年武汉市九年级数学元月调考模拟试卷(一)
2021-2022学年武汉市硚口区九年级元月调考数学模拟试卷及解析
2021-2022学年武汉市硚口区九年级元月调考数学模拟试卷一、选择题。
(共10小题,每小题3分,共30分) 1.若2是关于x 的方程20x c -=的一个根,则(c = ) A .2B .4C .4-D .2-2.下列图案是历届冬奥会会徽,其中是中心对称图形的是( )A .B .C .D .3.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( ) A .能够事先确定抽取的扑克牌的花色B .抽到黑桃的可能性更大C .抽到黑桃和抽到红桃的可能性一样大D .抽到红桃的可能性更大4.关于方程2230x x -+=的根的说法正确的是( ) A .有两个不相等的实数根 B .没有实数根 C .两实数根的和为2-D .两实数根的积为3 5.以40/m s 的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度h (单位:)m 与飞行时间t (单位:)s 之间具有函数关系2(0)h at bt a =+<.若小球在第1秒与第3秒高度相等,则下列四个时间中,小球飞行高度最高的时间是( ) A .第1.9秒B .第2.2秒C .第2.8秒D .第3.2秒6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是( ) A .120︒B .180︒C .240︒D .300︒7.如图,在ABC ∆中,AC BC =,40C ∠=︒.将ABC ∆绕着点B 逆时针方向旋转得DBE ∆,其中//AC BD ,BF 、BG 分别为ABC ∆与DBE ∆的中线,则(FBG ∠= )A .90︒B .80︒C .75︒D .70︒8.童威把三张形状大小相同但画面不同的风景图片都按相同的方式剪成相同的三段,然后将三段上、三段中、三段下分别混合洗匀为“上、中、下”三堆图片,从这三堆图片中各随机抽取一张,则恰好能组成一张完整风景图片的概率是( ) A .13B .19C .23D .299.如图,AB 为O 的一条弦,C 为O 上一点,//OC AB .将劣弧AB 沿弦AB 翻折,交翻折后的弧AB 交AC 于点D .若D 为翻折后弧AB 的中点,则(ABC ∠= )A .110︒B .112.5︒C .115︒D .117.5︒10.无论k 为何值,直线22y kx k =-+与抛物线223y ax ax a =--总有公共点,则a 的取值范围是( ) A .0a >B .23a -C .23a -或0a > D .2[3-,0)二、填空题。
湖北省武汉市新观察2021年元月调考九年级模拟数学试题(一)
2021年新观察元调模拟卷(一)一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程化为一般形式后,其二次项系数为2,则一次项系数为( )A.4B. -4C.4xD. - 4x 2.下列图形既是轴对称图形又是中心对称图形的是( )A B C D3.抛物线2)2(3-=x y 与2)2(3+=x y 的性质不同的是( )A.开口方向不同B.最小值不同C.对称轴不同D.开口大小不同 4.抛掷一枚质地均匀的硬币时,正面向上的概率是0.5,则下列判断正确的是( ) A.连续掷2次时,正面朝上一定会出现1次 B.连续掷100次时,正面朝上一定会出现50次 C.连续掷2n 次时,正面朝上一定会出现n 次 D.当抛掷次数越大时,正面朝上的频率越稳定于0.55.已知⊙O 的半径为5,点P 到点O 的距离为8,则点P 与⊙O 的位置关系为( ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法确定6.把函数2)1(2+-=x y 的图象向右平移1个单位,平移后图象的解析式为( )A.22+=x yB.1)1(2+-=x yC.2)2(2+-=x yD.3)1(2--=x y 7.如图,将△OAC 绕点O 逆时针旋转到△OBD ,且点A 、O 、D 在同一直线上,若∠AOC=140°,则∠OCD 的度数为( )A.65°B.70°C.75°D.80°8.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,另一把钥匙不能打开这两把锁,随机用一把钥匙去开任意一把锁,一次打开锁的概率为( )A.52 B.32 C. 31 D.53 9.已知m ,n ,4是等腰三角形(非等边三角形)的三边的长,是m ,n 是关于x 的方程0262=++-k x x 的两根,则k 的值为( )A.7B.7 或 6C.6或-7D.610.如图,点B(0,4),∠OBA=30°,⊙O 的半径为1,P 为AB 上一动点,PQ 切⊙O 于Q 点,当线段PQ 长取最小值时,直线PQ 交y 轴于M 点,a 为过点M 的一条直线,则点P 到直线a 的距离的最大值为( )A.32B.3C.33D.4 二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P(1,-3)关于原点对称的点的坐标是________。
湖北省武汉市新动力2021-2022学年九年级元月调考数学模拟练习试卷(一)及答案解析
2021-2022学年湖北省武汉市新动力九年级元月调考数学模拟练习试卷(一)一、选择题(共10小题,每小题3分,共30分)1.(3分)一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1B.﹣2C.1D.02.(3分)把“武汉加油”的首字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)军运会射击运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是()A.某运动员两次射击总环数大于1B.某运动员两次射击总环数等于1C.某运动员两次射击总环数大于20D.某运动员两次射击总环数等于20 4.(3分)直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定5.(3分)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36B.(x﹣6)2=4+36C.(x﹣3)2=﹣4+9D.(x﹣3)2=4+96.(3分)二次函数y=﹣2x2+4x+1的图象如何移动就得到y=﹣2x2的图象()A.向左移动1个单位,向上移动3个单位B.向右移动1个单位,向上移动3个单位C.向左移动1个单位,向下移动3个单位D.向右移动1个单位,向下移动3个单位7.(3分)如图,在矩形ABCD中,AD=2,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则四边形ABCE的面积为()A.B.C.D.8.(3分)同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.9.(3分)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.10.(3分)已知二次函数y=x2﹣2x﹣2022的图象上有两点A(a,﹣1)和B(b,﹣1),则a2+2b﹣3的值等于()A.2020B.2021C.2022D.2023二、填空题(共6小题,每小题3分,共18分)11.(3分)已知点P(2,﹣3)关于原点对称的点的坐标是.12.(3分)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为.13.(3分)经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是%.14.(3分)如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是⊙O上一点(不与G、E重合),∠CDE=18°,则∠GFE的度数是.15.(3分)已知一个圆心角为270°的扇形工件,没搬动前如图所示,A、B两点触地放置,滚动至点B再次触地时停止,扇形工件直径为5m,则圆心O所经过的路线长是m.16.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),与y轴的交点为C,对称轴为直线x=﹣1,下列结论:①;②若点P(﹣2﹣t2,y1)和Q(t2+3,y2)是该抛物线上的两点,则y1>y2;③不等式cx2+bx+a<0的解集为;④在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形.其中一定正确的是(填序号即可).三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.(8分)如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.19.(8分)一个不透明的袋子中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸出一个小球然后放回,再随机摸出一个小球.求第二次摸出的小球标号能整除第一次摸出的小球标号的概率.(2)随机摸出一个小球然后不放回,则两次摸出的小球标号之和为的概率最大,这个最大概率是.20.(8分)请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果).(1)如图1,点E是▱ABCD边CD上一点,在AB边上取一点F,使得DE=BF;(2)如图2,在3×3正方形网格中,点A、B、C在格点上,过点C作CH⊥AB于H;(3)如图3,AB是⊙O的直径,弦DE⊥AB,点C在⊙O外,过点C作CG∥DE交AB 于G;(4)如图4,点E是正方形ABCD边BC上一点,连接AE,将△ABE绕A点逆时针旋转90°得到△ADG,画出△ADG.21.(8分)如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连接DP并延长交AB于点E.(1)求证:DE为半圆O的切线;(2)求的值.22.(10分)个体户小陈新进一种时令水果,成本为20元/kg,经过市场调研发现,这种水果在未来40天内的日销售量m(kg)与时间t(天)的关系如表:时间t(天)1351036…日销售量m(kg)9490867624…未来40天内,前20天每天的价格y1(元/kg)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/kg)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).(1)直接写出m(kg)与时间t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,个体户小陈决定每销售1kg水果就捐赠a元利润(a<4且a为整数)给贫困户,通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求前20天中个体户小陈共捐赠给贫困户多少钱?23.(10分)【问题背景】如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF、BE、DF之间的数量关系是EF=BE+DF,【迁移应用】如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,且∠B+∠D=180°,求证:EF=BE+DF.【联系拓展】如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系是.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(A 在B的左边),与y轴交于C,且OB=4OA.(1)求抛物线的解析式;(2)如图1,直线y=x交抛物线于D、E两点,点F在抛物线上,且在直线DE下方,若以F为圆心作⊙F,当⊙F与直线DE相切时,求⊙F最大半径r及此时F坐标;(3)如图2,M是抛物线上一点,连接AM交y轴于G,作AM关于x轴对称的直线交抛物线于N,连接AN、MN,点K是MN的中点,若G、K的纵坐标分别是t、n.求t,n的数量关系.2021-2022学年湖北省武汉市新动力九年级元月调考数学模拟练习试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据一元二次方程的定义即可求出答案.【解答】解:一次项系数为﹣1,故选:A.【点评】本题考查一元二次方程,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.2.【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.【点评】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.3.【分析】直接利用随机事件以及必然事件的定义分别分析得出答案.【解答】解:A、某运动员两次射击总环数大于1,是必然事件,不合题意;B、某运动员两次射击总环数等于1,是不可能事件,不合题意;C、某运动员两次射击总环数大于20,是不可能事件,不合题意;D、某运动员两次射击总环数等于20,是随机事件.故选:D.【点评】此题主要考查了随机事件,正确掌握相关定义是解题关键.4.【分析】根据直线和圆的位置关系与数量之间的联系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=rcm=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.【点评】考查了直线和圆的位置关系与数量之间的联系,难度一般,关键是掌握d与r 的大小关系所决定的直线与圆的位置关系.5.【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.6.【分析】利用二次函数的图象的性质.【解答】解:二次函数y=﹣2x2+4x+1的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),∴向左移动1个单位,向下移动3个单位.故选:C.【点评】讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.7.