2020高二数学下学期第四次阶段性测试试题 理

合集下载

四川省绵阳南山中学2021-2022学年高二下学期期中考试 数学(理)试卷

四川省绵阳南山中学2021-2022学年高二下学期期中考试 数学(理)试卷

2022年5月绵阳南山中学2022年春季高2020级半期考试数学(理科)试题本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卷共6页.满分150分.第Ⅰ卷(选择题,共60分)注意事项:每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 已知x R ∈,命题“若20x >,则0x >”的逆命题,否命题和逆否命题中,真命题的个数是 (A )0 (B )1 (C )2 (D )3 2. 设复数11i aiz ++=(i 为虚数单位)为纯虚数,则实数a =(A )1 (B )1- (C )2(D )2-3. 已知,,,O A B C 为空间四点,且向量,,OA OB OC 不能构成空间的一个基底,则一定有 (A ),,OA OB OC 共线 (B ),,,O A B C 中至少有三点共线 (C )OA OB +与OC 共线 (D ),,,O A B C 四点共面4. 一个关于自然数n 的命题,已经验证知1n =时命题成立,并在假设(n k k =为正整数)时命题成立的基础上,证明了当2n k =+时命题成立,那么综上可知,该命题对于 (A )一切自然数成立 (B )一切正整数成立 (C )一切正奇数成立 (D )一切正偶数成立5. 4名运动员同时参与到三项比赛冠军的争夺,则最终获奖结果种数为(A )34A (B )34C (C )34 (D )436.如图,OABC 是四面体,G 是ABC ∆的重心,1G 是OG 上一点,且13OG OG =,则(A )1OG OA OB OC =++ (B )1111333OG OA OB OC =++(C )1111444OG OA OB OC =++ (D )1111999OG OA OB OC =++7.0a b <<是11a b b a+<+的 (A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件8. 若函数()sin cos f x a x x =+在[,]34ππ-上为增函数,则实数a 的取值范围是(A )[1,)+∞(B )(,-∞(C )[(D )(,[1,)-∞+∞9.中国空间站的主体结构包括天和核心舱,问天实验舱和梦天实验舱.假设中国空间站要 安排甲乙丙等5名航天员开展实验,其中天和核心舱安排3人,其余两个实验舱各安排1人,若甲乙两人不能同时在一个舱内做实验,则不同的安排方案有(A )8种 (B )14种 (C )20种(D )116种10.已知a ,b 是异面直线,,A B 是a 上的点,,C D 是b 上的点,2,1AB CD ==,且AC b ⊥, BD b ⊥,则a 与b 所成角为(A )30︒ (B )45︒ (C )60︒ (D )90︒11.已知t 和3t +是函数32()f x x ax bx c =+++的零点,且3t +也是函数()f x 的极小值点, 则()f x 的极大值为 (A )1 (B )4 (C )43 (D )4912. 设0.0110099,,a b e c ===则(A )a b c >> (B )a c b >> (C )b a c >> (D )c a b >>第Ⅱ卷(非选择题,共90分)注意事项:用钢笔将答案直接写在答题卷上.二、填空题:本大题共4小题,每小题5分,共20分.把答案直接填在答题卷中的横线上.13.已知函数2()2'(2)3f x x f x =++,则'(2)f 的值为__________. 14.某单位拟从,,,,,A B C D E F 六名员工中选派三人外出学习,要求: (1),A C 二人中至少选一人; (2),B E 二人中至少选一人; (3),B C 二人中至多选一人; (4),A D 二人中至多选一人.由于E 因病无法外出,则该单位最终选派的三位员工为:__________.15.将,,,A B C D 四份不同的文件放入编号依次为15-的五个抽屉,每个抽屉只能放一份文件,要求文件,A B 必须放入相邻的抽屉,文件,C D 不能放入相邻的抽屉,则满足要求的放置方法共有__________种.16.双曲正弦函数sinh()2x x e e x --=和双曲余弦函数cosh()2x xe e x -+=在工程学中有广泛的应用,也具有许多迷人的数学性质.若直线x m =与双曲余弦函数1C 和双曲正弦函数2C 的图象分别相交于点,A B ,曲线1C 在A 处切线与曲线2C 在B 处切线相交于点P ,则如下命题中为真命题的有__________(填上所有真命题的序号).①(sinh())'cosh()x x =,(cosh())'sinh()x x =; ②22sinh ()cosh ()1x x +=; ③点P 必在曲线x y e =上;④PAB ∆的面积随m 的增大而减小.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)(1)请将下列真值表补充完整;(空格处填上“真”或“假”)(2) 给定命题:p 对任意实数x 都有210ax ax ++>成立;命题:q 关于x 的方程2x x a -+有实根.已知命题()p q ⌝∨和命题()p q ∨⌝都是真命题,求实数a 的取值范围.18.(本题满分12分)如图,在直三棱柱111ABC A B C -中,90,2,1,ABC CA CB M ∠=︒==是1CC 的中点, 且1AM BA ⊥.(1)求1AA 的长;(2)求直线1AC 与平面11ABB A 所成角的正弦值.19.(本题满分12分)某市环保局对该市某处的环境状况进行实地调研发现,该处的污染指数与附近污染源的 强度成正比,与到污染源的距离成反比,总比例常数为(0)k k >.现已知相距10km 的A ,B 两家化工厂(污染源),A 化工厂的污染强度未知,暂记为(0)a a >,B 化工厂的污染强度为4,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和, 设()AC x km =.(1)试将y 表示为关于,,x k a 的等式;(2)调研表明y 在2x =处取得最小值,据此请推断出A 化工厂的污染强度. 20.(本题满分12分)在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,在“阳马”P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,棱PC 的中点为E ,3PF FB =,连接,,DE DF EF .(1) 若平面DEF 与平面ABCD 所成二面角的大小为3π,求CBCD的值. (2) 设棱PA 与平面DEF 相交于点G ,且PG PA λ=,求λ的值;21.(本题满分12分)已知函数2()ln (0)f x x ax a =->.(1)若()f x 恰有一个零点,求a 的值;(2)若0x 是()f x 的零点,且2y x =在点200(,)x x 处的切线恰与ln y x =相切,求a 的值.22.(本题满分12分)已知函数()ln 1()f x x ax a R =++∈,'()f x 为()f x 的导函数. (1)讨论()f x 的单调性;(2)若210x x >>,证明:对任意a R ∈,存在唯一的012(,)x x x ∈,使得12012()()'()f x f x f x x x -=-成立.绵阳南山中学2022年春季高2020级半期考试数学(理科)答案Ă.˞Պʚ123456789101112CBDCCDAABC BA12.由我们熟知的不等式e x ⩾x +1有e 0.02>1+0.02⇒e 0.01>√1.02,∴b >c又e −x >1−x,当x <1时,有1e x >1−x ⇒e x<11−x∴e 0.01<11−0.01=10099,∴a >bȕ.ฒ˭ʚ13.−414.A,B,F15.2416.1416.显然1正确;事实上,双曲函数满足cosh 2(x )−sin 2h (x )=1,这也是它名称的由来,2错误;C 1在A 处切线:y =cosh (m )(x −m )+sinh (m ),C 2在B 处切线:y =sinh (m )(x −m )+cosh (m ),由此求得两切线的公共点坐标为P (m +1,e m ),故P 在曲线y =e x −1上,3错误;|AB |=e −m ,由前面分析知P 到AB 距离为1,∴S △P AB =12e m,随m 增大而减小,4正确.Ɓ.̛٫ʚ17.(1)从上至下依次为“真”,“假”,“真”,“真”;(2)若命题p 为真命题,则a =0或a >0∆<0,解得a ∈[0,4),若命题q 为真命题,由∆⩾0,解得a ⩽14,要使(¬p )∨q 和p ∨(¬q )都是真命题,则需p,q 同真同假,若p,q 同真,则有a ∈[0,14],若p,q 同假,则有a ⩾4,综上可知,a 的取值范围为[0,14]∪[4,+∞).18.以B 为坐标原点,# »BC,# »BA,# »BB 1方向为x,y,z 轴正方向,建立空间直角坐标系B −xyz ,并设AA 1=h ,则相关各点坐标分别为:A (0,√3,0),A 1(0,√3,h ),B (0,0,0),B 1(0,0,h ),C (1,0,0),C 1(1,0,h ),M (1,0,h2)(1)∵# »AM =(1,−√3,h 2),# »BA 1=(0,√3,h ),且AM ⊥BA 1∴# »AM ·# »BA 1=0⇒h =√6,所以,AA 1=√6;(2)∵# »AC 1=(1,−√3,√6),而平面ABB 1A 1的法向量为#»n=(1,0,0),∴cos <# »AC 1,#»n >=1√10=√1010,所以,所求线面角的正弦值为√1010.19.(1)y =k (ax +410−x),x ∈(0,10);(2)y ′=k (4(10−x )2+a x 2)=k (4x 2−a (10−x )2(x (10−x ))2),由题意,y ′|x =2=0⇒16−64a =0⇒a =14,经检验知,当a =14时,y 在(0,2)上单减,在(2,10)上单增,满足题意.所以,A 化工厂的污染强度为14.20.以D 为坐标原点,# »DA,# »DB,# »DP 方向为x,y,z 轴正方向,建立空间直角坐标系D −xyz ,并设CD =2,CB =m ,则相关点坐标为:D (0,0,0),A (m,0,0),B (m,2,0),C (0,2,0),P (0,0,2),于是E (0,1,1),又3# »P F =# »F B ⇒# »DF =34# »DP +14# »DB ,所以# »DF =(m 4,12,32)由# »DF =(m 4,12,32)# »DE =(0,1,1)解得平面DEF 的法向量#»n 1=(−4,−m,m ),(1)易知平面ABCD 的法向量#»n 2=(0,0,1),∴cos <#»n 1,#»n 2>=m √2m 2+16由题意知,m √2m 2+16=12,由此解得m =2√2,∴CB CD =m 2=√2;(2)∵# »P G =λ# »P A,∴# »DG =# »DP +λ# »P A =(λm,0,2−2λ),由题意,∵G 是平面DEF 上一点,∴# »DG ⊥#»n 1⇒−4λm +m (2−2λ)=0由此解得:λ=13.21.(1)∵f ′(x )=2x −1x ,在(0,√22),f ′(x )<0,在(√22,+∞),f ′(x )>0,∴f (x )在(0,√22)单调递减,在(√22,+∞)单调递增,且当x →0时,f (x )→+∞,当x →+∞时,f (x )→+∞,∴由题意可知,x =√22是f (x )的唯一零点,由f (√22)=0,解得:a =√2e ;(2)y =x 2在(x 0,x 20)处切线l :y =2x 0(x −x 0)+x 20,整理得:l :y =2x 0x −x 20,设该切线与y =ln x 相切于(t,ln t ),则l :y =1t(x −t )+ln t,整理得:l :y =1t x +ln t −1,∴2x 0=1t x 20=1−ln t ⇒ln t =−ln 2x 0,∴x 20=1+ln 2x 0又由题知:x 20=ln ax 0,∴ln ax 0=1+ln 2x 0=ln 2ex 0∴a =2e 即为所求.22.(1)f ′(x )=1x+a (x >0)1当a ⩾0时,f ′(x )>0,∴f (x )在(0,+∞)单调递增;2当a <0时,在(0,−1a ),f ′(x )>0,在(−1a,+∞),f ′(x )<0∴f (x )在(0,−1a )单调递增,在(−1a,+∞)单调递减;(2)设F (x )=f ′(x )−f (x 1)−f (x 2)x 1−x 2=1x −f (x 1)−f (x 2)x 1−x 2,x ∈(x 1,x 2),显然F (x )在定义域内单调递减,F (x 1)=1x 1−f (x 1)−f (x 2)x 1−x 2=1x 1−x 2(1−x 2x 1−ln x 1x 2)令x 1x 2=t ∈(0,1),G (t )=(1−1t−ln t ),则F (x 1)=(x 1−x 2)G (t )∵G ′(t )=1−tt2,∴在(0,1),G ′(t )>0⇒G (t )在(0,1)单调递增,∴G (t )>G (1)=0,故F (x 1)=1x 1−x 2G (t )>0,同理:F (x 2)=1x 2−f (x 1)−f (x 2)x 1−x 2=1x 1−x 2(x 1x 2−1−ln x 1x 2)令x 1x 2=t ∈(0,1),H (t )=t −1−ln t,则F (x 2)=1x 1−x 2H (t )∵H ′(t )=1−1t,∴在(0,1),H ′(t )<0⇒H (t )在(0,1)单调递减,∴H (t )>H (1)=0,故F (x 2)=1x 1−x 2H (t )<0,综上可知,F (x )在(x 1,x 2)单调递减,且F (x 1)>0,F (x 2)<0,∴F (x )在(x 1,x 2)存在唯一零点x 0,使得f ′(x 0)=f (x 1)−f (x 2)x 1−x 2,命题得证.。

2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。

西安中学高二数学下学期期末考试试题理含解析

西安中学高二数学下学期期末考试试题理含解析
【详解】(1)由题意,函数 ,可得
当 时, 。
当 时,原不等式等价于 ,解得 ,∴ ;
②当 时,原不等式等价于 ,
=2(2 1
≥3+4 7.
当且仅当x ,y=4取得最小值7.
故选C.
【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.
11。 已知函数 ,则不等式 的解集为( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
根据条件先判断函数是偶函数,然后求函数的导数,判断函数在 , 上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.
所以 ,
令 所以函数g(x)在(0,+∞)上单调递增,
由题得
所以函数g(x)是奇函数,所以函数在R上单调递增.
因为对 ,不等式 恒成立,
所以 ,
因为a〉0,所以当x≤0时,显然成立。
当x>0时, ,
所以 ,所以函数h(x)在(0,1)单调递减,在(1,+∞)单调递增。
所以 ,
所以a<e,
所以正整数 的最大值为2.
14。 设 .若曲线 与直线 所围成封闭图形的面积为 ,则 ______。
【答案】:
【解析】
试题分析:因为,曲线 与直线 所围成封闭图形的面积为 ,所以, = = ,解得, .评:简单题,利用定积分的几何意义,将面积计算问题,转化成定积分计算.
15. 直线 与曲线 相切,则 的值为________.
A. 己申年B. 己酉年C. 庚酉年D。 庚申年
【答案】B
【解析】
【分析】
由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

