2019-2020年九年级数学元月调考试题
武汉市2019—2020学年元月调考模拟考试九年级数学试卷(二)
武汉市2019—2020学年元月调考模拟考试九年级数学试卷(二)一、选择题(共10小题;每小题3分;共30分)1.方程3x 2+1=6x 的二次项系数和一次项系数分别为( )A .3和6B .3和-6C .3和-1D .3和12.下列事件中;必然发生的事件是( )A .随意翻到一本书的某页;这页的页码是奇数B .通常温度降到0℃以下;纯净的水结冰C .地面发射一枚导弹;未击中空中目标D .测量某天的最低气温;结果为-150℃3.将抛物线y =-x 2向上平移3个单位;再向左平移2个单位;那么得到的抛物线解析式为( )A .y =-(x +2)2+3B .y =-(x -2)2+3C .y =-(x +2)2-3D .y =-(x -2)2-34.方程09242=+-x x 的根的情况是( )A .有两个不相等实根B .有两个相等实根C .无实根D .以上三种情况都有可能5.下列说法正确的是( ) A .掷两枚骰子;面朝上的点数和是偶数的概率为21 B .连续摸了两次彩票都中奖的概率为21 C .投两次硬币;朝上的面都为正面的概率为21 D .任何人连续投篮两次;投中的概率为21 6.如图;A 、B 、C 三点都在⊙O 上;∠ABO =50°;则∠ACB =( )A .50°B .40°C .30°D .25°7.如图;在下面的网格中;每个小正方形的边长均为1;△ABC 的三个顶点都是网格线的交点.已知A (-2;2)、C (-1;-2);将△ABC 绕着点C 顺时针旋转90°;则点A 对应点的坐标为( )A .(2;-2)B .(-5;-3)C .(2;2)D .(3;-1)8.某树主干长出若干数目的支干;每个支干又长出同样数目小分支;主干、支干和小分支总数共73.若设主干长出x 个支干;则可列方程是( )A .(1+x )2=73B .1+x +x 2=73C .(1+x )x =73D .1+x +2x =739.二次函数y =x 2+mx +1的图象的顶点在坐标轴上;则m 的值( )A .0B .2C .±2D .0或±210.若二次函数y =ax 2+bx +c 的图象的顶点在第一象限;且过点(0;1)和(-1;0);则s =a +b +c的值的变化范围是( )A.0<s<1 B.0<s<2 C.1<s<2 D.-1<s<2二、填空题(本大题共6个小题;每小题3分;共18分)11.点A(-2;5)关于原点的对称点B的坐标是___________;12.抛物线y=x2-2x-2的顶点坐标是___________.13.方程3x2-1=2x+5的两根之和为___________.14.如图;有一块长30m、宽20m的矩形田地;准备修筑同样宽的三条直路;把田地分成六块;种植不同品种的蔬菜;并且种植蔬菜面积为矩形田地面积的5039;则道路的宽为___________.15.如图;在矩形ABCD中;AB=4;AD=3;以顶点D为圆心作半径为r的圆.若要求另外三个顶点A、B、C中至少有一个点在圆内;且至少有一个点的圆外;则r的取值范围是.16.如图;正方形ABCD的边长为2;P为BC上一动点;将DP绕P逆时针旋转90°;得到PE;连接EA;则△PAE面积的最小值为__________.三、解答题(共8题;共72分)17.(本题8分)已知关于x的方程x2+2x+a-2=0(1) 若该方程有两个不相等的实数根;求实数a的取值范围;(2) 当该方程的一个根为1时;求a的值及方程的另一根.18.(本题8分)如图;菱形ABCD和Rt△ABE;∠AEB=90°;将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF;(2)若∠ABC=130°;直接写出∠AEF的度数.AB CDE19.(本题8分)如图;⊙O中;直径CD⊥弦AB于M;AE⊥BD于E;交CD于N;连AC(1)求证:AC=AN;(2)若OM∶OC=3∶5;AB=5;求⊙O的半径;20.(本题8分)老师和小明玩游戏;老师取出一个不透明口袋;口袋中装有三张分别标有数字1、2、3的卡片;卡片除数字外其余都相同.老师要求小明两次随机摸取一张卡片(第一次取出后放回);并计算两次抽到卡片上的数字之积是奇数的概率.求小明两次抽到卡片上的数字之积是奇数的概率21.(本题8分)一个涵洞成抛物线形;它的截面如图;现测得:当水面宽AB=1.6 m时;涵洞顶点与水面的距离为2.4 m;离开水面1.5 m处是涵洞宽ED;(1)求抛物线的解析式;(2)求ED的长;22.(本题10分)如图所示;为了改造小区环境;某小区决定要在一块一边靠墙(墙的最大可使用长度13 m)的空地上建造一个矩形绿化带.除靠墙一边(AD)外;用长为36 m的栅栏围成矩形ABCD;中间隔有一道栅栏(EF).设绿化带宽AB为x m;面积为S m2(1)求S与x的函数关系式;并求出x的取值范围(2)绿化带的面积能达到108 m2吗?若能;请求出AB的长度;若不能;请说明理由(3)当x为何值时;满足条件的绿化带面积最大E D C B A NM D C B A23.(本题10分)已知等边△ABC ;点D 和点B 关于直线AC 轴对称.点M (不同于点A 和点C )在射线CA 上;线段DM 的垂直平分线交直线BC 的于N ;(1)如图1;过点D 作DE ⊥BC ;交BC 的延长线于E ;若CE =5;求BC 的长;(2)如图2;若点M 在线段AC 上;求证:△DMN 为等边三角形;(3)连接CD ;BM ;若3S ABM DMC S △△;直接写出MBN MCN S △△S .图1 图224.(本题12分)已知抛物线y =ax 2-2amx +am 2+2m +4的顶点P 在一条定直线l 上.(1)直接写出直线l 的解析式;(2)若存在唯一的实数m ;使抛物线经过原点.①求此时的a 和m 的值;②抛物线的对称轴与x 轴交于点A ;B 为抛物线上一动点;以OA 、OB 为边作□OACB ;若点C 在抛物线上;求B 的坐标.(3)抛物线与直线l 的另一个交点Q ;若a =1;直接写出△OPQ 的面积的值或取值范围.BBACA BDBDB10. 将点(0;1)和(-1;0)分别代入抛物线解析式;得c=1;a=b-1;∴S=a+b+c=2b ;由题设知;对称轴x=-错误!>0且a <0;∴2b >0.又由b=a+1及a <0可知2b=2a+2<2.∴0<S <2.故本题答案为:0<S <2. 11. (2;-5) 12. (1;-3) 13. 错误!14. 2 15. 3<r<5 16. 错误! 16. 过E 作EF ⊥BC 于F ;EG ⊥AD 于G ;设GE=a ;可证AG=2-a ;EFP AGE AGFP AEP S S S S △△梯△--==错误!(a-1)2+错误!;当a=1时;AEP S △=错误!17. (1)a<3 (2)a=-1;-318. 65°;AEBO 共圆19. (1)连AC ;△AMN ≌△AMC ;(2)连OA ;设OM=3x ;OC=5x ;r=错误!20. 错误!21. (1)y=-错误!x 2 (2)562 22. (1)S=-3x 2+36x (错误!≤x<12)(2)不能 (3)错误!23. (1)连CD ;∠DCE=60°;CD=BC=10;(2)∠DCA=60°;连CD ;过N 作NG ⊥CD 于G ;NH ⊥AC 于H ;∠GCN=60°;∴∠NCH=60°;∴NG=NH ;∴Rt △MNH ≌Rt △DNG (HL );∴∠CMQ=∠NDG ;∴∠MCQ=∠MND=60°;∴△DMN 为等边三角形;(3)连AD ;BD 交AC 于P ;BP=PB ;△ADM ≌△CND ≌△ABM ;∵3S =ABM DMC S △△;∴31=MC AM ;MBN MCN S △△S =51=BN CN ;当M 在CA 延长线上时;MBN MCN S △△S =1;答案:51或1. 24.(1) y=a (x-m )2+2m+4;P (m ;2m+4);∴y=2x+4;(2) ①将x=0;y=0代入;∴am 2+2m+4=0∴△=0;a=错误!;m=-4;②B 、C 关于对称轴对称;∴B 的横坐标为-2;y=错误!(x+4)2-4;∴B (-2;-3);(3) y=2x+4与x 轴交于点B (-2;0);交y 轴于点A (0;4);作OM ⊥AB 于M 。
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________ 三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;2;连接BE;P为BE的中点;连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△P AD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61 B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A,B,C,D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°, 2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
九年级元月调考数学模拟试题
九年级元月调考数学模拟试题满分:120分时间:120分钟编辑人:丁济亮祝考试顺利!一、选择题(共12 小题,每小题3分,共36分)1.要使式子a-3在实数范围内有意义,字母a的取值必须满足()A.a≥3 B.a≤ 3 C.a≠3 D.a≠0.2.有两个事件,事件A:挪一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中.则()A.只有事件 A是随机事件 B.只有事件 B是随机事件.C.事件 A和 B都是随机事件 D.事件 A和 B都不是随机事件.3.方程 x2+7=8x的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根.C.有一个实数根 D.没有实数根.4.两圆的半径分别为3和5,圆心距为2,则这两个圆的位置关系是()A.相交 B.内切 C.外切 D.相离5.下列图形中是中心对称图形的是()A B C D6.一个布袋中有只有颜色不同的10个黄球和90个白球,从中任取一个球,则取到黄球的概率是()A.1090B.19C.910D.1107.如图,点 C 、D 、Q 、B 、A 都在方格纸的格点上,若△AOB 是由△COD 绕点O 按顺时针方向旋转而得的.则旅转的角底为( ) A 30° B .45° C .90° D .135°8.一元二次方程x 2-l =4x 的两根为1x 和2x ,则12x +x 的值为( ) A .-4 B .1 C .-1 D .49.如图,点C 是弧AB 的中点,则AB 和2AC 的大小关系是( )A .AB <2AC B .AB=2AC C .AB >2ACD .不能确定10.为迎接“2011 李娜和朋友们国际网球精英赛”,某款桑普拉斯网球包原价 168元,连续两次降价 a %后售价为 128元.下列所列方程中正确的是( ) A .168(1+a %)2=128. B .168(1-a 2%)=128. C .168(1-2a %)=128. D .168(1-a %)2=128.二、填空题(共4小题,每小题3分,共12分)11= ,(-3a 2)2= ,2)5(-= 。
湖北省武汉市部分学校2019-2020学年度第一学期九年级上册数学元月调考模拟(2)测试题含答案解析
武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠102.下列四种图案中,不是中心对称图形的为()03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60 06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-408.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 209.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 12.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为16.已知⊙O 的直径AB 为4cm ,点C 是⊙O 上的动点,点D 是BC 的中点,AD 延长线交⊙O 于点E ,则BE 的最大值为三、解答题(共72分) 17.(8分)用公式法解方程:x 2-4x +2=0.第8题图第9题图第12题图AB第16题图18.(8分)如图,⊙O 的直径AB 为10cm ,点E 是圆内接正△ABC 的内心,CE 的延长线交⊙O 于点D .⑴求AD 的长;⑵求DE 的长;19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .20.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.BADBAD21.(8分)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?BFBD F23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .G FE DCBA图1图2A BC DE FNM图3ABCDEF24.(12分)已知一次函数y=kx+b的图象1l与抛物线F:y=ax2分别交于A、B两点,与x轴,y轴分别交于点C、D两点,记点A(m,n),且m≠0.⑴若m=-32,n=98,k=34,求a、b的值及点B的坐标;⑵如图1,若a=12,k=-12m,求CDBD的值;⑶如图2,若k=-am,过点A的直线2l与抛物线F只有一个公共点,与y轴交于点E,连接BO,求证:∠AED=∠BOD.武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠1答案:D02.下列四种图案中,不是中心对称图形的为()答案:D03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起答案:B04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个答案:C05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60答案:D06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm答案:C07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-4答案:C08.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 2答案:C09.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 答案:A10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3 答案:B提示:如图所示,也可用求根公式分析.二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 答案:x 1=x 2=112.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为 答案:4π13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 答案:y =-2(x -1)-3 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 答案:35002(x +1)=5040 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为 答案:-2≤m第8题图第9题图C B第12题图16.已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC的中点,AD延长线交⊙O于点E,则BE的最大值为答案:4 3三、解答题(共72分)17.(8分)用公式法解方程:x2-4x+2=0.解:x1=22,x2=22,18.(8分)如图,⊙O的直径AB为10cm,点E是圆内接正△ABC的内心,CE的延长线交⊙O于点D.⑴求AD的长;⑵求DE的长;解:⑴连接OD,∵点E是圆内接△ABC的内心,∴∠ACD=∠BCD,∴∠AOD=∠BOD.在Rt△AOD中,AD=A B第16题图=p2BADB AD⑵连接AE ,∠CAE =∠BAE ,∠BAD =∠BCD =∠DCA , ∠DAE =∠DEA ,AD =DE =19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .解:⑴13.⑵由题意,可列如下树状图:由此可知,共有9种等可事件,其中两次记录的数字和小于数字4的只有3种, ∴P (两次记录的数字和小于数字4)=39=13.⑶2920.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.乙甲312321233211解:⑴在图中画出线段CD ,保留作图痕迹. ⑵a =.⑶4. 21.(8分)(2019-9-1 36501)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.解:略 22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?解:⑴(1800-6x )千克;(10+0.5x )元/千克.⑵简解:由题意得:-3x 2+840x +18000-10×1800-240x =22500, 解方程得:x 1=50,x 2=150(不全题意,舍去), 故需将这批产品存放50天后出售. ⑶简解:设利润为w ,由题意得:w =-3x 2+840x +18000-10×1800-240x =-32(x -100)+30000. ∵a =-3<0,∴抛物线开口方向向下, ∴x =90时,w 最大=29700,∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.BFBF23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .⑴证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,∴△ADF ≌△ABG ,可得DF =BG ,易知△AFE ≌△AGE ,术EF =GE ,∴EF =BE +DF . ⑵解法1:猜测:EF 2=BE 2+DF 2.理由:过点A 作AG ⊥AF 且AG =AF ,连接BG 、EG ,延长FN 交BG 于H ,易知△AFD ≌△AGB 和△AFE ≌△AGE . 在△AND 与△NHB 中,可得FH ⊥BG ,而BM ∥DN ,∴BE ⊥BG . 在Rt △BEG 中,得EF 2=BE 2+DF 2.解法2:作AH =AD 且∠F AH =∠DAF ,连接EH ,易知△AFD ≌△AFH 和△AEB ≌△AEH ,G FE DCBA图1图2A BC DE FNM图3ABCDEFH MNFE DC BA 图2GMNFE DCB A 图2H⑶解:当点E 、F 分别在对角线BD 、边CD 上,若FC =3cm ,则BE.24.(12分)已知一次函数y =kx +b 的图象1l 与抛物线F :y =ax 2分别交于A 、B 两点,与x 轴,y 轴分别交于点C 、D 两点,记点A (m ,n ),且m ≠0. ⑴若m =-32,n =98,k =34,求a 、b 的值及点B 的坐标; ⑵如图1,若a =12,k =-12m ,求CDBD的值;⑶如图2,若k =-am ,过点A 的直线2l 与抛物线F 只有一个公共点,与y 轴交于点E ,连接BO ,求证:∠AED =∠BOD .⑴解:F :y =12x 2,1l :y =34x +94,B (3,92). ⑵解:∵A (m ,n )在抛物线上,∴A (m ,12m 2),则1l :y =-12mx +m 2. 联立221212y mx m y x ⎧⎪⎪⎨⎪⎪⎩=-+=,∴x A +x B =-m ,x B =-2m .又x C =2m ,作BH ⊥y 轴于H ,得△COD ≌△BHD ,∴CD =BD ,CDBD=1. ⑶证明:∵A (m ,n )在抛物线上,∴A (m ,a m 2),k =-am ,则1l :y =-am (x -m )+am 2=-amx +2am 2,FEDCBA图3G图3ABCD EFNM图3ABCDEF联立22y mx m y ax⎧⎪⎨⎪⎩=-a +2a =,∴x A +x B =-m ,x B =-2m ,y B =4am 2.则点B 关于y 轴对称点B '(2m ,4am ), ∴OB l :y =2amx .∵直线2l 过点A ,设2l : y =k 2(x -m )+am 2, 联立222AE y x m m y ax⎧⎪⎨⎪⎩=k (-)+a =, ∴∆=0,∴k 2=2am ,∴AE ∥O B ',即∠AEO =∠B 'OD =∠BOD .。
