面直角坐标系中的图象可能是()2.(2022最新临沂)如图,正比例函数y1=k1x与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<-1或x>1B.-1<x<0或x>1C.-1<x<0或0<x<1D.x<-1或0<x<13.(2022最新东平模拟)如图,双曲线y=kx 与直线y=-12x交于A、B两点,且A(-2,m),则点B的坐标是()A.(2,-1)B.(1,-2)C.(12,-1) D.(-1,12)二、填空题4.(2022最新江苏南京)函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数图象的最低点的坐标是(2,4).其中正确结论的序号是.三、解答题5.(2022最新聊城)如图,已知反比例函数y=k1x(x>0)的图象与反比例函数y=k2x (x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=k1x(x>0)图象上的两点,连接AB,点C(-2,n)是函数y=k2x(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.反比例函数与一次函数综合问题培优训练一、选择题1.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于A(-3,2),B(2,n)两点,则不等式ax+b<kx的解集为()A.-3<x<2B.-3<x<0或x>2C.x>-3D.x<22.在同一直角坐标平面内,如果直线y=k1x与双曲线y=k2x没有交点,那么k1和k2的关系一定是()A.k1+k2=0B.k1·k2<0C.k1·k2>0D.k1=k23.如图,在直角坐标系中,直线y1=2x-2与坐标轴交于A、B两点,与双曲线y2=kx(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,连接BD,则以下结论:①S△ADB =S△ADC;②当0<x<3时,y1<y2;;③当x=3时,EF=83④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1B.2C.3D.4与直线y=kx+b交于点M、N,并且点M的坐标为4.如图,双曲线y=mx=kx+b的解为(1,3),点N的纵坐标为-1.根据图象可得关于x的方程mx()A.-3,1B.-3,3C.-1,1D.-1,35.如图,正比例函数y1的图象与反比例函数y2的图象相交于点E(-1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()的图象上,直角边BC在x轴6.如图,Rt△ABC的顶点A在双曲线y=kx上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4√3B.-4√3C.2√3D.-2√37.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=k1x (x>0)和y=k2x(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.PMQM =k1 k2C.这两个函数的图象一定关于x轴对称D.△POQ的面积是12(|k1|+|k2|)8.如图所示,已知A(12,y1),B(2,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0) B.(1,0)C.(32,0) D.(52,0)9.如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=kx(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:①双曲线的解析式为y=20(x>0);②Ex;④AC+OB=12√5.其中正确的结论有点的坐标是(4,8);③sin∠COA=45()A.1个B.2个C.3个D.4个二、填空题的图象有两个交点,其中一个交点的横坐标10.已知函数y=ax和y=4-ax为1,则两个函数图象的交点坐标是.(x>0)的图象交于点A, 11.如图,一次函数y=kx+2与反比例函数y=4x与y轴交于点M,与x轴交于点N,且AM MN=1 2,则k=.三、解答题12.如图,直线l1的方程为y=-x+1,直线l2的方程为y=x+5,且两直线与直线l1的另一交点为Q(3,a).相交于点P,过点P的双曲线y=kx(1)求双曲线的解析式;(2)根据图象直接写出不等式k>-x+1的解集;x(3)若l2与x轴的交点为M,求△PQM的面积.(x>0)的图象交于13.如图,一次函数y=kx+b的图象与反比例函数y=mx点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.14.如图,反比例函数y=kx的图象与过两点A(0,-2),B(-1,0)的一次函数的图象在第二象限内相交于点M(m,4).(1)求反比例函数与一次函数的表达式;(2)在双曲线(x<0)上是否存在点N,使MN⊥MB,若存在,请求出N点坐标,若不存在,说明理由.15.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位长度,向上平移2个单位长度得到点Q,点Q 也在该函数y=kx+b的图象上.(1)求k的值;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=-4x的图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若S1S2=7 9 ,求b的值.16.