2020-2021学年河南省天一大联考高二阶段性测试(四)(5月)数学(文)试题(解析版)

2020-2021学年河南省天一大联考高二阶段性测试(四)(5月)数学(文)试题(解析版)

2020-2021学年河南省天一大联考高二阶段性测试(四)(5月)数学(文)试题一、单选题1.已知集合{}2,1,0,1,2A =--,{}21B x x =-<<,则A B =( )A .{}1,0-B .{}0,1C .{}21x x -<<D .{}10x x -<<【答案】A【分析】由交集定义可直接得到结果. 【详解】由交集定义可知:{}1,0A B ⋂=-. 故选:A.2.若复数z 满足14iz i+=-,则z 的共轭复数z 为( ) A .11616i -+ B .131414i - C .21515i -+D .351717i - 【答案】D【分析】由复数的运算法则化简得到351717iz =+,结合共轭复数的定义,即可求解. 【详解】由复数的运算法则,可得()()141354171717i i i iz i +++===+-,所以351717iz =-. 故选:D.3.函数()22log 6y x x =--的定义域为 ( )A .()2,3-B .()3,2-C .()(),32,-∞-+∞D .()(),23,-∞-+∞【答案】D【分析】对数函数的定义域为真数大于0,解不等式即可.【详解】解:函数()22log 6y x x =--的定义域为:260x x -->,即3x >或2x <-,所以定义域为:()(),23,-∞-+∞.故选:D.4.若在ABC 中,AB AC AB AC ACAB=,且2AB =,6AC =,则ABC 的面积为( ) A .6 B .8 C .12 D .20【答案】A【分析】根据向量的数量积公式化简可以得到cos cos AB BAC AC BAC ∠=∠,代入数值计算可知2BAC π∠=,根据直角三角形面积公式计算面积即可.【详解】解:因为cos AB AC AB AC BAC ⋅=∠,所以有cos cos AB AC BACAB AC BACACAB∠∠=,即cos cos AB BAC AC BAC ∠=∠,得4cos 0BAC ∠=,即2BAC π∠=,所以ABC 的面积为12662S =⨯⨯=. 故选:A. 5.已知()tan202ααπ=<<,则sin 2α= ( )A .2425 B .1516C .1516-D .2425-【答案】D【分析】首先根据二倍角公式求得4tan 3α=-,接着利用同角三角函数关系化简得到22tan sin 21tan ααα=+,最后代入4tan 3α=-计算结果即可.【详解】因为()tan202ααπ=<<,所以22tan42tan 31tan 2ααα==--,又2222422sin cos 2tan 243sin 22sin cos sin cos 1tan 25413ααααααααα-⨯=====-++⎛⎫+- ⎪⎝⎭, 故选:D【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可. (2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则: ①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,2π⎛⎫⎪⎝⎭,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,22ππ⎛⎫- ⎪⎝⎭,选正弦较好.6.中国古代数学专著《算法统宗》中有这样的记载:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本.意思为:现有《毛诗》、《春秋》、《周易》3种书共94册,若干人读这些书,要求每个人都要读到这3种书,若3人共读一本《毛诗》,4人共读一本《春秋》,5人共读一本《周易》,则刚好没有剩余.现要用分层抽样的方法从中抽取47册,则要从《毛诗》中抽取的册数为( ) A .12 B .14C .18D .20【答案】D【分析】设《毛诗》有x 册,《春秋》有y 册,《周易》有z 册,学生人数为m ,根据已知条件可得出关于x 、y 、z 、m 的方程组,解出这四个未知数的值,再利用分层抽样可求得结果.【详解】设《毛诗》有x 册,《春秋》有y 册,《周易》有z 册,学生人数为m ,则94345x y z m x m y m z ++=⎧⎪=⎪⎨=⎪⎪=⎩,解得120403024m x y z =⎧⎪=⎪⎨=⎪⎪=⎩, 因此,用分层抽样的方法从中抽取47册,则要从《毛诗》中抽取的册数为47402094⨯=. 故选:D.7.在圆2216x y +=内随机取一点P ,则点P 落在不等式组40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,表示的区域内的概率为 ( ) A .14πB .34πC .1πD .43π【答案】C【分析】首先由画出不等式表示的可行域,根据可行域的形状求出其面积,再求出圆2216x y +=的面积,最后根据几何概型公式求解即可.【详解】根据不等式组40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,如图做出点P 的可行域:由图可知:点P 的可行域为等腰三角形ABC , 所以1162ABCSAB OC =⨯⨯=, 圆2216x y +=的面积为16π, 由几何概型可知,圆2216x y +=内随机取一点P ,则点P 落在不等式组40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域内的概率为:16116P ππ==, 故选:C【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.8.已知在ABC 中,,,a b c 分别为内角,,A B C 的对边,120A =,2b a c =+,且4a b -=,则b =( )A .6B .10C .12D .16【答案】B【分析】用b 表示出,a c ,代入余弦定理中,解方程求得b . 【详解】由42a b b a c -=⎧⎨=+⎩得:44a b c b =+⎧⎨=-⎩,在ABC 中,由余弦定理得:222222cos a b c bc A b c bc =+-=++,即()()()222444b b b b b +=+-+-,解得:10b =.故选:B.9.已知函数()21x f x x=+的定义域为[)2,+∞,则不等式()()22228f x f x x +>-+的解集为 ( )A .5,42⎡⎫⎪⎢⎣⎭B .[)2,3C .(),3-∞D .()3,+∞【答案】C【分析】先判断函数()f x 的单调性,再根据单调性解不等式即可. 【详解】因为()2111x f x x x x==++,可知()f x 在[)2,+∞上单调递减,所以不等式()()22228f x f x x +>-+成立,即2222222823228x x x x x x x ⎧+≥⎪-+≥⇒<⎨⎪+<-+⎩. 故选:C.10.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫= ⎪⎝⎭( )A. B .12-C .12D【答案】D【分析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果. 【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=, 又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ, 所以()sin 66f x x π⎛⎫=+⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.【点睛】思路点睛:确定()()sin f x A x =+ωϕ的解析式,一般由周期确定ω,由特殊值确定ϕ,由最值确定A .11.已知过点()4,0M 的直线l 与抛物线2:2y x Ω=交于A ,B 两点,52BF =(F 为抛物线Ω的焦点),则AB = ( ) A .63 B .62C .6D .42【答案】B【分析】首先利用定义得出(2,2)B ±,进而得到直线:4AB y x =-将直线与抛物线联立得出2280y y --=,利用弦长公式即得.【详解】2:2y x Ω=的焦点为1,02F ⎛⎫ ⎪⎝⎭,1,02H ⎛⎫- ⎪⎝⎭是1,02F ⎛⎫ ⎪⎝⎭关于y 轴的对称点,过1,02H ⎛⎫- ⎪⎝⎭作直线l 垂直于x 轴,作BP l ⊥ ,故52BF BP == 设()1122,(,)B x y A x y 故1115222x x +=⇒=故12y =±不妨设()2,2B -, ()4,0M 故直线:4AB y x =-由212242802,4(8,4)2y x y y y y A y x=-⎧⇒--=⇒=-=⇒⎨=⎩故62AB = 故选:B12.已知函数()()20ax bf x a x c-=≠+是定义在R 上的奇函数,1x =是()f x 的一个极大值点,()11f =,则()f x =( )A .221xx + B .232xx + C .22xx -- D .221x x-【答案】A【分析】根据()f x 为奇函数先求解出b 的值,然后根据1x =是极值点计算出c 的值,再根据()11f =计算出a 的值,然后进行验证.【详解】因为()f x 为定义在R 上的奇函数,所以()00f =且0c ≠,所以0b =,所以()2axf x x c=+, 因为()()()()22222222a x c ax ac ax f x xc xc +--'==++,又1x =是极大值点,所以()()2101ac af c -'==+且0a ≠,所以1c =,所以()21ax f x x =+,又因为()11f =,所以12a =,所以2a =,所以()221x f x x =+,所以()()()()222211x xf x f x x x --==-=-+-+,定义域为R 关于原点对称,所以()f x 为奇函数, 又()()()()22222221222211x x xx f x xx+-⋅-'==++,当(),1x ∈-∞-时,()0f x '<,()1,1x ∈-时,()0f x '>,()1,x ∈+∞时,()0f x '<; 所以1x =是极大值点, 所以()221xf x x =+满足条件, 故选:A.【点睛】易错点睛:利用函数奇偶性、极值点求解参数时需注意:(1)已知函数为定义在R 上的奇函数,若根据()00f =求解参数值,要注意将参数值带回原函数进行验证是否为奇函数; (2)已知x a =为函数极值点,若根据0f a 求解参数值,要注意将参数值带回原函数进行验证是否为极值点.二、填空题13.已知双曲线()2222:10,0x y C a b a b-=>>,点(),a b 在直线2y x =,则双曲线C 的离心率为__________.【分析】由点(),a b 在直线上,求出2b a =,用c a =求出离心率即可. 【详解】因为点(),a b 在直线2y x =上,则有2b a =,即2ba=,则离心率为c a ==14.若命题“0x R ∃∈,使得200420x x a -+<”为假命题,则实数a 的取值范围为__________. 【答案】[)2,+∞【分析】根据原命题为假命题得到“2,420x R x x a ∀∈-+≥”为真命题,根据∆与0的关系求解出a 的取值范围.【详解】由已知条件可知:2,420x R x x a ∀∈-+≥为真命题,记168a ∆=-, 所以1680a ∆=-≤,所以2a ≥, 故答案为:[)2,+∞.【点睛】关键点点睛:解答本题的关键在于转化思想的运用,根据特称命题的真假得到全称命题的真假,然后再结合不等式的思想完成求解.15.如图所示,在四棱锥P ABCD -中,底面是边长为ACBD O =,且PA ⊥平面ABCD ,M 为PC 上的动点,若OM 的最小值为4,则当OM 取得最小值时,四棱锥M ABCD -的体积为__________.【答案】40【分析】根据OM PC ⊥,OM 最小,设点M 到平面ABCD 的距离为h ,由h 也为Rt OMC △中边OC 上的高,然后由1122OMCSOM MC OC h =⋅=⋅,求得h ,再由13M ABCD ABCD V S h -=⋅正方形求解.【详解】由题意得:当OM PC ⊥时,OM 最小, 则在正方形ABCD 中, 52AB BC ==, 则2210AC AB BC =+=,故5OC =,在Rt OMC △中,223MC OC OM =-=, 设点M 到平面ABCD 的距离为h , 则h 也为Rt OMC △中边OC 上的高,1122OMCSOM MC OC h =⋅=⋅, 即1143522h ⨯⨯=⨯⨯, 解得125h =,又(25250ABCD S ==正方形,所以11125040335M ABCD ABCD V S h -=⋅=⨯⨯=正方形, 故答案为:4016.已知直线():40l ax y a R +-=∈是圆22:2610C x y x y +--+=的对称轴.过点()4,A a -作圆C 的一条切线,切点为B ,有下列结论:①1a =; ②25AB =③切线AB 535535+- ④对任意的实数m ,直线1y mx m =-+与圆C 的位置关系都是相交.其中所有正确结论的序号为__________. 【答案】①②④【分析】由已知可得直线过圆心即得1a =;利用勾股定理可得切线段长度,利用圆心到直线的距离为半径即得斜率;因为直线恒过的定点在圆内,可得直线与圆相交. 【详解】2222:2610(1)(3)9C x y x y x y +--+=⇒-+-=则圆心为()1,3C 半径为3,():40l ax y a R +-=∈是圆的对称轴,故直线过圆心()1,3C ,故1a =,()4,1A -,故ACAB ==;设直线AB 的斜率为k ,则:41410AB y kx k kx y k =++⇒-++= 因为直线AB 为圆C 的一条切线, 故圆心()1,3C到直线AB3=解得k = ;直线1(1)1y mx m m x =-+=-+即对任意的实数m ,直线恒过(1,1), 代入(1,1)得22(11)(13)49(1,1)-+-=<∴在圆内, 即直线1y mx m =-+与圆C 的位置关系都是相交. 故答案为:①②④三、解答题17.某小区准备在小区广场安装运动器材,为了解男女业主对安装运动器材的意愿情况,随即对该小区100名业主做了调查,得到如下2×2列联表:(Ⅰ)判断能否有0095的把握认为“是否愿意安装运动器材与业主性别有关”; (Ⅱ)从不愿意安装运动器材的业主中按性别用分层抽样的方法抽取5人,了解不愿意安装运动器材的原因,再从这5人中选2人参观其他小区的运动场所,求这2人中恰好有1人为女业主的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(Ⅰ)没有;(Ⅱ)35. 【分析】(Ⅰ)由已知求得2K 的值,与临界值比较可得结论;(Ⅱ)分别列举从5人中选2人的事件,得到2人中恰好有1人为女业主的事件,再由古典概型概率计算可得.【详解】(Ⅰ)由表中数据可得2K 的观测值()210030104515 3.030 3.84145557525k ⨯⨯-⨯=≈⨯⨯⨯<,∴没有0095的把握认为“是否愿意安装运动器材与业主性别有关”.(Ⅱ)∵不愿意安装运动器材的业主中,男业主与女业主的人数之比为3:2, ∴抽取的5人中男业主有3人,女业主有2人.设这3名男业主分别为A ,B ,C ,这2名女业主分别为a ,b ,从5人中选2人有,,,,,,,,,AB AC Aa Ab BC Ba Bb Ca Cb ab ,共10种选法, 其中恰有1名女业主的选法有,Aa Ab Ba Bb Ca Cb ,,,,,共6种, ∴所求概率为63105P ==. 18.已知数列{}n a 的前n 项和22n n S a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 的前n 项和为n T ,且2211log log n n n n b a a a +=+⋅,证明:1n T >-.【答案】(Ⅰ)2n n a =;(Ⅱ)证明见解析.【分析】(Ⅰ)利用n a 与n S 关系可证得{}n a 为等比数列,由等比数列通项公式可得结果;(Ⅱ)由(Ⅰ)可得n b ,采用分组求和的方式,分别对通项中的两个部分采取等比数列求和、裂项相消法,可求得n T ,根据11201n n +->+可得结论. 【详解】(Ⅰ)当1n =时,11122a S a ==-,解得:12a =;当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-,整理得:12n n a a -=,∴数列{}n a 是以2为首项,2为公比的等比数列,2n n a ∴=.(Ⅱ)由(Ⅰ)知:()1221111222log 2log 211n n nn n n b n n n n +=+=+=+-⋅++,()21111122212231n n T n n ⎛⎫∴=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪+⎝⎭()1212111211211n n n n +-=+-=---++ 当n *∈N 时,1121n n +>+,11201n n +∴->+,1n T ∴>-. 【点睛】方法点睛:本题第二问中,考查了分组求和的方法,在分组求和过程中,涉及了裂项相消法求解数列的前n 项和的问题,裂项相消法适用于通项公式为()()m f n f n d ⋅+⎡⎤⎣⎦形式的数列,即()()()()11m m d f n f n d f n f n d ⎛⎫=- ⎪ ⎪+⋅+⎡⎤⎝⎭⎣⎦,进而前后相消求得结果.19.如图所示,在直三棱柱111ABC A B C -中,ABC 是面积为23的等边三角形,13BB =,点M 、N 分别为线段AC 、11AC 的中点,点P 是线段1CC 上靠近C 的三等分点.(1)求证:BP NP ⊥;(2)求点M 到平面BNP 的距离.【答案】(1)证明见解析;(2【分析】(1)证明出NP ⊥平面BMP ,利用线面垂直的性质定理可证得结论成立; (2)在平面BMP 内作MD BP ⊥,垂足为D ,证明出MD ⊥平面BNP ,利用等面积法计算出DM ,即为所求.【详解】(1)因为1AA ⊥平面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥. 因为ABC 为等边三角形,M 为边AC 的中点,所以BM AC ⊥. 又1AA AC A =,故BM ⊥平面1ACC ,又NP ⊂平面1ACC ,故BM NP ⊥.因为ABC 的面积为2AB =,故AB =因为四边形11AAC C 为平行四边形,则11//AC AC 且11AC AC =,M 、N 分别为AC 、11AC 的中点,则1//AM A N 且1AM AN =, 故四边形1AA NM 为平行四边形,则113MN AA BB ===,在MNP △中,NP ==,MP ,满足222MN MP NP =+,故NP MP ⊥.又BMMP M =,故NP ⊥平面BMP ,又BP ⊂平面BMP ,故BP NP ⊥;(2)如图,作MD BP ⊥,垂足为D ,NP ⊥平面BMP ,MD ⊂平面BMP ,MD NP ∴⊥,MD BP ⊥,BP NP P =,DM ∴⊥平面BNP ,所以DM 即为点M 到平面BNP 的距离.在BMP 中,sin3BM AB π==MP =,3BP ==,满足222BP BM MP =+,可知BM MP ⊥,故BM MPDM BP⋅==即点M 到平面BNP【点睛】方法点睛:求点A 到平面BCD 的距离,方法如下:(1)等体积法:先计算出四面体ABCD 的体积,然后计算出BCD △的面积,利用锥体的体积公式可计算出点A 到平面BCD 的距离;(2)定义法:过点A 作出平面BCD 的垂线,计算出垂线段的长,即为所求; (3)空间向量法:先计算出平面BCD 的一个法向量n 的坐标,进而可得出点A 到平面BCD 的距离为AB n d n⋅=.20.已知椭圆()2222:10x y C a b a b+=>>的一个顶点恰好是抛物线243x y =的焦点,椭圆C 的离心率为22. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)从椭圆C 在第一象限内的部分上取横坐标为2的点P ,若椭圆C 上有两个点A ,B 使得APB ∠的平分线垂直于坐标轴,且点B 与点A 的横坐标之差为83,求直线AP 的方程.【答案】(Ⅰ)22163x y +=;(Ⅱ)12y x =.【分析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP 的斜率为k ,联立方程结合韦达定理可得A 点坐标,同理可得B 点坐标,结合横坐标之差为83,可得直线方程. 【详解】(Ⅰ)由抛物线方程243x =可得焦点为(03,,则椭圆C的一个顶点为(0,即23b =.由c e a ===,解得26a =. ∴椭圆C 的标准方程是22163x y +=;(Ⅱ)由题可知点()2,1P ,设直线AP 的斜率为k ,由题意知,直线BP 的斜率为k -,设()11,A x y ,()22,B x y ,直线AP 的方程为()12y k x -=-,即12y kx k =+-.联立方程组2212,1,63y kx k x y =+-⎧⎪⎨+=⎪⎩ 消去y 得()()222214128840k x k k x k k ++-+--=.∵P ,A 为直线AP 与椭圆C 的交点,∴212884221k k x k --=+,即21244221k k x k --=+. 把k 换成k -,得22244221k k x k +-=+. ∴21288213k x x k -==+,解得112k k ==或,当1k =时,直线BP 的方程为3y x =-,经验证与椭圆C 相切,不符合题意;当12k =时,直线BP 的方程为122y x =-+,符合题意. ∴直线AP 得方程为12y x =. 【点睛】关键点点睛:两条直线关于直线x a =()或y=b 对称,两直线的倾斜角互补,斜率互为相反数.21.已知函数()cos xf x e x =.(Ⅰ)求()f x 的单调递减区间; (Ⅱ)若当0x >时,()()()2cos 111xf x e x x a x ≥-++-+恒成立,求实数a 的取值范围.【答案】(Ⅰ)单调递减区间为52,2,44k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;(Ⅱ)(],1a e ∈-∞-. 【分析】(Ⅰ)求函数()f x 的导函数,求()'0f x <的区间即为所求减区间;(Ⅱ)化简不等式,变形为11x e a x x x ≤--+,即求min 1(1)x e a x x x≤--+,令()()110x e h x x x x x=--+>,求()h x 的导函数判断()h x 的单调性求出最小值,可求出a 的范围.【详解】(Ⅰ)由题可知()'cos sin sin 4xxxf x e x e x x π⎛⎫=-=-⎪⎝⎭. 令()'0f x <,得sin 04x π⎛⎫-⎪⎝⎭>,从而522,44k x k k Z ππππ++∈<<, ∴()f x 的单调递减区间为52,2,44k k k Z ππππ⎛⎫++∈ ⎪⎝⎭. (Ⅱ)由()()()2cos 111xf x ex x a x ≥-++-+可得21x ax e x x ≤-+-,即当0x >时,11x e a x x x≤--+恒成立.设()()110x e h x x x x x =--+>,则()()()()2221111'xx x e x e x x h x x x -----+==.令()1xx e x ϕ=--,则当()0,x ∈+∞时,()'10xx e ϕ=->. ∴当()0,x ∈+∞时,()x ϕ单调递增,()()00x ϕϕ=>, 则当()0,1x ∈时,()'0h x <,()h x 单调递减; 当()1,x ∈+∞时,()'0h x >,()h x 单调递增. ∴()()min 11==-h x h e , ∴(],1a e ∈-∞-.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为()min a h x ≤或()max a h x ≥,转化为求函数()h x 的最值求出a 的范围.22.在直角坐标系xOy 中,曲线C的参数方程为3cos sin x y αα⎧+=⎪⎨=⎪⎩(α为参数,0m >),以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线C '的极坐标方程为cos 04πρθ⎛⎫++= ⎪⎝⎭. (Ⅰ)求曲线C 的普通方程以及曲线C '的直角坐标方程; (Ⅱ)若曲线C 与C '交于,P Q 两点,且84,33A ⎛⎫- ⎪⎝⎭为线段PQ 的一个三等分点,求m 的值.【答案】(Ⅰ)2260x y x m ++-=,40x y -+=;(Ⅱ)4.【分析】(Ⅰ)由曲线C 的参数方程消掉α即可得到普通方程;根据极坐标与直角坐标互化原则可直接化简得到C '的直角坐标方程;(Ⅱ)由C '的直角坐标方程可确定C '的参数方程,将其代入C 的普通方程可得韦达定理的形式,根据t 的几何意义知122t t =-,由此可构造方程求得m .【详解】(Ⅰ)由3cos sin x y αα⎧+=⎪⎨=⎪⎩得:()2239x y m ++=+,∴曲线C 的普通方程为2260x y x m ++-=.曲线C '的极坐标方程可化为0ρθθ⎫+=⎪⎪⎝⎭,即cos sin 40ρθρθ-+=,∴曲线C '的直角坐标方程为:40x y -+=.(Ⅱ)曲线C '的参数方程可写为83243x y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2260x y x m ++-=中,可得:264039t m +--=; 设,P Q 所对应得参数分别为12,t t,则123t t +=-,12649t t m=--,由题意不妨设122t t =-,则1223t t t +=-=-,即23t =212264100299t t t m ∴=-=--=-,解得:4m =,符合0m >,∴4m =.【点睛】结论点睛:若直线l 参数方程为00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数),其中θ为直线l的倾斜角,则t 具有几何意义:当参数t t =0时,0t 表示直线l 上的点()0000cos ,sin x t y t θθ++到点()00,x y 的距离.23.已知函数()26f x x x =+--. (1)解不等式()4f x <;(2)若不等式()2af x <恒成立,求a 的取值范围.【答案】(1){}4x x <;(2)()3,+∞.【分析】(1)将函数()f x 表示为分段函数的形式,分2x -≤、26x -<<、6x ≥三种情况解不等式()4f x <,综合可得出原不等式的解集;(2)求出()max f x ,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】(1)由题意知()8,22624,268,6x f x x x x x x -≤-⎧⎪=+--=--<<⎨⎪≥⎩.当2x -≤时,不等式()4f x <恒成立,当26x -<<时,由()244f x x =-<,解得4x <,此时24x -<<; 当6x ≥时,不等式()4f x <不成立. 所以,不等式()4f x <的解集为{}4x x <; (2)由(1)可知()max 8f x =,要使()2a f x <恒成立,则需28a >,解得3a >.所以,实数a 的取值范围为()3,+∞.【点睛】方法点睛:x a x b c -+-≥、()0x a x b c c -+-≤>型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论法具有普遍性,但较麻烦;几何法与图象法比较直观,但只适用于数据较简单的情况.。