九年级元月调考数学模拟试卷(二)
九年级元月调考数学模拟试卷(二)编辑人:袁几 考试时间:120分钟一、选择题(每小题3分,共36分)1.函数y=2+x 中,自变量x 的取值范围是( )A.x>-2 B .x ≥-2 C.x≠-2 D.x≤-22.下列运算正确的是( )A .3+2 =5B .3³2=6C . 2)13(-=3-1 D.2235- =5-33.已知关于x 的方程2x -kx-6=0的一个根为3,则实数k 的值为( ) A 。
1 B.-1 C.2 D .—24.两圆的圆心距为3,两圆半径分别是方程2x -4x+3=0的两个根,则两圆的位置关系是( ) A 。
相交 B.外离C.内含 D ,外切5.下列事件中,必然事件是( )、A .打开电视,它正在播广告B .掷两枚质地均匀IC.早晨的太阳从东方升起D.没有水分,种子发芽6.下列五幅图是世博会吉祥物照片,质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则抽到2010年上海世博会吉祥物照片的概率是( ) A.21 B.31 C.41 D.512010年 中国 2005年日本 2000年德国 1992年西班牙 1998 葡萄牙上海世博会爱知世博会 汉诺威世博会 塞维利亚世博会 里斯本世博会7.下列图形中.既是轴对称图形又是中心对称图形的是( )8.⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB=( )A.30°B.45°C.55°D.60°AE9.武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的 影响,预计今年比2010年增长7%,若这两年GDP 年平均增长率为x ﹪,则x%满足的关系是( )A.12%+7﹪=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2²x%D.(1+12%)(1+7%)=(1+x%)210.如图,在△ABC 中,AB=AC,AB=8,BC=12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A.64π -127B.16π-32 ,C.16π-247D.16π -127 11.下列命题: ①若b=2a+21c,则一元二次方程a 2x +bx+c=O 必有一根为-2;②若ac<0, 则方程 c 2x +bx+a=O 有两个不等实数根; ③若2b -4ac=0, 则方程 c 2x +bx+a=O 有两个相等实数根; 其中正确的个数是( )A.O 个B.l 个C.2个 D 。
2019年湖北省武汉市部分学校九年级元月调考数学试卷(word版含答案)
武汉市部分学校九年级调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程x (x -5)=0化成一般形式后,它的常数项是( )A .-5B .5C .0D .1 2.二次函数y =2(x -3)2-6( ) A .最小值为-6B .最大值为-6C .最小值为3D .最大值为33.下列交通标志中,是中心对称图形的是( )A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( )A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次出现正面朝上50次D .通过抛掷硬币确定谁先发球的比赛规则是公平的6.一元二次方程0322=++m x x 有两个不相等的实数根,则( )A .m >3B .m =3C .m <3D .m ≤3 7.圆的直径是13 cm ,如果圆心与直线上某一点的距离是6.5 cm ,那么该直线和圆的位置关系是( )A .相离B .相切C .相交D .相交或相切8.如图,等边△ABC 的边长为4,D 、E 、F 分别为边AB 、BC 、AC 的中点,分别以A 、B 、C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D 、E 、F ,则下列等式:① ∠EDF =∠B ;② 2∠EDF =∠A +∠C ;③ 2∠A =∠FED +∠EDF ;④ ∠AED +∠BFE +∠CDF =180°,其中成立的个数是( )A .1个B .2个C .3个D .4个10.二次函数y =-x 2-2x +c 在-3≤x ≤2的范围内有最小值-5,则c 的值是( )A .-6B .-2C .2D .3二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x 2-a =0的一个根是2,则a 的值是___________12.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是____13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是_______14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2 m ,那么上部应设计为多高?设雕像的上部高x m ,列方程,并化成一般形式是___________15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则ABAP =___________16.在⊙O 中,弧AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =__________°时,线段BD 最长三、解答题(共8题,共72分)17.(本题8分)解方程:x 2+x -3=018.(本题8分)如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°(1) 若点C 在优弧BD 上,求∠ACD 的大小(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小19.(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1) 请画树状图,列举所有可能出现的结果(2) 请直接写出事件“取出至少一个红球”的概率20.(本题8分)如图,在平面直角坐标系中有点A (-4,0)、B (0,3)、P (a ,-a )三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1) 当a=-4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形(2) 当a=___________时,四边形ABCD为正方形21.(本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1) 求证:AC平分∠DAE(2) 若AB=6,BD=2,求CE的长22.(本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1) 设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式(2) 若菜园面积为384 m2,求x的值(3) 求菜园的最大面积23.(本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1) 如图1,若点C是AB的中点,则∠AED=___________(2) 如图2,若点C不是AB的中点①求证:△DEF为等边三角形②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长24.(本题12分)已知抛物线y=ax2+2x+c与x轴交于A(-1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1) 求抛物线的解析式(2) 若m=3,直线l与抛物线只有一个公共点,求k的值(3) 若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标。
吉林省长春市名校调研(市命题N)2019-2020年九年级(上)第一次月考数学试卷 解析版
2019-2020学年九年级(上)第一次月考数学试卷一.选择题(共6小题)1.﹣的相反数是()A.6 B.﹣6 C.D.﹣2.下列方程中,是一元二次方程的是()A.2x+1=3 B.x2+y=2 C.3x2+2x=4 D.3.下列运算结果正确的是()A.a8÷a2=a4B.x3x3=x6C.(﹣m)2m3=﹣m5D.(a3)3=a64.抛物线y=﹣(x﹣3)2+1的顶点坐标为()A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣3)5.若函数y=(3﹣m)x﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.96.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=900二.填空题(共8小题)7.一元二次方程2x=x2﹣3化成一般形式为.8.若二次函数y=x2﹣2x+a﹣4的图象经过原点,则a=.9.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为零,则m的值为.10.已知二次函数y=(x﹣2)2﹣3,当x时,y随x的增大而减小.11.若a是方程x2﹣2x﹣1=0的解,则代数式﹣3a2+6a+2020的值为.12.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的解析式为.13.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是.14.如图是二次函数y=ax2+bx+c的图象,已知点(﹣1,y1)、(2,y2)是函数图象上的两个点,则y1、y2的大小关系是.三.解答题(共12小题)15.先化简,再求值:,其中x=3.16.用配方法解方程:x2﹣8x+1=0.17.用公式法解方程:x2﹣3x+1=0.18.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在2017年春节共收到红包400元,2019年春节共收到红包484元,求小王在这两年春节收到红包的年平均增长率.19.已知关于r的一元二次方程x2﹣4x+m+1=0有两个不相等的实数根,(1)求m的取值范围;(2)当m=﹣1时,求出此时方程的两个根.20.如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上(1)求证:△ABD≌△ACE;(2)若AE=2,CE=3,求BE的长;(3)求∠BEC的度数21.已知抛物线的顶点坐标为(2,﹣1),且过点(﹣1,2).(1)求此抛物线的函数解析式;(2)直接写出该抛物线的开口方向及对称轴.22.某校数学综合实践小组的同学以“绿色出行”为主题•把某小区的居民对共享单车的了解和使用情况进行了问卷调查,在这次调查中,发现有20人对于共享单车不了解.使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如图所示.(1)本次调查人数共人,使用过共享单车的有人;(2)将条形统计图补充完整,则使用共享单车骑行的居民每天骑行路程的中位数落在范围内;(3)如果这个小区大约有3000名居民,请估算每天骑行路程不超过4千米的有多少人?23.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.24.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于,直接写出m的值.25.暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为件.(2)当该纪念品的销售单价为多少元时,该纪念品的当天销售销售利润是2610元.(3)当该纪念品的销售单价定为多少元时,该纪念品的当天销售销售利润达到最大值?求此最大利润.26.如图,二次函数y=ax2+bx+c的图象交x轴于点A(﹣2,0),点B(1,0),交y轴于点C(0,2)(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上有一点N,过点N作y轴的平行线,交直线AC 于点F,设点N的横坐标为n,线段NF的长为l,求l关于n的函数关系式;(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共6小题)1.﹣的相反数是()A.6 B.﹣6 C.D.﹣【分析】根据相反数的定义即可得到结论.【解答】解:﹣的相反数是,故选:C.2.下列方程中,是一元二次方程的是()A.2x+1=3 B.x2+y=2 C.3x2+2x=4 D.【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:A、该方程中未知数的最高次数是1,不属于一元二次方程,故本选项错误;B、该方程中未知数的最高次数是2且含有2个未知数,不属于一元二次方程,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程是分式方程,不属于一元二次方程,故本选项错误;故选:C.3.下列运算结果正确的是()A.a8÷a2=a4B.x3x3=x6C.(﹣m)2m3=﹣m5D.(a3)3=a6【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断即可得出答案.【解答】解:A、a8÷a2=a6,故本选项错误;B、x3x3=x6,故本选项正确;C、(﹣m)2m3=m5,故本选项错误;D、(a3)3=a9,故本选项错误;故选:B.4.抛物线y=﹣(x﹣3)2+1的顶点坐标为()A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣3)【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:抛物线y=﹣(x﹣3)2+1的顶点坐标为(3,1).故选:A.5.若函数y=(3﹣m)x﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.9【分析】直接利用二次函数的定义分析得出答案.【解答】解:∵函数y=(3﹣m)x﹣x+1是二次函数,∴m2﹣7=2,且3﹣m≠0,解得:m=﹣3.故选:B.6.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=900【分析】设AD=xm,则AB=(60﹣x)m,根据矩形面积公式列出方程.【解答】解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.二.填空题(共8小题)7.一元二次方程2x=x2﹣3化成一般形式为x2﹣2x﹣3=0 .【分析】移项合并即可得到结果.【解答】解:方程去括号得:x2﹣2x﹣3=0.故答案为:x2﹣2x﹣3=0.8.若二次函数y=x2﹣2x+a﹣4的图象经过原点,则a= 4 .【分析】根据二次函数图象上点的坐标特征,把原点坐标代入解析式求出a=4.【解答】解:把(0,0)代入y=x2﹣2x+a﹣4得a﹣4=0,解得a=4,所以a的值为4.故答案为4.9.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为零,则m的值为﹣1 .【分析】常数项为零即m2﹣1=0,再根据二次项系数不等于0,即可求得m的值.【解答】解:一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为m2﹣1=0,所以m=±1,又因为二次项系数不为0,所以m=﹣1.10.已知二次函数y=(x﹣2)2﹣3,当x<2 时,y随x的增大而减小.【分析】根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【解答】解:在y=(x﹣2)2﹣3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.11.若a是方程x2﹣2x﹣1=0的解,则代数式﹣3a2+6a+2020的值为2017 .【分析】根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2﹣2a=1,然后将其代入所求的代数式并求值即可.【解答】解:∵a是方程x2﹣2x﹣1=0的解,∴a2﹣2a=1,则﹣3a2+6a+2020=﹣3(a2﹣2a)+2020=﹣3+2020=2017;故答案为:2017.12.