如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点.①求直线BD的解析式;②求线段ED的长度.第11讲反比例函数A组基础题组一、选择题1.B2.D3.D4.C5.A6.B 因为式子√-k有意义,所以k<0,所以一次函数y=kx+1的图象过第一、二、四象限,故选B.7.D 设点A(m,k1m )、点B(n,k1n),则点C(k2mk1,k1m)、点D(k2nk1,k1n),∵AC=2,BD=1,EF=3,∴{ m -k 2mk 1=2,k 2nk 1-n =1,k 1m -k 1n=3, 解得k 1-k 2=2.8.A 由题可知,A 、B 两点关于原点对称,∵A 的坐标是(1,2),∴B 的坐标是(-1,-2). 二、填空题 9.答案 y=6x解析 B(3,-3),C(5,0),O(0,0),四边形OABC 为平行四边形,则点B 可以看成点C 经过平移得到的,点A 可以看成点O 经过平移得到的,∴点A(-2,-3),代入求解得y=6x .10.答案 减小解析 ∵反比例函数y=kx (k≠0)的图象过点(2,3),∴k=2×3=6>0,∴这个函数图象在的每个象限内,y 的值随x 的值的增大而减小. 11.答案 4√3解析 过点M 作MN⊥x 轴于点N,由已知设M 的坐标为(x,√3x)(x>0),则ON=x,MN=√3x,在Rt△OMN 中,ON 2+MN 2=OM 2,即x 2+(√3x)2=42,解得x=2(舍负),故M(2,2√3),将M 的坐标代入y=kx 中,可得k=4√3.12.答案152解析 ∵点A 在反比例函数y=1x的图象上,且点A 的横坐标是2,∴y=12,即点A 的坐标为(2,12).如图,∵双曲线y=1x 和矩形ABCD 都是轴对称图形和中心对称图形,∴点A 、B 关于直线y=x 对称,∴B (12,2),同理,C (-2,-12),D (-12,-2). ∴AB=√(2-12)2+(12-2)2=3√22. AD=√(2+12)2+(12+2)2=5√22.∴S 矩形ABCD =AB·AD=152.三、解答题13.解析 (1)∵BD=OC,OC OA=2 5,点A(5,0),点B(0,3), ∴OA=5,OC=BD=2,OB=3,又∵点C 在y 轴的负半轴,点D 在第二象限, ∴点C 的坐标为(0,-2),点D 的坐标为(-2,3). ∵点D(-2,3)在反比例函数y=ax 的图象上,∴a=-2×3=-6,∴反比例函数的表达式为y=-6x .将A(5,0)、C(0,-2)代入y=kx+b, 则{5k +b =0,b =-2,解得{k =25,b =-2,∴一次函数的表达式为y=25x-2.(2)x<0.将y=25x-2代入y=-6x,整理得25x 2-2x+6=0,∵Δ=(-2)2-4×25×6=-285<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x<0时,反比例函数图象在一次函数图象上方, ∴不等式ax >kx+b 的解集为x<0.14.解析 (1)∵点A(-3,a)在直线y=2x+4上, ∴a=2×(-3)+4=-2.∵点A(-3,-2)在y=kx 的图象上,∴k=6.(2)∵点M 是直线y=m 与直线AB 的交点, ∴M (m -42,m).∵点N 是直线y=m 与反比例函数y=6x的图象的交点, ∴N (6m ,m).∴MN=x N -x M =6m -m -42=4或MN=x M -x N =m -42-6m=4,解得m=2或m=-6或m=6±4√3, ∵m>0,∴m=2或m=6+4√3. (3)x<-1或5<x<6.B 组 提升题组一、选择题1.B 易知抛物线y=-kx 2+k 的对称轴为x=0.若k>0,则反比例函数的图象过第一、三象限,二次函数的图象的开口向下,与y 轴相交于正半轴;若k<0,则反比例函数的图象过第二、四象限,二次函数的图象的开口向上,与y 轴相交于负半轴,故选B.2.D∵正比例函数y 1=k 1x 与反比例函数y 2=k2x 的图象相交于A 、B 两点,其中点A 的横坐标为1. ∴B 点的横坐标为-1,故当y 1<y 2时,x 的取值范围是x<-1或0<x<1.故选D. 3.A 解法一:当x=-2时, y=-12×(-2)=1,即A(-2,1).将A 点坐标(-2,1)代入y=kx,得k=-2×1=-2,所以反比例函数的解析式为y=-2x ,联立得{y =-2x,y =-12x ,解得{x 1=-2,y 1=1,{x 2=2,y 2=-1, 所以B(2,-1). 故选A.解法二:因为反比例函数的图象和正比例函数的图象都是中心对称图形,所以它们的交点坐标关于原点对称,故选A.二、填空题4.答案①③解析①∵y=y1+y2,∴y=x+4x.若点(a,b)在函数y=x+4x的图象上,则b=a+4a.∵当x=-a时,y=-a-4a =-(a+4a)=-b.∴点(-a,-b)在函数y=x+4x的图象上.∴函数y=x+4x的图象关于原点中心对称,故①正确.②当0<x<2时,随着x的增大,y1增大,y2减小,∴y的变化不能确定;当x<0时,随着x的增大,y1增大,y2减小,∴y的变化不能确定;当x=0时,y无意义.故②错误.③当x>0时,y=x+4x=(√x-√4x )2+2·√x·√4x=(√x-√4x )2+4,当√x=√4x,即x=2时,y取得最小值,y min=4. ∴函数图象的最低点的坐标是(2,4).故③正确. 三、解答题5.