第一中学高二数学下学期期中试题理

第一中学高二数学下学期期中试题理

陕西省西安市长安区第一中学2019—2020学年高二数学下学期期中试题 理时间:120分钟选择题(本大题共12小题,每小题5分,共60分).1.设集合2{|430}A x xx =-+<,{|230}B x x =->,则=AB ( )A .3(3,)2-- B .3(3,)2- C .3(,3)2D .3(1,)22.在复平面内,复数11i+的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3。

已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c,则λ=( )A . 14B .12 C .1 D .24。

某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳5。

下列叙述中正确的是( ) A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"bac -≤B .若,,a b c R ∈,则22""abcb >的充要条件是""a c >C .命题“对任意x R ∈,有2x≥”的否定是“存在x R ∈,有2x≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ6. 设()ln f x x =,0a b <<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A 。

q r p =<B .q r p =>C .p r q =<D .p r q =>7。

黑龙江省哈尔滨市第九中学2020_2021学年高二数学下学期期末考试试题理含解析

黑龙江省哈尔滨市第九中学2020_2021学年高二数学下学期期末考试试题理含解析

黑龙江省哈尔滨市第九中学2020-2021学年高二数学下学期期末考试试题理(含解析)一、选择题(共12小题,每小题5分,共60分).1.命题“∃x0∈R,x03﹣x02+1>0”的否定是()A.∀x∈R,x3﹣x2+1≤0B.∃x0∈R,C.∃x0∈R,D.∀x∈R,x3﹣x2+1>02.设随机变量ξ服从正态分布N(1,σ2),若P(ξ<2)=0.8,则P(0<ξ<1)的值为()A.0.2 B.0.3 C.0.4 D.0.63.已知离散型随机变量X的分布列如表所示,则常数c为()X0 1P9c2﹣c 3﹣8cA.B.C.或D.4.每年新春佳节时,我国许多地区的人们有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.如图是一张“春到福来”的剪纸窗花,为了估计深色部分的面积,将窗花图案放置在边长为20cm的正方形内,在该正方形内随机生成1000个点,恰有535个点落在深色区域内,则此窗花图案中深色区域的面积约为()A.168cm2B.214cm2C.248cm2D.336cm25.设条件p:a>0,条件q:a2+a>0;那么p就是q的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.掷一枚硬币两次,记事件A=“第一次出现正面”,B=“第二次出现反面”,下列结论正确的为()A.P(AB)=B.P(A∪B)=P(A)+P(B)C.A与B互斥D.A与B相互独立7.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2017年9月到2018年2月这半年中,某个关键词搜索指数变化的走势图.据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值D.从网民对该关键词的搜索指数来看,去年10月份的搜索指数稳定性小于11月份的搜索指数稳定性,故去年10月份的方差小于11月份的方差8.二项式(x2﹣)5展开式中,x4的系数是()A.﹣40 B.10 C.40 D.﹣109.某工厂对一批新研发产品的长度(单位:mm)进行测量,将所得数据分为五组,整理后得到的频率分布直方图如图所示,据此图估计这批产品长度的中位数是()A.23.25mm B.22.50mm C.21.75mm D.21.25mm10.若函数f(x)=lnx+ax+在[1,+∞)上是单调函数,则a的取值范围是()A.B.C.D.(﹣∞,1]11.育英学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有()A.80种B.90种C.120种D.150种12.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法错误的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x0二.填空题:本题共4小题,每小题5分,共20分,请将答案写在答题纸指定的位置上。