【分析】由旋转的性质得到AD=EF,AB=AE,再由DE=EF,等量代换得到AD=DE,即△AED为等腰直角三角形,利用勾股定理求出AE的长,即为AB的长,再根据矩形和三角形的面积公式求出矩形ABCD的面积和△ADE的面积,即可得到四边形ABCE的面积.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=90°,由旋转得:BC=EF,AB=AE,∵DE=EF,∴AD=DE=2,即△ADE为等腰直角三角形,根据勾股定理得:AE===2,则AB=AE=2,∴四边形ABCE的面积=矩形ABCD的面积﹣△ADE的面积=AB•AD﹣AD•DE=4﹣2,故选:C.【点评】此题考查了旋转的性质,矩形的性质,勾股定理,熟练掌握旋转的性质是解本题的关键.8.【分析】根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到至少有两枚硬币正面向上的概率.【解答】解:由题意可得,所有的可能性为:∴至少有两枚硬币正面向上的概率是:=,故选:D.【点评】本题考查列表法与树状图法,解题的关键是明确题意,写出所有的可能性.9.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH =BD,最终由CD=BC+BD,即可求出答案.【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.10.【分析】由题意可得a、b是方程x2﹣2x﹣2022=﹣1的两个根,则有a+b=2,又由a2=2a+2021,将所求式子变形为a2+2b﹣3=2a+2021+2b﹣3,然后再求值即可.【解答】解:∵点A(a,﹣1)和B(b,﹣1)在二次函数y=x2﹣2x﹣2022的图象上,∴a、b是方程x2﹣2x﹣2022=﹣1的两个根,∴a+b=2,∵将A(a,﹣1)代入y=x2﹣2x﹣2022,∴a2﹣2a﹣2022=﹣1,∴a2=2a+2021,∴a2+2b﹣3=2a+2021+2b﹣3=2(a+b)+2018=4+2018=2022,故选:C.【点评】本题考查二次函数图象上点的坐标特点,熟练掌握二次函数的图象与性质,二次函数与方程之间的关系是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).【点评】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.12.【分析】用圆的面积的一半除以正方形的面积得到针尖落在黑色区域内的概率.【解答】解:设正方形的边长为2a,则正方形的内切圆的半径为a,所以针尖落在黑色区域内的概率==.故答案为.【点评】本题考查了几何概率:某事件的概率=某事件对应的面积与总面积之比.13.【分析】设平均每年下降的百分率是x,降尘量经过两年从50吨下降到40.5吨,所以可以得到方程50(1﹣x)2=40.5,解方程即可求解.【解答】解:设平均每年下降的百分率是x,根据题意得50(1﹣x)2=40.5解得x1=0.1,x2=1.9(不合题意,舍去)所以平均每年下降的百分率是10%.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.14.【分析】连接DG,先由BC与⊙A相切于点D,证明∠ADB=∠ADC=90°,再证明△ADG是等边三角形,则∠DAG=60°,由∠ADE=∠AED=90°﹣18°=72°得∠CAE =36°,于是∠GAE=60°+36°=96°,当点F在⊙O上且在△ABC的外部时,则∠GFE=∠GAE=48°;当点F′在⊙O上且在△ABC的内部时,则∠GF′E=180°﹣∠GFE=132°.【解答】解:如图,连接DG,∵BC与⊙A相切于点D,∴∠ADB=∠ADC=90°,∵AB=6,AG=AD=3,∴BG=AG=3,∴DG=AB=AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∵AD=AE,∴∠AED=∠ADE,∴∠CDE=18°,∴∠AED=∠ADE=90°﹣18°=72°,∴∠CAE=180°﹣72°﹣72°=36°,∴∠GAE=60°+36°=96°,当点F在⊙O上且在△ABC的外部时,则∠GFE=∠GAE=×96°=48°;当点F′在⊙O上且在△ABC的内部时,则∠GF′E=180°﹣∠GFE=180°﹣48°=132°,故答案为:48°或132°.【点评】此题考查圆的切线的性质、圆周角定理、等腰三角形的性质、等边三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半等知识,正确地作出所需要的辅助线是解题的关键.15.【分析】根据图形运动方式可知,点O经过的路线有两次旋转45°的弧,中间是平移.【解答】解:∵∠AOB=360°﹣270°=90°,∴∠ABO=45°,∴圆心O旋转的长度为2×=(m),圆心O移动的距离为=(m),∴圆心O所经过的路线长是(m),故答案为:5π.【点评】本题主要考查了图形的运动,弧长公式等知识,正确理解点O经过的路线是解题的关键.16.【分析】由图可得a<0,b=2a<0,c>0;图象与x轴有两个不同的交点,则Δ=b2﹣4ac>0;将(1,0)代入y=ax2+bx+c,可得c=﹣3a,所以y=ax2+2ax﹣3a;再分别对每个选项进行验证即可.【解答】解:∵开口向下,∴a<0,∵对称轴为直线x=﹣1,∴b=2a<0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc>0,∵图象与x轴有两个不同的交点,∴Δ=b2﹣4ac>0,∴,故①不正确;∵﹣1﹣(﹣2﹣t2)=1+t2,t2+3+1=t2+4,∴t2+4>1+t2,∴y1>y2,故②正确;∵函数经过(1,0),∴a+b+c=0,即a+2a+c=0,∴c=﹣3a,∴cx2+bx+a<0可化为﹣3ax2+2ax+a<0,∴﹣3x2+2x+1>0,解得﹣<x<1,故③正确;过点C作CM垂直对称轴交于点M,设BN=m,则BM=﹣3a﹣m,当∠ABC=90°时,∠BAN=∠CBM,∴=,∴m2+3am+2=0,∵Δ=9a2﹣8≥0时,m存在,∴当a≤﹣时,∠ABC=90°,∴在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形,故④不正确;故答案为:②③.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,数形结合解题是关键.三、解答题(共8小题,共72分)17.【分析】把x=1代入方程计算求出b的值,进而求出另一根即可.【解答】解:∵关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,∴1﹣b+2=0,解得:b=3,把b=3代入方程得:x2﹣3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【点评】此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【分析】由旋转的性质可得AO=CO,可得∠A=∠ACO,由平行线的性质和邻补角的性质可得结论.【解答】证明:∵将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,∴AO=CO,∴∠A=∠ACO,∵AB∥DE,∴∠A+∠E=180°,又∵∠ACO+∠BCO=180°,∴∠BCO=∠E.【点评】本题考查了旋转的性质,等腰三角形的性质,平行线的性质,灵活运用这些性质解决问题是解题的关键.19.【分析】(1)列表得出所有等可能结果,从中找到第二次摸出的小球标号能整除第一次摸出的小球标号的结果数,再根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到标号之和出现次数最多的数,再根据概率公式求解即可.【解答】解:(1)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由表可知,共有16种等可能结果,其中第二次摸出的小球标号能整除第一次摸出的小球标号的有8种结果,∴第二次摸出的小球标号能整除第一次摸出的小球标号的概率为=;(2)列表如下:12341345235634574567由表知,共有12种等可能结果,其中两次摸出的小球标号之和为5的次数最多,有4次,所以两次摸出的小球标号之和为5的概率最大,最大概率为=,故答案为:5、.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.20.【分析】(1)连接AC,BD交于点O,连接EO,延长EO交AB于点F,点F即为所求;(2)取格点E,F,连接EF交AB于点H,连接CH,线段CH即为所求;(3)连接CE交AB于点R,交⊙O于点T,连接DT,CB交于点J,连接DR,延长DR 交⊙O于W,连接JW交AB于点K,连接TK,延长TK交⊙O于点L,连接BL,延长BL,DW交于点C′,连接CC′交AB于点G,直线CG即为所求.(4)连接AC,BD交于点O,连接EO,延长EO交AD于点F,连接BF交AC于点J,连接DJ,延长DJ交AB于点K,连接KF,延长KF交CD的延长线于点G,连接AG,△ADG即为所求.【解答】解:(1)如图1中,点F即为所求;(2)如图2中,线段CH即为所求;(3)如图3中,直线CG即为所求;(4)如图4中,△ADG即为所求.【点评】本题考查作图﹣旋转变换,全等三角形的判定和性质,平行四边形的性质,轴对称的性质等知识,解题的关键是掌握轴对称的性质,灵活运用所学知识解决问题.21.【分析】(1)根据SSS证得△ODP≌△ODC,从而证得∠OPD=∠OCD=90°,即可证得结论;(2)根据切线定理和勾股定理得到AB=3EB,即可证得AE=3EB,从而求得=3.【解答】(1)证明:连接OP,OD,∵BC是⊙O的直径,∴OP=OC,∵以点D为圆心、DA为半径做圆弧,∴PD=CD,在△ODP和△ODC中,,∴△ODP≌△ODC(SSS),∴∠OPD=∠OCD=90°,∵P点在⊙O上,∴DE为半圆O的切线;(2)解:∵以点O为圆心、OB为半径做圆弧,四边形ABCD是正方形,∴EB是⊙D的切线,∵DE为半圆O的切线,∴EB=EP,设正方形的边长为a,EB=EP=x,∴AE=a﹣x,DE=a+x,∵AD2+AE2=DE2,∴a2+(a﹣x)2=(a+x)2,解得x=,∴BE=,∴AE=3EB,∴=3.【点评】本题考查了正方形的性质,切线的判定和性质,全等三角形的判定和性质,切割线定理,切线长定理,解题时注意切割线定理的运用.22.【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围,确定a的值,算出总的销量可得答案.【解答】解:(1)设一次函数为m=kt+b,将和代入一次函数m=kt+b中,有,∴.∴m=﹣2t+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96;(2)设前20天日销售利润为p1元,后20天日销售利润为p2元.由p1=(﹣2t+96)(t+25﹣20)=(﹣2t+96)(t+5)=﹣t2+14t+480=﹣(t﹣14)2+578,∵1≤t≤20,∴当t=14时,p1有最大值578(元).由p2=(﹣2t+96)(﹣t+40﹣20)=(﹣2t+96)(﹣t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数p2在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴当t=21时,p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)p1=(﹣2t+96)(t+25﹣20﹣a)=﹣t2+(14+2a)t+480﹣96a对称轴为t=14+2a.∵1≤t≤20,∴当t≤2a+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴19.5<2a+14,∴2.75<a<4.又∵a为整数,∴a=3,40天的总销量=(﹣2×1+96)+(﹣2×2+96)+...+(﹣2×20+96)=﹣2×(1+2+ (20)+96×20=﹣2×+1920=﹣420+1920=1500,∴小陈共捐赠给贫困户=1500×3=4500元.答:前20天中个体户小陈共捐赠给贫困户4500元.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.23.【分析】【问题背景】把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,证明△AFG≌△AFE(SAS),由全等三角形的性质可得出结论;【迁移应用】把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,∠ADG=∠B,AG=AE,证明△AFG≌△AFE(SAS),由全等三角形的性质可得出结论;【联系拓展】仍然用(1)中的方法,将BD、DE、EC转化为同一直角三角形的三条边,即可得到所猜想的结论.【解答】【问题背景】证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠BAD=∠ADC=90°,把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,AG=AE,∵∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,∴点F、D、G在同一条直线上;∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=90°﹣45°=45°,∴∠GAF=∠EAF,∵AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF=DG+DF=BE+DF,【迁移应用】证明:如图2,由题意得,AB=AD,∠BAD=90°,把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,∠ADG=∠B,AG=AE,∵∠B+∠ADC=180°,∴∠ADG+∠ADC=180°,∴点F、D、G在同一条直线上;∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=90°﹣45°=45°,∴∠GAF=∠EAF,∵AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF=DG+DF=BE+DF,【联系拓展】DE2=BD2+EC2,证明:如图3,由题意得,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°;把△ABD绕点A逆时针旋转90°到△ACG,则∠CAG=∠BAD,∠ACG=∠B=45°,AG=AD,CG=BD,∴∠ECG=∠ACB+∠ACG=90°;∵∠DAE=45°,∵∠GAE=∠CAG+∠CAE=∠BAD+∠CAE=90°﹣45°=45°,∴∠GAE=∠DAE,∵AE=AE,∴△AEG≌△AED(SAS),∴GE=DE,∵GE2=CG2+EC2,∴DE2=BD2+EC2.