解析 (1)∵A(1,4),B(4,m)是函数y=k 1x (x>0)图象上的两点,∴4=k 11,k 1=4.∴y=4x (x>0),∴m=44=1.∵y=k2x(x<0)的图象与y=k1x(x>0)的图象关于y 轴对称,∴点A(1,4)关于y 轴的对称点A 1(-1,4)在y=k2x(x<0)的图象上,∴4=k 2-1,k 2=-4.∴y=-4x(x<0).又∵点C(-2,n)是函数y=-4x(x<0)图象上的一点,∴n=-4(-2)=2.(2)设AB 所在直线的表达式为y=kx+b(k≠0), 将A(1,4),B(4,1)分别代入y=kx+b 得{4=k +b ,1=4k +b ,解这个二元一次方程组,得{k =-1,b =5.∴AB 所在直线的表达式为y=-x+5.(3)自A,B,C 三点分别向x 轴作垂线,垂足分别为A',B',C'.CC'=2,AA'=4,BB'=1,C'A'=3,A'B'=3,C'B'=6. ∴S △ABC =S 梯形CC'A'A +S 梯形AA'B'B -S 梯形CC'B'B=12×(2+4)×3+12×(1+4)×3-12×(2+1)×6=152.反比例函数与一次函数综合问题培优训练一、选择题1.B2.B∵直线y=k1x与双曲线y=k2x没有交点,∴k1x=k2x无解,∴x2=k2k1无解,∴k2k1<0,即k1·k2<0.故选B.3.C 对于直线y1=2x-2,令x=0,得到y=-2;令y=0,得到x=1,∴A(1,0),B(0,-2),即OA=1,OB=2.在△OBA和△DCA中,{∠AOB=∠ADC=90°, OA=DA,∠OAB=∠DAC,∴△OBA≌△DCA(ASA),∴OB=CD=2,OA=AD=1,∴S△ADB =S△ADC(同底等高的三角形面积相等),故①正确;由①知CD=2,OD=OA+AD=2,∴C(2,2),把C点坐标代入反比例函数解析式得k=4,即y2=4x, 由函数图象得,当0<x<2时,y1<y2,故②错误;当x=3时,y 1=4,y 2=43,即EF=4-43=83,故③正确;当x>0时,y 1随x 的增大而增大,y 2随x 的增大而减小,故④正确.故选C.4.A∵M(1,3)在反比例函数图象上, ∴m=1×3=3,∴反比例函数解析式为y=3x ,∵点N 也在反比例函数图象上,点N 的纵坐标为-1. ∴x N =-3, ∴N(-3,-1),∴关于x 的方程mx =kx+b 的解为x=-3或x=1.故选A.5.A∵正比例函数的图象与反比例函数的图象相交于点E(-1,2), ∴根据图象可知当y 1>y 2>0时x 的取值范围是x<-1, ∴在数轴上表示为,故选A.6.B∵∠ACB=30°,∠AOB=60°, ∴∠OAC=∠AOB -∠ACB=30°, ∴∠OAC=∠ACO, ∴OA=OC=4.在△AOB 中,∠ABC=90°,∴∠OAB=30°, ∴OB=12OA=2,∴AB=√3OB=2√3, ∴A(-2,2√3),把A(-2,2√3)代入y=kx 得k=-2×2√3=-4√3.故选B.7.DA.∵P 点坐标未知,∴当PM=MQ=OM 时,∠POQ 等于90°,故此选项错误;B.由题图知k 1>0,k 2<0,而PM,QM 为线段长度,一定为正值,故PM QM=|k1k 2|,故此选项错误;C.根据k 1,k 2的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D.∵|k 1|=PM·MO,|k 2|=MQ·MO,△POQ 的面积=12MO·PQ=12MO(PM+MQ)=12MO·PM+12MO·MQ,∴△POQ 的面积是12(|k 1|+|k 2|),故此选项正确.故选D.8.D 把A (12,y 1),B(2,y 2)代入反比例函数y=1x得y 1=2,y 2=12,∴A (12,2),B (2,12),∵在△ABP 中,|AP-BP|<AB,∴延长AB 交x 轴于点P',当点P 在P'点位置时,PA-PB=AB, 此时线段AP 与线段BP 之差达到最大. 设直线AB 的解析式是y=kx+b(k≠0),把A 、B 的坐标代入得{2=12k +b ,12=2k +b ,解得k=-1,b=52,∴直线AB 的解析式是y=-x+52,当y=0时,x=52,即P'(52,0),故选D.9.C 过点C 作CF⊥x 轴于点F, ∵OB·AC=160,A 点的坐标为(10,0), ∴菱形OABC 的边长为10, ∴OA·CF=12OB·AC=12×160=80,∴CF=80OA =8010=8,在Rt△OCF 中, ∵OC=10,CF=8,∴OF=√OC 2-CF 2=√102-82=6, ∴C(6,8),易知点D 是线段AC 的中点, ∴D 点坐标为(10+62,82),即(8,4), ∵双曲线y=k x (x>0)经过D 点, ∴4=k8,即k=32,∴双曲线的解析式为y=32x(x>0),故①错误;易知直线CB 的解析式为y=8, ∴{y =32x ,y =8,解得{x =4,y =8,∴E 点坐标为(4,8),故②正确; sin∠COA=CFOC =810=45,故③正确;易知AC=√(10-6)2+(0-8)2=4√5,又∵OB·AC=160, ∴OB=160AC =4√5=8√5,∴AC+OB=4√5+8√5=12√5,故④正确. 故选C.二、填空题10.答案 (1,2)和(-1,-2) 解析 依题意有y=a,y=4-a, 解得a=2.代入原函数有{y =2x ,y =2x,解此方程组得{x 1=1,y 1=2和{x 2=-1,y 2=-2.所以两函数图象的交点坐标为(1,2)和(-1,-2). 11.