霍邱县第二中学2019_2020学年高二数学下学期开学考试试题理

霍邱县第二中学2019_2020学年高二数学下学期开学考试试题理

安徽省霍邱县第二中学2019—2020学年高二数学下学期开学考试试题 理一、选择题(60分)1.复数5iz i =+的虚部为( )A .526B .526iC .526-D .526i -2.若,则“"是“”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 3.命题000:R,tan p xx x ∃∈>的否定是( )A .000,tan xR x x ∃∈≤B .,tan x R x x ∀∈<C .,tan x R x x ∀∈≤ D .000,tan xR x x ∃∈<4.已知f (x )=x 2+3xf ′(1),则f ′(2)等于( )A .1B .2C .4D .85.用数学归纳法证明:“()221*111,1n nn a a aaa n N a++-++++=≠∈-”,在验证1n =成立时,左边计算所得结果是( )A .1 B .1a + C .21a a ++ D .231a aa +++6。

观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律得出22 018的末位数字是( )A .2B .4C .6D .8 7。

已知椭圆C :错误!+错误!=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .错误!B .错误!C .错误!D .错误!8。

过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A 。

错误!B .2错误!C .2错误!D .3错误!9.设f (x )=错误!x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围是( )A .[-5,+∞)B .(-∞,-3]C .(-∞,-3]∪[-5,+∞)D .[-5,错误!] 10。

江苏省天一中学2020-2021学年高二下学期期末学情检测高二数学试题

江苏省天一中学2020-2021学年高二下学期期末学情检测高二数学试题

天一中学2020~2021学年度第二学期期末学情检测高二年级数学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4. 本卷满分150分,考试时间120分钟。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.设集合,,则A∩B=A. 0,1,B.C. 0,D.2.已知函数关于直线对称,且在上单调递增,,,,则a,b,c的大小关系是A. B. C. D.3.若且,则与的夹角是A. B. C. D.4.已知函数,在上有且仅有2个实根,则下面4个结论:在区间上有最小值点;在区间上有最大值点;的取值范围是;在区间上单调递减所有正确结论的编号为A. B. C. D.5.中国古代数学名著九章算术中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a升,b升,c升,1斗为10升,则下列判断正确的是A. a,b,c成公比为2的等比数列,且B. a,b,c成公比为2的等比数列,且C. a,b,c成公比为的等比数列,且D. a,b,c成公比为的等比数列,且6.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为个,则随着的增加,下列说法正确的是A. 增加,增加B. 增加,减小C. 减小,增加D. 减小,减小7.若直线l是曲线的切线,且l又与曲线相切,则a的取值范围是A. B. C. D.8.已知正方体的棱长为2,M,N分别是棱BC,的中点,动点P在正方形包括边界内运动,若面AMN,则线段的长度范围是A. B.C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,,,,是以OD为直径的圆上一段圆弧,是以BC为直径的圆上一段圆弧,是以OA为直径的圆上一段圆弧,三段弧构成曲线则下面说法正确的是A. 曲线与x轴围成的面积等于B. 与的公切线方程为:C. 所在圆与所在圆的交点弦方程为:D. 用直线截所在的圆,所得的弦长为10.在平面直角坐标系xOy中,已知双曲线C:的离心率为,且双曲线C的左焦点在直线上,A,B分别是双曲线C的左,右顶点,点P是双曲线C的右支上位于第一象限的动点,记PA,PB的斜率分别为,,则下列说法正确的是A. 双曲线C的渐近线方程为B. 双曲线C的方程为C. 为定值D. 存在点P,使得11.如图,在某城市中,M、N两地之间有整齐的方格形道路网,其中、、、是道路网中位于一条对角线上的4个交汇处今在道路网M、N处的甲、乙两人分别要到N、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N、M处为止则下列说法正确的是A. 甲从M到达N处的方法有120种B. 甲从M必须经过到达N处的方法有9种C. 甲、乙两人在处相遇的概率为D. 甲、乙两人相遇的概率为12.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复N次这样的操作,记甲口袋中黑球个数为,恰有2个黑球的概率为,恰有1个黑球的概率为,则下列结论正确的是A. ,B. 数列是等比数列C. 的数学期望ND. 数列的通项公式为N三、填空题:本题共4小题,每小题5分,共20分.13.设复数z满足条件,那么的最大值是▲ .14.已知F为抛物线的焦点,过F作斜率为的直线和抛物线交于A,B两点,延长AM,BM交抛物线于C,D两点,直线CD的斜率为若,则▲ .15.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关“作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的,若有的把握认为中学生追星与性别有关,则男生至少有▲ 人.参考数据及公式如下:,.16.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面组成的多面体。