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的解析式为y =4(x+2)2+3 .【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=4x2向上平移3个单位得到解析式:y=4x2+3,再向左平移2个单位得到抛物线的解析式为:y=4(x+2)2+3.故答案为y=4(x+2)2+3.13.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是.【分析】根据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【解答】解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB===,∵四边形OABC是矩形,∴AC=OB,∴AC=14.如图是二次函数y=ax2+bx+c的图象,已知点(﹣1,y1)、(2,y2)是函数图象上的两个点,则y1、y2的大小关系是y1<y2.【分析】先求出抛物线对称轴,由图象可知抛物线开口向下,再根据两个点与对称轴距离的大小及抛物线的增减性即可判断纵坐标的大小.【解答】解:抛物线的对称轴是x==3,开口向下,∴在对称轴左侧,y随x的增大而增大,∵﹣1<2<3,∴y1<y2.故答案为:y1<y2.三.解答题(共12小题)15.先化简,再求值:,其中x=3.【分析】首先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:原式=÷=×=,当x=3时,原式==.16.用配方法解方程:x2﹣8x+1=0.【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得.17.用公式法解方程:x2﹣3x+1=0.【分析】找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式,由根的判别式大于0,得到方程有解,将a,b及c的值代入求根公式即可求出原方程的解.【解答】解:x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=.18.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在2017年春节共收到红包400元,2019年春节共收到红包484元,求小王在这两年春节收到红包的年平均增长率.【分析】设小王在这两年春节收到的红包的年平均增长率为x,根据小王2017年及2019年春节收到红包的金额,可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设小王在这两年春节收到的红包的年平均增长率为x,依题意,得:400(1+x)2=484,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:小王在这两年春节收到的年平均增长率是10%.19.已知关于r的一元二次方程x2﹣4x+m+1=0有两个不相等的实数根,(1)求m的取值范围;(2)当m=﹣1时,求出此时方程的两个根.【分析】(1)利用判别式的意义得到△=(﹣4)2﹣4(m+1)>0,然后解关于m的不等式即可;(2)当m=﹣1时,方程变形为x2﹣4x=0,然后利用因式分解法解方程.【解答】解:(1)根据题意得△=(﹣4)2﹣4(m+1)>0,解得m<3;(2)当m=﹣1时,方程变形为x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.20.如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上(1)求证:△ABD≌△ACE;(2)若AE=2,CE=3,求BE的长;(3)求∠BEC的度数【分析】(1)依据等边三角形的性质,由SAS即可得到判定△ABD≌△ACE的条件;(2)依据等边三角形的性质以及全等三角形的性质,即可得出BD=CE,DE=AE,进而得到AE+CE=BE,代入数值即可得出结果;(3)依据等边三角形的性质以及全等三角形的性质,即可得出∠BEC的度数.【解答】(1)证明∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴BD=CE,∵△ADE是等边三角形,∴DE=AE,∵DE+BD=BE,∴AE+CE=BE,∴BE=2+3=5;(3)解:∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=180°﹣∠ADE=180°﹣60°=120°,∵△ABD≌△ACE,∴∠AEC=∠ADB=120°,∴∠BEC=∠AEC﹣∠AED=120°﹣60°=60°.21.已知抛物线的顶点坐标为(2,﹣1),且过点(﹣1,2).(1)求此抛物线的函数解析式;(2)直接写出该抛物线的开口方向及对称轴.【分析】(1)根据抛物线的顶点坐标设出抛物线的顶点形式,将(﹣1,2)代入求出a 的值,即可确定出解析式;(2)根据解析式即可求得抛物线的开口方向与对称轴.【解答】解:(1)∵抛物线顶点坐标(2,﹣1),∴设抛物线解析式为y=a(x﹣2)2﹣1,∵抛物线经过点(﹣1,2),∴a(﹣1﹣2)2﹣1=2,解得:a=,则该抛物线解析式为y=(x﹣2)2﹣1;(2)∵抛物线解析式为y=(x﹣2)2﹣1,∴该抛物线的开口向上,对称轴为直线x=2.22.某校数学综合实践小组的同学以“绿色出行”为主题•把某小区的居民对共享单车的了解和使用情况进行了问卷调查,在这次调查中,发现有20人对于共享单车不了解.使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如图所示.(1)本次调查人数共200 人,使用过共享单车的有90 人;(2)将条形统计图补充完整,则使用共享单车骑行的居民每天骑行路程的中位数落在2~4千米范围内;(3)如果这个小区大约有3000名居民,请估算每天骑行路程不超过4千米的有多少人?【分析】(1)“不了解”的有20人,从统计图中“不了解”占10%,可求出调查人数,求出使用共享单车的百分比,求出使用共享单车的人数,(2)求出使用共享单车中行驶路程不超过4千米的人数,即可补全条形统计图,排序后处在第45、46位数据落在那个范围内即可,(3)样本估计总体,样本中篮球比足球多的人数占调查人数的,估计总体中篮球比足球多的人数也占,【解答】解:(1)20÷10%=200人,200×(1﹣10%﹣45%)=90人,故答案为:90.(2)90﹣25﹣10﹣5=50人,补全条形统计图如图所示:将使用共享单车的90人骑车路程数从小到大排序处在第45、46位的数一定在2~4千米范围,故答案为:2~4千米.(3)3000×=1125人,答:估算每天骑行路程不超过4千米的有1125人.23.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【分析】(1)根据函数图象中的数据可以求得快车和慢车的速度;(2)根据函数图象中的数据可以求得点E和点C的坐标,从而可以求得y1与x之间的函数表达式;(3)根据图象可知,点F表示的是快车与慢车行驶的路程相等,从而以求得点F的坐标,并写出点F的实际意义.【解答】解:(1)快车的速度为:180÷2=90千米/小时,慢车的速度为:180÷3=60千米/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时;(2)由题意可得,点E的横坐标为:2+1.5=3.5,则点E的坐标为(3.5,180),快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),则点C的坐标为(5.5,360),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,,得,即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135(3.5≤x≤5.5);(3)设点F的横坐标为a,则60a=90a﹣135,解得,a=4.5,则60a=270,即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,快车与慢车行驶的路程相等.24.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于,直接写出m的值.【分析】(1)把点M(3,4)代入y=ax2﹣3x+4中,即可求出a;(2)①把m=﹣2代入解析式即可求n的值;②由点Q到x轴的距离等于,可得m2﹣3m+4=,解得即可;【解答】解:(1)把点M(3,4)代入y=ax2﹣3x+4中得9a﹣9+4=4,∴a=1,∴y=x2﹣3x+4,∵y=x2﹣3x+4=(x﹣)2+,∴顶点坐标为(,);(2)①当m=﹣2时,n=4+6+4=14,②点Q到x轴的距离等于,∴n=,∴m2﹣3m+4=,解得m=或,∴m的值为或.25.暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为230 件.(2)当该纪念品的销售单价为多少元时,该纪念品的当天销售销售利润是2610元.(3)当该纪念品的销售单价定为多少元时,该纪念品的当天销售销售利润达到最大值?求此最大利润.【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(3)直接利用当天的销售利润=每件的利润×当天销售量,得出函数关系式进而求出最值即可.【解答】解:(1)280﹣(45﹣40)×10=230(件).故答案为:230;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=2610,整理,得:x2﹣98x+2301=0,整理,得:x1=39(不合题意,舍去),x2=59.答:当该纪念品的销售单价为59元时,该产品的当天销售利润是2610元;(3)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,设当天销售销售利润为y元,依题意,得:y=(x﹣30)[280﹣(x﹣40)×10]=﹣10x2+980x﹣20400=﹣10(x﹣49)2+3610,当该纪念品的销售单价定为49元时,该纪念品的当天销售销售利润达到最大值,最大利润为3610元.26.如图,二次函数y=ax2+bx+c的图象交x轴于点A(﹣2,0),点B(1,0),交y轴于点C(0,2)(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上有一点N,过点N作y轴的平行线,交直线AC 于点F,设点N的横坐标为n,线段NF的长为l,求l关于n的函数关系式;(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.【分析】(1)抛物线的表达式为:y=a(x+2)(x﹣1)=a(x2+x﹣2),故﹣2a=2,解得:a=﹣1;(2)设点N(n,﹣n2﹣n+2),则点F(n,n+2),l=﹣n2﹣n+2﹣(n+2)=﹣n2﹣2n;(3)分CB=CM、BC=BM、BM=CM三种情况,分别求解即可.【解答】解:(1)抛物线的表达式为:y=a(x+2)(x﹣1)=a(x2+x﹣2),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣x+2;(2)由点A、C的坐标得,直线AC的表达式为:y=x+2,设点N(n,﹣n2﹣n+2),则点F(n,n+2),l=﹣n2﹣n+2﹣(n+2)=﹣n2﹣2n;(3)设点M(m,0),而点B(﹣1,0),点C(0,2),则BC2=5,BM2=(m+1)2,CM2=m2+4;①当CB=CM时,m2+4=5,解得:m=±1(舍去1);②当BC=BM时,同理可得:m=1;③当BM=CM时,同理可得:m=﹣;综上,点M的坐标为:(﹣1,0)或(1,0)或(1﹣,0)或(﹣,0).。
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2 B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A,B,C,D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时, y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°, AB=CE=62,连接BE,P为BE的中点,连接PD、AD(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△PAD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
湖北省武汉市部分学校2019—2020学年度上学期九年级数学元调模拟试题 答案
2019—2020学年度上学期九年级数学元调模拟试题一、选择题(共10小题,每小题3分,共30分)1.一元二次方程3x 2-x -2=0的二次项系数是3,它的一次项系数是( ) A .-1 B .-2 C .1 D .0 答案A2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 答案B3.下列事件中,必然事件是( )A .任意掷一枚均匀的硬币,正面朝上B .从一副扑克牌中,随意抽出一张是大王C .通常情况下,抛出的篮球会下落D .三角形内角和为360° 答案C4.抛物线y =2(x +3)2+5的顶点坐标是( )A .(3,5)B .(-3,5)C .(3,-5)D .(-3,-5) 答案B5.关于x 的一元二次方程x 2+(2k +1)x +k 2=0有两个不相等的实数根,则k 的取值范围为( ) A .k >-14 B .k >4 C .k <-1 D .k <4答案A6.在Rt △ABC 中,∠C =90°,∠B =30°,AB =4,以点C 为圆心2为半径作⊙C ,直线AB 与⊙C 的位置关系是( )A .相离B .相切C .相交D .相切或相交 答案C7.将抛物线y =2x 2向左平移2个单位后所得到的抛物线解析式为( )A .y =2x 2-2B .y =2x 2+2C .y =2(x -2)2D .y =2(x +2)2 答案D8.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:下面由三个推断,合理的是( )①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总是在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.A.①B.②C.①②D.①③答案B9.如图,AB为⊙O的直径,点C、D在O上,若∠AOD=30°,则∠BCD的度数是()A.100°B.105°C.110°D.115°答案B10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为()A.1或-2 B. 2 C.-2或 2 D.1答案D二、填空题(本大题共6个小题,每小题3分,共18分)11.已知x=-1是一元二次方程x2+mx+1=0的一个根,那么m的值是.答案212.已知电流在一定时间段内正常通过某一个电子元件0.5,则在如图所示的电路中,在一定时间段内,A、B之间电流能够正常通过的概率是.答案3 413.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为.答案(1)2256x x-=14.已知圆锥的侧面积是其底面积的3倍,这个圆锥的侧面展开图的扇形角的度数为___.答案120°15.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.答案216.如图,⊙O的半径为42,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作□ABCD,对角线AC、BD交于E,则OE的最大值为.答案三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-2x -3=0. 解:(1)(3)0x x +-=11x ∴=-,23x =18.(本题8分)已知AB 是⊙O 的直径,C 是圆上的点,D 是优弧ABC 的中点. (1)若∠AOC =100°,则∠D 的度数为 , ∠A 的度数为 , (2)求证:∠ADC =2∠DAB . 解(1)50°,25°;(2)证明:连OD ,∵⌒AD = ⌒CD ∴AD =CD 在△AOD 与△COD 中,OD ODAO CO AD CD =⎧⎪=⎨⎪=⎩∴△AOD ≌ △COD ∴∠1=∠2,∴∠ADC=2∠1∵AO =OD ,∴∠1=∠DAB,∴∠ADC =2∠DAB19.(本题8分)武汉市某中学进行九年级理化实验考查,有A 和B 两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查. (1)用列表或画树状图的方法求小孟、小柯都参加实验A 考查的概率; (2)他们三人中至少有两人参加实验B 的概率(直接写出结果) . 解:(1)由题意列树状图如下:共有8种结果,每种结果出现的可能性相等, 其中小明和小丽都参加A 考查有:AAA,AAB 共2种。
2019学年湖北省武汉市元月九年级调考数学试卷【含答案及解析】