答案 34解析 过点A 作AD⊥x 轴,由题意可得MO∥AD, 则△NOM∽△NDA, ∵AM MN=1 2, ∴NM AN =MO AD =23,∵一次函数y=kx+2与y 轴的交点为(0,2), ∴MO=2, ∴AD=3, ∴当y=3时,3=4x ,解得x=43,∴A (43,3),将A 点代入y=kx+2得3=43k+2,解得k=34.三、解答题12.解析 (1)解方程组{y =-x +1,y =x +5,得{x =-2,y =3,则P(-2,3),把P(-2,3)代入y=kx 得k=-2×3=-6,∴双曲线的解析式为y=-6x.(2)当x=3时,y=-3+1=-2, 则Q(3,-2),所以不等式kx >-x+1的解集为-2<x<0或x>3.(3)当y=0时,x+5=0,解得x=-5,则M(-5,0),设l 1与x 轴的交点为N,则N(1,0). ∴S △PQM =S △PMN +S △QMN =12×(5+1)×(3+2)=15.13.解析 (1)∵AC=BC,CO⊥AB, ∴O 为AB 的中点,即OA=OB, ∵S △PBC =4,即12OB×PB=4,P(n,2),即PB=2, ∴OA=OB=4,∴P(4,2),B(4,0),A(-4,0). 将A(-4,0)与P(4,2)代入y=kx+b 得{-4k +b =0,4k +b =2,解得{k =14,b =1.∴一次函数的解析式为y=14x+1.将P(4,2)代入反比例函数解析式得2=m 4,解得m=8, ∴反比例函数的解析式为y=8x .(2)假设存在这样的D 点,使四边形BCPD 为菱形.过点C 作x 轴的平行线与双曲线交于点D,连接PD 、BD 、CD,如图所示.令一次函数y=14x+1中x=0,则有y=1,∴点C 的坐标为(0,1), ∵CD∥x 轴,∴设点D 的坐标为(x,1).将点D(x,1)代入反比例函数解析式y=8x中,得1=8x,解得x=8,∴点D 的坐标为(8,1),即CD=8. ∵P 点横坐标为4, ∴BP 与CD 互相垂直平分, ∴四边形BCPD 为菱形.故反比例函数图象上存在点D,使四边形BCPD 为菱形,此时点D 的坐标为(8,1).14.解析 (1)设直线AB 的表达式为y=ax+b(a≠0), 将点A(0,-2),B(-1,0)代入y=ax+b,得 {b =-2,-a +b =0,解得{a =-2,b =-2, ∴一次函数的表达式为y=-2x-2. 当y=-2x-2=4时,x=-3, ∴点M 的坐标为(-3,4),将点M(-3,4)代入y=kx,得4=k-3,解得k=-12,∴反比例函数的表达式为y=-12x.(2)假设存在这样的点N.过点M 作MC⊥x 轴于C,过点N 作ND⊥MC 于D,如图所示. ∵∠MND+∠NMD=90°, ∠BMC+∠NMD=90°, ∴∠MND=∠BMC, 又∵∠MDN=∠BCM=90°, ∴△MDN∽△BCM,∴MD BC =ND MC.设N (n ,-12n ),则有4+12n2=-3-n 4,解得n=-8或n=-3(不合题意,舍去), 经检验,n=-8是原分式方程的解且符合题意, ∴点N 的坐标为(-8,32),∴在双曲线(x<0)上存在点N (-8,32),使MN⊥MB.15.解析 (1)设点P 的坐标为(m,n), 则点Q 的坐标为(m-1,n+2), 依题意得{n =km +b ,n +2=k (m -1)+b ,解得k=-2. (2)根据题意得S △OABS △AEC =916=OB 2CE 2,∴OB CE =34.设点C 的坐标为(a,-2a+b), 则OB=b,CE=-2a+b,∴{b-2a+b =34,-2a +b =-4a,解得b=3√2或b=-3√2(舍去).16.解析 (1)如图1,过点A 作AP⊥x 轴于点P,则AP=1,OP=2.又∵四边形OABC 是平行四边形, ∴AB=OC=3, ∴B(2,4).∵反比例函数y=kx (x>0)的图象经过点B,∴4=k2.∴k=8.∴反比例函数的关系式为y=8x .(2)①设直线BD 的解析式为y=kx+b(k≠0),直线OA 的解析式为y=k 1x(k 1≠0), ∵A(2,1),∴直线OA 的解析式为y=12x.∵点D 是反比例函数y=8x的图象与直线OA 的交点,解方程组{y =12x ,y =8x,得{x =4,y =2或{x =-4,y =-2. ∵点D 在第一象限内, ∴D(4,2).将B 、D 两点代入y=kx+b, ∴直线BD 的解析式为y=-x+6.②把y=0代入y=-x+6,解得x=6.∴E(6,0),过点D作DH⊥x轴于H,如图2,图2∴DH=2,OH=4,∴HE=6-4=2,由勾股定理可得ED=√DH2+HE2=2√2.。
中考数学总复习《反比例函数》专项测试题-附参考答案
中考数学总复习《反比例函数》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.如果反比例函数y=kx的图象经过点(1,−2),那么k等于( )A.−2B.2C.−12D.122.已知点A在双曲线y=−2x上,点B在直线y=x−4上,且A,B两点关于y轴对称,设点A的坐标为(m,n),则mn +nm的值是( )A.−10B.−8C.6D.43.如图,点A是反比例函数y=3x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=−2x的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则S平行四边形ABCD为( )A.2B.3C.4D.54.下列函数关系式中属于反比例函数的是( )A.y=3x B.y=−3xC.y=x2+3D.x+y=35.