故答案为:DE2=BD2+EC2.【点评】本题是四边形综合题,考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理,熟练掌握全等三角形的判定与性质是解题的关键.24.【分析】(1)根据题意,即可求出点B和点C的坐标,然后将A、C两点的坐标代入解析式中即可求出结论;(2)联立方程即可求出D、E坐标,从而求出DE,设⊙F与DE相切于H,连接FH,FD,FE,过点F作FG⊥x轴交DE于G,设点F的坐标为(x,x2﹣3x﹣4),由DE为=DE•FH可知:定值,S△DEF当△DEF的面积最大时,FH最大,即r最大,利用“铅垂高,水平宽”求出△DEF的面积的最大值,即可求出r的最大值和此时点F的坐标;(3)设AN与y轴交于点P,利用待定系数法求出直线AM和AN的解析式,联立方程即可求出点M和点N的坐标,再根据中点公式即可求出结论.【解答】解:(1)∵A(﹣1,0),∴OA=1,∴OB=OC=4OA=4,∴B(4,0),C(0,﹣4),将点A、点C的坐标代入y=x2+bx+c,∴,解得,∴抛物线的解析式为:y=x2﹣3x﹣4;(2)联立,解得或,∴D(2﹣2,2﹣2),E(2+2,2+2),∴DE=8,设⊙F与DE相切于H,连接FH,FD,FE,过点F作FG⊥x轴交DE于G,设点F的坐标为(x,x2﹣3x﹣4),∴FH⊥DE,G(x,x),∴FG=x﹣(x2﹣3x﹣4)=﹣x2+4x+4,∵DE为定值,S△DEF=DE•FH=4FH,∴当△DEF的面积最大时,FH最大,即r最大,而S△DEF=FG(x E﹣x D)=(﹣x2+4x+4)[(2+2)﹣(2﹣2)]=﹣2(x﹣2)2+16,∵﹣2<0,∴当x=2时,S△DEF 最大,其最大值为16,此时FH=4,点F的坐标为(2,﹣6);(3)设AN与y轴交于点P,由题意可知,点G的坐标为(0,t),由对称的性质可知,点P的坐标为(0,﹣t),设直线AM的解析式为:y=kx+a,将A、G的坐标代入,得,解得,∴直线AM的解析为:y=tx+t,同理可求得,直线AN的解析式为:y=﹣tx﹣t,联立,解得或,∴点M的坐标为(4+t,t2+5t),同理可得点N的坐标为(4﹣t,t2﹣5t),∴点K的纵坐标为n==t2,即n=t2.【点评】本题属于二次函数综合题,主要考查待定系数法求函数表达式,圆的切线的性质与判定,三角形的面积,中点坐标公式等知识,关键(2)熟练掌握三角形面积的不同求解方法;(3)待定系数法求解析式的熟练应用.。
2020年湖北省武汉市九年级元月调考数学模拟试卷(包含答案)
2020年湖北省武汉市九年级元月调考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°9.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =﹣1,与x 轴的一个交点为(2,0).若于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二.填空题(满分18分,每小题3分)10.已知A (m ,n ),B (m +8,n )是抛物线y =﹣(x ﹣h )2+2036上两点,则n = . 11.如图,小圆O 的半径为1,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n ∁n 依次为同心圆O 的内接正三角形和外切正三角形,由弦A 1C 1和弧A 1C 1围成的弓形面积记为S 1,由弦A 2C 2和弧A 2C 2围成的弓形面积记为S 2,…,以此下去,由弦A n ∁n 和弧A n ∁n 围成的弓形面积记为S n ,其中S 2020的面积为 .12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ 相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.3.解:∵二次函数y=x2﹣1,∴该函数图象的顶点坐标为(0,﹣1),故选:B.4.解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,并不能说明每次抛出硬币一定向上,即抛掷硬币正面向上的概率不是1,此选项错误;故选:A.5.解:A、原方程可变形为5x2﹣4x+2=0,∵△=(﹣4)2﹣4×5×2=﹣24<0,∴方程5x2﹣4x=﹣2无实数根;B、原方程可变形为6x﹣1=0,∴方程(x﹣1)(5x﹣1)=5x2只有一个实数根;C、∵△=(﹣5)2﹣4×4×1=9>0,∴方程4x2﹣5x+1=0有两个不相等的实数根;D、∵(x﹣4)2=0,∴x1=x2=4,∴方程(x﹣4)2=0有两个相等的实数根.故选:C.6.解:∵OA=OP=2.5,⊙O的半径为3,∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故选:A.7.解:设比赛组织者应邀请x个队参赛,依题意,得: x(x﹣1)=28.故选:A.8.解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.9.解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x2+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二.填空题(共6小题,满分18分,每小题3分)10.解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4, n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.11.解:∵小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,∴S1=S﹣S=﹣××,S2=﹣2×1S3=﹣4×2…发现规律:Sn=﹣×(2n﹣1)×2n﹣2=×22n﹣2﹣22n﹣4×=22n﹣4(﹣)∴S2020的面积为:24036(﹣).故答案为:24036(﹣).12.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.13.解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.14.解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.15.解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段==π,第二段==π.故B点翻滚一周所走过的路径长度=π+π=π,三次一个循环,∵40÷3=13……1,若翻滚了40次,则B点所经过的路径长度为13×π+π=18π.故答案为:18π.三.解答题(共8小题,满分72分)16.解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x=﹣2+;1x=﹣2﹣.217.解:∵AB是⊙O的弦,OC⊥AB于点C,AB=8,∴AC=BC=4,∠ACO=90°,由勾股定理得:OC===2;18.解:(1)答:不正确,P(抽出“太阳”卡片)=,P(抽出“小花”卡片)=;(2)设“太阳”卡片与“小花”卡片分别为A,B,列表得:(A,B)(B,B)﹣﹣﹣(A,B)﹣﹣﹣﹣(B,B)﹣﹣﹣﹣﹣(B,A)(B,A)∴两张卡片都是“小花”的概率为=;(3)设应添加x张“太阳”卡片,,解得x=3.∴应添加3张“太阳”卡片.19.解:(1)画图形如右图所示:证明:由旋转的性质可得:CS=CN,AS=BN,又∵MN2=BN2+AM2,∴MN2=AS2+AM2=MS2,∴MS=MN,又∵CS=CN,CM=CM,∴△MCN≌△MCS(SSS).(2)由(1)得:△MCN≌△MCS,∴∠NCM=∠MCS=45°.20.证明:∵AE平分∠BAC,∴∠BAD=∠CAD,∵EF∥AC,∴∠FEA=∠CAD,∴∠BAD=∠FEA,∴FA=FE,∵AE⊥BE,∴∠BEF+∠AEF=90°,∵∠ABE+∠BAE=90°,∴∠ABE=∠BEF,∴FB=FE,∴FB=FA,即点F是AB的中点.21.解:(1)y=90﹣3(x﹣50)即y=﹣3x+240;(2)w=(x﹣40)y=(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3)w=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200∵a=﹣3<0,∴当销售价x=60元时,利润w最大.最大利润为1200元.22.解:(1)∵△ABC,△CPQ都是等边三角形,∴当PC=AB=2时,△ABC≌△QCP.∴t=2s,故答案为2.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵△CPQ是等边三角形,∴∠PCQ=60°,CP=CQ,∴∠ACP=∠BCQ=120°,∴△ACP≌△BCQ(SAS).(3)∵△ACP≌△BCQ,∴∠CAP=∠CBQ,∵∠BEP=∠ABE+∠BAE,∴∠BEP=∠ABC+∠BAC,∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠BEP=120°.(4)如图1中,∵△ACP≌△BCQ,∴∠CAF=∠CBG,∵CA=CB,∠ACF=∠BCG=60°,∴△ACF≌△BCG(ASA),∴CF=CG,∵∠GCF=60°,∴△GCF是等边三角形,当AG=2CG时,CG=cm,∴△CFG的周长为2cm如图2中,当CG=2AG时,CG=cm,△FCG的周长为4cm.综上所述,△CFG的周长为2cm或4cm.23.解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF :S△CDF=3:2,则OF:FD=3:2,∵DH∥CO,故CO:DM=3:2,则DM=C O=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设MH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点P(﹣,﹣);综上,点P的坐标(,)或(﹣,﹣).。
2021-2022学年武汉市武昌区初三数学第一学期元月调考数学试卷及解析
2021-2022学年武汉市武昌区初三数学第一学期元调数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程(9)3x x -=-化为一元二次方程的一般形式,其中二次项系数为1,一次项系数和常数项分别是( )A .9,3B .9,3-C .9-,3-D .9-,32.下列图形中,为中心对称图形的是( )A .B .C .D .3.将抛物线2y x =向右平移a 个单位,再向上平移b 个单位得到解析式242y x x =-+,则a 、b 的值是( )A .2-,2-B .2-,2C .2,2-D .2,24.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .3个球都是黑球B .3个球都是白球C .3个球中有黑球D .3个球中有白球5.由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π6.如图,Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,将ABC ∆绕点B 逆时针旋转得△A BC '',若点C '在AB 上,则AA '的长为( )A 13B .4C .5D .57.某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m ,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为( )A .16mB .20mC .24mD .28m8.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有2个相同的小球,它们分别写有字母C ,D ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从三个口袋中各随机取出1个小球.(本题中,A ,I 是元音字母;B ,C ,D ,H 是辅音字母),3个小球上恰好有1个元音字母的概率是( )A .16B .13C .12D .349.已知实数a ,b 分别满足2640a a -+=,2640b b -+=,且a b ≠,则22a b +的值为( )A .36B .50C .28D .2510.如图,ABC ∆中,90C ∠=︒,5BC =,D 为BC 边上一点,1CD =,AC BC >,E 为边AC 上一动点,当BED ∠最大时CE 的长为( )A .2B .3C 5D .231二、填空题(本大题共6个小题,每小题3分,共18分)11.已知2x =是一元二次方程2x p =的一个根,则另一根是 .12.某校九年级组织了篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排了45场比赛,设共有x 个队参赛,依题意列方程,化成一般式为 .13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .14.如图,四边形ABCD 内接于O ,若138BOD ∠=︒,则它的一个外角DCE ∠等于 .15.如图,Rt ABC ∆,90C ∠=︒,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当4AC =,6BC =时,则阴影部分的面积为 .16.