2019学年湖北省武汉市元月九年级调考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5和4B.5和﹣4C.5和﹣1D.5和12. 桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大3. 抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1D.y=x2﹣14. 用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.55. 如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为()A.正方形B.菱形C.矩形D.直角梯形6. 在平面直角坐标系中,点A(﹣4,1)关于原点的对称点的坐标为()A.(4,1)B.(4,﹣1)C.(﹣4,﹣1)D.(﹣1,4)7. 圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切8. 用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16B.(x+5)2=34C.(x﹣5)2=16D.(x+5)2=259. 如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是()A.(﹣2,0)B.(0.5,6.5)C.(3,2)D.(2,2)10. 如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1二、填空题11. 经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.12. 方程x2﹣x﹣=0的判别式的值等于.13. 抛物线y=﹣x2+4x﹣1的顶点坐标为.14. 某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为.15. 半径为3的圆内接正方形的边心距等于.16. 圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为.三、计算题17. 解方程:x2+2x﹣3=0.四、解答题18. 不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.19. 如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.20. 如图,E是正方形ABCD中CD边上任意一点.(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由.21. 如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC=6m,点D到BC,AB的距离分别为4m和2m.(1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2)求AB的长.22. 某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元.(1)直接写出利润y与售价x之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?23. 如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.(1)如图1,若⊙O经过点A,求证:BD+CD=AD;(2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数;(3)如图3,若AH=OH,求证:BD2+CD2=AD2.24. 如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y=﹣x相交于点D.(1)若抛物线与y轴的交点坐标为(0,2),求m的值;(2)求证:⊙H与直线y=1相切;(3)若DE=2EC,求⊙H的半径.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
2019~2020学年度九年级元调数学模拟训练题及答案(2019.12.27)
2019~2020学年度元月调考九年级数学模拟试卷(一)一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的字母代号涂黑.1.将方程x²+5x=7化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数,常数项分别为( A)A.5,-7 B.5,7 C.-5,7 D.-5,-72.下列图形中,是中心对称图形但不是轴对称图形的是( A)A.B.C.D.3.下列事件中,是随机事件的是( A)A.任意抛一枚图钉,钉尖着地B.任意画一个三角形,其内角和是180°C.通常加热到100℃时,水沸腾D.太阳从东方升起4.抛物线y=x2+1先向左平移2个单位长度,再向下平移5个单位长度所得抛物线的解析式是( B)A.y=(x+2)2+4B.y=(x+2)2-4C.y=(x-2)2+4D.y=(x-2)2-45.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.8,下列说法正确的是( D)A.种植10棵幼树,结果一定是“有8棵幼树成活”B.种植1000棵幼树,结果一定是“800棵幼树成活“和“200棵幼树不成活”C.种植10n棵幼树,恰好有“2n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.86.如图,AB为⊙O 的直径,C、D、E在⊙O上,若∠BCD=110°,则∠AED的度数为( C)A.10° B.15° C.20° D.30°7.平面直角坐标系中,M点坐标为(﹣2,3),以2为半径画⊙M,则以下结论正确的是( D)A.⊙M与x轴相交,与y轴相切B.⊙M与x轴相切,与y轴相离C.⊙M与x轴相离,与y轴相交D.⊙M与x轴相离,与y轴相切8.如图,将△ABC绕顶点C旋转得到△DEC,点A对应点D,点B对应点E,且点B刚好落在DE边上,∠A=24°,∠BCD=48°,则∠ABD等于( C)A.30° B.38° C.36° D.45°9.如图,在⊙O中,=AB AC,BC=6,AC=I是△ABC的内心,则线段OI的值为( C)A.1 B3C.5D10.二次函数y=x2+bx的对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<4的范围内有解,则t的取值范围是( C)A.t≥-1 B.-1≤t<3 C.-1≤t<8 D.t<3二.填空题(每题3分,共计18分)11.方程230 4x x--=的判别式的值等于.412. 若点A(m ,7)与点B(﹣4,n)关于原点成中心对称,则m +n=__________.﹣313. 2019女排世界杯于9月14日至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼!则中国队在本届世界杯比赛中连胜_____场.1114. 一个不透明的口袋中装有一红一白两个小球,它们除颜色外完全相同.从口袋中随机摸出1个小球,记下摸出小球的颜色后,放回口袋摇匀;再从口袋中随机摸出1个小球,记下摸出小球颜色后,放回口袋摇匀;第三次从口袋中随机摸出1个小球,则三次摸出的小球恰好颜色相同的概率为________.1415. 如图,正六边形ABCDEF 纸片中,AB=6,分别以B 、E 为圆心,以6为半径画AC 、DF ,小欣把扇形BAC 与扇形EDF 剪下,并把它们粘贴为一个大扇形(B 与E 重合,F 与A 重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为__________.16. 如图,△ABC 中,AB=10,AC=6,BC=14,D 为AC 边上一动点(D 不与A 、C 重合),将线段BD 绕D点顺时针旋转90°得到线段ED ,连接CE ,则△CDE 面积的最大值为__________.提示:作BG ⊥AC 于G ,EF ⊥AC 于F ,则△DBG ≌△EDF ,∴EF=DG ,∵AB=10,AC=6,BC=14,由勾股定理可得AG=5,设DC=x ,∴EF=DG=11﹣x ,∴21111==222CDE S CD EF x x ⋅-+△2111121=228x ⎛⎫--+ ⎪⎝⎭,∴当x=112时,△CDE 面积有最大值为1218. 三.解答题(共计8题,共计72分)17. (本题8分)解方程:x 2﹣x ﹣3=0解:∵a =1,b=﹣1,c=﹣3,∴△=b 2﹣4ac =(﹣1)²﹣4×1×(﹣3)=13>0,∴x ==, ∴x 1,x 2 18. (本题8分)如图,A 、B 是⊙O 上的两点,∠AOB=120°,C 是AB 的中点,求证:四边形OACB 是菱形;证明:连接OC ,∵C 是AB 的中点,∴∠AOC=∠BOC=12∠AOB , ∵∠AOB=120°,∴∠AOC=60°,∵OA=OC ,∴△OAC 是等边三角形,∴AC=OA=OC ,同理BC=OB ,∴OA=AC=BC=OB ,∴四边形OACB 是菱形;19. (本题8分)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,球上分别标有数字1、2、3、4. ⑴小萱随机从布袋中摸出一个乒乓球,记下数据后放回布袋里,摇匀后,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方式列出所有可能的结果,并求出“两个乒乓球上的数字之和不小于5”的概率.⑵随机从布袋中一次摸出两个乒乓球,直接写出“两个乒乓球上的数字至少有一个是偶数”的概率为__________.解:⑴列表如下:由表知,共有16个结果,且每种结果是等可能的,其中“两个乒乓球上的数字之和不小于5”(记为事件A)包含10种结果,∴P(A)=105=168.⑵P(“两个乒乓球上的数字至少有一个是偶数”)=56.提示:列表如下:由表知,共有12个结果,且每种结果是等可能的,其中“两个乒乓球上的数字至少有一个是偶数”(记为事件B)包含10种结果,∴P(A)=105= 126.20.(本题8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P﹣6,0).⑴将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为__________.⑵画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为__________.⑶把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为__________.解:⑴如图,C1的坐标为(﹣3,4).⑵如图,A2的坐标为(2,1).⑶如图,Q的坐标为(3,3).21.(本题8分)如图,AB为⊙O的一条弦,PB切⊙O于B,PA=PB,直线PO交AB于E,交⊙O于点C.⑴求证:PA是⊙O的切线;⑵若CD∥PA,CD交直线AB于点D,交⊙O于另一点F.①求证:AD=CD.②若AB=8,BD=2,求⊙O的半径长.⑴证明:连接OA、OB,∵PB切⊙O于B,∴∠PBO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO,∴∠PAO=∠PBO=90°,∴PA是⊙O的切线.⑵①证明:连接AC,∵△PAO≌△PBO,∴∠APO=∠BPO,∵PA=PB,∴PO⊥AB,即∠PEA=90°,∵∠PAO=90°,∴∠OAE=∠APO,∵CD∥AP,∴∠OCD=∠APO,∴∠OCD=∠OAE,∵OA=OC,∴∠OCA=∠OAC,∴∠DCA=∠DAC,∴AD=CD.②解:设⊙O的半径为r,∵AB=8,PO⊥AB,∴AE=BE=4,∵BD=2,∴CD=AD=10,ED=6,∴EC=8,∴EO=8﹣r,在Rt△EOB中,OE²+EB²=OB²,∴(8﹣r)²+4²=r²,解得:r=5,∴⊙O的半径长为5.22.(本题10分)某网点销售一种儿童玩具,每件进价30元,规定单件销售利润不低于10元,且不高于31元.试销售期间发现,当销售单价定为10元时,每天可售出500件,销售单价每上涨1元,每天销售量减少10件,该网点决定提价销售,设销售单价为x元,每天销售量为y件.⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;⑵当销售单价是多少元时,网店每天获利8960元?⑶网店决定每销售1件玩具,就捐赠a元(2<a≤7)给希望工程,每天扣除捐赠后可获得最大利润为8120元,求a的值.解:⑴y=500﹣10(x﹣40)=﹣10x+900,其中10≤x﹣30≤31,即40≤x≤61.⑵依题意得:8960=(﹣10x+900)(x﹣30),整理得:x²﹣120x+3596=0,解得:x1=58,x2=62,∵45≤x≤61,∴x=58,答:当销售单价是58元时,网店每天获利8960元.⑶设每天扣除捐赠后可获得利润为w元,则w=(﹣10x+900)(x﹣30﹣a)=﹣10x²+(1200+10a)x﹣27000﹣900 a∵﹣10<0,∴抛物线开口向下,且对称轴为直线x=12a+60,∵2<a≤7,∴61<12a+60≤63.5,∵45≤x≤61,∴当x=61时,W有最大值为8120,∴(﹣10×61+900)(61﹣30﹣a)=8120,解得:a=3.23. (本题10分)如图1,△ABC 和△DEC 都是等边三角形,点E 在AC 上.⑴求证:AD =BE ;⑵如图2,当CD AC 时,将△DEC 绕点C 顺时针旋转30°,连接BD 交AC 于点G ,取AB 的中点F ,连接FG .①求证:BE =2FG ;②若△AFG 的周长为9,求BC 的长.⑴证明:∵△ABC 和△DEC 都是等边三角形,∴AC=BC ,∠ACD=∠BCE=60°,CD=CE ,∴△ACD ≌△BCE ,∴AD=BE .⑵①证明:作BT ⊥AC 于T ,∵△ABC 是等边三角形,∴AC=BC ,∠CBT=∠ABT=30°,∴BC=2CT ,∴BT=,∴,∵,∴BT=CD ,∵△DEC 是等边三角形,∴∠ECD=60°,∴∠ACD=90°,∴∠BTC=∠DCG=90°,∵∠BGT=∠DGC ,∴△BGT ≌△DGC ,∴BG=DG ,∵F 为AB 的中点,∴FG=12AD ,∵∠ACB=∠ECD=60°,∴∠BCE=∠ACD ,∵CB=CA ,CE=CD ,∴△BCE ≌△ACD ,∴BE=AD ,∴FG=12BE ,∴BE=2FG . ②解:∵△ABC 是等边三角形,BT ⊥AC ,∴AT=CT,∵△BGT ≌△DGC ,∴GT=GC ,设GC=m ,∴AC=4m =AB=BC ,AC=,AG=3m ,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴,∵BE=2FG ,∴,∵F 是AB 的中点,∴AF=2m ,∵△AFG 的周长是9,∴2m +3m ,∴m=52-,∴BC=4m=10-. 24. (本题12分)如图,抛物线y =a (x 2-2m x -3m 2)(其中a ,m 为常数,且a >0,m >0)与x 轴分别交于点A ,B ,与y 轴交于点C (0,-3),顶点为F ,CD ∥AB 交抛物线于点D .⑴当a =1时,求点D 的坐标;⑵若点E 是第一象限抛物线上的点,满足∠EAB=∠ADC .①求点E 的纵坐标;②试探究:在x 轴上是否存在点P ,使以PF 、AD 、AE 为边构成的三角形是以AE 为斜边的直角三角形?如果存在,请用含m 的代数式表示点P 的横坐标,如果不存在,请说明理由.解:⑴当a =1时,y =x 2-2m x -3m 2,∵与y 轴交于点C (0,-3),﹣3 m 2=-3,∵m >0,∴m=1,∴y =x 2-2x -3,∵CD ∥AB 交抛物线于点D ,∴点D 与点C 关于抛物线的对称轴x =1对称,∴D(2,﹣3). ⑵①对y =a (x 2-2m x -3m 2),令y=0,得x 2-2m x -3m 2=0,解得:x 1=﹣m ,x 2=3m ,∴A(﹣m ,0),B(3m ,0),∵抛物线过点C (0,-3),∴∴-3am 2=-3,am 2=1,∵CD ∥AB 交抛物线于点D ,∴∠ADC=∠BAD ,点D 与点C 关于抛物线的对称轴x=m 对称,∴D(2m ,﹣3),∵∠EAB=∠ADC ,∴∠EAB=∠BAD ,∴x 轴平分∠BAD ,∴点D 关于x 轴的对称点D′(2m ,3)一定在直线AE 上,∴直线AE 的解析式为=+1y x 1m,联立2211(23)⎧=+⎪⎨⎪=--⎩y x my a x mx m ,消去y 整理得:x 2-3mx -4m 2=0,解得:x 1=﹣m ,x 2=4m ,∴点E 的横坐标为4m ,∴=⨯+=1y 4m 15m,∴点E 的纵坐标为5. ②当x =m 时, y =a (m 2-2m ²-3m 2)=﹣4am ²=﹣4,∴F(m ,﹣4),∵E (4m ,5),A (-m ,0),D (2m ,-3), 设P (b ,0),∴PF 2=(m -b )2+16,AD 2=9m 2+9,AE 2=25m 2+25 ,∵PF 2+AD 2=AE 2,∴∴(m -b )2+16+9m 2+9=25m 2+25,解得:b 1=-3m ,b 2=5m ∴P (-3m ,0)或(5m ,0).。
2019-2020学年吉林省名校调研(省命题A)九年级(上)第三次月考数学试卷解析版
2019-2020学年吉林省名校调研(省命题A)九年级(上)第三次月考数学试卷一、选择题(每小题2分,共12分)1.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知⊙O的半径为2,点P在⊙O内,则OP的长可能是()A.1B.2C.3D.43.下列一元二次方程中,有两个不相等实数根的是()A.x2+4x+4=0B.x2=﹣x C.x2+2=2x D.(x﹣1)2+2=04.下列关于抛物线y=(x+1)2+2的说法,正确的是()A.开口向下B.对称轴是直线x=1C.当x=﹣1时,y有最小值2D.当x>﹣1时,y随x的增大而减小5.如图,一个圆锥的母线长AB为13cm,高OB为12cm,则这个圆锥的侧面积为()A.25cm2B.60πcm2C.65πcm2D.90πcm26.某鱼塘里养了200条鲤鱼、若干条草鱼和150条罗非鱼,该鱼塘主通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为()A.B.C.D.二、填空题(每小题3分,共24分)7.若一个一元二次方程的二次项系数为1,常数项为0,其中一个根为x=3,则该方程的一般形式为.8.事件“从地面发射1核导弹,击中空中目标”是事件(填“确定”或“随机”).9.若将抛物线y=﹣x2+1先向右平移1个单位长度,再向上平移2个单位长度,则所得抛物线的函数解析式为.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=33°,把△ABC绕点A按顺时针方向旋转33°,得到△A′B′C′,延长BC交B′C′于点D,则∠BDC′的度数是.11.如图,⊙O是正五边形ABCDE的外接圆,连结BD、BE,则∠BDE的大小为.12.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+1,当x>a时,y随x的增大而减小.则实数a的取值范围是.13.如图,在菱形ABCD中,∠BAD=60°,对角线AC、BD相交于点O将其绕着点O顺时针旋转90°得到菱形ABCD.若AB=1,则旋转前后两菱形重叠部分图形的周长为.14.如图,在平面直角坐标系中,抛物线y=m(x+3)2+n与y=m(x﹣2)2+n+1交于点A.过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点C左侧),则线段BC的长为.三、解答题(每小题5分,共20分)15.解方程:x2﹣x=3x﹣1.16.有三张正面分别标有数字﹣2,3,4的不透明卡片,它们除数字外都相同;现将它们背面朝上,洗匀后,从三张卡片中随机地抽出一张,记住数字将卡片放回,洗匀后,再从这三张卡片中随机抽出一张,记住数字.用列表或树状图的方法,求两次抽取的卡片上的数字符号不同的概率.17.已知:关于x的方程x2﹣(m+1)x+2m﹣3=0.(1)求证:不论m取何值时,方程总有两个不相等的实数根;(2)若方程的一个根为1,求m的值及方程的另一根.18.