如图,点A是反比例函数y=3x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=−2x的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则S平行四边形ABCD为( )A.2B.3C.4D.56.如果反比例函数y=kx的图象经过点(−2,3),那么函数的图象应在( ) A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限7.正比例函数y=x与反比例函数y=1x的图象相交于A,C两点.AB⊥x轴于B,CD⊥x轴于D(如图),则四边形ABCD的面积为( )A.1B.32C.2D.528.对于反比例函数y=−2x,下列说法不正确的是( )A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,−2)D.若A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2二、填空题(共5题,共15分)9.点A(a,b)是一次函数y=x−2与反比例函数y=4x的交点,则a2b−ab2=.10.双曲线 y =2x经过点 A (2,y 1) 和点 B (3,y 2),则 y 1 y 2.(填“>”、“<”或“=”)11.若点 P 1(1,m ),P 2(2,n ) 在反比例函数 y =kx (k <0) 的图象上,则 m n (填 ">""<"或"=" ).12.点 P ,Q ,R 在反比例函数 y =kx (常数 k >0,x >0)图象上的位置如图所示,分别过这三个点作 x 轴、 y 轴的平行线.图中所构成的阴影部分面积从左到右依次为 S 1,S 2,S 3.若 OE =ED =DC ,S 1+S 3=27,则 S 2 的值为 .13.若关于 t 的不等式组 {t −a ≥0,2t +1≤4恰有三个整数解,则关于 x 的一次函数 y =14x −a的图象与反比例函数 y =3a+2x的图象的公共点的个数为 .三、解答题(共3题,共45分)14.已知函数y=(m ﹣1)x|m|﹣2是反比例函数. (1)求m 的值;(2)求当x=3时,y 的值.15.如图,一次函数y=kx+b 的图象与反比例函数y=mx (x >0)的图象交于P (n ,2),与x轴交于A(﹣4,0),与y轴交于C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.16.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如下图,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.参考答案1. 【答案】A2. 【答案】A3. 【答案】D4. 【答案】B5. 【答案】D6. 【答案】C7. 【答案】C8. 【答案】B9. 【答案】810. 【答案】>11. 【答案】<12. 【答案】27513. 【答案】1或014.【答案】解:(1)|m|﹣2=﹣1且m﹣1≠0解得:m=±1且m ≠1 ∴m=﹣1.(2)当m=﹣1时,原方程变为y=﹣ 当x=3时,y=﹣. 考点:反比例函数的定义.15.【答案】解:(1)∵AC=BC ,CO ⊥AB ,A (﹣4,0) ∴O 为AB 的中点,即OA=OB=4 ∴P (4,2),B (4,0)将A (﹣4,0)与P (4,2)代入y=kx+b 得: {;−4k +b =04k +b =2解得:k=14,b=1∴一次函数解析式为y=14x+1将P (4,2)代入反比例解析式得:m=8,即反比例解析式为y=14.(2)如图所示当PB 为菱形的对角线时 ∵四边形BCPD 为菱形 ∴PB 垂直且平分CD ∵PB ⊥x 轴,P (4,2) ∴点D (8,1).当PC 为菱形的对角线时,PB ∥CD此时点D 在y 轴上,不可能在反比例函数的图象上,故此种情形不存在. 综上所述,点D (8,1).16.【答案】解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则{b =47k 1+b =46,解得{k 1=6b =4,则y=6x+4,此时自变量x 的取值范围是0≤x ≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y 与x 的函数关系式为y=k2x (k 2≠0).由图象知y=k 2x过点(7,46),∴k 27=46,∴k 2=322,∴y=322x,此时自变量x 的取值范围是x >7.(2)当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h ).(3)当y=4时,由y=322x得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井。
中考数学总复习《反比例函数》专题训练(附带答案)
中考数学总复习《反比例函数》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________知识梳理【考点一】反比例函数的定义 一般地,函数xky =(k 是常数,0k ≠)叫做反比例函数。
反比例函数的解析式也可以写成 1-=kx y 或xy k =的形式。
自变量x 的取值范围是0x ≠的一切实数,函数的取值范围也是一切非零实数。