2020-2021学年浙江省东阳中学高二10月阶段考试数学试题及答案

2020-2021学年浙江省东阳中学高二10月阶段考试数学试题及答案

东阳中学2020年下期阶段性测试卷高二数学一.选择题(共10小题,每题4分,共40分)1.下列说法错误的是()A.长方体有6个面B.三棱锥有4个顶点C.三棱台有9条棱D.三棱柱的侧面是全等的平行四边形2.圆柱的母线长为5cm,底面半径为2cm,则圆柱的侧面积为()A.20πcm2B.10πcm2C.28πcm2D.14πcm23.如图所示,一个水平放置的平面图形的斜二测直观图是等腰梯形OA'B'C',且直观图OA'B'C'的面积为2,则该平面图形的面积为()A.2B.4C.4D.24.对于空间中的两条不同直线m,n和一个平面α,下列命题正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥n,则n∥αC.若m∥n,n⊂α,则m∥αD.若m⊥α,n⊥α,则m∥n5.某几何体的主视图和左视图如图所示,则它的俯视图不可能是()A.B.C.D.6.设P,A,B,C是球O表面上的四个点,若PA⊥PB,PB⊥PC,PA⊥PC,且PA=PB=PC=2,则球O的体积为()A.48πB.4πC.12πD.32π7.在空间中,已知m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是()A.若m⊂α,m∥n,则n∥αB.若m⊥α且m∥β,则α⊥βC.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αD.若α⊥β,α⊥γ,则β∥γ8.如图,ABCD是圆柱的轴截面,3AB=2AD,点E在底面圆周上,且是的中点,则异面直线AE与BD所成角的正切值为()A.B.C.D.9.在长方体ABCD﹣A1B1C1D1中,AD=,AB=,AA1=1,过点B作直线l与直线A1D及直线AC1所成的角均为,这样的直线l的条数为()A.1B.2C.3D.410.如图正方体AC1的棱长为2,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF不平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等二.填空题(共7小题,每题5分,共35分)11.若空间中两直线a与b没有公共点,则a与b的位置关系是.12.若圆台的母线与高的夹角为,且上下底面半径之差为4,则该圆台的高为.13.在正方体ABCD﹣A1B1C1D1中,截面A1BD与底面ABCD所成的二面角A1﹣BD﹣A的正切值为.14.在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有.(填上所有正确答案的序号)15.若将一个圆锥的侧面沿一条母线展开,其展开图是半径为5,面积为15π的扇形,则与该圆锥等体积的球的半径为.16.已知在矩形ABCD中,AB=,BC=a,PA⊥平面ABCD,若在BC上存在点Q满足PQ⊥DQ,则a的最小值是.17.我国古代数学名著《九章算术》中记载,斜解立方为“堑堵”,即底面是直角三角形的直三棱柱(直三棱柱为侧棱垂直于底面的三棱柱).如图,棱柱ABC﹣A1B1C1为一个“堑堵”,底面ABC的三边中的最长边与最短边分别为AB,AC,且AB=5,AC=3,点P在棱BB1上,且PC⊥PC1,则当△APC1的面积取最小值时,异面直线AA1与PC1所成的角的余弦值为.三.解答题(共5小题,每题15分,共75分)18.如图,P为菱形ABCD所在平面外一点,且△PAD为正三角形,∠BAD=60°,E为PC的中点.(1)求证:AP∥平面BDE;(2)求证:AD⊥PB.19.如图,在三棱锥P﹣ABC中,∠ACB=90°,PA⊥底面ABC.(1)求证:平面PAC⊥平面PBC;(2)若PA=AC=1,BC=2,M是PB的中点,求AM与平面PBC所成角的正切值.20.在直三棱柱ABC﹣A1B1C1中,AC=BC=,∠ACB=90°,AA1=2,D为AB的中点.(1)求异面直线AC1与B1C所成角的余弦值;(2)在棱A1B1上是否存在一点M,使得平面C1AM∥平面B1CD.21.如图,在正三棱柱ABC﹣A1B1C1中,点E,F分别是棱CC1,BB1上的点,且EC=2FB.(Ⅰ)证明:平面AEF⊥平面ACC1A1;(Ⅱ)若AB=EC=2,求三棱锥C﹣AEF的体积.22.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(Ⅰ)求证:PD⊥平面PAB;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.参考答案与试题解析一.选择题(共10小题)1.下列说法错误的是( )A .长方体有6个面B .三棱锥有4个顶点C .三棱台有9条棱D .三棱柱的侧面是全等的平行四边形【分析】根据几何体的结构特征进行分析,判断面、棱、顶点个数.【解答】解:长方体属于四棱柱,故长方体有4个侧面,2个底面,故A 正确;三棱锥底面为三角形,底面有3个顶点,三棱锥的3个侧面还有1个公共顶点,故三棱锥有4个顶点,故B 正确;三棱台上底面有3条棱,下底面有3条棱,还有3条侧棱,故三棱台有9条棱,故C 正确; 三棱柱的底面边长不一定相等,故三棱柱的侧面不一定全等,故D 错误.故选:D .【点评】本题考查了简单几何体的结构特征,属于基础题.2.圆柱的母线长为5cm ,底面半径为2cm ,则圆柱的侧面积为( )A .20πcm 2B .10πcm 2C .28πcm 2D .14πcm 2【分析】根据圆柱的侧面积公式计算即可.【解答】解:圆柱的母线长为5cm ,底面半径为2cm ,则圆柱的侧面积为S 侧=2π×2×5=20π(cm 2).故选:A .【点评】本题考查了圆柱的侧面积计算问题,是基础题.3.如图所示,一个水平放置的平面图形的斜二测直观图是等腰梯形OA 'B 'C ',且直观图OA 'B 'C '的面积为2,则该平面图形的面积为( )A .2B .4C .4D .2【分析】结合S 原图=2S 直观图,可得答案.【解答】解:由已知直观图OA 'B 'C '的面积为2,∴原来图形的面积S =2×2=4,故选:B .【点评】本题考查的知识点是斜二测画法,熟练掌握水平放置的图象S 原图=2S 直观图,是解答的关键.4.对于空间中的两条不同直线m ,n 和一个平面α,下列命题正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥n ,则n ∥αC .若m ∥n ,n ⊂α,则m ∥αD .若m ⊥α,n ⊥α,则m ∥n 【分析】由线面平行的性质和线线的位置关系可判断A ;由线面的位置关系可判断B ;由线面平行的判定可判断C ;由线面垂直的性质定理可判断D .【解答】解:对于A ,若m ∥α,n ∥α,可得m ,n 平行、相交或异面,故A 错误;对于B ,若m ∥α,m ∥n ,则n ∥α或n ⊂α,故B 错误;对于C ,若m ∥n ,n ⊂α,且m ⊄α,则m ∥α,故C 错误;对于D ,若m ⊥α,n ⊥α,由同垂直于题意平面的两直线平行,可得m ∥n ,故D 正确.故选:D .【点评】本题考查空间线线、线面的位置关系,主要是平行和垂直的判定和性质,考查空间想象能力和推理能力,属于基础题.5.某几何体的主视图和左视图如图所示,则它的俯视图不可能是( )A .B .C .D .【分析】利用已知条件,结合选项中的俯视图,判断几何体的形状,即可.【解答】解:由题意可知:对于A,可以是圆锥;对于B,可以是四棱锥,对于C,可以是三棱锥,故选:D.【点评】本题考查简单空间图形的三视图,本题解题的关键是通过两个视图,想象出几何体的形状,注意虚线和实线的区别.6.设P,A,B,C是球O表面上的四个点,若PA⊥PB,PB⊥PC,PA⊥PC,且PA=PB=PC=2,则球O的体积为()A.48πB.4πC.12πD.32π【分析】根据PA⊥PB,PB⊥PC,PA⊥PC,且PA=PB=PC=2,可知它的外接球就是它扩展为棱长为2的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求球的体积.【解答】解:P,A,B,C是球O表面上的四个点,PA⊥PB,PB⊥PC,PA⊥PC,即三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,且PA=PB=PC=2,它的外接球就是它扩展为正方体的外接球,正方体的对角线的长2R=,所以半径为,所以球的体积V==,故选:B.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题7.在空间中,已知m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是()A.若m⊂α,m∥n,则n∥αB.若m⊥α且m∥β,则α⊥βC.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αD.若α⊥β,α⊥γ,则β∥γ【分析】对于A,n∥α或n⊂α;对于B,由面面垂直的判定定理得α⊥β;对于C,l与α相交、平行或l⊂α;对于D,β与γ相交或平行.【解答】解:由m,n为不同的直线,α,β,γ为不同的平面,知:对于A,若m⊂α,m∥n,则n∥α或n⊂α,故A错误;对于B,若m⊥α且m∥β,则由面面垂直的判定定理得α⊥β,故B正确;对于C,若l⊥m,l⊥n,m⊂α,n⊂α,则l与α相交、平行或l⊂α,故C错误;对于D,若α⊥β,α⊥γ,则β与γ相交或平行,故D错误.故选:B.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.8.如图,ABCD是圆柱的轴截面,3AB=2AD,点E在底面圆周上,且是的中点,则异面直线AE 与BD所成角的正切值为()A.B.C.D.【分析】连结BE,则BE⊥AE,以A为原点,在平面ABE中,过点A作BE的平行线为x轴,AB为y轴,AD为z轴,建立空间直角坐标系,利用向量法能求出异面直线AE与BD所成角的正切值.【解答】解:连结BE,则BE⊥AE,以A为原点,在平面ABE中,过点A作BE的平行线为x轴,AB为y轴,AD为z轴,建立空间直角坐标系,设3AB=2AD=6,则A(0,0,0),E(0,,0),B(﹣,,0),D(0,0,3),=(0,,0),=(,3),设异面直线AE与BD所成角为θ,则cosθ===,∴tanθ=.∴异面直线AE与BD所成角的正切值为.故选:A.【点评】本题考查异面直线所成角和正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9.在长方体ABCD﹣A1B1C1D1中,AD=,AB=,AA1=1,过点B作直线1与直线A1D及直线AC1所成的角均为,这样的直线1的条数为()A.1B.2C.3D.4【分析】由向量的数量积的定义和夹角公式,可得直线A1D和直线AC1所成的角为,通过平移和讨论三条直线在同一平面、不在同一个平面,可得直线l的条数.【解答】解:=﹣,=++,则•=(﹣)•(++)=•+2﹣•﹣2=0+7﹣0﹣1=6,而||==2,||==3,所以cos<,>==,所以直线A1D和直线AC1所成的角为,将直线l、直线A1D和直线AC1平移至点P,则当三条直线在同一平面时,直线l为角平分线;若三条直线不在同一平面,则这样的直线有两条.故这样的直线条数为3.故选:C.【点评】本题考查空间线线所成角的求法,考查数形结合思想和运算能力,属于中档题.10.正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF不平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等【分析】在A中,若D1D⊥AF,则DD1⊥平面AEF,从而CC1⊥EF,不成立;在B中,取B1C1的中点Q,连接A1Q,GQ,推导出平面A1GO∥平面AEF,从而A1G∥平面AEF;在C中,连接D1F,D1A,延长D1F,AE交于点S,则EF∥AD1,所以A,E,F,D1四点共面,从而截面即为梯形AEFD1,进而;在D中,记点C与点G到平面AEF的距离分别为h1,h2,由,,得以h1≠h2.【解答】解:在A中,若D1D⊥AF,又因为D1D⊥AE且AE∩AF=A,所以DD1⊥平面AEF,所以DD1⊥EF,所以CC1⊥EF,不成立,故A错误;在B中,如图所示,取B1C1的中点Q,连接A1Q,GQ,由条件可知:GQ∥EF,A1Q∥AE,且GQ∩A1Q=Q,EF∩AE=E,所以平面A1GQ∥平面AEF,又因为A1G⊂平面A1GQ,所以A1G∥平面AEF,故B错误;在C中,如图所示,连接D1F,D1A,延长D1F,AE交于点S,因为E,F为BC、C1C的中点,所以EF∥AD1,所以A,E,F,D1四点共面,所以截面即为梯形AEFD1,又因为,,所以,所以,故C正确;在D中,记点C与点G到平面AEF的距离分别为h1,h2,因为,又因为,所以h1≠h2,故D错误.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二.填空题(共7小题)11.若空间中两直线a与b没有公共点,则a与b的位置关系是平行或异面.【分析】可考虑无公共点的两直线a,b是否在同一个平面内,可得a,b的位置关系.【解答】解:空间中两直线a与b没有公共点,若a,b在同一个平面内,则a,b为平行直线;若a,b不同在任何一个平面内,则a,b为异面直线.故答案为:平行或异面.【点评】本题考查空间两直线的位置关系,考查分类讨论思想,属于基础题.12.若圆台的母线与高的夹角为,且上下底面半径之差为4,则该圆台的高为.【分析】根据圆台的上底面半径与下底面半径的差和圆台的母线与高组成直角三角形,计算即可.【解答】解:设圆台的上底面半径为r,下底面半径为R,圆台的母线与高所在直线的夹角为,轴截面如图所示;所以圆台的高为h===.故答案为:.【点评】本题考查了圆台的几何特征与应用问题,也考查了运算求解能力,是基础题.13.在正方体ABCD﹣A1B1C1D1中,截面A1BD与底面ABCD所成的二面角A1﹣BD﹣A的正切值为【分析】先找二面角A1﹣BD﹣A的平面角,在△A1OA中,∠A1OA即为二面角A1﹣BD﹣A的平面角【解答】解:连接AC交BD与点O如图所示,因为AA1⊥BD,AC⊥BD,所以∠A1OA即为二面角A1﹣BD﹣A的平面角,在△A1OA中,AA1=a,AO=a,所以二面角A1﹣BD﹣A的正切值为故答案为【点评】这是利用面面垂直来找二面角的问题,找二面角的关键是过公共棱上同一点,在两半平面内作棱的垂线,找两垂线所成角.常用方法是用三垂线定理或其逆定理.14.在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有(2)、(4).(填上所有正确答案的序号)【分析】图(1)中,直线GH∥MN,图(2)中M∉面GHN,图(3)中GM∥HN,图(4)中,H∉面GMN.【解答】解析:如题干图(1)中,直线GH∥MN;图(2)中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图(3)中,连接MG,GM∥HN,因此,GH与MN共面;图(4)中,G、M、N共面,但H∉面GMN,∴GH与MN异面.所以图(2)、(4)中GH与MN异面.故答案为:(2)、(4)【点评】本题考查异面直线的定义和异面直线的判定方法,体现了数形结合的数学思想.15.若将一个圆锥的侧面沿一条母线展开,其展开图是半径为5,面积为15π的扇形,则与该圆锥等体积的球的半径为.【分析】由展开图的面积求出弧长既是圆锥的底面周长,进而求出底面半径和圆锥的高,求出圆锥体积,设球的半径,由球的体积公式公式求出球的半径.【解答】解:由扇形面积和半径,设扇形的半径为r,弧长为l,则可得S=lr,由题意:15π=•5•l,∴l=6π,设圆锥的底面半径为r',则2πr'=6π,∴r=3,该圆锥的高h==4,∴V==π32•4=12π,圆锥设球的半径为R',由题意得=12π,∴R'=,故答案为:.【点评】考查圆锥展开图与圆锥的关系,及球的体积公式,属于基础题.16.已知在矩形ABCD中,AB=,BC=a,PA⊥平面ABCD,若在BC上存在点Q满足PQ⊥DQ,则a的最小值是4.【分析】连结AQ,推导出PA⊥DQ,由PQ⊥DQ,得DQ⊥平面PAQ,从而DQ⊥AQ,由题意得△ABQ∽△QCD,设BQ=x,则x(a﹣x)=8,当a时,在BC上存在点Q满足PQ⊥DQ,由此能求出a的最小值.【解答】解:假设在BC边长存在点Q,使得PQ⊥DQ,连结AQ,∵在矩形ABCD中,AB=,BC=a,PA⊥平面ABCD,∴PA⊥DQ,∵PQ⊥DQ,∴DQ⊥平面PAQ,∴DQ⊥AQ,∴∠AQD=90°,由题意得△ABQ∽△QCD,设BQ=x,∴x(a﹣x)=8,即x2﹣ax+8=0(*),当△=a2﹣32≥0时,(*)方程有解,∴当a时,在BC上存在点Q满足PQ⊥DQ,故a的最小值为4.故答案为:4.【点评】本题考查线段长的最小值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.我国古代数学名著《九章算术》中记载,斜解立方为“堑堵”,即底面是直角三角形的直三棱柱(直三棱柱为侧棱垂直于底面的三棱柱).如图,棱柱ABC﹣A1B1C1为一个“堑堵”,底面ABC的三边中的最长边与最短边分别为AB,AC,且AB=5,AC=3,点P在棱BB1上,且PC ⊥PC1,则当△APC1的面积取最小值时,异面直线AA1与PC1所成的角的余弦值为.【分析】设直三棱柱的高为x,BP=y,先根据PC⊥PC1,利用勾股定理,可得①;过P作PQ⊥CC1于点Q,再过点Q作QM⊥AC1为于点M,则PM⊥AC1,即PM为△APC1的边AC1上的高,结合三角函数的知识和三角形的面积公式可得=②,把①代入②式消去x整理后得=,利用基本不等式推出当△APC1的面积取最小值时,y=;最后结合平移的思想,可知∠B1PC1即为所求.【解答】解:设直三棱柱的高为x,BP=y,则B1P=x﹣y,∵△ABC为直角三角形,且AB=5,AC=3,∴BC=4,由勾股定理知,PC2=BC2+BP2=16+y2,,∵PC⊥PC1,∴,即16+y2+16+(x﹣y)2=x2,整理得y2﹣xy+16=0,即.过P作PQ⊥CC1于点Q,再过点Q作QM⊥AC1为于点M,则PM⊥AC1,即PM为△APC1的边AC1上的高,在△ACC1中,sin∠AC1C=,∴=,∴,===,把代入上式,化简得=≥,当且仅当,即y2=20,y=时,等号成立,此时△APC1的面积取得最小值,x=.∵AA1∥BB1,∴∠B1PC1即为异面直线AA1与PC1所成的角,sin∠B1PC1===,∴cos∠B1PC1=,即异面直线AA1与PC1所成的角的余弦值为.故答案为:.【点评】本题考查异面直线的夹角问题,难点在于处理△APC1的面积问题,涉及利用基本不等式解决最值,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.三.解答题(共5小题)18.如图,P为菱形ABCD所在平面外一点,且△PAD为正三角形,∠BAD=60°,E为PC的中点.(1)求证:AP∥平面BDE;(2)求证:AD⊥PB.【分析】(1)根据线面平行的判定定理证明即可;(2)根据线面垂直的判定定理证明线线垂直即可.【解答】证明:(1)连结AC,交BD于点O∵四边形ABCD为菱形,∴O为AC中点又∵E为PC中点,∴AP∥OE又∵AP⊄面BDE,OE⊂面BDE∴AP∥平面BDE(2)取AD中点F,连结PF、BF△PAD为正三角形,F为AD中点∴PF⊥AD.∵四边形ABCD为菱形,且∠BAD=60°∴△ABD为正三角形又F为AD中点∴BF⊥AD又PF∩BF=F,PF、BF⊂面PBF∴AD⊥面PBF又PB⊂面PBF∴AD⊥PB.【点评】本题考查了线面平行以及线面垂直的判定定理,考查数形结合思想,是一道常规题.19.如图,在三棱锥P﹣ABC中,∠ACB=90°,PA⊥底面ABC.(1)求证:平面PAC⊥平面PBC;(2)若PA=AC=1,BC=2,M是PB的中点,求AM与平面PBC所成角的正切值.【分析】(1)证明PA⊥BC,BC⊥AC,推出BC⊥平面PAC,然后证明平面PAC⊥平面PBC.(2)过点A作AD⊥PC,连结MD,说明∠AMD是直线AM与平面PBC所成的角,通过求解三角形得出结果即可.【解答】解:(1)证明:在三棱锥P﹣ABC中,∵PA⊥底面ABC,∴PA⊥BC.又∵∠ACB=90°,即BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,BC⊂平面PBC∴平面PAC⊥平面PBC.(2)在平面PAC内,过点A作AD⊥PC,连结MD,∵平面PAC⊥平面PBC,∴AD⊥平面PBC,∴∠AMD是直线AM与平面PBC所成的角.在△PAC中,∵PA=AC=1,AD⊥PC,∴D为PC的中点,且,又∵M是PB的中点,在△PBC中,∵AD⊥平面PBC,DM⊂平面PBC,∴AD⊥DM,在直角三角形ADM中,.【点评】本题考查直线与平面所成角的求法,直线与平面垂直的判断定理,考查空间想象能力以及计算能力,是中档题.20.在直三棱柱ABC﹣A1B1C1中,AC=BC=,∠ACB=90°,AA1=2,D为AB的中点.(1)求异面直线AC1与B1C所成角的余弦值;(2)在棱A1B1上是否存在一点M,使得平面C1AM∥平面B1CD.【分析】(1)第一问可以利用空间直角坐标系把点坐标表示出来,再利用向量夹角公式求解出来即可;(2)第二问只要取A1B1的中点就可以证明到.【解答】解:(1)以C为原点,CB、CA、CC1分别为x、z、y轴建立空间直角坐标系.因为AC=BC=,AA1=2.所以C(0,0,0),A(),C1(0,2,0),.所以,那么==;(2)在A1B1上中点M,连接MA.证明如下:∵三棱柱ABC﹣A1B1C1是直三棱.∴平面ABC∥平面A1B1C1,AB∥A1B1,AB=A1B1.∵D、M分别是AB、A1B1的中点.∴C1M∥CD.∵CD⊂平面CDB1,C1M⊄平面CDB1,∴C1M∥平面CDB1.∴,.∴MB1=AD,MB1∥AD.∴四边形ADB1M是平行四边形.∴AM∥DB1.∵DB1⊂平面DCB1,AM⊄平面DBC1.∴AM∥平面DCB1.∵C1M∩AM=M.∴平面C1AM∥平面B1CD.【点评】本题考查空间直角坐标系的作法以及两直线所成夹角问题,平面与平面平行的判定方法.21.如图,在正三棱柱ABC﹣A1B1C1中,点E,F分别是棱CC1,BB1上的点,且EC=2FB.(Ⅰ)证明:平面AEF⊥平面ACC1A1;(Ⅱ)若AB=EC=2,求三棱锥C﹣AEF的体积.【分析】(1)取AC 中点M ,连接BM ,则BM ⊥AC ,从而BM ⊥平面ACC 1A 1.取AE 中点N ,连接MN ,FN ,则MN ∥EC ,推导出四边形BMNF 是平行四边形,由此能证明平面AEF ⊥平面ACC 1A 1.(2)作AD ⊥BC 于D ,则AD ⊥平面BEF ,由等积法结合已知求出三棱锥A ﹣BEF 的体积得答案.【解答】证明:(1)取AC 中点M ,连接BM ,则BM ⊥AC ,因为AA 1⊥底面ABC ,所以侧面ACC 1A 1⊥底面ABC ,所以BM ⊥平面ACC 1A 1.取AE 中点N ,连接MN ,FN ,则MN ∥EC ,且MN =EC ,又因为BB 1∥CC 1,EC =2FB ,所以FB ∥EC 且FB =EC ,所以MN ∥FB 且MN =FB ,所以四边形BMNF 是平行四边形,所以FN ∥BM ,所以FN ⊥平面ACC 1A 1.又FN ⊂平面AEF ,所以平面AEF ⊥平面ACC 1A 1.解:(2)作AD ⊥BC 于D ,则AD ⊥平面BEF ,且AD =.于是V A ﹣BEF =×S △BEF ×AD =××1×2×=. 故V B ﹣AEF =V A ﹣BEF =, ∴V C ﹣AEF =.【点评】本题考查面面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.22.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(Ⅰ)求证:PD⊥平面PAB;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.【分析】(Ⅰ)由已知结合面面垂直的性质可得AB⊥平面PAD,进一步得到AB⊥PD,再由PD ⊥PA,由线面垂直的判定得到PD⊥平面PAB;(Ⅱ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由求得直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,由BM∥平面PCD,可得,由此列式求得当时,M点即为所求.【解答】(Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,且AB⊥AD,AB⊂平面ABCD,∴AB⊥平面PAD,∵PD⊂平面PAD,∴AB⊥PD,又PD⊥PA,且PA∩AB=A,∴PD⊥平面PAB;(Ⅱ)解:取AD中点为O,连接CO,PO,∵CD=AC=,∴CO⊥AD,又∵PA=PD,∴PO⊥AD.以O为坐标原点,建立空间直角坐标系如图:则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),则,,设为平面PCD的法向量,则由,得,则.设PB与平面PCD的夹角为θ,则=;(Ⅲ)解:假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由(Ⅱ)知,A(0,1,0),P(0,0,1),,B(1,1,0),,则有,可得M(0,1﹣λ,λ),∴,∵BM∥平面PCD,为平面PCD的法向量,∴,即,解得.综上,存在点M,即当时,M点即为所求.【点评】本题考查线面垂直的判定,考查了直线与平面所成的角,训练了存在性问题的求解方法,建系利用空间向量求解降低了问题的难度,属中档题.。