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长春市某家快递公司今年9月份完成投递的快递总件数为10万件,预计11月份完成投递的快递总件数将增加到14.4万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司完成投递的快递总件数的月平均增长率.四、解答题(每小题7分,共28分)19.如图①、②均是边长为1的小正方形组成的6×6网格,每个小正方形的顶点叫做格点,点A、B均在格点上,按下列要求画一个以AB为一边的四边形,且另外两个顶点也在格点上.(1)在图①中画一个是中心对称图形但不是轴对称图形的四边形;(2)在图②中画一个既是中心对称图形又是轴对称图形的四边形.20.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径.(1)∠ACB=度.(2)若∠B=30°,AC=2cm,求弧AC的长(结果保留π).21.如图,在平面直角坐标系中,O为坐标原点,抛物线y=﹣2x2+bx﹣1的对称轴是x=1.(1)求这条抛物线对应的函数解析式和顶点坐标;(2)求该抛物线绕着点O旋转180°后得到的抛物线对应的函数解析式.22.如图,在菱形ABCD中,∠BAD=60°,以AB为直径的⊙O分别交边AD和对角线BD于点E、F,连接EF 并延长交边BC于点G,连接BE.(1)求证:AE=DE;(2)若⊙O的半径为2,求EG的长.五、解答题(每小题8分,共16分)23.如图,在Rt△ABC中,∠ACB=90°,D为边AC上的点,以AD为直径作⊙O,连接BD并延长交⊙O于点E,连接CE.(1)若CE=BC,求证:CE是⊙O的切线.(2)在(1)的条件下,若CD=2,BC=4,求⊙O的半径.24.D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F.(1)当∠MDN绕点D转动时,求证:DE=DF.(2)若AB=2,求四边形DECF的面积.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2.动点P以每秒2个单位长度的速度从点A出发,沿A→C →B的方向向终点B运动(点P不与△ABC的顶点重合).点P关于点C的对称点为点D,过点P作PQ⊥AB 于点Q,以PD、PQ为边作▱PDEQ.设▱PDEQ与△ABC.重叠部分的面积为S,点P的运动时间为t(s)(1)当点P在AC上运动时,用含t的代数式表示PD的长;(2)当点E落在△ABC的直角边上时,求t的值;(3)当▱PDEQ与△ABC重叠部分的图形是四边形时,求S与t之间的函数关系式.26.如图,抛物线y=x2+bx+c经过A(﹣1,0)、B(4,0)两点,与y轴交于点C,D为y轴上一点,点D关于直线BC的对称点为D′.(1)求抛物线的解析式;(2)当点D在x轴上方,且△OBD的面积等于△OBC的面积时,求点D的坐标;(3)当点D'刚好落在第四象限的抛物线上时,求出点D的坐标;(4)点P在抛物线上(不与点B、C重合),连接PD、PD′、DD′,是否存在点P,使△PDD′是以D为直角顶点的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2019-2020学年吉林省名校调研(省命题A)九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(每小题2分,共12分)1.【解答】解:A.此图形既不是轴对称图形又不是中心对称图形,不符合题意;B.此图形既是轴对称图形又是中心对称图形,符合题意;C.此图形是轴对称图形但不是中心对称图形,不符合题意;D.此图形不是轴对称图形,但是中心对称图形,不符合题意;故选:B.2.【解答】解:∵⊙O的半径为2,点P在⊙O内,∴OP<2.故选:A.3.【解答】解:A、△=16﹣16=0,方程有两个相等实数根;B、△=1>0,方程有两个不相等的实数根;C、△=4﹣8=﹣4<0,方程没有实数根;D、△=4﹣12=﹣8<0,方程没有实数根.故选:B.4.【解答】解:A.y=(x+1)2+2,∵a=1>0,∴图象的开口向上,故本选项错误,不符合题意;B.∵y=(x+1)2+2,∴对称轴为x=﹣1,本选项错误,不符合题意;C.∵顶点坐标为(﹣1,2),开口向上,∴当x=﹣1时,y有最小值2,故本选项正确,符合题意;D.∵y=(x+1)2+2,∴开口向上,对称轴为x=﹣1,∴当x>﹣1时,y随x的增大而增大,故本选项错误,不符合题意;故选:C.5.【解答】解:∵圆锥的母线长为13cm,高线长为12cm,∴圆锥的底面半径为:=5cm,∴圆锥的侧面积=2π×5×13÷2=65πcm2.故选:C.6.【解答】解:由题意可得,捞到鲤鱼的概率为,故选:C.二、填空题(每小题3分,共24分)7.【解答】解:由题意可得,该方程的一般形式为:x2﹣3x=0.故答案为:x2﹣3x=0.8.【解答】解:事件“从地面发射1核导弹,击中空中目标”是随机事件,故答案为:随机.9.【解答】解:∵抛物线y=﹣x2+1向右平移1个单位长度,∴平移后解析式为:y=﹣(x﹣1)2+1,∴再向上平移2个单位长度所得的抛物线解析式为:y=﹣(x﹣1)2+3.故答案为:y=﹣(x﹣1)2+3.10.【解答】解:∵把△ABC绕点A按顺时针方向旋转∠BAC的大小,∴∠BAC=∠CAC'=33°,∠ACB=∠AC'B'=90°,∵∠CAC'+∠ACD+∠BDC'+∠AC'B'=360°,∴∠BDC'=360°﹣90°﹣90°﹣33°=147°,故答案为:147°..11.【解答】解:∵正五边形ABCDE,∴∠A=108°,∴∠BDE=180°﹣108°=72°,故答案为:72°.12.【解答】解:∵抛物线的对称轴为x=1,且开口向下,∴当x>1时,y随x的增大而减小,∴当x>a时,y随x的增大而减小时则实数a的取值范围是a≥1,故答案为:a≥1.13.【解答】解:由旋转的性质可得:重叠部分为各边长相等的八边形,∴B′F=FD,∵菱形ABCD的一个内角是60°,将它绕对角线的交点O顺时针旋转90°后得到菱形A′B′C′D′,∴∠DAO=∠B′A′O=30°,AB=A'B'=1,∴∠A′B′C=60°,∴∠AFB′=∠A′B′C﹣∠DAO=30°,∴AB′=B′F=FD,∵DO=OB′=AD=,AO=DO=,∴AB′=B′F=FD=﹣,∴重叠部分图形的周长为:8(﹣)=4﹣4,故答案为:4﹣4.14.【解答】解:设抛物线y=m(x+3)2+n的对称轴与线段BC交于点E,抛物线y=m(x﹣2)2+n+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣3)]=10.故答案为:10.三、解答题(每小题5分,共20分)15.【解答】解:∵x2﹣x=3x﹣1,∴x2﹣4x=1,∴x2﹣4x+4=5,∴(x﹣2)2=5,∴x=2±16.【解答】解:列表如下﹣2343,﹣24,﹣2﹣2﹣2,﹣23﹣2,33,34,34﹣2,43,44,4因为有9种等可能的结果,其中数字为一正数,一负数的情况有4种,所以两次抽取的卡片上的数字符号不同的概率.17.【解答】解:(1)∵a=1,b=﹣(m+1),c=2m﹣3,∴△=b2﹣4ac=[﹣(m+1)]2﹣4×1×(2m﹣3)=(m﹣3)2+4>0,∴不论m取何值时,方程总有两个不相等的实数根;(2)把x=1代入方程可得1﹣(m+1)+2m﹣3=0,解得m=3,当m=3时,原方程为x2﹣4x+3=0,设方程的另外一个根为x2,则1+x2=4,解得x2=3,即方程的另一根为3.18.【解答】解:设该快递公司完成投递的快递总件数的月平均增长率为x,由题意得:10(1+x)2=14.4∴(1+x)2=1.44∴x1=0.2=20%,x2=﹣2.2(不合题意,舍去)答:该快递公司完成投递的快递总件数的月平均增长率为20%.四、解答题(每小题7分,共28分)19.【解答】解:(1)如图①所示,四边形ABCD即为所求;(答案不唯一)(2)如图②所示,四边形ABCD即为所求.20.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°;故答案为:90;(2)连接OC,∵∠B=30°,∴∠AOC=60°,∵AC=2,∴AB=2AC=4,∴AO=2,∴的长为=π(cm).21.【解答】解:(1)∵抛物线y=﹣2x2+bx﹣1的对称轴是x=1,∴﹣=1,解得b=4,∴抛物线为y=﹣2x2+4x﹣1,∵y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1,∴顶点坐标为(1,1);(2)抛物线y=﹣2x2+4x﹣1的顶点为(1,1)∴旋转180°后的对应顶点的坐标为(﹣1,﹣1),∴旋转后的抛物线解析式为y=2(x+1)2﹣1=2x2+4x+1,即y=2x2+4x+1.22.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=AB,∠BAD=60°,∴△ADB是等边三角形,∴BD=AB=AD,∵AB是直径,∴∠BEA=90°,且BD=AB,∴AE=DE;(2)连接AF,∵AB是直径,∴∠AFB=90°,且AB=AD,∴BF=DF,且DE=AE,∴EF∥AB,且BC∥AD,∴四边形ABGE是平行四边形,∴EG=AB=4.五、解答题(每小题8分,共16分)23.【解答】(1)证明:连接OE,∵∠ACB=90°,∴∠DBC+∠BDC=90°,∵CE=BC,∴∠DBC=∠BEC,∵OE=OD,∴∠OED=∠ODE,∵∠ODE=∠BDC∴∠OED=∠BDC,∴∠OED+∠BEC=90°,即∠OEC=90°,∴OE⊥CE,∵OE是⊙O的半径,∴CE是⊙O的切线.(2)解:∵BC=CE,∴CE=4,设⊙O的半径为r,则OD=OE=r,OC=r+2,∵∠OEC=90°,∴OE2+CE2=OC2,∴r2+42=(r+2)2,解得r=3,∴⊙O的半径为3.24.【解答】解:(1)连CD,如图,∵D为等腰Rt△ABC斜边AB的中点,∴CD平分∠ACB,CD⊥AB,∠A=45°,CD=DA,∴∠BCD=45°,∠CDA=90°,∵DM⊥DN,∴∠EDF=90°,∴∠CDE=∠ADF,在△DCE和△ADF中,,∴△DCE≌△ADF(ASA),∴DE=DF;(2)∵△DCE≌△ADF,∴S△DCE=S△ADF,∴四边形DECF的面积=S△ACD,而AB=2,∴CD=DA=1,∴四边形DECF的面积=S△ACD=CD•DA=.六、解答题(每小题10分,共20分)25.【解答】解:(1)由题意,得AP=2t,CP=2﹣2t,∴PD=2CP=4﹣4t;(2)①如图2﹣1,当点E落在BC边上时,过点Q作QH⊥AD于H,由题意知,△AQP和△CED为等腰直角三角形,∴CE=HQ=AP,CE=CD,∵HQ=AP=t,CD=PC=2﹣2t,∴t=2﹣2t,∴t=;②如图2﹣2,当点E落在AC边上时,过点Q作QG⊥BC于G,由题意知,△BQP和△CED为等腰直角三角形,∴CE=GQ=BP,CE=CD,∵GQ=BP=(4﹣2t)=2﹣t,CD=PC=2t﹣2,∴2﹣t=2t﹣2,∴t=,综上所述,点E落在△ABC的直角边上时,t的值为或;(3)如图3﹣1,当0<t≤时,S=S梯形PQMC=t(2﹣2t+2﹣t)=﹣t2+2t;如图3﹣2,当≤t≤2时,S=S梯形PQNC=(2﹣t)(2t﹣2+t)=﹣t2+4t﹣2,综上所述,S=.26.【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(4,0)∴解得,∴抛物线解析式为:y=x2﹣3x﹣4;(2)∵抛物线y=x2﹣3x﹣4与y轴交于点C,∴点C(0,﹣4),∴OC=4,设点D(0,y)(y>0)∵△OBD的面积等于△OBC的面积,∴×OB×y=OB×4,∴y=4,∴点D(0,4)(3)∵OB=OC=4,∴∠OCB=45°,∵点D关于直线BC的对称点为D′.∴∠DCB=∠D'CB=45°,CD=CD',∴∠DCD'=90°,∴CD'∥OB,∴点D'的纵坐标为﹣4,∴﹣4=x2﹣3x﹣4,∴x1=0(舍去),x2=3,∴CD=CD'=3,∴点D(0,﹣1)(4)若点D在点C上方,如图1,过点P作PH⊥y轴,∵∠DCD'=90°,CD=CD',∴∠CDD'=45°,∵∠D'DP=90°∴∠HDP=45°,且PH⊥y轴,∴∠HDP=∠HPD=45°,∴HP=HD,∵∠CDD'=∠HDP,∠PHD=∠DCD'=90°,DP=DD',∴△DPH≌△DD'C(AAS)∴CD=CD'=HD=HP,设CD=CD'=HD=HP=a,∴点P(a,﹣4+2a)∴a2﹣3a﹣4=﹣4+2a,∴a=5,a=0(不合题意舍去),∴点P(5,6)若点D在点C下方,如图2,∵DD'=DP,∠DCD'=90°,∴CD=CP,∠DCP=∠COB,∴CP∥AB,∴点P纵坐标为﹣4,∴﹣4=x2﹣3x﹣4,∴x1=0(舍去),x2=3,∴点P(3,﹣4)综上所述:点P(5,6)或(3,﹣4).。
2020武汉元调数学试卷及答案(Word精校版)
第1页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2514x x 化成一般形式后,二次项系数和一次项系数分别是( ) A .5,-1 B .5,4 C .5,-4 D .5,12.下列四张扑克牌的牌面,不是中心对称图形的是( )A .B .C .D .3.抛物线22y x 与22yx 相同的性质是( ) A .开口向下 B .对称轴是y 轴 C .有最低点 D .对称轴是x 轴4.一个不透明的袋子中只有4个黑球,2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球5.已知O 的半径等于3cm ,圆心O 到点P 的距离为5cm ,那么点P 与O 的位置关系是( ) A .点P 在O 内 B . 点P 在O 外 C .点P 在O 上 D .无法确定6.要将抛物线2y x 平移后得到抛物线223y x x ,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位7.如图,将△ABC 绕顶点C 逆时针旋转角度得到A B C ,且点B 刚好落在A B 上,若∠A =28°,BCA =43°,则等于( )A .36°B .37°C .38°D .39°8.小明上学要经过三个十字路口,每个路口遇到红灯、绿灯的可能性都相等,小明上学经过三个路口时,不全是红灯的概率是( )A .38 B . 12 C . 58 D . 789.如果m 、n 是一元二次方程24x x +=的两个实数根,那么多项式222n mn m --的值是( )A .16B .14C .10D .610.如图,△ABC 的两个顶点A ,B的O 上,∠A =60°,∠B =30°.若固定点A ,点B 在O 上运动,则OC 的最小值是( )A第2页 / 共12页A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P (1,2)关于原点对称的点坐标是________. 12. 一个盒子中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别,从盒中随机取出一枚棋子,记下颜色,再放回盒子中,不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有________枚白棋子.13.如图,四边形ABCD 是⊙O 的内接四边形,∠BOD =100°,∠BCD 的大小是 .14.为响应全民阅读活动,某校面向社会开放图书馆,自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次,若进馆人次的月增长率相同,为求进馆人次的月增长率,设进馆人次的月增长率为x ,依题意可列方程为 .15.已知二次函数()20y ax bx c c =++<的图像开口向上,对称轴为直线1x =,下列结论中,一定正确的 是 (填序号即可).①0b <; ②420a b c ++<; ③a c b +>; ④()a b t at b +≤+(t 是一个常数).16.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率,某圆半径为R ,其内接正十二边形的周长为C . 若R ,则C = ,2CR≈ ,(结果精确到0.01 2.449≈ 1.414≈).三、解答题(共8题,共72分)17.(本题8分)若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,求m 的值及此时方程的根.B第3页 / 共12页18. (本题8分)如图,A .B .C 三点在半径为1的O 上,四边形ABCD 是菱形,求的长.19. (本题8分)在5种同型号的产品中,有1件不合格品和4件合格品. (1)从这5件产品中随机选取1件,直接写出抽到合格品的概率; (2)从这5件产品中随机选取2件,求抽到都是合格品的概率.20.(本题8分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果). (1)如图(1),P 是平行四边形ABCD 边AD 上一点,过点P 画一条直线把这个四边形分成面积相等的两部分; (2)如图(2),五边形ABCDE 是正五边形,画一条直线把这个五边形分成面积相等的两部分; (3)如图(3),△ABC 的外接圆的圆心是点O ,D 是的中点,画一条直线把△ABC 分成面积相等的两部分.(1)(2)(3)AED CBAD21.(如图8分)如图,P A,PB 分别与O相切于A,B两点,AC 是O的直径,AC=AP,连接OP交AB于点D,连接PC 交O于点E,连接DE.(1)求证:△ABC≌△PDA;(2)求BDDE的值.22.(本题10分)某公司经过市场调查,整理出来某种商品在某个月的第x天的销售价与销售量的相关信息如(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润为2250元?(3)问在当月有多少天的日销售利润不低于2400元,请直接写出结果.第4页 / 共12页23.(本题10分)问题背景:如图(1),在四边形ABCD中,若BC=CD,∠BAD=∠BCD=90°,则AC平分∠BAD,小明为了证明这个结论,将△ABC绕点C顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE中,∠A=∠C=90°,AB=BC,AE+CD=DE,求证:BD平分∠CDE.联系拓展:如图(3),在Rt△ABC中,AC=BC,若点D满足1013AD AB,BD=AB,点P是AD的中点,直接写出PCAB的值.(1) (2) (3)BB第5页 / 共12页24.(本题12分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(m,2m+4)(m>-2),且与x轴相切于点B.y与x之间存在一种确定的函数关系,其图象是一条常见的曲线,记做曲线F.