【考点二】反比例函数的图象与性质反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量0x ≠,函数0y ≠,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数)0(≠=k xky k 的符号 0k >0k <图像性质①x 的取值范围是0x ≠ y 的取值范围是0y ≠;②当0k >时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y 随x 的增大而减小。
①x 的取值范围是0x ≠ y 的取值范围是0y ≠;②当0k <时,函数图像的两个分支分别 在第二、四象限。
在每个象限内,y 随x 的增大而增大。
【考点三】求反比例函数的解析式确定反比例函数解析式的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系一、单选题1,2,则另一个交点坐标为(A .()2,1B .()2,1--C .1,2D .()2,1-(单位:A )与电阻R ⎝⎭A . B .C .D .k的图象与正方形ABCD 有交点,则k 的取值范围是( )A .19k <<B .91k -≤≤-C .82k -≤≤-D .102k -≤≤-5.若在反比例函数ky x=图象的任一支上,y 都随x 的增大而增大,则下列点可能在这个函数图象上的为( )A .()2,0B .()3,2C .()1,2-+D .()1,3--6.如图,在直角坐标系中,A 与x 轴相切于点B ,CB 为A 的直径,点C 在函数(00)k y k x x=>>,的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为( )A .6B .12C .18D .247.如图所示,在x 轴的正半轴上依次截取1122334451n n OA A A A A A A A A A A -=====,过12345n A A A A A A 、、、、,分别作x 轴的垂线与反比例函数4y x=的图像交于点12345 n P P P P P P 、、、、,并设111222331n n n OA P A A P A A P A A P -、、△△△△面积分别为123n S S S S 、、,按此作法进行下去,n S (n 为正整数)的值为( )8.根据物理学知识,导体中的电流I ,与导体的电阻R 、导体两端的电压U 之间满足关系式U IR =.当UA .a b >B .a b ≥C .a b <D .a b ≤二、填空题x13.如图,双曲线6y x =与2y x=在第一象限内的图象依次是m 和n ,设点P 在图象m 上,PC 垂直x 轴于点C ,交图象n 于点A ,PD 垂直y 轴于点D ,交图象n 于点B ,连接OP 、OA 、OB 、AB 、CD ,下列结论:①四边形PAOB 的面积为4;①POA 的面积为3;①2PC AC =;①PAB PCD ∽△△.其中一定正确的有 个.三、解答题14.如图,已知点A 在正比例函数2y x =-图象上,过点A 作AB x ⊥轴于点B ,四边形ABCD 是正方形,点D 是反比例函数ky x=图象上.(1)若点A 的横坐标为2-,求k 的值;(2)若设正方形ABCD 的面积为m ,试用含m 的代数式表示k 值.x(1)在水温下降过程中,求y 与x 的函数解析式;(2)比赛组织方要求,参赛选手必须把组织方提供的20℃的饮用水用该款饮水机加热到100℃,然后降温到80℃方可使用.求从饮水机加热开始,到可以使用需要等待多长时间?17.如图是轮滑场地的截面示意图,平台AB 距x 轴(水平线)20米,且1AB =米,点B 在y 轴上,经过A 点的双曲线ay x=(1x ≥)看成滑道,运动员(看成点)在平台A 处获得BA 方向的速度v (米/秒),从A 处向右下方飞向滑道,点(),M x y 表示运动员从飞出到落到滑道上这段下落路线上的某位置.忽略空气阻力,实验表明,点M 与点A 的水平距离是AH vt =米,点M 与点A 的竖直距离是25MH t =米,t (秒)表示运动员从点A 处飞出运动到点M 的时间.(1)求a 的值.(2)若某运动员飞出的速度是5v =米/秒,用t 表示点M 的横坐标x 和纵坐标y ;并求出y 与x 的函数关系式; (3)在(2)的条件下,当点M 的纵坐标是15时,求这名运动员从A 处的飞出时间t 的值,及此时与正下方滑道的竖直距离.,当PAC的面积等于B,D,Q为顶点的四边形为平行答案第1页,共1页参考答案1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】B 5.【答案】C 6.【答案】D 7.【答案】D 8.【答案】A 9.【答案】4k < 10.【答案】0 11.【答案】6 12.【答案】9 33213.【答案】214.【答案】(1)24k =-(2)32k m =-15.【答案】(1)()5,4(2)四边形AOCD 的面积为9 16.【答案】(1)400y x=(2)5min 17.【答案】(1)20a =;(2)51x t =+ 2520y t =-+ 21299555y x x =-++;(3)1t =,运动员在与正下方滑道的竖直距离是353米. 18.【答案】(1)4b = 12k =-(2)点()4,3P -(3)点()0,4Q -或()4,0-或()4,0。
中考数学《反比例函数》专题复习含答案解析