2019-2020学年黑龙江大庆实验中学高二下学期期中考试数学(理)试题(解析版)

2019-2020学年黑龙江大庆实验中学高二下学期期中考试数学(理)试题(解析版)

2019-2020学年黑龙江大庆实验中学高二下学期期中考试数学(理)试题一、单选题 1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.极坐标方程2cos 3cos 30ρθρθρ-+-=表示的曲线是( ) A .一个圆 B .两个圆 C .两条直线 D .一个圆和一条直线 【答案】D【解析】分析:2cos 3cos 30ρθρθρ-+-=化为()()cos 130ρθρ+-=,然后化为直角坐标方程即可得结论.详解:2cos 3cos 30ρθρθρ-+-=化为()()cos 130ρθρ+-=,因为cos 10ρθ+=表示一条直线1x =-30ρ-=表示圆229x y +=,所以,极坐标方程2cos 3cos 30ρθρθρ-+-= 表示的曲线是一个圆和一条直线,故选D.点睛:本题主要考查极坐标方程的应用,属于中档题. 极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.3.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .112【答案】B【解析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.4.根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =L ),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( ) A .至少有一个样本点落在回归直线ˆˆˆybx a =+上 B .若所有样本点都在回归直线ˆˆˆybx a =+上,则变量同的相关系数为1 C .对所有的解释变量i x (1,2,,300i =L ),ˆˆibx a +的值一定与i y 有误差 D .若回归直线ˆˆˆybx a =+的斜率ˆ0b >,则变量x 与y 正相关 【答案】D【解析】对每一个选项逐一分析判断得解. 【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A 错误;所有样本点都在回归直线ˆˆˆybx a =+上,则变量间的相关系数为1±,故B 错误; 若所有的样本点都在回归直线ˆˆˆy bx a =+上,则ˆˆbx a +的值与y i 相等,故C 错误; 相关系数r 与ˆb符号相同,若回归直线ˆˆˆy bx a =+的斜率ˆ0b >,则0r >,样本点分布应从左到右是上升的,则变量x 与y 正相关,故D 正确. 故选D . 【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.5.某人连续投篮5次,其中3次命中,2次未命中,则他第2次,第3次两次均命中的概率是( ) A .310B .25C .12D .35【答案】A【解析】基本事件总数3252n C C 10==,他第2次,第3次两次均命中包含的基本事件个数212232m C C C 3==,由此能求出他第2次,第3次两次均命中的概率,得到答案.【详解】由题意某人连续投篮5次,其中3次命中,2次未命中,因为基本事件总数3252n C C 10==,他第2次,第3次两次均命中包含的基本事件个数212232m C C C 3==,所以他第2次,第3次两次均命中的概率是m 3p n 10==. 故选:A . 【点睛】本题主要考查了古典概型及其概率的计算,以及排列、组合等知识的应用,其中解答中根据排列、组合求得基本事件的总数和第2次、第3次两次均命中所包含的基本事件的个数是解答的关键,着重考查了运算与求解能力,属于基础题.6.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是A .24B .16C .8D .12【答案】B【解析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解。

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。

高二数学(理)南充市期末考试

高二数学(理)南充市期末考试

晋城中学高三12月阶段性测试数 学 试 题(理科)命题:高二数学备课组 校对:贺 江一、选择题(本大题共12个小题,每小题5分,满分60分) 1、抛物线x y 82=的焦点坐标为( ) A 、(0,4)B 、(4,0)C 、 (0,2)D 、(2,0)2、运行如右的程序后输出变量y 的值是( ) A 、16B 、8C 、4D 、23、已知条件01:<-x p ,条件01:2<-x q ,则p 是q 成立的( ) A 、既非充分也非必要条件 B 、充要条件 C 、必要不充分条件 D 、充分不必要条件4、某中学高中一年级有540人,高二年级有440人,高三年级有420人,用分层抽样的方法抽取样本容量为70的样本,则高一、高二、高三三个年级分别抽取( ) A 、27人、22人、21人 B 、26人、24人、20人 C 、25人、24人、21人 D 、28人、24人、18人5、如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ) A 、32 B 、21C 、31D 、416、阅读如图所示的程序框图,运行相应的程序输出的结果是( ) A 、123 B 、38 C 、11 D 、37、已知圆)0(4)2()(22>=-+-a y a x C :及直线03:=+-y x l ,当直线l 被圆C 截得的弦长为32时,则a 等于( )A 、2B 、12+C 、22-D 、12-8、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤+-≤-+≥043041y x y x x ,则目标函数y x z -=3的最大值为( )A 、5B 、4C 、34D 、0 9、方程0)1(2222=-++y x x 表示的图形是( )A 、两个点B 、一个点和一个圆C 、一条直线和一个圆D 、一个圆 10、抛物线x y 42=上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A 、6B 、5C 、29D 、4 11、正方体ABCD —A 1B 1C 1D 1的棱长为1,点M 在棱AB 上,且31=AM ,点P 是平面ABCD上的动点,且点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹是( ) A 、线段B 、椭圆的一部分C 、双曲线的一部分D 、抛物线的一部分12、双曲线12222=-b y a x )0,0(>>b a 的两个焦点为1F 、2F ,P 为其上一点,且||||21PF m PF =)1(>m ,若双曲线的离心率),3[+∞∈e ,则实数m 的最大值为( )A 、2B 、4C 、8D 、9 二、填空题(本大题共4个小题,每小题4分,满分16分)13、椭圆191622=+y x 上一点P 到一个焦点的距离为3,则P 到另一个焦点的距离为______。