(1)如图(1),①当y=32时,直接写出P的半径;②当m=-1,x=-2时,直接写出P的半径.(2)求曲线F最低点的坐标(用含有m的式子表示);(3)如图(2),若曲线F最低点总在直线y=12x+3的下方,点C(-2,y1),D(1,y2)都在曲线F上,试比较y1与y2的大小.3第6页 / 共12页第7页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷参考答案9.答案:B 解析:∵m ,n 为方程x ²+x =4的解∴m +n =-1;mn =-4,且代n 到原式,得n ²=4-n∴原式=2(4-n )-mn -2m =8-2n -2m -mn =8-2(m +n )-mn =8+2+4 =1410.答案:A 解析:延长BC 交圆O 与D ,连O D .取AD 的中点E ,连OE ,连CE ∵ ∠B =30°,∴∠DOA =60°,∴△DAO 为等边三角形 ∵3OA ,∴3AD∵∠DCA =90°,∴点C 在以点E为半径的圆上运动∵OC OE CE ,∴3322OC ,故答案选A二、填空题(本大题共6个小题,每小题3分,共18分) 11. ()1,2-- 12.20 13.130°14.()()220020012001872x x ++++=15.①②④16.答案:24; 3.1116.解析:过C 作CD ⊥AB 于D , 正十二边形中心角∠CAD =30°B第8页 / 共12页∴12CD AC ==AD ==,BD AB AD =- 在Rt △CDB中,2CB =,∴24C =, 3.112CR≈三、解答题(共8题,共72分) 17. m =1,方程的根为x 1=x 2=-118. 23π19.(1)45;(2)3520. (1)(2)(作法不唯一)(3)21. 证明:(1)∵P A 为O 切线,∴∠P AO =90° ∵AC 为O 直径,∴∠ABC =90°∴∠BAC +∠ACB =∠BAC +∠P AD ,∴ ∠ACB =∠P ADBE第9页 / 共12页∵P A ,PB 为O 切线,∴P A =PB∵OA =OB ,P A =PB ,∴OP ⊥AB ,∴∠ADP =90° 在△ABC 和△PDA 中 ∠=∠=⎧⎪⎨⎪⎩=∠∠ACB PAD AC PA ABC PDA ∴△ABC ≌△PDA (AAS )解:(2)连接AE ,连接BE 交DP 于点F ∵∠ADO =∠ABC =90°,∴OP ∥BC ,∴∠BCE =∠FPE ,∵AC 为直径,∴∠AEC =90°, ∵∠P AO =90°,AC =AP ,∴∠ACE =45°,CE =PE 在△CEB 和△PEF 中 ∠=∠=∠⎧⎪⎨⎩=∠⎪BCE FPE CE PECEB PEF ∴△CEB ≌△PEF (ASA ) ∴BE =FE∵∠ABE =∠ACE =45°,∠BDP =∠ADP =90°,∴BD =DF 在Rt △BDF 中,222+=BD DF BF ,∴222=BD BF ,∴BF∵BE =EF ,∴BDDE22. 解:(1)y =[(x +40)-20](100-2x ) ,∴y =-2x 2+60x +2000 (2)由(1)知y =-2x 2+60x +2000当日销售利润为2250元时,有-2x 2+60x +2000=2250 解得:x 1=5; x 2=25故该销售商品第5天或第25天时,日销售利润为2250元. (3)11天当销售利润为2400时,有-2x 2+60x +2000=2400 解得:x 1=10; x 2=20 由二次函数图像性质可知:共有11天(第10天到第20天),销售利润不低于2400元.23. (1) 解:第10页 / 共12页(2) 证明:延长DC 至点F ,使CF =AE ,连接BE ,BF在△ABE 和△CBF 中 ==BCF =AB BC A AE CF ⎧⎪⎨⎪⎩∠∠ ∴△ABE ≌△CBF (SAS ),∴BE =BF 又∵DE =AE +CD 且AE =CF ,∴DE =DF 在△BDE 和△BDF 中 BE BF DE DF BD BD =⎧⎪=⎨⎪=⎩∴△BDE ≌△BDF (SSS )∴∠BDE =∠BDF ,∴BD 平分∠CDE (3)①当D 在AB 左侧时连接CP ,过点C 作CE ⊥CP ,交DA 的延长线于E 点∵AB =BD ,且P 是AD 的中点,∴BP ⊥AD ,即∠CBP =∠CAE∵AD =1013AB ,∴AP =12AD =513AB ,BP1213AB∵=ACE PCB ∠∠,在△BCP 和△ACE 中第11页 / 共12页CBP CAE BC ACBCP ACE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△BCP ≌△ACE (ASA )∴AE =PB =1213AB ,PE =AP +AE =1713AB ∵PC =CE ,PC ⊥CE ,∴△PCE 为等腰直角三角形PCPE,即PC AB ②当D 在AB 右侧时连接CP ,过点C 作CQ ⊥CP 交BP 于点Q由①可知:∠APB =∠ACB =90°,AP =513AB ,PB =1213AB ∵PC ⊥CQ ,∴∠PCQ =∠ACB =90°,∴∠ACP =∠BCQ ∵∠APB =∠ACB ,∴∠CAP =∠CBQ在△ACP 和△BCQ 中CAP CBQ AC BCACP BCQ =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACP ≌△BCQ (ASA )∴BQ =AP =513AB PQ =BP -BQ =713AB ,PC =PQ ∵PC ⊥CQ ,∴△PCQ 为等腰直角三角形∴PCPQAB ,即PC = 综上所述:PC AB =24.解:(1)①32②54(2)依题意得:PB =P Ay = B D第12页 / 共12页 ()()22224y y m x m ---=-,∴()()21242y x m m m =-+++, 即顶点(m ,m +2)(3)方法一:顶点(m ,m +2)在直线y =x +2运动 又∵最低点一直在132y x =+下方,x +2<132x +,即m <2,∴-2<m <2 ∵C (-2,y 1),D (1,y 2),∴()()212242m y m m +=+++,()()221242m y m m =+++- ()()()()()2212213214242m m m y y m m +--+-==++,令y 1=y 2,解得12m =- ①当-2<m <12-时,()()32142m m ++<0 ,即y 1-y 2<0,故y 1<y 2; ②当12m =-时,()()32142m m ++=0,y 1=y 2; ③当-12<m <2时,()()32142m m ++>0,y 1>y 2. 综上①当-2<m <12-时,y 1<y 2;②当12m =-时,y 1=y 2;③当-12<m <2时,y 1>y 2. 方法二:(3)函数值的大小可以比较点到对称轴的距离当m =12-时,y 1=y 2 ;当-2<m <12-时,y 1<y 2 ;当-12<m <2时,y 1>y 2.。
2020年湖北省武汉市九年级元月调考数学模拟试卷(4)
2020年湖北省武汉市九年级元月调考数学模拟试卷(4)一、选择题(每小题3分,共30分)1.(3分)方程4x2=81的一次项系数为()A.4B.0C.81D.﹣812.(3分)抛物线y=(x﹣1)2﹣2 的顶点是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)3.(3分)下列事件是必然事件的是()A.某种彩票中奖率为1%,则买100张这种彩票必然中奖B.今晚努力学习,明天考试必然考出好成绩C.从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D.抛掷一枚普通的骰子所得的点数一定小于64.(3分)下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.5.(3分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x台其他电脑,由题意列方程应为()A.1+2x=100B.x(1+x)=100C.(1+x)2=100D.1+x+x2=100 6.(3分)小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用图中的哪一幅来近似地刻画()A.B.C.D.7.(3分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图所示),并规定:顾客消费200元以上(含200元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分界线上时,则需要重新转动转盘.某顾客正好消费300元,他转动一次转盘,实际付款210元的概率为()A.B.C.D.8.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A.100°B.120°C.135°D.150°9.(3分)抛物线y=mx2+3mx+2(m<0)经过点A(a,y1)、B(1,y2)两点,若y1>y2,则实数a满足()A.﹣4<a<1B.a<﹣4或a>1C.﹣4<a≤﹣D.﹣≤a<1 10.(3分)如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB 的距离为()A.B.C.D.4二、填空题(每小题3分,共18分)11.(3分)一元二次方程x(x﹣5)=0的根为.12.(3分)把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为.13.(3分)抛物线y=x2﹣2x﹣5的顶点坐标是.14.(3分)如图,扇形的弧长是20π,面积是240π,则此扇形的圆心角的度数是.15.(3分)已知抛物线y=ax2+bx+c经过点(﹣1,5),且无论m为何值,不等式a+b≥am2+bm 恒成立,则关于x的方程ax2+bx+c=5的解为.16.(3分)平面直角坐标系中,点P是一动点,点A(6,0)绕点P顺时针旋转90°到点B处,点B恰好落在直线y=﹣2x上.当线段AP最短时,点P的坐标为.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣7=0.18.(8分)如图,A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点,CE⊥OA交⊙O于点E,连接AE.求证:AE=AO.19.(8分)为了有效保护环境,某景区要求游客将垃圾按可回收垃圾,不可回收垃圾,有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用列树状图的方法求三袋垃圾都投对的概率.20.(8分)在正方形ABCD中,E为AB的中点.(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C重合,用无刻度直尺作出点O的位置,保留作图痕迹;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺作出△CFD,保留作图痕迹.21.(8分)如图,在⊙O中,AB为直径,F是半圆弧AB的中点,E是弧BF上一点,直线AE与过点B的切线相交于点C,连接EF.(1)若EF=AB,求∠ACB的度数;(2)若⊙O的半径为3,BC=2,求EF的长.22.(10分)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC =6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?23.(10分)已知平行四边形ABCD.(1)如图1,将▱ABCD绕点D逆时针旋转一定角度得到▱A1B1C1D,延长B1C1,分别与BC、AD的延长线交于点M、N.①求证:∠BMB1=∠ADA1;②求证:B1N=AN+C1M;(2)如图2,将线段AD绕点D逆时针旋转,使点A的对应点A1落在BC上,将线段CD绕点D逆时针旋转到C1D的位置,AC1与A1D交于点H.若H为AC1的中点,∠ADC1+∠A1DC=180°,A1B=nA1C,试用含n的式子表示的值.24.(12分)已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.(1)求抛物线的解析式;(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D 为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF 不与y轴平行),求证:直线EF恒过某一定点.2020年湖北省武汉市九年级元月调考数学模拟试卷(4)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)方程4x2=81的一次项系数为()A.4B.0C.81D.﹣81【分析】将已知方程转化为一般形式,然后找出方程的一次项系数即可.【解答】解:方程4x2=81的一般形式是4x2﹣81=0,它的一次项系数是0,故选:B.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c =0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.(3分)抛物线y=(x﹣1)2﹣2 的顶点是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)【分析】根据顶点式的坐标特点直接写出顶点坐标.【解答】解:∵y=(x﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选:A.【点评】此题考查二次函数的性质,解题的关键是牢记顶点式y=a(x﹣h)2+k中,顶点坐标是(h,k).3.(3分)下列事件是必然事件的是()A.某种彩票中奖率为1%,则买100张这种彩票必然中奖B.今晚努力学习,明天考试必然考出好成绩C.从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D.抛掷一枚普通的骰子所得的点数一定小于6【分析】直接利用必然事件以及随机事件的定义分析得出答案.【解答】解:A、某种彩票中奖率为1%,则买100张这种彩票必然中奖,不一定必然中奖,不合题意;B、今晚努力学习,明天考试必然考出好成绩,是随机事件,不合题意;C、从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球,是必然事件,符合题意;D、抛掷一枚普通的骰子所得的点数一定小于6,也有可能等于6,故此选项不合题意;故选:C.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.4.(3分)下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.5.(3分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x台其他电脑,由题意列方程应为()A.1+2x=100B.x(1+x)=100C.(1+x)2=100D.1+x+x2=100【分析】此题可设每轮感染中平均一台电脑会感染x台电脑,则第一轮共感染x+1台,第二轮共感染x(x+1)+x+1=(x+1)(x+1)台,根据题意列方程即可.【解答】解:设每轮感染中平均一台电脑会感染x台电脑,根据题意列方程得(x+1)2=100,故选:C.【点评】考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.6.(3分)小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用图中的哪一幅来近似地刻画()A.B.C.D.【分析】根据小球的运动过程进行分析即可.【解答】解:因为是小强将一个球竖直向上抛,小强有一定的身高,故D一定不符合;小强抛出小球后,小球开始是向上运动的,故高度在增加,故A一定错误;小球升到一定高度后,会自由落下,高度就会降低,故B错误,C正确,故选:C.【点评】此题主要考查了函数图象,关键是正确理解小球在抛出后事如何运动的.7.(3分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图所示),并规定:顾客消费200元以上(含200元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分界线上时,则需要重新转动转盘.某顾客正好消费300元,他转动一次转盘,实际付款210元的概率为()A.B.C.D.【分析】根据概率公式即可得到结论.【解答】解:他转动一次转盘,实际付款210元的概率为=,故选:D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A.100°B.120°C.135°D.150°【分析】如图,连接BD,由旋转的性质可得AB=AD,∠BAD=60°,可证△ABD为等边三角形,由“SSS”可证△ABE≌△DBE,可得∠ABE=∠DBE=30°,由三角形内角和定理可求解.【解答】解:如图,连接BD,∵将△ABC绕点A逆时针旋转60°,得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD为等边三角形,∴∠ABD=60°,AB=BD,且AE=DE,BE=BE,∴△ABE≌△DBE(SSS)∴∠ABE=∠DBE=30°∴∠ABE=∠DBE=30°,且∠BDE=∠ADB﹣∠ADE=15°,∴∠BED=135°.故选:C.【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线是本题的关键.9.(3分)抛物线y=mx2+3mx+2(m<0)经过点A(a,y1)、B(1,y2)两点,若y1>y2,则实数a满足()A.﹣4<a<1B.a<﹣4或a>1C.﹣4<a≤﹣D.﹣≤a<1【分析】先确定抛物线的对称轴为x=﹣=﹣1.5,则确定点B(1,y2)关于直线x=﹣1.5的对称点的坐标为(﹣4,y2),然后利用二次函数的性质得到a的范围.【解答】解:抛物线的对称轴为x=﹣=﹣1.5,而点B(1,y2)关于直线x=﹣1.5的对称点的坐标为(﹣4,y2),∵m<0,∴抛物线开口向下,且y1>y2,∴﹣4<a<1.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点的坐标满足其解析式.也考查了二次函数的性质.10.(3分)如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB 的距离为()A.B.C.D.4【分析】作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,利用圆周角定理得到∠CBD=90°,再证明CD∥AB得到•∠BDC=∠ABC,所以BD=AC =5.