抛物线2y ax bx c =++经过点(1,0)-,与y 轴的交点在(0,2)-与(0,3)-之间(不包括这两点),对称轴为直线2x =.下列结论:①0a b c ++<;②若点1(0.5,)M y 、2(2.5,)N y 在图象上,则12y y <;③若m 为任意实数,则2(4)(2)0a m b m -+-;④245()16a b c -<++<-.其中正确结论的序号为 .三、解答题(共8题,共72分)17.解方程:2410x x -+=.18.如图,在O 中,2AB AC π==,60BAC ∠=︒,求OA 的长度.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个,若从中任意摸出一个球,它是蓝球的概率为0.25.(1)直接写出袋中黄球的个数;(2)从袋子中一次摸2个球,请用画树状图或列表格的方法,求“取出至少一个红球”的概率.20.请用无刻度直尺按要求画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A ,B ,请画出这个圆的圆心;(2)如图2,BC 为O 的弦,画一条与BC 长度相等的弦;(3)如图3,ABC ∆为O 的内接三角形,D 是AB 中点,E 是AC 中点,请画出BAC ∠的角平分线.21.如图,在Rt ABC∠=︒,在AC上取一点D,以AD为直径作O,与AB相交于点E,作∆中,90C线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是O的切线;(2)若3BC=,O的半径为1.求线段EN与线段AE的长.AC=,422.某宾馆有50个房间供游客住宿,当每个房间的房价为每天200元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用,根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式;(2)当房价为多少时,宾馆每天的利润为10560元;(3)求出宾馆每天获得的最大利润.23.如图1,已知Rt ABC Rt DCE=.BC AB∠=∠=︒,2B D∆≅∆,90(1)若2AB =,求点B 到AC 的距离;(2)当Rt DCE ∆绕点C 顺时针旋转,连AE ,取AE 中点H ,连BH ,DH ,如图2,求证:BH DH ⊥;(3)在(2)的条件下,若2AB =,P 是DE 中点,连接PH ,当Rt DCE ∆绕点C 顺时针旋转的过程中,直接写出PH 的取值范围.24.如图1,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A -和点(3,0)B ,与y 轴的负半轴交于点C .(1)求这个函数的解析式;(2)点P 是抛物线上位于第四象限内的一点,当PBC ∆的面积最大时,点P 的坐标,并求出最大面积;(3)如图2,点T 是抛物线上一点,且点T 与点C 关于抛物线的对称轴对称,过点T 的直线TS 与抛物线有唯一的公共点,直线//MN TS 交抛物线于M ,N 两点,连AM 交y 轴正半轴于G ,连AN 交y 轴负半轴于H ,求OH OG -.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程(9)3x x -=-化为一元二次方程的一般形式,其中二次项系数为1,一次项系数和常数项分别是( )A .9,3B .9,3-C .9-,3-D .9-,3解:(9)3x x -=-,2930x x -+=, 所以一次项系数、常数项分别为9-、3,故选:D .2.下列图形中,为中心对称图形的是( )A .B .C .D .解:A .不是中心对称图形,故本选项不符合题意;B .是中心对称图形,故本选项符合题意;C .不是中心对称图形,故本选项不符合题意;D .不是中心对称图形,故本选项不符合题意.故选:B .3.将抛物线2y x =向右平移a 个单位,再向上平移b 个单位得到解析式242y x x =-+,则a 、b 的值是( )A .2-,2-B .2-,2C .2,2-D .2,2解:将抛物线2y x =向右平移a 个单位,再向上平移b 个单位得到解析式:2()y x a b =-+,即222y x ax a b =-++.222422y x x x ax a b ∴=-+=-++,24a ∴=,22a b +=.2a ∴=,2b =-.故选:C .4.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .3个球都是黑球B .3个球都是白球C .3个球中有黑球D .3个球中有白球解:A 、3个球都是黑球是随机事件; B 、3个球都是白球是不可能事件;C 、3个球中有黑球是必然事件;D 、3个球中有白球是随机事件;故选:B .5.由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π解:由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即22325πππ⨯-⨯=,故选:C .6.如图,Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,将ABC ∆绕点B 逆时针旋转得△A BC '',若点C '在AB 上,则AA '的长为( )A 13B .4C .5D .5解:如图,连接AA ',将ABC ∆绕点B 逆时针旋转得△A BC '',90A C B C ''∴∠=∠=︒,4A C AC ''==,AB A B '=,根据勾股定理得: 225AB BC AC =+=,5A B AB '∴==,2AC AB BC ''∴=-=,在Rt △AA C ''中,由勾股定理得:2225AA AC A C ''''=+=,故选:C .7.某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m ,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为( )A .16mB .20mC .24mD .28m 解:设圆弧形拱桥的圆心为O ,跨度为AB ,拱高为CD ,连接OA 、OD ,如图: 设拱桥的半径为R 米,由题意得:OD AB ⊥,4CD =米,24AB =米,则1122AD BD AB ===(米),(4)OD R =-米, 在Rt AOD ∆中,由勾股定理得:22212(4)R R =+-,解得:20R =,即桥拱的半径R 为20m ,故选:B .8.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有2个相同的小球,它们分别写有字母C ,D ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从三个口袋中各随机取出1个小球.(本题中,A ,I 是元音字母;B ,C ,D ,H 是辅音字母),3个小球上恰好有1个元音字母的概率是( )A .16B .13C .12D .34 解:根据题意画图如下:共有8种等可能的结果,其中3个小球上恰好有1个元音字母的有4种, 则3个小球上恰好有1个元音字母的概率是4182=. 故选:C .9.已知实数a ,b 分别满足2640a a -+=,2640b b -+=,且a b ≠,则22a b +的值为( )A .36B .50C .28D .25 解:2640a a -+=,2640b b -+=,且a b ≠,a ∴,b 可看作方程2640x x -+=的两根,6a b ∴+=,4ab =,∴原式22()262428a b ab =+-=-⨯=,故选:C .10.如图,ABC ∆中,90C ∠=︒,5BC =,D 为BC 边上一点,1CD =,AC BC >,E 为边AC 上一动点,当BED ∠最大时CE 的长为( )A .2B .3C .5D .231- 解:如图,过点D 作DF BE ⊥于点F ,90DFE ∴∠=︒,514BD BC CD =-=-=, 设CE x =,2221DE CE CD x ∴++,22222525BE BC CE x x =+=++,1122BDE S BD CE BE DF ∆=⨯⋅=⨯⋅, BD CE BE DF ∴⋅=⋅, 225BD CE DF BE x ⋅∴=+在Rt EDF ∆中,0x >,222424sin 2512625DF x DEF DE x x x x ∴∠===+⋅+++,0x >,222sin 25526()36DEF x x x x ∴∠=++-+,25()0x x-, ∴当25()0x x -=时,25()36x x-+有最小值,从而sin DEF ∠有最大值,即DEF ∠有最大值,解得,5x =±,其中5x =-不符合题意舍去,5x ∴=.∴当BED ∠最大时CE 的长为5.故选:C .二、填空题(本大题共6个小题,每小题3分,共18分)11.已知2x =是一元二次方程2x p =的一个根,则另一根是 2x =- .解:设一元二次方程2x p =的另一根是m ,依题意得:20m +=,解得:2m =-.∴方程的另一根是2x =-.故答案为:2x =-.12.某校九年级组织了篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排了45场比赛,设共有x 个队参赛,依题意列方程,化成一般式为 2900x x --= .解:设邀请x 个球队参加比赛,依题意得123145x +++⋯+-=,即(1)452x x -=, 化为一般形式为:2900x x --=,故答案为:2900x x --=.13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 12. 解:用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯. 经过搭配所能产生的结果如下:Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是12. 故答案为:12.14.如图,四边形ABCD 内接于O ,若138BOD ∠=︒,则它的一个外角DCE ∠等于 69︒ .解:138BOD ∠=︒,1692A BOD ∴∠=∠=︒, 180111BCD A ∴∠=︒-∠=︒,18069DCE BCD ∴∠=︒-∠=︒. 故答案为:69︒.15.如图,Rt ABC ∆,90C ∠=︒,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当4AC =,6BC =时,则阴影部分的面积为 12 .解:在Rt ACB ∆中,90ACB ∠=︒,4AC =,6BC =,由勾股定理得:222246213AB AC BC +=+=,所以阴影部分的面积22211112346(13)122222S πππ=⨯⨯+⨯⨯+⨯⨯-⨯⨯=, 故答案为:12.16.抛物线2y ax bx c =++经过点(1,0)-,与y 轴的交点在(0,2)-与(0,3)-之间(不包括这两点),对称轴为直线2x =.下列结论:①0a b c ++<;②若点1(0.5,)M y 、2(2.5,)N y 在图象上,则12y y <;③若m 为任意实数,则2(4)(2)0a m b m -+-;④245()16a b c -<++<-.其中正确结论的序号为 ①③④ . 解:二次函数2(0)y ax bx c a =++≠的图象与x 轴相交于点(1,0)A -,对称轴为直线2x =,∴二次函数2(0)y ax bx c a =++≠的图象与x 轴相交于点(1,0)A -,(5,0),二次函数与y 轴的交点(0,2)B -与(0,3)-之间(不包括这两点),大致图象如图:当1x =时,0y a b c =++<,故结论①正确;二次函数的对称轴为直线2x =,且0a >,20.5 1.5-=,2.520.5-=,12y y ∴>,故结论②不正确;2x =时,函数有最小值,242(am bm c a b c m ∴++++为任意实数),2(4)(2)0a m b m ∴-+-,故结论③正确;22b a-=, 4b a ∴=-,一元二次方程20ax bx c ++=的两根为1-和5,15c a∴-⨯=, 5c a ∴=-,32c -<<-,∴2355a <<, ∴当1x =时,8y abc a =++=-,2416855-<-<-, 245()16a b c ∴-<++<-,故结论④正确;故答案为①③④.三、解答题(共8题,共72分)17.解方程:2410x x -+=.解:移项得:241x x -=-,配方得:24414x x -+=-+,即2(2)3x -=, 开方得:23x -=±,∴原方程的解是:123x =+,223x =-.18.如图,在O 中,2AB AC π==,60BAC ∠=︒,求OA 的长度.解:60BAC ∠=︒,120BOC ∴∠=︒,2AB AC π==,3601202BOC AOB AOC ︒-∠∴∠=∠==︒, ∴1202180OA ππ⋅=, 3OA ∴=.故OA 的长度为3.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个,若从中任意摸出一个球,它是蓝球的概率为0.25.(1)直接写出袋中黄球的个数;(2)从袋子中一次摸2个球,请用画树状图或列表格的方法,求“取出至少一个红球”的概率. 解:(1)设袋中的黄球个数为x 个,∴10.2512x=++, 解得:1x =,经检验,1x =是原方程的解,∴袋中黄球的个数1个;(2)画树状图得:一共有12种等可能的情况数,其中“取出至少一个红球”的有10种,则“取出至少一个红球”概率是105 126=.20.请用无刻度直尺按要求画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A,B,请画出这个圆的圆心;(2)如图2,BC为O的弦,画一条与BC长度相等的弦;(3)如图3,ABC∆为O的内接三角形,D是AB中点,E是AC中点,请画出BAC∠的角平分线.解:(1)如图1中,点O即为所求作.(2)如图,线段AD即为所求作.(3)如图,射线AF即为所求作.21.如图,在Rt ABC∠=︒,在AC上取一点D,以AD为直径作O,与AB相交于点E,作∆中,90C线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是O的切线;(2)若3BC=,O的半径为1.