江西省南昌市新建区第一中学2020-2021学年高二下学期期中考试数学(理)试题

江西省南昌市新建区第一中学2020-2021学年高二下学期期中考试数学(理)试题

江西省南昌市新建区第一中学2020-2021学年高二下学期期中考试数学(理)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.采用分层随机抽样的方法抽取一个容量为45的样本,高一年级被抽取20人,高三年级被抽取10人,高二年级共有300人,则这个学校共有高中学生的人数为( ) A .1350 B .675 C .900D .4502.已知x ,y 之间的一组数据则y 与x 之间的线性回归方程ˆˆˆybx a =+必过点( ) A .()2,2B .()1.5,0C .() 1,2D .()1.5,43.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为A .44π- B .24π- C .42π- D .22π-4.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为12,m m ,标准差分别为12,n n 则A .1212,m m n n <<B .1212,m m n n <>C .1212,m m n n ><D .1212,m m n n >>5.某军工企业为某种型号的新式步枪生产了一批枪管,其口径误差(单位:微米)服从正态分布()21,3N ,从已经生产出的枪管中随机取出一只,则其口径误差在区间()4,7内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ,则()68.27%P μσξμσ-<<+=,()2295.45%P μσξμσ-<<+=)A .31.74%B .27.18%C .13.59%D .4.56%6.执行如图所示的程序框图,若输出的0S =,则空白判断框中可填入的条件是( )A .3?n >B .4?n >C .5?n >D .6?n >7.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”.若B 表示B 的对立事件,则一次试验中,事件A B +发生的概率为( )A .13B .12C .23D .568.已知二项式2nx x ⎛⎫- ⎪⎝⎭展开式中各项的二项式系数和是64,则该展开式中的常数项是( ) A .20B .20-C .160D .160-9.在某电视台有一闯关节目,该节目设置有两关,闯关规则是:当第一关闯关成功后,方可进入第二关.为了调查闯关的难度,该电视台调查了参加过此节目的100名选手的闯关情况,第一关闯关成功的有80人,第一关闯关成功且第二关闯关也成功的选手有72人,以闯关成功的频率近似作为闯关成功的概率,已知某个选手第一关闯关成功,则该选手第二关闯关成功的概率为( ) A .0.72B .0.8C .0.9D .0.57610.甲、乙、丙、丁、戊5名党员参加“党史知识竞赛”,决出第一名到第五名的名次(无并列名次),已知甲排第三,乙不是第一,丙不是第五.据此推测5人的名次排列情况共有( )种 A .5B .8C .14D .2111.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( ) A .12B .13C .14D .1612.甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球贏球的概率为25,则在比分为10:10后甲先发球的情况下,甲以13:11赢下此局的概率为( ) A .225B .310C .110D .325二、填空题13.抽样调查某地区120名教师的年龄和学历状况,情况如下饼图:则估计该地区35岁以下具有研究生学历的教师人数为_______.14.某小组有5名男生、3名女生,从中任选3名同学参加活动,若X 表示选出女生的人数,则()2P X ≥=______.15.已知()()()()727012732111x a a x a x a x -=+-+-++-,则127a a a +++=_______.16.近年来,各地着力打造“美丽乡村”,彩色田野成为美丽乡村的特色风景,某乡村设计一块类似于赵爽弦图的巨型创意农田(如图所示),计划从黄、白、红、绿四种颜色的农作物选种几种种在图中区域,并且每个区域种且只种一种颜色的农作物,相邻区域所种的农作物颜色不同,则共有______种不同的种法.(用数字作答)三、解答题17.4位同学报名参加2022年杭州亚运会6个不同的项目(记为A ,B ,C ,D ,E ,F )的志愿者活动.假设每位同学恰报1个项目,且报名各项目是等可能的.(1)求4位同学报了4个不同的项目的概率;(2)求1位同学报了项目A ,剩余3位同学都报了项目B 的概率.18.西安市某街道办为了绿植街道两边的绿化带,购进了1000株树苗,这批树苗最矮2米,最高2.5米,桉树苗高度绘制成如图频率分布直方图(如图).(1)试估计这批树苗高度的中位数;(2)现按分层抽样方法,从高度在[2.30,2.50]的树苗中任取6株树苗,从这6株树苗中任选3株,求3株树苗中至少有一株树苗高度在[2.40,2.50]的概率.19.某学校用“10分制”调查本校学生对本校食堂的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对食堂满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):若食堂满意度不低于9.5分,则称该生对食堂满意度为“极满意”.(1)求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X表示抽到“极满意”的人数,求X的分布列及数学期望.20.某高校机器人社团决定从大一新生中招聘一批新成员.招聘分笔试、面试这两个环节.笔试合格后才能参加面试,面试合格后便正式录取.现有甲、乙、丙三名大一新生报名参加了机器人社团招聘.假设甲通过笔试、面试的概率分别为12,23;乙通过笔试、面试的概率分别为23,34,丙通过各环节的概率与甲相同.(1)求甲、乙、丙三人中恰有两人被机器人社团录取为新成员的概率;(2)为鼓励大一新生积极报名参加机器人社团招聘,该机器人社团决定给参加应聘的大一新生赠送一定的手机话费,赠送标准如下表:记甲、乙、丙三人获得的所有补贴之和为X 元,求X 的分布列和数学期望.21.已知椭圆2222:1x y C a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,直线:3l x =-,P 为椭圆上任意一点,若点P 到F 的距离为m ,点P 到l 的距离为n ,求证:mn为定值. 22.已知函数1ln ()+=-x xf x e x. (1)证明:()1xe f x -≤;(2)求()f x 的最小值.参考答案1.C 【分析】先求出抽样比,即可求出学生总数. 【详解】由题意可得抽样比为452010130020--=,所以学生总数为14590020÷=,即这个学校共有高中学生900人. 故选:C. 2.D 【分析】回归直线恒过样本中心(),x y . 【详解】 因为01231.54x +++==,135744y +++==, 所以y 与x 之间的线性回归方程ˆˆˆybx a =+必过点()1.5,4. 故选:D. 【点睛】本题考查线性回归直线及其性质,牢记线性回归直线过样本中心即可求解,属于简单题. 3.D 【详解】分析:由题意知本题是一个几何概型,试验发生包含的所有事件是矩形面积,而满足条件的阴影区域,可以通过空白区域面得到,空白区域可以看作是由8部分组成,每一部分是由边长为2AB 的正方形面积减去半径为2AB的四分之一圆的面积得到. 详解:由题 意知本题是一个几何概型,设正方形ABCD 的边长为2.∵试验发生包含的所有事件是矩形面积224S =⨯=,空白区域的面积是2(4)82ππ-=- ∴阴影区域的面积为4(82)24ππ--=- ∴由几何概型公式得到24242P ππ--== 故选D.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,要考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:一是无限性,二是等可能性,基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的的区域是有限的,因此可用“比例解法”求解几何概型的概率. 4.C 【分析】利用甲、乙两名同学6次考试的成绩统计直接求解. 【详解】由甲乙两名同学6次考试的成绩统计图知: 甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为12,m m ,标准差分别为12,n n 得12m m >,12n n <. 故选C . 【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题. 5.C 【分析】根据已知可得1,3,2,4,25,27μσμσμσμσμσ==-=-+=-=-+=,结合正态分布的对称性,即可求解. 【详解】 ()()()14757242P P P ξξξ<<=-<<--<<⎡⎤⎣⎦ ()10.95450.68270.13592=⨯-=. 故选:C 【点睛】本题考查正态分布中两个量μ和σ的应用,以及正态分布的对称性,属于基础题. 6.C【分析】模拟执行程序框图,直到0S =时满足判断框要求输出结果,由此可确定判断框内的条件. 【详解】模拟执行程序框图,输入160S =,1n =,不满足10S ≤,则80S =,2n =,需不满足判断框,循环; 不满足10S ≤,则40S =,3n =,需不满足判断框,循环; 不满足10S ≤,则20S =,4n =,需不满足判断框,循环; 不满足10S ≤,则10S =,5n =,需不满足判断框,循环; 满足10S ≤,则0S =,6n =,需满足判断框,输出0S =; ∴判断框中的条件应为:5?n >.故选:C. 7.C 【分析】首先根据题意得到意()13P A =,()23P B =,()13P B =,根据A 与B 互斥,利用互斥事件加法公式即可得到答案. 【详解】掷一个骰子的试验有6种可能结果. 依题意()2163P A ==,()4263P B ==,()21133P B =-=, 因为B 表示“出现5点或6点”的事件,A 表示“出现小于5的偶数点”, 所以A 与B 互斥, 故()()()2+3P A B P A P B =+=. 故选:C 8.D 【分析】由2n x x ⎛⎫- ⎪⎝⎭展开式中二项式系数之和为64,可得6n =,则在62x x ⎛⎫- ⎪⎝⎭展开式的通项公式中,令x 的幂指数等于0求得r 的值,即可求得展开式中常数项. 【详解】若2nx x ⎛⎫- ⎪⎝⎭展开式中二项式系数之和为64,则264n =,6n =,故62x x ⎛⎫- ⎪⎝⎭展开式的通项公式为()66216622rr r rrr r T C x C x x --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭, 令620r -=,3r =,故展开式中常数项为()3362820160C -⨯=-⨯=-, 故选:D . 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.本题解题的关键在于熟记二项式系数和:0122n n n n n n C C C C +++=.9.C 【分析】若令“第一关闯关成功”为事件A ,“第二关闯关成功”为事件B ,则由题意可得()0.8P A =,()0.72P AB =,然后利用条件概率的计算公式()()()|P AB P B A P A =可求得结果 【详解】第一关闯关成功的选手有80人,则第一关闯关成功的频率为0.8,第一关闯关成功且第二关闯关也成功的选手有72人,则两关都成功的频率为0.72. 设“第一关闯关成功”为事件A ,“第二关闯关成功”为事件B ,()0.8P A =,()0.72P AB =,某个选手第一关闯关成功,则该选手第二关闯关成功的概率为()()()|0.9P AB P B A P A ==. 故选:C 10.C 【分析】按乙排第五和不是第五分类讨论.乙排在第五的情况有:33A ,乙不在第五的方法有112222C C A ,共有3112322214A C C A +=,故选:C . 【点睛】关键点点睛:本题考查排列组合的综合应用,解题关键是确定完成事件的方法:是先分类还是先分步:分类后每一类再分步.然后结合计数原理求解. 11.D 【分析】先用等可能事件发生的概率的计算方法,分别算出某名民工选择的项目属于基础设施类、民生类、产业建设类的概率,再由独立事件同时发生的概率计算方法算出3名民工选择的项目所属类比互异的概率,其中要注意未指定每名民工具体选择哪一类,故还应考虑排列问题,结果要乘以33A . 【详解】记第i 名民工选择的项目属于基础设施类、民生类、产业建设类 分别为事件i A ,i B ,i C ,1,2,3i =.由题意,事件i A ,i B ,i C ,1,2,3i =相互独立, 则301()602i P A ==,201()603i P B ==,101()606i P C ==,1,2,3i =, 故这3名民工选择的项目所属类别互异的概率是 331111()62366i i i P A P A B C ==⨯⨯⨯=.故选:D. 【点睛】关键点点睛:本题的关键是独立事件同时发生的概率计算,还应注意其中未指定每名民工具体选择哪一类,所以还有排列问题需要考虑. 12.C 【分析】分后四球胜方依次为甲乙甲甲,与乙甲甲甲两种情况进行求解即可.分两种情况:①后四球胜方依次为甲乙甲甲,概率为113123252550P =⋅⋅⋅=; ②后四球胜方依次为乙甲甲甲,概率为212121252525P =⋅⋅⋅=.所以,所求事件概率为:12110P P +=. 故选:C. 【点睛】本题主要考查了分步与分类计数求解概率的问题,需要根据题意判断出两种情况再分别求解,属于基础题. 13.30 【分析】根据图中的数据,分别求得本科学历和研究生学历的教师人数,再根据35岁以下的本科人数所占比例求解即可得答案. 【详解】解:由图可知本科学历的教师共有50201080++=人,故研究生学历的有1208040-=人. 35岁以下的本科人数有50人,35岁以下教师的比例为62.5%, 所以35岁以下的本科和研究生学历人数和为5062.5%80÷=人, 所以35岁以下的研究生学历人数有805030-=人. 故答案为:30 14.27【分析】由超几何分布概率公式运算即可得解. 【详解】当2X =时,()12533815256C C P X C ===;当3X =时,()33381356C P X C ===,则()()()151222356567P X P X P X ≥==+==+=. 故答案为:27. 15.2- 【分析】令1x =可得出0a ,令2x =可得0127a a a a ++++的值,两式结合可得答案.【详解】令1x =,得()70321a -==, 令2x =,得()70127341a a a a -=++++=-,所以()127112a a a +++=--=-.故答案为:2- 16.72 【分析】分用三种颜色或四种颜色涂色该区域,当用四种颜色涂色该区域时,分两种情况讨论,当AC 区域同色时和不同色时两种情况讨论求解即可. 【详解】解:当用三种颜色涂色该区域时,先从四种颜色中选三种颜色,有344C =种方案,再用三种颜色涂色,则有321116⨯⨯⨯⨯=种方案,故有4624⨯=种方案;当用四种颜色涂色该区域时,分两种情况讨论,当AC 区域同色时,有4321124⨯⨯⨯⨯=种不同方案,当AC 区域不同色时,有4321124⨯⨯⨯⨯=种不同方案,故有48种不同方案. 综上,共有244872+=种不同方案. 故答案为:72 17.(1)518;(2)1324. 【分析】(1)根据分步乘法计数原理,排列及古典概型可得结果;(2)安排一名同学报A 科目有14C 种,根据古典概型求解.【详解】(1)由题知,4位同学报6个项目共有46种可能,4位同学报了4个不同的项目共有46A 种可能,所以4645618A P ==.(2)由题知,4位同学报6个项目共有46种可能,1位同学报项目A ,剩余3位同学都报项目B 共有14C 种可能, 所以14416324C P ==.18.(1)2.22;(2)45.【分析】(1)根据频率分布直方图,由中位数的定义求解;(2)分层抽样可知[2.30,2.40)中抽取4株,[2.40,2.50)中抽取2株,根据古典概型求解即可. 【详解】(1)由频率分布直方图得:[2.0,2.2)的频率为:(1+3.5)×0.1=0.45, [2.2,2.3)的频率为:2.5×0.1=0.25, 估计这批树苗高度的中位数为: 2.2+0.50.452.5-=2.22. (2)按分层抽样方法,从高度在[2.30,2.50]的树苗中任取6株树苗, 则[2.30,2.40)中抽取:6×221+=4株, [2.40,2.50)中抽取:6×121+=2株, 从这6株树苗中任选3株,基本事件总数n =3620C =,3株树苗中至少有一株树苗高度在[2.40,2.50]包含的基本事件个数:m =12214242C C C C +=16, ∴3株树苗中至少有一株树苗高度在[2.40,2.50]的概率164205m P n ===. 19.(1)1728;(2)分布列见具体解析,()34E X =. 【分析】(1)利用古典概型计算公式与对立事件的概率计算公式即可得出;(2)X 的可能取值为0,1,2,3,由已知可知13,4X B ⎛⎫~ ⎪⎝⎭,进而得到答案.【详解】(1)由题意,16人中有4人“极满意”,记至少有一人是“极满意”为事件A ,则()31231617128C P A C =-=.(2)X 的可能取值为0,1,2,3,由已知13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫=== ⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()3113464P X ⎛⎫=== ⎪⎝⎭.所以X 的分布列为:()13344E X =⨯=. 20.(1)518;(2)分布列见解析;110. 【分析】(1)甲、乙、丙三人中恰有两人被机器人社团录取为新成员,即恰一人未录取,则所求事件转化为“甲未录取,乙丙录取”、“乙未录取,甲丙录取”、“丙未录取,甲乙录取”三个互斥事件的和事件,每一事件又是三个相互独立事件的积事件,先利用相互独立事件同时发生的乘法公式,再利用互斥事件和事件概率加法公式求解;(2)甲、乙、丙三人都参加笔试,每人均已经得到20元话费,笔试是否通过决定能否得到另30元话费.按三人中通过笔试的人数分为0,1,2,3四类,即对应60,90,120,150X =四种情况,分别求解概率即可. 【详解】(1)设事件A 表示“甲被机器人社团正式录取”,事件B 表示“乙被机器人社团正式录取”,事件C 表示“丙被机器人社团正式录取”. 则()()121233P A P C ==⨯=,()231342P B =⨯=.所以甲、乙、丙三人中恰有两人被机器人社团录取为新成员的概率为()()()()()()()()()()P P ABC ABC ABC P A P B P P A P B P C A P B P C P C =++=++111111521132332318⎛⎫⎛⎫=-⨯⨯+⨯⨯-⨯= ⎪ ⎪⎝⎭⎝⎭.(2)X 的所有可能取值为60,90,120,150, ()11116023212P X ==⨯⨯=,()11121141902223322123P X ==⨯⨯⨯+⨯⨯==,()1121115120222322312P X ==⨯⨯⨯+⨯⨯=,()11221150223126P X ==⨯⨯==.所以X 的分布列为所以()11516090120150110123126E X =⨯+⨯+⨯+⨯=. 【点睛】离散型随机变量分布列的求解步骤:(1)明取值:明确随机变量的可能取值有哪些且每一个取值所表示的意义; (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率; (3)画表格:按规范要求形式写出分布列;(4)做检验:利用分布列的性质检验分布列是否正确.21.(1)22162x y +=;(2)证明见解析.【分析】(1)根据焦距及短轴的两个端点与长轴的一个端点构成正三角形,结合椭圆中a b c 、、的关系,即可求得a b c 、、的值,即可得椭圆方程.(2)设出点P 的坐标,根据两点间距离公式,结合椭圆的方程即可证明.【详解】(1)因为椭圆2222:1x y C a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.所以222242c b a b c =⎧⎪⎪=⎨⎪=+⎪⎩解方程组可得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以椭圆的方程为22162x y +=(2)证明:设()00,P x y ,03x >-因为F 为椭圆C 的左焦点,直线:3l x =-,椭圆的方程为22162x y +=所以2200162x y +=,即220023x y =-则点P 到直线l 的距离为03n x =+ 点P 到F 的距离为m ==因为03x >- 所以m =)03x +所以m n =. 22.(1)证明见解析;(2)1. 【分析】(1)根据题意,将问题转化为证明1ln x x +≤,进而构造函数,求函数最值即可; (2)求导22ln ()x e x x f x x+'=,故令2()ln x h x x e x =+,根据函数单调性与零点存在定理知存在01,12x ⎛⎫∈ ⎪⎝⎭使得当00x x <<时函数()f x 单调递减,当0x x >时函数()f x 单调递增,且020e n 0l x x x +=,进而000000ln 1l l n n x x x e x x x e -=-=-,再根据()x t x xe =的单调性得00ln x x =-,001x e x =进而得()min 0()1f x f x ==. 【详解】解:(1)函数1ln ()+=-xxf x e x的定义域为{}0x x >, 所以要证()1xe f x -≤,只需证1ln 1xx+≤,即证1ln x x +≤. 令()ln 1g x x x =-+,()111x g x x x-'=-=, 所以当()0,1∈x 时,0g x ,函数()ln 1g x x x =-+为增函数, 当()1,∈+∞x 时,0g x,函数()ln 1g x x x =-+为减函数,所以()()()max 10g x g x g ≤==⎡⎤⎣⎦,即ln 10x x -+≤, 所以1ln x x +≤,所以()1xe f x -≤;(2)()22211ln ln ()x xx x e xf x e x x-++'=-=, 令2()ln x h x x e x =+,21()(2)0x h x e x x x'=++>,所以函数2()ln x h x x e x =+在0,上单调递增,因为11ln 20,(1)022h h e ⎛⎫=<<=> ⎪⎝⎭, 所以存在01,12x ⎛⎫∈ ⎪⎝⎭使得0()0h x =,当00x x <<时()0h x <,当0x x >时()0h x >,所以当00x x <<时()0f x '<,函数()f x 单调递减, 当0x x >时,()0f x '>,函数()f x 单调递增,所以当0x x =时,()0min 001ln ()x x f x f x e x +==-, 因为0()0h x =,0020e n 0l xx x +=,即00001ln 0x x x e x +=, 所以000000ln 1l l n n x x x e e x x x -=-⋅=-, 故令()x t x xe =,()10()xt x x e '+>=,函数()x t x xe =为0,的单调递增函数,所以00ln x x =-,所以01x e x =, ()000min 000001ln ln 11()1x x x f x f x e x x x x +==-=--=. 【点睛】本题考查利用导数证明不等式,求函数的最值,考查运算求解能力,逻辑推理能力,化归转化思想,是难题.本题第二问解题的关键在于结合零点的存在性定理知存在01,12x ⎛⎫∈ ⎪⎝⎭使得当00x x <<时函数()f x 单调递减,当0x x >时函数()f x 单调递增,且0020e n 0l x x x +=,进而求解函数最小值.。