反比率函数一、选择题1.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比率函数3y=x的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.22D.42分析由题意可得:A,B的坐标分别为(1,3),(3,1),并能求出AB=22,菱形的高为2,所以面积为4 2.答案D2.如图,正比率函数y1=k1x的图象与反比率函数k2y2=x的图象订交于A,B两点,此中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2D.-2<x<0或x>2分析由图象能够察看,在-2<x<0或x>2时,y12>y.答案D3.如图,在平面直角坐标系系中,直线y=k1x+2与x轴交k2于点A,与y轴交于点C,与反比率函数y=x在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC 1=3,则k2的值是()A.-3B.1C.2D.3分析过点B作BD⊥y轴于点D.∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OCBD12.∵S△OBC=1,∴BD=1.∵tan∠BOC=3,∴OD=3,∴OD=3,∴点B的坐标为(1,3).∴k2=1×3=3.答案D4.以正方形ABCD两条对角线的交点O为坐标原点,成立如图所3示的平面直角坐标系,双曲线y=x经过点D,则正方形ABCD的面积是()A.10B.11C.12D.133分析∵双曲线y=x经过点D,∴第一象限的小正方形的面积是3,∴正方形ABCD的面积是3×4=12.答案C二、填空题5.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线3y=a的取值范围是x(x>0)与此正方形的边有交点,则________.分析由A点的坐标(a,a)可知C的坐标为(a+1,a+1),33把A点的坐标代入y=x中,得a=±3,把C点的坐标代入y=x中,得a=-1±3,又由于与正方形有交点,所以a的取值范围为:3-1≤a≤3.答案3-1≤a≤326.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比率函数y=x的图象上,过k点P作直线l与x轴平行,点Q在直线l上,知足QP=OP.若反比率函数y=x的图象经过点Q,则k=________.分析分两种状况,由于QP=OP=5,当Q在点P左边时,Q的坐标为(1-5,2),在右边时,Q 的坐标为(1+ 5,2)分别代入,得k =2±2 5.答案 2+25或2-25 a7.如图,已知点A ,C 在反比率函数y =x (a>0)的图象上,点B ,b在反比率函数y =x(b<0)的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的双侧,AB =3,CD =2,AB 与CD 的距离为5, 则a -b 的值是____________.分析 设A ,B 两点的纵坐标为m ,C ,D 两点的纵坐标为n ,则点 A ,B ,C ,D 的坐标分别为Aaba b ,m ,B,m ,C,n ,D,n.由于AB =mmnnb aab3,CD =2,所以m -m =3,n -n =2.解得b -a =3m ,a -b =2n ,所以3m =-2n ,又由于AB 与CD 的距离为5,所以n -m =5,解得n =3,m =-2.所以a -b =6. 答案 68.如图,在平面直角坐标系中,菱形 OBCD 的边OB 在x 轴正半轴上,反比率函数y k=x(x>0)的图象经过该菱形对角线的交点A ,且与边BC 交于点F.若点D 的坐标为(6,8),则点F 的坐标是________.分析由点D 的坐标可求得菱形的边长为10,点C 的坐标4 40为(16,8),点A 的坐标为(8,4),所以k =32;直线BC 的分析式为:y =x -3,解332y =x ,得:x 1=-2(方程组4 舍去);x 2 =12,所以F 的坐40y =3x -3 8 标为12,3.8答案12,3k9.如图,反比率函数 y =x 的图象经过点(-1,-22),点A 是该图象第一象限分支上的动点,连接AO 并延伸交另一支于点 B ,以AB 为斜边作等腰直角三角形 ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连接BP. (1)k 的值为________;(2)在点A 运动过程中,当 B P 均分∠ABC 时,点C 的坐标是________. k分析 (1)把点(-1,-2 2)代入y =x 得,k =22.(2)连接OC ,作CD ⊥y 轴于点D ,AE ⊥y 轴于点E ,AM ⊥x 轴于点M ,CN ⊥x 轴于点N.2设A 点坐标为a ,a ,由反比率函数性质得:OA =OB ,由等腰直角三角形性质得:OC =OA ,OC ⊥OA ,2 2∴△AOE ≌△OCD ,∴OD =AE =a ,CD =OE =a ,22CPBC1∴点C a ,-a.∴BP 均分∠ABC ,∴AP =BA =2.CNCP1a1由△APM ∽△CPN 得:AM =PA =2即2 2=2,a∴a = 2.∴点C(2,-2).答案(1)k =22(2)(2,-2)三、解答题10.如图,已知点 A(a ,3)是一次函数y 1=x +b 图象与反比率6函数y 2=x 图象的一个交点.(1)求一次函数的分析式;(2)在y轴的右边,当y1>y2时,直接写出x的取值范围.6解(1)将A(a,3)代入y2=x得,a=2,A(2,3),将A(2,3)代入y1=x+b得b=1,y1=x+1.(2)x>2.11.(2015·四川泸州,23,8分)如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为 3.(1)求该一次函数的分析式;m(2)若反比率函数y=x的图象与该一次函数的图象交于二、四象限内的A,B两点,且AC=2BC,求m的值.