求线段EN与线段AE的长.AC=,4解:(1)证明:如图,连接OE,NM是BE的垂直平分线,=,BN ENB NEB∴∠=∠,=OA OE∴∠=∠,A OEAC∠=︒,90∴∠+∠=︒,90A B90OEN ∴∠=︒,即OE EN ⊥, OE 是半径,EN ∴是O 的切线;(2)如图,连接ON ,设EN 长为x ,则BN EN x ==3AC =,4BC =,O 的半径为1,4CN x ∴=-,312OC AC OA =-=-=,2222OE EN OC CN ∴+=+,222212(4)x x ∴+=+-, 解得198x =,198EN ∴=.连接ED ,DB ,设AE y =,3AC =,4BC =,5AB ∴=, O 的半径为1.2AD ∴=,则222222DE AD AE y =-=-,321CD AC AD =-=-=,22217DB CD BC ∴=+=, AD 为直径,90AED DEB ∴∠=∠=︒,222DE EB DB ∴+=,即2222(5)17y y -+-=, 解得65y =, 198EN ∴=,65AE =. 22.某宾馆有50个房间供游客住宿,当每个房间的房价为每天200元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用,根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的正整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式;(2)当房价为多少时,宾馆每天的利润为10560元;(3)求出宾馆每天获得的最大利润.解:(1)由题意可得,5010x y =-, 即y 与x 的函数关系式为5010x y =-; (2)由题意可得,(20020)(50)1056010x x +--=, 解得160x =,2260x =,每个房间每天的房价不得高于340元,200340x ∴+,140x ∴,0140(x x ∴为10的整数倍), 60x ∴=,200260x ∴+=,答:当房价为260元时,宾馆每天的利润为10560元;(3)设利润为w 元, 由题意可得:2(20020)(50)0.1(160)1156010x w x x =+--=--+, ∴当160x <时,w 随x 的增大而增大,每个房间每天的房价不得高于340元,200340x ∴+,140x ∴,0140(x x ∴为10的整数倍)∴当140x =时,w 取得最大值,此时11520w =, 答:宾馆每天获得的最大利润是11520元.23.如图1,已知Rt ABC Rt DCE ∆≅∆,90B D ∠=∠=︒,2BC AB =.(1)若2AB =,求点B 到AC 的距离;(2)当Rt DCE ∆绕点C 顺时针旋转,连AE ,取AE 中点H ,连BH ,DH ,如图2,求证:BH DH ⊥;(3)在(2)的条件下,若2AB =,P 是DE 中点,连接PH ,当Rt DCE ∆绕点C 顺时针旋转的过程中,直接写出PH 的取值范围.解:(1)2BC AB =,2AB =,4BC ∴=,90B ∠=︒,2225AD AB BC ∴=+=设点B 到AC 的距离为h , 则1122ABC S AB BC AC h ∆=⋅=⋅, 4525AB BC h AC ⋅∴==, ∴点B 到AC 45; (2)证明:如图,连接CH ,点H是AE的中点,∴=,AH EH=,CA CECH AE∴⊥,∴∠=∠=︒,AHC EHC90ABC CDE∠=∠=︒,90∴,B,C,H四点在以AC为直径的圆上,AC,D,E,H四点在以CE为直径的圆上,∴∠=∠,CHD CED∠=∠,AHB ACB∠=∠,ACB CED∴∠=∠,AHB CHD∠+∠=︒,AHB BHC90∴∠+∠=︒,BHC CHD90∴∠=︒,90BHD即BH DH⊥;(3)解:如图,连接AD,点H是AE的中点,∴=,AH EH点P 是DE 的中点,EP DP ∴=,HP ∴是EAD ∆的中位线, 12HP AD ∴=, AC CD AD AC CD +-,∴当且仅当A ,C ,D ,三点共线时,AD 取得最大值为252+,AD 取最小值为252-, ∴5151PH -+.24.如图1,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A -和点(3,0)B ,与y 轴的负半轴交于点C .(1)求这个函数的解析式;(2)点P 是抛物线上位于第四象限内的一点,当PBC ∆的面积最大时,点P 的坐标,并求出最大面积;(3)如图2,点T 是抛物线上一点,且点T 与点C 关于抛物线的对称轴对称,过点T 的直线TS 与抛物线有唯一的公共点,直线//MN TS 交抛物线于M ,N 两点,连AM 交y 轴正半轴于G ,连AN 交y 轴负半轴于H ,求OH OG -.解:(1)将(1,0)A -和(3,0)B 代入2y x bx c =++得:01093b c b c =-+⎧⎨=++⎩,解得23b c =-⎧⎨=-⎩, ∴函数的解析式为223y x x =--;(2)过P 作//PQ y 轴交BC 于Q ,如图:在223y x x =--中,令0x =得3y =-,(0,3)C ∴-,(3,0)B ,∴直线BC 为3y x =-,设2(,23)P t t t --,则(,3)Q t t -,22(3)(23)3PQ t t t t t ∴=----=-+,PBC CPQ BPQ S S S ∆∆∆∴=+1()2B C PQ x x =⋅- 21(3)32t t =-+⨯ 23327()228t =--+, 302-<, 32t ∴=时,PBC S ∆最大为278, 此时3(2P ,15)4-; (3)抛物线223y x x =--对称轴为直线1x =,(0,3)C -与点T 关于抛物线的对称轴对称,(2,3)T ∴-,设直线TS 为y mx n =+,将(2,3)T -代入得:32m n -=+,23n m ∴=--,∴直线TS 为23y mx m =--,直线TS 与抛物线有唯一的公共点,∴22323y x x y mx m ⎧=--⎨=--⎩只有一个解,即2(2)20x m x m -++=有两个相等实数根, ∴△0=,即24480m m m ++-=,解得2m =,∴直线TS 为27y x =-,直线//MN TS ,∴设直线MN 为2y x h =+,解2223y x h y x x =+⎧⎨=--⎩得24x y h ⎧=⎪⎨=+-⎪⎩24x y h ⎧=+⎪⎨=++⎪⎩(2M ∴4h ++,(2N 4h +-,设直线AM 为y gx d =+, ∴04(2,g d h g d =-+⎧⎪⎨++=++⎪⎩解得d =OG ∴=,同理OH =,OH OG ∴-==-=242h h -=- 2=.。
2022-2023学年度武汉市部分学校九年级二月调研考试数学试卷
2022-2023学年度武汉市部分学校二月九年级调研考试数学试卷2023.2.21亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第1卷(非选择题)两部分组成.全卷共6页,三大题,满分120 分,考试用时 120 分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答在“试....卷”上无效......4.答第1卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效...........5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共 30 分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.“守株待兔”这个事件是A.随机事件B.确定性事件C.必然事件D.不可能事件2.下列图形是中心对称图形的是3.解一元二次方程x2-2x-4=0,配方后正确的是A.(x-1)2=3B.(x-1)2=4C.(x-1)2=5D.(x-2)2=84.已知一元二次方程x2+4x-1=0 的两根分别为m,n,则 mn-m-n 的值是A.5B.3C.-3D.-55.如图,已知⊙O的半径为5,直线AB经过⊙O上一点P,下列条件不能判定直线AB与⊙O相切的是A.OP=5B.∠APO=∠BPOC.点O到直线 AB 的距离是 5D.OP⟂AB6.某品牌手机原来每部售价为1999元,经过连续两次降价后,该手机每部售价为1 360元,设平均每次降价的百分率为x,根据题意,所列方程正确的是A.1999x2=1360B.1999(1-x2)=1360C.1999(1-x)2=1360D.1999(1-2x)=13607.如图,在平面直角坐标系中,矩形ABCO的两边与坐标轴重合,OA=2,OC=1,将矩形ABCO绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点B 的坐标是A.(-2,-1)B.(-1,2)C.(-2,1)D.(1,-2)8.在二次函数y=-x2+2x中,若函数值大于0,则结合函数图象判断x的取值范围是A.x<0 或x>2B.x>0 或x<-2C.-2 <x<0D.0<x<29. 如图,在圆内接四边形ABCD 中,AB=AD ,∠BAD=90°.若四边形ABCD 的而积是S ,AC 的长是x ,则S与x 之间函数关系式是A.S=x 2 B.S=12x 2 C.S=√2 x 2 D.23x 210.根据频率估计概率原理,可以用随机模拟的方法对圆周率进行估计.用计算机随机产生m 个有序数对(x ,y )(0≤x ≤1,0≤y ≤1),它们对应的点全部在平面直角坐标系中某一个正方形的边界及其内部、若统计出这些点中到原点的距离小于或等于1的点有n 个,则可估计 π 的值是A.m nB.n mC.2n mD.4nm 第Ⅱ卷(非选择题 共 90 分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.在平而直角坐标系中,点P (-3,4)关于原点对称的点的坐标是12.若一个长方形的长比宽多2,且面积为80,则宽是13.如图,⊙O 是△ABC 的内切圆,∠C=40°,则∠AOB 的大小是14.甲、乙、丙三位同学把自己的数学课本放在一起,每人从中随机抽取一本(不放回),三位同学抽到的课本都是自己课本的概率是 .15.已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(-1,0),下列结论:①b>0;②关于 x 的一元二次方程 ax2+bx+c=0有两个不相等的实数根;③当x<-1 时,y 随 x 的增大而减小;④m 为任意实数,若c=3a,则代数式am2+bm+c 的最小值是-a.其中正确的是(填写序号).16.如图,D是△ABC内一点,∠BDC=90°,BD=CD,AB=20,AC=21,AD=13,AD=13√2则 BC的长是2三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8 分)关于x的一元二次方程x2+bx+8=0 有一个根是x=2,求b 的值及方程的另一个根.18.(本小题满分8分)如图,在△ABC中,AC=BC,将△ABC绕点 A逆时针旋转60°,得到△ADE,连接 BD,BE.(1)判断△ABD的形状;(2)求证:BE平分∠ABD.19.(木小题满分 8 分)一个不透明的布袋中装有1个红球,1个黑球和若干个白球,它们除颜色外其余都相同.从中任意摸出1个球,是白球的概率为12(1)直接写出布袋中白球的个数;(2)从布袋中先摸出一个球后放回,再摸出一个球,请用列表或画树状图法求两次摸到的球都是白球的概率.20.(本小题满分8 分)如图,AB,CD是⊙O的两条弦,∠AOB + ∠COD=180°(1)在图(1)中,∠AOB=120°,CD=6,直接写出图中阴影部分的面积;(2)在图(2)中,E 是AB 的中点,判断OE 与CD 的数量关系,并证明你的结论.21.(本小题满分8分)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点 D,使;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N 两点,再画弦 MN 的中点 G.22.(本小题满分10 分)燃放烟花是一种常见的喜庆活动.如图,小杰燃放一种手持烟花,这种烟花每隔2 s 发射一枚花弹,每枚花弹的飞行路径视为同一条抛物线,飞行相同时间后发生爆炸.小杰发射出的第一枚花弹的飞行高度h(单位:m)随飞行时间t(单位:s)变化的规律如下表:(1)求第一枚花弹的飞行高度h与飞行时间1的函数解析式(不要求写出自变量的取值范围);(2)当第一枚花弹到达最高点时,求第二枚花弹到达的高度;(3)为了安全,要求花弹爆炸时的高度不低于30m.小杰发现在第一枚花弹煤炸的同时,第二枚花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求.23.(本小题满分 10 分)操作与思考如图(1),在△ABC 中,AB=AC,∠BAC=α,D 是异于A,B的一点,且∠ADB=90°,将线段AD绕点A逆时针旋转α,画出对应线段AE,连接DE交BC于点F,猜想BF 与CF的数量关系,并证明你的猜想;迁移与运用如图(2),在△ABC和△CDE中,AC=BC,CD=CE,∠ACB=∠DCE=90°,AC=√10,CD=√2,ED 的延长线交 AB 于点 F,且∠BDC=90°,直接写出 EF 的长.24.(本题满分12分)如图,抛物线y=x2-2x-6与x轴分别相交于A,B两点(点A在点B的左侧),C是AB的中点,平行四边形CDEF的顶点 D,E 均在抛物线上.(1)直接写出点C的坐标;(2)如图(1),若点D的横坐标是-2,点E在第三象限,平行四边形CDEF的面积是 13,求点 F 的坐标;(3)如图(2),若点F在抛物线上,连接 DF,求证:直线 DF 过一定点.。
2019年武汉市九年级元月调考数学模拟卷1-学生版-打印
A.有最大值 4 B.有最小值 4
C.有最小值 3 D.无法确定最值
6.一元二次方程 x2+6x+9=0 的根的情况是( )
A.有两个相等的实数根
B.有两个不相等的实数偎
C.只有一个实数根
D.没有实数根
7.一元二次方程 x2﹣3x=1 的两个实数根为 α ,β ,则 α +β 值为
()
A.3
B.﹣1
(1)求 y 与 x 之间的函数关系式; (2)若某蜜桔经销商想要每天获得 150 元的纯利润,售价应定为多
少?