然后利用勾股定理计算出CD,再利用面积法求出BN即可.【解答】解:作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,则∠CBD=90°,∵∠A=90°+∠ABC,∴∠A=∠ABD,∴∠ABD+∠D=∠A+∠D=180°,∴CD∥AB,∴∠BDC=∠ABC,∴=,∴BD=AC=5.∴OM=BN,在Rt△ABD中,CD==13,∵×BN×CD=×BC×BD,∴BN═==,∴OM=,即点O到AB的距离为.故选:B.【点评】本题考查了三角形的外心与外接圆:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.二、填空题(每小题3分,共18分)11.(3分)一元二次方程x(x﹣5)=0的根为x1=0,x2=5.【分析】利用因式分解法求出解即可.【解答】解:方程x(x﹣5)=0,可得x=0或x﹣5=0,解得:x1=0,x2=5,故答案为:x1=0,x2=5【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.(3分)把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为(2,﹣3).【分析】利用关于原点中心对称的点的坐标特征求解.【解答】解:把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为(2,﹣3).故答案为:(2,﹣3).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.13.(3分)抛物线y=x2﹣2x﹣5的顶点坐标是(1,﹣6).【分析】直接利用配方法得出二次函数的顶点坐标即可.【解答】解:抛物线y=x2﹣2x﹣5=(x﹣1)2﹣6的顶点坐标是:(1,﹣6).故答案为:(1,﹣6).【点评】此题主要考查了二次函数的性质,正确运用配方法是解题关键.14.(3分)如图,扇形的弧长是20π,面积是240π,则此扇形的圆心角的度数是150°.【分析】根据扇形面积可求得扇形半径,再根据弧长公式可求得圆心角的度数.【解答】解:∵S扇形=וOA,∴240π=×20π×OA,∴OA=24,又=,∴=20π,解得n=150,故答案为:150°.【点评】本题主要考查扇形和弧长公式,掌握扇形的面积公式为S=×弧长×半径,弧长=是解题的关键.15.(3分)已知抛物线y=ax2+bx+c经过点(﹣1,5),且无论m为何值,不等式a+b≥am2+bm恒成立,则关于x的方程ax2+bx+c=5的解为x1=﹣1,x2=3.【分析】不等式a+b≥am2+bm恒成立,即a+b+c≥am2+bm+c恒成立,由此得到顶点坐标是(1,a+b+c);然后由抛物线的对称性得到(﹣1,5)关于直线x=1的对称点为(3,5),易得答案.【解答】解:∵不等式a+b≥am2+bm恒成立,∴a+b+c≥am2+bm+c恒成立,∴点(1,a+b+c)是抛物线的顶点,点(﹣1,5)关于直线x=1的对称点为(3,5),当y=5时,x=﹣1或3,此即为答案.故答案是:x1=﹣1,x2=3.【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,根据题意,找到抛物线的顶点坐标是解题的关键.16.(3分)平面直角坐标系中,点P是一动点,点A(6,0)绕点P顺时针旋转90°到点B处,点B恰好落在直线y=﹣2x上.当线段AP最短时,点P的坐标为(,).【分析】在平面直角坐标系中,构造△PGB≌△AHP,设B(m,﹣2m),P(a,b),依据全等三角形的性质,即可得到a=,b=,再根据两点间距离公式以及配方法,即可得到m的值,进而得出点P的坐标.【解答】解:如图,构造△PGB≌△AHP,设B(m,﹣2m),P(a,b),由题可得PG=AH,BG=PH,即a﹣m=b,b+2m=6﹣a,联立解得:a=,b=,即P(,),∴P A2=(﹣6)2+()2=(5m2﹣12m+36)=(m﹣)2+,∴当m=时,P A最小,此时P(,).故答案为:(,).【点评】本题主要考查了一次函数图象上点的坐标特征以及配方法的运用,直线上任意一点的坐标都满足函数关系式y=kx+b.解决问题的关键是构造全等三角形,利用全等三角形的对应边相等.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣7=0.【分析】移项后配方得出x2﹣4x+4=7+4,推出(x﹣2)2=11,开方后得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=7,配方得:x2﹣4x+4=7+4,即(x﹣2)2=11,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.【点评】本题考查了解一元一次方程和用配方法解一元二次方程的应用,关键是配方后得出(x﹣2)2=11,题目比较典型,难度适中.18.(8分)如图,A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点,CE⊥OA交⊙O于点E,连接AE.求证:AE=AO.【分析】连OC,OA,如图,先利用圆心角、弧、弦的关系得到∠AOC=60°,则可判断△AOC为等边三角形,所以AC=AO,再根据垂径定理得到=,从而得到AE=AC=AO.【解答】证明:连OC,OA,如图,∵∠AOB=120°,C是弧AB的中点,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∴AC=AO,∵OA⊥CE,∴=,∴AE=AC,∴AE=AO.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.19.(8分)为了有效保护环境,某景区要求游客将垃圾按可回收垃圾,不可回收垃圾,有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用列树状图的方法求三袋垃圾都投对的概率.【分析】首先根据题意求得所有等可能的结果与垃圾投放正确的情况,再利用概率公式即可求得答案.【解答】解:三类垃圾随机投入三类垃圾箱的树状图如下:由树状图可知随机投入三类垃圾桶共有6种等可能结果,其中三袋垃圾都投对的只有1种结果,∴三袋垃圾都投对的概率为.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)在正方形ABCD中,E为AB的中点.(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C重合,用无刻度直尺作出点O的位置,保留作图痕迹;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺作出△CFD,保留作图痕迹.【分析】(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C 重合,用无刻度直尺即可作出点O的位置;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺即可作出△CFD,【解答】解:如图所示:(1)连接AC交BD于点O,则点O即为所求的点;(2)连EO并延长交CD于H,连AH,延长AH、BC交于点F,连DF,则△DCF即为所求.【点评】本题考查了作图﹣旋转变换,解决本题的关键是综合全等三角形的判定和性质、正方形的性质解答.21.(8分)如图,在⊙O中,AB为直径,F是半圆弧AB的中点,E是弧BF上一点,直线AE与过点B的切线相交于点C,连接EF.(1)若EF=AB,求∠ACB的度数;(2)若⊙O的半径为3,BC=2,求EF的长.【分析】(1)连接OE、OF、AF,根据等边三角形的性质得到∠EOF=60°,由圆周角定理得到∠EAF=∠EOF=30°,根据切线的性质得到∠ABC=90°,根据直角三角形的性质计算即可;(2)连BE、AF、BF,过F作FM⊥EF交AE于M,根据勾股定理求出AC,根据三角形的面积公式求出BE,证明△AFM≌△BFE,根据全等三角形的性质得到AM=BE,EF =FM,根据等腰直角三角形的性质计算,得到答案.【解答】解:(1)连接OE、OF、AF,∵EF=AB=OE=OF,∴△EOF为等边三角形,∴∠EOF=60°,由圆周角定理得,∠EAF=∠EOF=30°,∵F是半圆弧AB的中点,∴∠AOF=90°,∴∠OAF=45°,∴∠CAB=15°,∵BC为⊙O的切线,∴∠ABC=90°,∴∠ACB=75°;(2)连BE、AF、BF,过F作FM⊥EF交AE于M,则∠AEB=∠CEB=90°.∵∠ABC=90°,AB=6,BC=2,∴AC===2,由面积法得,BE==,∴AE==,∵AB为直径,∴∠AFB=90°,又FM⊥EF,∴∠AFM=∠BFE,在△AFM和△BFE中,,∴△AFM≌△BFE(ASA),∴AM=BE=,EF=FM.∵EM=AE﹣AM=,∴EF=EM=.【点评】本题考查的是切线的性质、全等三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.22.(10分)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【分析】(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.(2)把x=5代入可求出支柱的长度,然后算出总造价即可.(3)先求出坦克方队的长,然后算出速度,从而求得通过隧道的时间即可.【解答】【解】(1)设y=ax2+c,把C(0,6)、B(10,0)代入,得a=﹣,c=6.∴y=﹣x2+6.(2)当x=5时,y=﹣×52+6=,∴EF=10﹣=,CD=10﹣6=4,支柱的总造价为2(2×+2×10+4)=70(万元).(3)∵坦克的高为3米,令y=3时,﹣x2+6=3,解得:x=±5,∵7<5<8,坦克宽为2米,∴可以并排3辆坦克行驶,此时坦克方阵的长为120÷3×4=160(米),坦克的行驶速度为24km/h=400米/分,∴通过隧道的最短时间为=2.9(分).【点评】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.23.(10分)已知平行四边形ABCD.(1)如图1,将▱ABCD绕点D逆时针旋转一定角度得到▱A1B1C1D,延长B1C1,分别与BC、AD的延长线交于点M、N.①求证:∠BMB1=∠ADA1;②求证:B1N=AN+C1M;(2)如图2,将线段AD绕点D逆时针旋转,使点A的对应点A1落在BC上,将线段CD绕点D逆时针旋转到C1D的位置,AC1与A1D交于点H.若H为AC1的中点,∠ADC1+∠A1DC=180°,A1B=nA1C,试用含n的式子表示的值.【分析】(1)①先判断出∠BMB1=∠N,再判断出∠N=∠ADA1,即可得出结论;②先判断出∠DCE=∠B=∠B1=∠DC1F,DC=DC1,得出△DCE≌△DC1F,得出DE=DF,进而判断出Rt△DEM≌Rt△DMF,得出∠DME=∠DMF,进而判断出DN=MN,即可得出结论;(2)先判断出AT=2DH,得出∠ADT=∠A1DC,进而判得出△A1DC≌△ADT,得出A1C =AT=2DH.即可得出结论.【解答】解:(1)①∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BMB1=∠N,由旋转知,四边形A1B1C1D是平行四边形,∴A1D∥B1C1,∴∠N=∠ADA1,∴∠BMB1=∠ADA1;②如图1,连接DM,过D作DE⊥BC于E,作DF⊥MN于F,∴∠DEC=∠DFC1=90°,显然,∠DCE=∠B=∠B1=∠DC1F,DC=DC1,∴△DCE≌△DC1F(AAS),∴DE=DF,∵DM=DM,∴Rt△DEM≌Rt△DMF(HL),∴∠DME=∠DMF,又∵AN∥BM,∴∠DME=∠MDN,∴∠DMN=∠MDN,∴DN=MN,又AD=BC=B1C1,∴B1N=B1C1+C1M+MN=AD+C1M+DN=AN+C1M;(2)如图2,延长C1D至点T,使DT=DC1,连接AT,∵H为AC1的中点,∴AT=2DH(三角形中位线定理).∵∠ADC1+∠A1DC=180°,∠ADC1+∠ADT=180°,∴∠ADT=∠A1DC,由旋转知,A1D=AD,DC=DC1=DT,∴△A1DC≌△ADT(SAS),∴A1C=AT=2DH.设DH=a,则A1C=AT=2a,A1B=nA1C=2an,A1D=AD=BC=A1B+A1C=2an+2a,∴A1H=A1D﹣DH=2an+2a﹣a=2an+a,∴=2n+1.【点评】此题几何变换综合题,主要考查了平行四边形的性质,旋转的性质,相似三角形的判定和性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.24.(12分)已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.(1)求抛物线的解析式;(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D 为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF 不与y轴平行),求证:直线EF恒过某一定点.【分析】(1)先求出顶点坐标,由最低点的纵坐标为﹣4,可列方程,即可求解;(2)如图1,连AC交BD于E,过A作AM⊥BD于M,过C作CN⊥BD于N,由三角形面积关系和全等三角形的性质可求点E坐标,可求BD解析式,即可求点D坐标;(3)设E(t,t2),F(n,n2),可求PE解析式,由与抛物线有唯一的公共点,可求k1=2t,即可求点P横坐标,可得tn=﹣2,设直线EF的解析式为y=kx+b,得x2﹣kx﹣b =0,可求b=2,即可得直线EF恒过定点(0,2).【解答】解:(1)∵y=x2+(2m﹣1)x﹣2m=(x+m﹣0.5)2﹣m2﹣m﹣0.25,∴顶点坐标为(0.5﹣m,﹣m2﹣m﹣0.25)∵最低点的纵坐标为﹣4,∴﹣m2﹣m﹣0.25=﹣4,即4m2+4m﹣15=0,∴m=1.5或﹣2.5,∵m>0.5,∴m=1.5.∴抛物线的解析式为y=x2+2x﹣3;(2)∵y=x2+2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,∴A(﹣3,0),B(1,0),C(0,﹣3).如图1,连AC交BD于E,过A作AM⊥BD于M,过C作CN⊥BD于N,∵BD平分四边形ABCD的面积,∴S△ABD=S△CBD,∴BD×AM=BD×CN,∴AM=CN,且∠AEM=∠CMN,∠AME=∠CNE=90°∴△AEM≌△CEN(AAS),∴AE=CE,∴E(﹣1.5,﹣1.5),且B(1,0),∴直线BE的解析式为y=0.6x﹣0.6.∴0.6x﹣0.6=x2+2x﹣3,解得x1=﹣,x2=1,∴D(﹣,﹣).(3)由题意可得平移后解析式为y=x2,设E(t,t2),F(n,n2),设直线PE为y=k1(x﹣t)+t2,由题意可得x2﹣k1x+k1t﹣t2=0,∴△=k12﹣4(k1t﹣t2)=(k1﹣2t)2=0,∴k1=2t.∴直线PE为y=2t(x﹣t)+t2,即y=2tx﹣t2.令y=﹣2,得x P=,同理,设直线PF为y=k2(x﹣n)+n2,∴x P=,∴=,∵t≠n,∴tn=﹣2.设直线EF的解析式为y=kx+b,得x2﹣kx﹣b=0,∴x E•x F=﹣b,即tn=﹣b,∴b=2.∴直线EF为y=kx+2,过定点(0,2).【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的应用,全等三角形的判定和性质,三角形面积公式,利用参数求出PE,PF的解析式是本题的关键.。
2019~2020学年度新人教版九年级第一次调研测试数学试卷(含答案)
2019~2020学年度九年级第一次调研测试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.3-1的值等于( ▲ )A .3B .13C .-13 D .-32.下列运算正确的是( ▲ ) A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m •4m 2=8m 2D .m 5÷m 3=m 23.0.00035用科学记数法表示为( ▲ ) A .3.5×10-4B .3.5×104C .35×10-5D .3.5×10-34.估计11 的值在( ▲ ) A .4和5之间B .3和4之间C .2和3之间D .1和2之间5.如图是某几何体的三视图,则这个几何体是( ▲ ) A .棱柱B .圆柱C .棱锥D .圆锥6.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1;依此方式,将正方形OABC 绕点O 连续旋转2019次得到正方形OA 2019B 2019C 2019,如果点A 的坐标为(1,0),那么点B 2019的坐标为( ▲ ) A .(1,1) B .(0, 2 ) C .(- 2 ,0)D .(-1,1)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)第6题图第5题图7.计算:30= ▲ ;8 = ▲ . 8.分解因式:3a 2-6a = ▲ . 9.若式子3x + 1在实数范围内有意义,则x 的取值范围是 ▲ . 10.计算24 -18 ×13= ▲ .11.已知甲、乙两组数据的折线图如图所示,设甲、乙两组数据的方差分别为S 甲2、S 乙2,则 S 甲2 ▲ S 乙2(填“>”、“=”或“<”)12.若x 1,x 2是一元二次方程x 2+x -2=0的两个实数根,则x 1+x 2+x 1x 2= ▲ . 13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= ▲ .14.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°后得△DEC ,连接AD ,若∠BAC =25°,则∠BAD = ▲ °.15.如图,AC 为⊙O 的直径,点B 在⊙O 上,OD ⊥AC 交⊙O 于点D ,连接BD ,∠BDO =15°,则∠ACB = ▲ °.16.已知在平面直角坐标系中有两点A (0,1),B (-1,0),动点P 在反比例函数y = 2x 的图像上运动,当线段P A 与线段PB 之差的绝对值最大时,点P 的坐标为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)第15题图第14题图第13题图第11题图17.(本题6分)先化简,再求值:(a +2-5a -2 )÷2a 2-6a a -2 ,其中a =-32 .18.(本题6分)解不等式组⎩⎨⎧ x -3(x -2)≤8x -1<5-2x,并写出它的整数解.19.(本题6分)为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了72 000元,购买台式电脑用了240 000元.