解(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3.k<0,∴b>0.∵一次函数y=kx+b的图象与y轴的交点是(0,b),1∴2×3×b=3,解得:b=2.2把b=2代入①,解得:k=-3,2故这个函数的分析式为y=-3x+2;(2)如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∵AD∥BE,∴△ACD∽△BCE,AD ACBE=BC=2,∴AD=2BE.设B点纵坐标为-n,则A点纵坐标为2n.2∵直线AB的分析式为y=-3x+2,3A(3-3n,2n),B3+2n,-n.m∵反比率函数y=x的图象经过A,B两点,3∴(3-3n)·2n=3+2n·(-n),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11反比例函数
2016~201
8详解详析第13页
A组基础巩固
1.(2017湖北宜昌模拟,15,3分)如图,函数y=与y=-kx+1(k≠0)在同一直角坐标系中的图象大致为
(B)
2.(2017湖北孝感模拟,4,3分)如果反比例函数y=在各自象限内,y随x的增大而减小,那么m
的取值范围是(D)
A.m<0
B.m>0
C.m<-1
D.m>-1
3.(2017天津河东一模,11,3分)若M,N,P三点都在函数y=(k>0)的图象上,则
y1,y2,y3的大小关系是(C)
A.y2>y3>y1
B.y2>y1>y3
C.y3>y1>y2
D.y3>y2>y1〚导学号9203
4.(2017浙江宁波镇海模拟,9,4分)如图,直线y1=x+2与双曲线y2=交于A(2,m),B(-6,n)两点.则
当y1<y2时,x的取值范围是(C)
A.x>-6或0<x<2
B.-6<x<0或x>2
C.x<-6或0<x<2
D.-6<x<2
5.(2017广西柳州城中一模,17,3分)某闭合电路中,电源的电压为定值,电流I(单位:A)与电阻R(单
位:Ω)成反比例.下图表示的是该电路中电流I与电阻R之间函数关系的图象,当电阻R为6 Ω时,
电流I为1A.
6.
(2018中考预测)如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平
行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是4.
7.(2017广东汕头龙湖模拟,22,7分)如图所示,直线AB与反比例函数y=的图象相交于A,B两点,已知A(1,4).
(1)求反比例函数的解析式;
(2)直线AB交x轴于点C,连接OA,当△AOC的面积为6时,求直线AB的解析式.
解(1)因为点A(1,4)在反比例函数y=的图象上,
所以4=,k=4.
所以反比例函数的解析式为y=.
(2)设点C的坐标为(-a,0)(a>0),
因为S△AOC=6,
所以S△AOC=|OC|·4=×a×4=6,
解得a=3,所以C(-3,0).
设直线AB的解析式为y=kx+b.
由C(-3,0),A(1,4)在直线AB上,
得解得k=1,b=3,
所以直线AB的解析式为y=x+3.
B组能力提升
1.(2018中考预测)科学证实:近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例关系,如果500度近视眼镜片的焦距为0.2 m,则表示y与x函数关系的图象大致是(B)
2.(2018中考预测)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC上的中线BD的反向延长线
交y轴负半轴于点E,双曲线y=(x>0)的图象经过点A,若S△BEC=8,则k等于(B)
A.8
B.16
C.24
D.28
3.(2017山东德州夏津一模,17,4分)函数y1=x(x≥0),y2=(x>0)的图象如图所示,则结论:
①两函数图象的交点A的坐标为(2,2);
②当x>2时,y2>y1;
③当x=1时,BC=3;
④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.
其中正确结论的序号是①③④.
(第2题图)
(第3题图)
4.
(2017山东济南章丘二模,21,3分)如图,点A在双曲线y=的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.
5.(2017河南周口西华二模,20,10分)如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB,BC分别交于点D,E,且BD=2AD.
(1)求k的值和点E的坐标.
(2)P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.
解(1)因为AB=4,BD=2AD,所以AD=.
又因为OA=3,所以D.
因为点D在双曲线y=上,
所以k=×3=4.
因为四边形OABC为矩形,所以AB=OC=4.
所以点E的横坐标为4.
把x=4代入y=中,得y=1,所以E(4,1).
(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4-m.
因为∠APE=90°,所以∠APO+∠EPC=90°,
又因为∠APO+∠OAP=90°,
所以∠EPC=∠OAP,
又因为∠AOP=∠PCE=90°,所以△AOP∽△PCE.
所以=,即=,
解得m=1或m=3.
所以存在要求的点P,坐标为(1,0)或(3,0).。