14.将抛物线 y= x2﹣6x+21 向左平移 2 个单位后,得到新抛物线
的解析式为
。
15.已知正方形内接于半径为 20,圆心角为 90°的扇形(即正方形
的各顶点都在扇形边或弧上),则正方形的边长是
。
12.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼
品,共互送 110 份小礼品,则参加聚会的有
名同学.
13.如图,在 Rt△ABC 中,∠BCA=90°,∠BAC=30°,BC=2,将 Rt
△ABC 绕 A 点顺时针旋转 90°得到 Rt△ADE,则 BC 扫过的面积
为
.
19.我市花果山蜜桔营养丰富、入口甜香.特别是农户与华中农业 大学共同培育的新品种“果蜜一号”更是享誉省内外.该品种蜜 桔成本价为 10 元/千克,已知售价不低于成本价,且物价部门规 定该蜜桔的售价不高于 18 元/千克.市场调查发现,蜜桔每天的 销售量 y(千克)与售价 x(元/千克)之间的函数关系如图所示:
弱水数学社出品
18.在一个不透明的布袋中装有相同的三个小球,其上面分别标注 数字﹣1、2、﹣3,现从中任意摸出一个小球,将其上面的数字作 为点 A 的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球, 将其上面的数字作为点 A 的纵坐标.
九年级元月调考数学模拟试卷(一)
C九年级元月调考数学模拟试卷(一)编辑人:袁几 考试时间:120分钟考试指南报武汉市2011年元月调考模拟试题一 一、选择题(每小题3分,共36分) 1.要使式子21+x 有意义,x 的取值范围是( )A.x >2 B .x ≥2 C . x ≥-2 D.x>-2 2.下列运算,正确的是( )A .、2+3=5B .5 ×5 = 25C 、2273+=3+7 D .24÷6=23.如果一5是一元二次方程2x +c=O 的一个根,则方程的另一根为( ) A.5 B. 5 C .- 5 D.254.下列事件中,必然事件是( )A .掷一枚硬币,正面朝上B .抛出的篮球会下落C .买电影票正好座位号是偶数D .没有水种子发芽5.小明抛一枚硬币10次,有7次正面向上,当他抛第20次时正面向上的概率为( ) A 。
107 B21 C207 D20136.在平行四边形、矩形、菱形、等腰梯形4个四边形中,顺次连接每个四边形的四边中点,所得图形是中心对称图形但不是轴对称图形,则这个四边形是( )A .平行四边形B .矩 形 C.菱形 D.等腰梯形7.如图,数轴上A 、B 两点表示的数分别为一1和3,点B 关于电A 的对称点为C ,则点C 所表示的数为( )OCAA .-2- 3B .-1-3C .-2+3D .1+38.如图,⊙O 是△ABC 的外接圆,已知∠AB0=50°,则∠ACB 的大小为( ) A.40° B.30° C.45° D.50°9.挂钟分针长10cm ,经过45分钟,它的针尖转过的弧长是( ) A .215π cm B.15πcm C.275 πcm D.75π cm10.某超市一月份营业额为36万元,第一季度营业额为127万元,设每月的平均增长率为x ,则可列方程为( )A.36( 1+x)2=127B.36( l+x)+36( 1+x)2=127C.36( 1+2x)=127D.36+36(l+x)+36( 1+x)2=127 ,11.对于-元二次方程a 2x +bx+c=O(a ≠0),下列说法:,①当b=0时,方程a 2x +bx+c=O 一定有两个互为相反数的实数根; ②当b ≠0且c=0时,方程a 2x +bx+c=O 一定有两个实数根且有一根为0; ③当a+b+c=0时,方程a 2x +bx+c=O 一定有两个不相等的实数根;④当a>0,c>0且a-b+c<0时,方程a 2x +bx+c=O 一定有两个不相等的实数根. 其中正确的是( )A.①②③B.①②④C.②③④D.②④、12.如图,BC 是⊙O 的直径,半径为R,A 为半圆上一点,I 为△ABC 的内心,延长AI 交BC 于D 点,交⊙0于点E ,过,作IFIBC ,连结AO ,BI.下列结论:①AB+AC=BC+2IF; ②4∠AIB-∠BOA =360°;③EB=EI;④AER IF 为定值,其中正确的结论有( )A.①③④B.①②③C.①②③④D.①②④ 二.填空题(每小题3分,共12分)13.观察分析下列数据,按规律填空:2,2,6,22,10,…,第n 个数为___14..两个连续整数的积为210,则这两个数分别为_____________15.如右图,在四边形ABCD 中,∠B+∠D=180°∠ACD=60°,则四边形ABCD 的面积为___________. 16.相交两圆的公共弦为6,两圆的半径分别为32和5, 则两圆的圆心距离为_____ 三、解答题(共72分) 17.(6分)解方程:2x +2x-2=018.(6分)先化简,再求值. 32x 18+62x -4xx81,其中x=4119.(6分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球. (1)求从中随机取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是41求y 与x 之间的函数关系式.B20.(7分)如图,直线y=21x+2交x 轴于A ,交y 轴于B(1)直线AB 关于y 轴对称的直线解析式为_________(2) 直线AB 绕原点旋转180度后的直线解析式为_________(3)将直线AB 绕点P(-1,0)顺时针方向旋转90度,求旋转后的直线解析式。
2021-2022学年湖北省武汉市新动力九年级元月调考数学模拟练习试卷(一)(附详解)
2021-2022学年湖北省武汉市新动力九年级元月调考数学模拟练习试卷(一)一、选择题(本大题共10小题,共30.0分)1.一元二次方程3x2−x−2=0的二次项系数是3,它的一次项系数是()A. −1B. −2C. 1D. 02.把“武汉加油”的首字母看成图形,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.军运会设计运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是()A. 某运动员两次射击总环数大于1B. 某运动员两次射击总环数等于1C. 某运动员两次射击总环数大于20D. 某运动员两次涉及总环数等于204.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A. 0B. 1C. 2D. 不能确定5.用配方法解一元二次方程x2−6x−4=0,下列变形正确的是()A. (x−6)2=−4+36B. (x−6)2=4+36C. (x−3)2=−4+9D. (x−3)2=4+96.二次函数y=−2x2+4x+1的图象如何移动就得到y=−2x2的图象()A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位7.如图,在矩形ABCD中,AD=2,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则四边形ABCE的面积为()A. 2√2B. 8√2−4C. 4√2−2D. 2√2−28.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A. 38B. 58C. 23D. 129.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A. 2√2−12aB. √2+12aC. √2aD. (√2−14)a10.已知二次函数y=x2−2x−2022的图象上有两点A(a,−1)和B(b,−1),则a2+2b−3的值等于()A. 2020B. 2021C. 2022D. 2023二、填空题(本大题共6小题,共18.0分)11.已知点P(2,−3)关于原点对称的点的坐标是______.12.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为______.13.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是______%.14.如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是⊙O上一点(不与G、E重合),∠CDE=18°,则∠GFE的度数是______.15.已知一个圆心角为270°的扇形工件,没搬动前如图所示,A、B两点触地放置,滚动至点B再次触地时停止,扇形工件直径为5m,则圆心O所经过的路线长是______m.16.如图,二次函数y=ax2+bx+c的图象经过点A(1,0),与y轴的交点为C,对称轴>0;②若点P(−2−t2,y1)和Q(t2+3,y2)是为直线x=−1,下列结论:①4ac−b2abc<x<1;该抛物线上的两点,则y1>y2;③不等式cx2+bx+a<0的解集为−13④在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形.其中一定正确的是______(填序号即可).三、解答题(本大题共8小题,共72.0分)17.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE//AB,交AO的延长线于点E,求证:∠BCO=∠E.19.一个不透明的袋子中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸出一个小球然后放回,再随机摸出一个小球.求第二次摸出的小球标号能整除第一次摸出的小球标号的概率.(2)随机摸出一个小球然后不放回,则两次摸出的小球标号之和为______的概率最大,这个最大概率是______.20.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果).(1)如图1,点E是▱ABCD边CD上一点,在AB边上取一点F,使得DE=BF;(2)如图2,在3×3正方形网格中,点A、B、C在格点上,过点C作CH⊥AB于H;(3)如图3,AB是⊙O的直径,弦DE⊥AB,点C在⊙O外,过点C作CG//DE交AB于G;(4)如图4,点E是正方形ABCD边BC上一点,连接AE,将△ABE绕A点逆时针旋转90°得到△ADG,画出△ADG.21.如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连结DP并延长交AB于点E.(1)求证:DE为半圆O的切线;(2)求AE的值.BE22.个体户小陈新进一种时令水果,成本为20元/kg,经过市场调研发现,这种水果在未来40天内的日销售量m(kg)与时间t(天)的关系如表:时间t(天)1351036…日销售量m(kg)9490867624…t+未来40天内,前20天每天的价格y1(元/kg)与时间t(天)的函数关系式为y1=14 25(1≤t≤20且t为整数),后20天每天的价格y2(元/kg)与时间t(天)的函数关系式t+40(21≤t≤40且t为整数).为y2=−12(1)直接写出m(kg)与时间t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,个体户小陈决定每销售1kg水果就捐赠a元利润(a<4且a为整数)给贫困户,通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求前20天中个体户小陈共捐赠给贫困户多少钱?23.【问题背景】如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF、BE、DF之间的数量关系是EF=BE+DF,【迁移应用】如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,且∠B+∠D=180°,求证:EF= BE+DF.【联系拓展】如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系是______.24.在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A(−1,0)、B(A在B的左边),与y轴交于C,且OB=4OA.(1)求抛物线的解析式;(2)如图1,直线y=x交抛物线于D、E两点,点F在抛物线上,且在直线DE下方,若以F为圆心作⊙F,当⊙F与直线DE相切时,求⊙F最大半径r及此时F坐标;(3)如图2,M是抛物线上一点,连接AM交y轴于G,作AM关于x轴对称的直线交抛物线于N,连接AN、MN,点K是MN的中点,若G、K的纵坐标分别是t、n.求t,n的数量关系.答案和解析1.【答案】A【解析】解:一次项系数为−1,故选:A.根据一元二次方程的定义即可求出答案.本题考查一元二次方程,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.2.【答案】B【解析】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.3.