已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?20.(本题8分)如图,在平行四边形ABCD 中,P 是对角线BD 上的一点,过点C 作 CQ ∥DB ,且CQ =DP ,连接AP 、BQ 、PQ . (1)求证:△APD ≌△BQC ;(2)若∠ABP +∠BQC =180°,求证:四边形ABQP 为菱形.21.(本题8分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表请你根据统计图表中的信息,解答下列问题: (1)a = ▲ ,b = ▲ .(2)该调查统计数据的中位数是 ▲ ,众数是 ▲ . (3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.第20题图22.(本题8分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是▲事件,“从中任意抽取1个球是黑球”是▲事件;(2)从中任意抽取1个球恰好是红球的概率是▲;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球颜色相同,则选甲;若两球颜色不同,则选乙.你认为这个规则公平吗?请说明理由.23.(本题8分)已知二次函数y=x2-(m+2)x+(2m-1)(m为常数).(1)求证:不论m为何值,该函数图像与x轴一定有两个交点;(2)点A(-2,y1)、B(1,y2)、C(4,y3)是该函数图像上的三个点,当该函数图像经过原点时,判断y1、y2、y3的大小关系.24.(本题8分)如图为某景区五个景点A,B,C,D,E的平面示意图,景点B、A在C的正东方向,D在C的正北方向,D、E在B的北偏西30°方向上,E在A的西北方向上;景点C与景点D相距1000 3 m,E在BD的中点处.(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)第24题图25.(本题10分)甲、乙两人周末从同一地点出发去某城市,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x (h ),甲、乙两人行驶的路程分别为y 1(km )与y 2(km ).如图①是y 1与y 2关于x 的函数图像. (1)分别求线段OA 与线段BC 所表示的y 1与y 2关于x 的函数表达式; (2)当x 为多少时,两人相距6km ?(3)设两人相距S 千米,在图②所给的直角坐标系中画出S 关于x 的函数图像.26.(本题8分)如图,在⊙O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD ⊥AO 于点D ,交AC 于点E ,交⊙O 于点F ,M 是GE 的中点,连接CF 、CM . (1)判断CM 与⊙O 的位置关系,并说明理由; (2)若∠ECF =2∠A ,CM =6,CF =4,求MF 的长.27.(本题12分) (1)发现如图①所示,点A 为线段BC 外的一个动点,且BC =a ,AB =b .填空:当点A 位于 ▲ 时,线段AC 的长取得最大值,且最大值为 ▲ (用含a 、b 的式子表示).图①b aC BA 图②EDACy xABMPO图③(2)应用第26题图第25题图点A 为线段BC 外一个动点,且BC =4,AB =1.如图②所示,分别以AB 、AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD 、BE . ①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值 ▲ . (3)拓展如图③所示,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(6,0),点P 为线段AB 外一个动点,且P A =2,PM =PB ,∠BPM =90°.请直接写出线段AM 的最大值 ▲ 及此时点P 的坐标 ▲ .评分参考标准一、选择题二、填空题7. 1;2 2 8.3a (a - 2) 9.x ≠﹣1 10. 6 11. > 12.﹣3 13. 40 14. 70 15. 60 16.(1,2)或(﹣2,﹣1) 三、解答题17.解:原式=(a +2)(a -2)-5a -2 •a -22a (a -3)…………………………………2分=(a +3)(a -3)a -2 •a -22a (a -3)………………………………4分=a +32a,…………………………………5分 当a =﹣32 时,原式=﹣12.…………………………………6分18.解:解不等式x ﹣3(x ﹣2)≤8,得:x ≥﹣1,…………………2分解不等式x ﹣1<5﹣2x ,得:x <2,…………………………4分 则不等式组的解集为﹣1≤x <2,………………………………5分 所以不等式组的整数解为﹣1、0、1.…………………………6分19.解:设台式电脑的单价是x 元,则笔记本电脑的单价为1.5x 元,………1分根据题意得720001.5x +240000x =120,…………………………………3分解得x =2400,…………………………………4分经检验x =2400是原方程的解,…………………………………5分 当x =2400时,1.5x =3600.答:笔记本电脑和台式电脑的单价分别为3600元和2400元.………………6分 20.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ADB =∠DBC , …………………1分 ∵CQ ∥DB ,∴∠BCQ =∠DBC ,∴∠ADB =∠BCQ ……………2分在△ADP 和△BCQ 中,⎩⎪⎨⎪⎧AD =BC ,∠ADB =∠BCQ ,DP =CQ .∴△ADP ≌△BCQ .………3分(2)证明:∵CQ ∥DB ,且CQ =DP ,∴四边形CQPD 是平行四边形,…………………4分 ∴CD =PQ ,CD ∥PQ ,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴AB =PQ ,AB ∥PQ ,∴四边形ABQP 是平行四边形, ………………………5分 ∵△ADP ≌△BCQ ,∴∠APD =∠BQC ,∵∠APD +∠APB =180°,∠ABP +∠BQC =180°, ∴∠ABP =∠APB ,…………………………………6分 ∴AB =AP , …………………………………………7分 ∴四边形ABQP 是菱形. …………………………8分21.解:(1)17、20;……2分 (2)2次、2次;……………4分 (3)360°×20%=72°…6分(4)2000×350 =120人.…7分 答:估计该校学生在一周内借阅图书“4次及以上”的人数是120人 …8分22.解:(1)必然,不可能;……2分 (2)35 ;………3分(3)结论:这个规则不公平………………………………………4分 如图所示:,……6分∵上述20种情况是等可能的 ∴选择甲的概率为:820 =25 ;…………7分则选择乙的概率为:35,………………8分 故此规则不公平.23.解:(1)证明:当y =0时,x 2﹣(m +2)x +(2m ﹣1)=0 …………1分 ∵b 2﹣4ac =[﹣(m +2)]2﹣4×1×(2m ﹣1)…………………2分=(m ﹣2)2+4>0, …………………3分∴方程有两个不相等的实数根;∴抛物线与x 轴一定有两个交点;…………………4分 (2)解:∵抛物线y =x 2﹣(m +2)x +(2m ﹣1)经过原点,∴2m ﹣1=0. 解得:m =12 ,………5分 ∴抛物线的关系式为y =x 2﹣52 x .当x =﹣2时,y 1=9; 当x =1时,y 2=﹣1.5; 当x =4时,y 3=6.…7分 ∴y 2<y 3<y 1.…………………8分24.解:(1)由题意得,∠C =90°,∠CBD =60°,∠CAE =45°,∵CD =1000 3 ,∴BC =CDtan60° =1000,……………2分∴BD =2BC =2000,…………………………3分∵E 在BD 的中点处,∴BE =12BD =1000(米);…………4分(2)过E 作EF ⊥AB ,垂足为F在Rt △AEF 中,EF =AF =BE •sin60°=1000×32=500 3 ,……………6分 在Rt △BEF 中,BF =BE •cos60°=500,……………………………………7分 ∴AB =AF ﹣BF =500( 3 ﹣1)(米).……………………………………8分 25.解:(1)设y 1=kx (k ≠0).将点(1.2,72)代入y 1=kx ,解得: k =60,∴线段OA 的函数表达式为y 1=60x (0≤x ≤1.2).………2分 设y 2=mx +n (m ≠0).将点B (0.2,0)、C (1.1,72)代入y 2=mx +n ,⎩⎪⎨⎪⎧0.2m +n =01.1m +n =72 ,解得:⎩⎪⎨⎪⎧m =80n =-16 , ∴线段BC 的函数表达式为y 2=80x ﹣16(0.2≤x ≤1.1).………………4分 (2)当甲出发乙没动时:x =0.1………………5分当甲、乙都出发时:根据题意得:|60x ﹣(80x ﹣16)|=6,解得:x 1=0.5,x 2=1.1,…………7分∴当x 为0.1、0.5或1.1时,两人相距6km .……8分 (3)将S 关于x 的函数画在图中,如图所示.……10分 26.解:(1)CM 与⊙O 相切.理由如下:…………1分 连接OC ,如图,∵GD ⊥AO 于点D , ∴∠G +∠GBD =90°, ∵AB 为直径, ∴∠ACB =90°,∵M 点为GE 的中点, ∴MC =MG =ME , ∴∠G =∠1,……………2分∵OB =OC , ∴∠B =∠2, ∴∠1+∠2=90°, ∴∠OCM =90°, ∴OC ⊥CM , ………………3分 又∵点C 在⊙O 上∴CM 为⊙O 的切线;………………4分(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°, ∴∠1=∠5, 而∠1=∠G ,∠5=∠A , ∴∠G =∠A , ∵∠4=2∠A , ∴∠4=2∠G ,而∠EMC =∠G +∠1=2∠G , ∴∠EMC =∠4,而∠FEC =∠CEM , ∴△EFC ∽△ECM ,………………5分 ∴EF CE =CE ME =CF CM ,即EF CE =CE 6=46, ………………6分 ∴CE =4,EF =83,………………7分∴MF =ME ﹣EF =6﹣83=103.………………8分27.解:(1)如图①,CB 的延长线上,a +b ; …………………2分 (2)如图②,与BE 相等线段是DC …………………3分 ∵∠CAE =∠DAB =60°,∴∠BAE =∠DAC .∵AB =AD ,AE =AC ,∴△BAE ≌△DAC ∴BE =DC …………………6分CBADE图②②线段BE 长的最大值为5. …………………8分(3)线段AM 的最大值为4+2 2 ,此时点P 的坐标为(2- 2 , 2 ) 或(2- 2 ,- 2 )…12分。
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2 B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;AB=CE=62;连接BE;P为BE的中点;连接PD、AD(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△PAD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学元月调考试题
亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:
1.本试卷由第1卷(选择题)和第Ⅱ卷(非选择题)两部分组成。
全卷共6页,三大题,满分120分。
考试用时120分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写
姓名和座位号。
3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
不得答在“试卷”上
.........。
4.答第Ⅱ卷(非选择题)时,用0.5毫米黑色笔迹签字笔书写在“答题卡”上。
答在第
....
...I.、Ⅱ卷的
试卷上无效。
......
预祝你取得优异成绩!
一、选择题(共10小题,每小题3分,共30分)
下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号
涂黑:
1.方程5x2-4x -1 =0的二次项系数和一次项系数分别为
A.5和4 B.5和-4 C.5和-1 D.5和1
2.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
3.抛物线y=x2向下平移一个单位得到抛物线
A.y=(x+1)2B.y=(x-1)2C.y=x2+1 D. y=x2-1
4.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指
A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次.
B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次.
C.抛掷2n次硬币,恰好有n次“正面朝上”.
D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5.
5.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD
为
A.正方形 B.菱形 C.矩形 D.直角梯形
6.在平面直角坐标系中,点A( -4,1)关于原点的对称点的坐标为
A.(4,1) B.(4,-1) C.( -4, -1) D.(-1, 4)
7.圆的直径为13 cm,,如果圆心与直线的距离是d,则.
A.当d =8 cm,时,直线与圆相交. B.当d=4.5 cm时,直线与圆相离.
C.当d =6.5 fm时,直线与圆相切. D.当d=13 cm时,直线与圆相切.
8.用配方法解方程x2 +10x +9 =0,下列变形正确的是
A.(x+5)2=16. B.(x+10)2=91. C.(x-5)2=34. D.(x+10)2=109
9.如图,在平面直角坐标系中,抛物线y=ax2 +bx +5经过A(2,5),B( -1,2)两点,若点C在该抛物线上,则C点的坐标可能是
A.(-2,0).
B.(0.5,6.5).
C.(3,2).
D.(2,2).
10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D,若⊙O的半径等于1,则OC的长不可能为
A.2- B.-1. C.2. D.+1.
第9题图第10题图
第Ⅱ卷(非选择题共90分)
二、填空题(共6小题,每小题3分,共18分)
下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.
11.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为________________.
12.方程x2-x-=0的判别式的值等于________________.
13.抛物线y=-x2 +4x -1的顶点坐标为_________________.
14.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平
均增长率为x,根据题意,所列方程为________________________________.
15.半径为3的圆内接正方形的边心距等于________________.
16.圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为________.
三、解答题(共8小题,共72分)
下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.
17.(本题8分)
解方程:x2 +2x -3=0
18.(本题8分)
不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.
(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;
(2)随机摸出两个小球,直接写出两次都是绿球的概率.
19.(本题8分)
如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.
(1)若∠AOB= 56°,求∠ADC的度数;
(2)若BC=6,AE=1,求⊙O的半径.
20.(本题8分)
如图,E是正方形ABCD申CD边上任意一点.
(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;
(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由。
21.(本题8分)
如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.
已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC =6m,点D到BC,AB的距离分别为4m 和2m.
(1)请以BC所在直线为x轴(射线BC的方向为正方向),A B所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;
(2)求AB的长.
22.(本题10分)。
某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100 –x)件.设这段时间内售出该商品的利润为y元.
(1)直接写出利润y与售价x之间的函数关系式;
(2)当售价为多少元时,利润可达1000元;
(3)应如何定价才能使利润最大?
23.(本题10分)
如图,△ABC为等边三角形。
O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.
(1)如图1,若⊙O经过点A,求证:BD+ CD =AD;
(2)如图2,圆心O在BD上,若∠BAD =45°;求∠ADB的度数;
(3)如图3,若AH= OH,求证:BD2+ CD2=AD2.
24.(本题12分)
如图,抛物线y=(x+m)2+m,与直线y= -x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y= -x相交于点D.
(1)若抛物线与y轴的交点坐标为(0,2),求m的值;
(2)求证:⊙H与直线y=1相切;
(3)若DE =2EC,求⊙H的半径。