2020年山东省东营市第二中学高二数学理下学期期末试题含解析

2020年山东省东营市第二中学高二数学理下学期期末试题含解析

2020年山东省东营市第二中学高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数,,当时,不等式恒成立,则实数a的取值范围为( )A. B. C. D.参考答案:A【分析】根据,可以把不等式变形为:构造函数,知道函数的单调性,进而利用导数,可以求出实数的取值范围.【详解】因为,所以,设函数,于是有,而,说明函数当时,是单调递增函数,因为,所以,,因此当时,恒成立,即,当时恒成立,设,当时,,函数单调递增,当时,,函数单调递减,故当时,函数有最小值,即为,因此不等式,当时恒成立,只需,故本题选A.【点睛】本题考查了通过构造函数,得知函数的单调性,利用导数求参问题,合理的恒等变形是解题的关键.2. 已知数列是公比为的等比数列,且,,则的值为( )A. B. C.或D.或参考答案:D略3. 已知定义在上的函数,为其导数,且恒成立,则()A. B.C. D.参考答案:A【分析】通过,可以联想到导数运算的除法,这样可以构造新函数,,这样就可以判断出函数在上的单调性,把四个选项变形,利用单调性判断出是否正确.【详解】通过,这个结构形式,可以构造新函数,,而,所以当时,,所以函数在上是单调递增函数,现对四个选项逐一判断:选项A. ,可以判断是否正确,也就是判断是否正确,即判断是否成立,因为,在上是单调递增函数,所以有,故选项A正确;选项B.,也就是判断是否正确,即判断是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,故选项B不正确;选项C. ,也就是判断是否正确,即判断是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,故选项C不正确;选项D.,也就是判断,是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,因此选项D不正确,故本题选A.【点睛】本题考查了根据给定的已知不等式,联想到导数的除法运算法则,构造新函数,利用新函数的单调性,对四个选项中不等式是否成立作出判断.重点考查了构造思想.关键是熟练掌握一些基本的模型结构特征.4. 从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为A.6 B.12 C.18 D.24参考答案:D5. 将一枚质地均匀的硬币随机抛掷两次,出现一次正面向上,一次反面向上的概率为()A.B.C.D.参考答案:A【考点】古典概型及其概率计算公式.【分析】出现一次正面向上,一次反面向上的情况有两种:第一次正面向上第二次反面向上和第一次反面向上第二次正面向上.【解答】解:将一枚质地均匀的硬币随机抛掷两次,出现一次正面向上,一次反面向上的概率为:p==.故选:A.6. 正三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,且AB=AC=AD=a,则以A为球心、正三棱锥的高为半径的球夹在正三棱锥内的球面部分的面积是A. B. C.D.参考答案:B7. 若,则等于()A. B. C. D.以上都不是参考答案:A8. 已知F是双曲线的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若ΔABE是锐角三角形,则该双曲线的离心率e的取值范围为( )A.(1,+∞) B.(2,1+) C.(1,1+) D.(1,2)参考答案:D略9. 如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是(A)AC⊥SB(B)AB∥平面SCD(C)SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角参考答案:D10. 某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=C·0.8k·0.219-k(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是()A.14发B.15发C.16发D.15发或16发参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 (用数字作答)参考答案:60略12. 在△ABC中,已知a=2bcosC,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形参考答案:C【考点】余弦定理的应用.【分析】先根据余弦定理表示出cosC,代入整理即可得到b=c从而知是等腰三角形.【解答】解:∵a=2bcosC=2b×=∴a2=a2+b2﹣c2∴b2=c2因为b,c为三角形的边长∴b=c∴△ABC是等腰三角形.故选C.13. 若函数f(x)=x2﹣lnx+1在其定义域内的一个子区间(a﹣2,a+2)内不是单调函数,则实数a的取值范围.参考答案:[2,)【考点】利用导数研究函数的单调性.【分析】函数f(x)的定义域为(0,+∞),f′(x)=2x﹣,根据题意可得到,0<a﹣2<<a+2从而可得答案.【解答】解:∵f(x)的定义域为(0,+∞),f′(x)=2x﹣,f′(x)>0得,x>,f′(x)<0得,0<x<,∵函数f(x)定义域内的一个子区间[a﹣2,a+2]内不是单调函数,∴0≤a﹣2<<a+2,∴2≤a<,故答案为:[2,).【点评】点评:本题考查利用导数研究函数的单调性,依题意得到0≤a﹣2<是关键,也是难点所在,属于中档题.14. 已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为2,则过圆心且与直线l垂直的直线的方程为________.参考答案:x+y-3=015. 展开式中奇数项的二项式系数和等于.参考答案:8略16. 已知点及椭圆上任意一点,则最大值为。

2020-2021年高二数学典型试题题目及答案解析

2020-2021年高二数学典型试题题目及答案解析

2020—2021学年度高二第二学期第四次阶段性测试数学试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数x x x y sin cos -=的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) 3对应的向量OA 的模是 ) 13 43),则a 的取值范围是) 5 ) 6) (A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。

当所做的铁盒的容积最大时,在四角截去的正方形的边长为 ( ) (A )12 (B )10 (C )8 (D )6 10.用数学归纳法证明:22111(1)1n n a a a aa a++-++++=≠-,在验证n =1时,左端计算所得的式子是 ( ) (A )1 (B )1+a (C )21a a ++ (D )231a a a +++11.给出下列四个命题:(1)任一两个复数都不能比较大小;(2)z z 为实数z ⇔为实数(3)) 1211(2n++<1+, (B )增加两项,同时减少1k一项13xax (a 为常数)14中,11a =, 15中,AD ⊥BC 于述结论,写出下列条件下的结论:四面体,S ,二面角,γ,16.对于函数()f x 定义域中任意的12,x x (12x x ≠),有如下结论: (1)1212()()()f x x f x f x +=+;(2)1212()()()f x x f x f x =+; (3)1212()()0f x f x x x ->-;(4)1212()()()22x x f x f x f ++<;试分别写出对应上述一个结论成立的四个函数:适合结论(1) ;适合结论(2);适合结论(3);适合结论(4)。

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题理含解析

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题理含解析
(Ⅲ)根据频率分布直方图可得各数据,得列联表,计算 后可得结论.
【详解】解:(Ⅰ)设 , 两条生产线的产品质量指标值的平均数分别为 , ,由直方图可得 ,
同理 , ,因此 生产线的质量指标值更好.
(Ⅱ) 生产线的产品质量指标值的众数为80
由 生产线的产品质量指标值频率分布直方图,前两组频率为
前三组频率为
,
所以 在 上递增,在 上递减,
所以 的极大值为 ,极小值为
注意到当 时, ,
所以由 有 个极值点,可得 。
所以实数 的取值范围是 。
故答案为: ;
【点睛】本小题主要考查利用导数研究函数的极值点,属于中档题.
三、解答题
17。在直角坐标系 中,圆C的参数方程 ( 为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系。
A. , B。 ,
C , D。 ,
【答案】D
【解析】
试题分析:均值为 ;
方差为
,故选D。
考点:数据样本的均值与方差。
10.已知函数 ,则 ( )
A。 B。eC。 D。 1
【答案】C
【解析】
【分析】
先求导,再计算出 ,再求 .
【详解】由题得 ,
所以 .
故选:C.
【点睛】本题主要考查导数的计算,意在考查学生对该知识的掌握水平和基本的计算能力,属基础题。
【详解】涉及函数定义域为 ,
设 ,则 ,
∵ ,∴ ,∴ 在 上单调递增,
不等式 可化为 ,即 ,所以 , ,又 ,得 ,
∴原不等式的解为 .
故选:A.
【点睛】本题考查用导数解不等式,解题关键是构造新函数,利用新函数的单调性解不等式,新函数需根据已知条件和需要解的不等式确定,简单的有 , , , ,等等,复杂点的如 ,或 ,象本题 难度更大.注意平时的积累.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高二数学下学期第四次阶段性测试试题 理
第I 卷(选择题,共60分)
一、选择题(每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合
题目要求的)
1.
已知集合,,则 ( ) A . B .
C

D .}log |{2x y x A ==}cos |{R x x y y B ∈==,=B A I
)0(∞+,),01[-]10(,]11[,-
2.
=-+2
3
)
1()1(i i ( )
A .
B .
C .
D .
i +1i -1i +-1i --1
3.
已知为等差数列,为其前项和.若,,则( ) A .0 B .5 C .6
D .8}{n a n S n 61=a 053=+a a =6S
4.
已知,则= ( ) A . B .
C .1
D .4
3
)tan(=+απαα2sin 2cos 2+
25642548
25
16 5.
某几何体的三视图如图所示(单位:cm ),则该几何体的体积是 ( )
A .6cm3
B .8cm3 C

cm3
D .cm3
3323
20
6.
在平四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,则等于( ) A . B .
C .
D .
a AC ϖ
=b BD ϖ=AF b a ϖϖ2141+b a ϖρ3132+ b a ϖρ4121+b a ϖρ3
231+ 7.
执行如图所示的程序框图,如果输出,那么判断框内应填入的条件是( ) A .?
B .?
C .?
D .?3=s
6≤k
7≤k 8≤k 9≤k
8.
由直线上的一点向圆引切线,则切线长的最小值为 ( ) A .1
B .
C .
D .31+=x y 1)3(22=+-y x
2
27
9.
从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为 ( )
A .
B .
C .
D .
5152535
4
10.
过椭圆的左焦点F1作轴的垂线交椭圆于点,F2为右焦点,若,则椭圆的率心率为 ( )
A .
B .
C

D .)0(122
22>>=+b a b
y a x x P ο6021=∠PF F
2233213
1
11.
设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该外接球的表面积为 ( )
A .
B .
C .
D .a
2a π2
3
7
a π2
3
11a π25a π 12.
已知是在定义在R 的奇函数,为的导函数,,且当时,成立,则 ( )
A .
B .
C .
D .无法确定)(x f )(x f ')(x f 0)2(=f 0>x 0)()(>'+x f x x f
)1()3(3-->--f f )1()3(3--<--f f )3()3(--=--f f
第II 卷(非选择题,共90分)
二、填空题(每小题5分,共20分)
13. 设向量,.若,则实数=________.)33(,
=a ϖ)1-1(,=b ϖ)()(b a b a ϖ
ϖϖϖλλ-⊥+λ 14.
已知展开式中的常数项是5,则________.)0()3(6
>+
a x
x a =a 15. 设,满足条约条件则的最大值为________. x y ⎪⎪⎩⎪
⎪⎨
⎧≥≥≤+≥-,
0,0,3,1y x y x y x y x z 2-= 16.
在R 上定义运算.若对任意,不等式都成立,则实数的取值范围是________.)1(:y x y x -=⊗⊗2>x 2)(+≤⊗-a x a x a
三、解答题(解答应写出文字说明.证明过程或演算步骤。

本大题共6小题,共70分)
17. (本小题满分12分)
设.
(1)求的单调区间;
(2)在锐角△ABC 中,角A ,B ,C 的对边分别为,,.若,,求△ABC 的面积的最大值.
)4
(cos cos sin )(2π
+
-=x x x x f
)(x f
a b c 0)2
(=A
f 1=a
18. (本小题满分12分)
如图,直三棱柱中,分别是,的中点,. (1)证明:平面; (2)求二面角的正弦值.
111C B A ABC -E ,D AB 1BB AB CB AC AA 2
2
1=== //1BC CD A 1 E C A D --1
19. (本小题满分12分)
某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.
(1)求A 中学至少有1名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛.设X 表示参赛的男生人数,求X 的分布列和数学期望.
20. (本小题满分12分)
如图,在平面直角坐标系,已知椭圆的离心率为,且右焦点F 到定直线:的距离为3.
(1)求椭圆的标准方程.
(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.
xOy )0(122
22>>=+b a b y a x 22l c
a x 2-=
l
21.
(本小题满分12分)
设函数.
(1)若,求的单调区间; (2)若当时,求的取值范围.
21)(ax x e x f x ---=
0=a )(x f 0≥x 0)(≥x f a
22. (本小题满分10分)
已知曲线,直线(为参数)
(1)写出曲线C 的参数方程,直线的普通方程;
(2)过曲线C 上任意一点P 作与夹角为的直线,交于点A ,求|PA|的最大值与最小值.
194:2
2=+y x C ⎩⎨
⎧-=+=t y t x l 222:,t l l ο30l。

相关文档
最新文档