【答案】D【解析】解:A、某运动员两次射击总环数大于1,是必然事件,不合题意;B、某运动员两次射击总环数等于1,是不可能事件,不合题意;C、某运动员两次射击总环数大于20,是不可能事件,不合题意;D、某运动员两次涉及总环数等于20,是随机事件.故选:D.直接利用随机事件以及必然事件的定义分别分析得出答案.此题主要考查了随机事件,正确掌握相关定义是解题关键.【解析】解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,=4.8,∴斜边上的高为:AB⋅ACBC∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.根据直线和圆的位置关系与数量之间的联系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.考查了直线和圆的位置关系与数量之间的联系,难度一般,关键是掌握d与r的大小关系所决定的直线与圆的位置关系.5.【答案】D【解析】【分析】本题考查了解一元二次方程,利用配方法解一元二次方程:移项、二次项系数化为1,配方,开方.根据配方法,可得方程的解.【解答】解:x2−6x−4=0,移项,得x2−6x=4,配方,得(x−3)2=4+9.故选D.6.【答案】C【解析】【分析】本题考查二次函数图象与几何变换.讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.利用二次函数的图象的性质.解:二次函数y=−2x2+4x+1的顶点坐标为(1,3),y=−2x2的顶点坐标为(0,0),∴向左移动1个单位,向下移动3个单位.故选:C.7.【答案】C【解析】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=90°,由旋转得:BC=EF,AB=AE,∵DE=EF,∴AD=DE=2,即△ADE为等腰直角三角形,根据勾股定理得:AE=√AD2+DE2=√22+22=2√2,则AB=AE=2√2,AD⋅DE=∴四边形ABCE的面积=矩形ABCD的面积−△ADE的面积=AB⋅AD−124√2−2,故选:C.由旋转的性质得到AD=EF,AB=AE,再由DE=EF,等量代换得到AD=DE,即△AED为等腰直角三角形,利用勾股定理求出AE的长,即为AB的长,再根据矩形和三角形的面积公式求出矩形ABCD的面积和△ADE的面积,即可得到四边形ABCE的面积.此题考查了旋转的性质,矩形的性质,勾股定理,熟练掌握旋转的性质是解本题的关键.8.【答案】D【解析】【分析】本题考查列表法与树状图法,解题的关键是明确题意,写出所有的可能性.根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到至少有两枚硬币正面向上的概率.【解答】解:由题意可得,所有的可能性为:∴共有8种等可能情况,其中至少有两枚硬币正面向上的有4种,∴至少有两枚硬币正面向上的概率是:48=12,故选:D.9.【答案】B【解析】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB 分别相交于点G、H,且EH的延长线与CB的延长线交于点D ∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知12×AC×BC=12×AC×OE+12×BC×OF∴OE=OF=12a=EC=CF,BF=BC−CF=0.5a,GH=2OE=a ∵由切割线定理可得BF2=BH⋅BG∴14a2=BH(BH+a)∴BH=−1+√22a或BH=−1−√22a(舍去)∵OE//DB,OE=OH ∴△OEH∽△BDH∴OEOH =BDBH∴BH=BD,CD=BC+BD=a+−1+√22a=1+√22a.故选:B.连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O 的半径为0.5a,则BF=a−0.5a=0.5a,再由切割线定理可得BF2=BH⋅BG,利用方程即可求出BH,然后又因OE//DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.10.【答案】C【解析】解:∵点A(a,−1)和B(b,−1)在二次函数y=x2−2x−2022的图象上,∴a、b是方程x2−2x−2022=−1的两个根,∴a+b=2,∵将A(a,−1)代入y=x2−2x−2022,∴a2−2a−2022=−1,∴a2=2a+2021,∴a2+2b−3=2a+2021+2b−3=2(a+b)+2018=4+2018=2022,故选:C.由题意可得a、b是方程x2−2x−2022=−1的两个根,则有a+b=2,又由a2=2a+ 2021,将所求式子变形为a2+2b−3=2a+2021+2b−3,然后再求值即可.本题考查二次函数图象上点的坐标特点,熟练掌握二次函数的图象与性质,二次函数与方程之间的关系是解题的关键.11.【答案】(−2,3)【解析】【分析】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(2,−3)关于原点对称的点的坐标是(−2,3),故答案为:(−2,3).12.【答案】π8【解析】解:设正方形的边长为2a,则正方形的内切圆的半径为a,所以针尖落在黑色区域内的概率=12⋅π⋅a24a2=π8.故答案为π8.用圆的面积的一半除以正方形的面积得到针尖落在黑色区域内的概率.本题考查了几何概率:某事件的概率=某事件对应的面积与总面积之比.13.【答案】10【解析】解:设平均每年下降的百分率是x,根据题意得50(1−x)2=40.5解得x1=0.1,x2=1.9(不合题意,舍去)所以平均每年下降的百分率是10%.设平均每年下降的百分率是x,降尘量经过两年从50吨下降到40.5吨,所以可以得到方程50(1−x)2=40.5,解方程即可求解.本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“−”.14.【答案】48°或132°【解析】解:如图,连接DG,∵BC与⊙A相切于点D,∴∠ADB=∠ADC=90°,∵AB=6,AG=AD=3,∴BG=AG=3,∴DG=12AB=AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∵AD=AE,∴∠AED=∠ADE,∴∠CDE=18°,∴∠AED=∠ADE=90°−18°=72°,∴∠CAE=180°−72°−72°=36°,∴∠GAE=60°+36°=96°,当点F在⊙O上且在△ABC的外部时,则∠GFE=12∠GAE=12×96°=48°;当点F′在⊙O上且在△ABC的内部时,则∠GF′E=180°−∠GFE=180°−48°=132°,故答案为:48°或132°.连接DG,先由BC与⊙A相切于点D,证明∠ADB=∠ADC=90°,再证明△ADG是等边三角形,则∠DAG=60°,由∠ADE=∠AED=90°−18°=72°得∠CAE=36°,于是∠GAE=60°+36°=96°,当点F在⊙O上且在△ABC的外部时,则∠GFE=12∠GAE= 48°;当点F′在⊙O上且在△ABC的内部时,则∠GF′E=180°−∠GFE=132°.此题考查圆的切线的性质、圆周角定理、等腰三角形的性质、等边三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半等知识,正确地作出所需要的辅助线是解题的关键.15.【答案】5π【解析】解:∵∠AOB=360°−270°=90°,∴∠ABO=45°,∴圆心O旋转的长度为2×45×π×52180=54π(m),圆心O移动的距离为270π×5 2180=154π(m),∴圆心O所经过的路线长是54π+154π=5π(m),故答案为:5π.根据图形运动方式可知,点O经过的路线有两次旋转45°的弧,中间是平移.本题主要考查了图形的运动,弧长公式等知识,正确理解点O经过的路线是解题的关键.16.【答案】②④【解析】解:∵开口向下,∴a<0,∵对称轴为直线x=−1,∴b=2a<0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc>0,∵图象与x轴有两个不同的交点,∴Δ=b2−4ac>0,∴4ac−b2abc<0,故①不正确;∵−1−(−2−t2)=1+t2,t2+3+1=t2+4,∴t2+4>1+t2,∴y1>y2,故②正确;∵函数经过(1,0),∴a+b+c=0,即a+2a+c=0,∴c=−3a,∴cx2+bx+a<0可化为−3ax2+2ax+a<0,∴−3x2+2x+1<0,解得x>1或x<−13,故③不正确;过点C作CM垂直对称轴交于点M,设BN=m,则BM=−3a−m,当∠ABC=90°时,∠BAN=∠CBM,∴m2=1−3a−m,∴m2+3am+2=0,∵Δ=9a2−8≥0时,m存在,∴当a≤−2√23时,∠ABC=90°,∴在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形,故④正确;故答案为:②④.由图可得a<0,b=2a<0,c>0;图象与x轴有两个不同的交点,则Δ=b2−4ac>0;将(1,0)代入y=ax2+bx+c,可得c=−3a,所以y=ax2+2ax−3a;再分别对每个选项进行验证即可.本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,数形结合解题是关键.17.【答案】解:∵关于x的一元二次方程x2−bx+2=0有一个根是x=1,∴1−b+2=0,解得:b=3,把b=3代入方程得:x2−3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【解析】把x=1代入方程计算求出b的值,进而求出另一根即可.此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【答案】证明:∵将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,∴AO=CO,∴∠A=∠ACO,∵AB//DE,∴∠A+∠E=180°,又∵∠ACO+∠BCO=180°,∴∠BCO=∠E.【解析】由旋转的性质可得AO=CO,可得∠A=∠ACO,由平行线的性质和邻补角的性质可得结论.本题考查了旋转的性质,等腰三角形的性质,平行线的性质,灵活运用这些性质解决问题是解题的关键.19.【答案】513【解析】解:(1)列表如下:由表可知,共有16种等可能结果,其中第二次摸出的小球标号能整除第一次摸出的小球标号的有8种结果,∴第二次摸出的小球标号能整除第一次摸出的小球标号的概率为816=12;(2)列表如下:由表知,共有12种等可能结果,其中两次摸出的小球标号之和为5的次数最多,有4次,所以两次摸出的小球标号之和为5的概率最大,最大概率为412=13,故答案为:5、13.(1)列表得出所有等可能结果,从中找到第二次摸出的小球标号能整除第一次摸出的小球标号的结果数,再根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到标号之和出现次数最多的数,再根据概率公式求解即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.20.【答案】解:(1)如图1中,点F即为所求;(2)如图2中,线段CH即为所求;(3)如图3中,直线CG 即为所求;(4)如图4中,△ADG 即为所求.【解析】(1)连接AC ,BD 交于点O ,连接EO ,延长EO 交AB 于点F ,点F 即为所求; (2)取格点E ,F ,连接EF 交AB 于点H ,连接CH ,线段CH 即为所求;(3)连接CE 交AB 于点R ,交⊙O 于点T ,连接DT ,CB 交于点J ,连接DR ,延长DR 交⊙O 于W ,连接JW 交AB 于点K ,连接TK ,延长TK 交⊙O 于点L ,连接BL ,延长BL ,DW 交于点C′,连接CC′交AB 于点G ,直线CG 即为所求.(4)连接AC ,BD 交于点O ,连接EO ,延长EO 交AD 于点F ,连接BF 交AC 于点J ,连接DJ ,延长DJ 交AB 于点K ,连接KF ,延长KF 交CD 的延长线于点G ,连接AG ,△ADG 即为所求. 本题考查作图−旋转变换,全等三角形的判定和性质,平行四边形的性质,轴对称的性质等知识,解题的关键是掌握轴对称的性质,灵活运用所学知识解决问题.21.【答案】(1)证明:连接OP ,OD ,∵BC 是⊙O 的直径, ∴OP =OC ,∵以点D 为圆心、DA 为半径做圆弧, ∴PD =CD ,在△ODP 和△ODC 中,{OP =OCOD =OD OP =OC, ∴△ODP≌△ODC(SSS),∴∠OPD=∠OCD=90°,∵P点在⊙O上,∴DE为半圆O的切线;(2)解:∵以点O为圆心、OB为半径做圆弧,四边形ABCD是正方形,∴EB是⊙D的切线,∵DE为半圆O的切线,∴EB=EP,设正方形的边长为a,EB=EP=x,∴AE=a−x,DE=a+x,∵AD 2+AE 2=DE 2,∴a 2+(a−x) 2=(a+x) 2,解得x=,∴BE=,∴AE=3EB,∴=3.【解析】(1)根据SSS证得△ODP≌△ODC,从而证得∠OPD=∠OCD=90°,即可证得结论;(2)根据切线定理和勾股定理得到AB=3EB,即可证得AE=3EB,从而求得=3.本题考查了正方形的性质,切线的判定和性质,全等三角形的判定和性质,切割线定理,切线长定理,解题时注意切割线定理的运用.22.【答案】解:(1)设一次函数为m =kt +b ,将{t =1m =94和{t =3 m =90代入一次函数m =kt +b 中, 有{94=k +b 90=3k +b , ∴{k =−2b =96.∴m =−2t +96.经检验,其它点的坐标均适合以上解析式, 故所求函数解析式为m =−2t +96;(2)设前20天日销售利润为p 1元,后20天日销售利润为p 2元. 由p 1=(−2t +96)(14t +25−20) =(−2t +96)(14t +5)=−12t 2+14t +480 =−12(t −14)2+578, ∵1≤t ≤20,∴当t =14时,p 1有最大值578(元). 由p 2=(−2t +96)(−12t +40−20) =(−2t +96)(−12t +20)=t 2−88t +1920 =(t −44)2−16.∵21≤t ≤40,此函数对称轴是t =44,∴函数p 2在21≤t ≤40上,在对称轴左侧,随t 的增大而减小. ∴当t =21时,p 2有最大值为(21−44)2−16=529−16=513(元). ∵578>513,故第14天时,销售利润最大,为578元;(3)p 1=(−2t +96)( 14t +25−20−a)=−12t 2+(14+2a)t +480−96a 对称轴为t =14+2a . ∵1≤t ≤20,∴当t≤2a+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴19.5<2a+14,∴2.75<a<4.又∵a为整数,∴a=3,40天的总销量=(−2×1+96)+(−2×2+96)+...+(−2×20+96)=−2×(1++1920=−420+1920=1500,2+...+20)+96×20=−2×(1+20)×202∴小陈共捐赠给贫困户=1500×3=4500元.答:前20天中个体户小陈共捐赠给贫困户4500元.【解析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围,确定a的值,算出总的销量可得答案.此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.23.【答案】DE2=BD2+EC2【解析】【问题背景】证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠BAD=∠ADC=90°,把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,AG=AE,∵∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,∴点F、D、G在同一条直线上;∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=90°−45°=45°,∴∠GAF=∠EAF,∵AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF=DG+DF=BE+DF,【迁移应用】证明:如图2,由题意得,AB=AD,∠BAD=90°,把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,∠ADG=∠B,AG=AE,∵∠B+∠ADC=180°,∴∠ADG+∠ADC=180°,∴点F、D、G在同一条直线上;∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=90°−45°=45°,∴∠GAF=∠EAF,∵AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF=DG+DF=BE+DF,【联系拓展】DE2=BD2+EC2,证明:如图3,由题意得,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°;把△ABD绕点A逆时针旋转90°到△ACG,则∠CAG=∠BAD,∠ACG=∠B=45°,AG=AD,CG=BD,∴∠ECG=∠ACB+∠ACG=90°;∵∠DAE=45°,∵∠GAE=∠CAG+∠CAE=∠BAD+∠CAE=90°−45°=45°,∴∠GAE=∠DAE,∵AE=AE,∴△AEG≌△AED(SAS),∴GE=DE,∵GE2=CG2+EC2,∴DE2=BD2+EC2.故答案为:DE 2=BD 2+EC 2.【问题背景】把△ABE 绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,证明△AFG≌△AFE(SAS),由全等三角形的性质可得出结论;【迁移应用】把△ABE 绕点A 逆时针旋转90°到△ADG ,则∠DAG =∠BAE ,∠ADG =∠B ,AG =AE ,证明△AFG≌△AFE(SAS),由全等三角形的性质可得出结论;【联系拓展】仍然用(1)中的方法,将BD 、DE 、EC 转化为同一直角三角形的三条边,即可得到所猜想的结论.本题是四边形综合题,考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理,熟练掌握全等三角形的判定与性质是解题的关键.24.【答案】解:(1)∵A(−1,0),∴OA =1,∴OB =OC =4OA =4,∴B(4,0),C(0,−4),将点A 、点C 的坐标代入y =x 2+bx +c ,∴{0=1−b +c −4=c ,解得{b =−3c =−4, ∴抛物线的解析式为:y =x 2−3x −4;(2)联立{y =x 2−3x −4y =x ,解得{x =2−2√2y =2−2√2或{x =2+2√2y =2+2√2, ∴D(2−2√2,2−2√2),E(2+2√2,2+2√2),∴DE =8,设⊙F 与DE 相切于H ,连接FH ,FD ,FE ,过点F 作FG ⊥x 轴交DE 于G ,设点F 的坐标为(x,x 2−3x −4),∴FH ⊥DE ,G(x,x),∴FG =x −(x 2−3x −4)=−x 2+4x +4,∵DE 为定值,S △DEF =12DE ⋅FH =4FH ,∴当△DEF 的面积最大时,FH 最大,即r 最大,而S △DEF =12FG(x E −x D )=12(−x 2+4x +4)[(2+2√2)−(2−2√2)] =−2√2(x −2)2+16√2,∵−2√2<0,∴当x =2时,S △DEF 最大,其最大值为16√2,此时FH =4√2,点F 的坐标为(2,−6);(3)设AN 与y 轴交于点P ,由题意可知,点G 的坐标为(0,t),由对称的性质可知,点P 的坐标为(0,−t),设直线AM 的解析式为:y =kx +a , 将A 、G 的坐标代入,得{0=−k +a t =a, 解得{k =t a =t, ∴直线AM 的解析为:y =tx +t ,同理可求得,直线AN 的解析式为:y =−tx −t ,联立{y =x 2−3x −4y =tx +t,解得{x =−1y =0或{x =4+t y =t 2+5t , ∴点M 的坐标为(4+t,t 2+5t),同理可得点N 的坐标为(4−t,t 2−5t),∴点K 的纵坐标为n =(t 2+5t)+(t 2−5t)2=t 2,即n=t2.【解析】(1)根据题意,即可求出点B和点C的坐标,然后将A、C两点的坐标代入解析式中即可求出结论;(2)联立方程即可求出D、E坐标,从而求出DE,设⊙F与DE相切于H,连接FH,FD,FE,过点F作FG⊥x轴交DE于G,设点F的坐标为(x,x2−3x−4),由DE为定值,S△DEF=1DE⋅FH可知:2当△DEF的面积最大时,FH最大,即r最大,利用“铅垂高,水平宽”求出△DEF的面积的最大值,即可求出r的最大值和此时点F的坐标;(3)设AN与y轴交于点P,利用待定系数法求出直线AM和AN的解析式,联立方程即可求出点M和点N的坐标,再根据中点公式即可求出结论.本题属于二次函数综合题,主要考查待定系数法求函数表达式,圆的切线的性质与判定,三角形的面积,中点坐标公式等知识,关键(2)熟练掌握三角形面积的不同求解方法;(3)待定系数法求解析式的熟练应用.。
2020~2021学年度武汉市九年级元月调考数学试卷(元调)
2020~2021学年度武汉市部分学校九年级质量检测数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2x 2-1=3x 化成一般形式后,二次项系数和一次项系数分别是( )A .2,-1B .2,0C .2,3D .2,-3 2.下列垃圾分类标识的图案是中心对称图形的是( )A .B .C .D .3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是( )A .B .C .D .4.已知⊙O 的半径等于3,圆心O 到点P 的距离为5,那么点P 与⊙O 的位置关系是( )A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定 5.一元二次方程x 2-4x -1=0配方后正确的是( )A .(x +2)2=3B .(x +2)2=5C .(x -2)2=3D .(x -2)2=56.在平面直角坐标系中,抛物线y =(x +2)(x -4)经变换后得到抛物线y =(x -2)(x +4),则下列变换正确的是( )A .向左平移6个单位B .向右平移6个单位C .向左平移2个单位D .向右平移2个单位7.如图,将△ABC 绕点C 按逆时针方向旋转至△DEC ,使点D 落在BC 的延长线上已知∠A =33°,∠B =30°,则∠ACE 的大小是( )A .63°B .58°C .54°D .52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是( )A .49 B .59 C .1727D .79 9.如图,PM ,PN 分别与⊙O 相切于A ,B 两点,C 为⊙O 上一点,连接AC ,BC .若∠P =60°,∠MAC=75°,AC 1,则⊙O 的半径是( )A BC .32D10.已知二次函数y =2020x 2+2021x +2022的图象上有两点A (x 1,2023)和B (x 2,2023),则当x =x 1+x 2时,二次函数的值是( ) A .2020 B .2021 C .2022 D .2023E BC D A二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点P (-1,2)关于原点对称的点的坐标是__________.12.如图,平行四边形ABCD 的对角线交于点O ,过点O 的直线EF 分别交边AB ,CD 于E ,F 两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是__________.13.国家实施“精准扶贫”政策以来贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是__________.14.已知O ,I 分别是△ABC 的外心和内心,∠BOC =140°,则∠BIC 的大小是__________.15.如图,放置在直线l 上的扇形OAB ,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA =1,∠AOB =90°,则点O 所经过的路径长是__________.第12题图 第15题图16.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上.若x 1<x 2,x 1+x 2<2m ,则y 1<y 2. 其中正确的结论是__________(填写序号). 三、解答题(共8小题,共72分) 17.(本小题满分8分)若关于x 的一元二次方程x 2-bx +2=0有一个根是x =1,求b 的值及方程的另一个根. 18.(本小题满分8分)如图,将△ABC 绕点C 顺时针旋转得到△DEC ,点D 落在线段AB 上.求证:DC 平分∠ADE .19.(本小题满分8分)小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品. (1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.③②① lBO ABOAOBEBDCA如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P 经过A ,B 两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示). (1)在图(1)中,⊙P 经过格点C ,画圆心P ,并画弦BD ,使BD 平分∠ABC ;(2)在图(2)中,⊙P 经过格点E ,F 是⊙P 与网格线的交点,画圆心P ,并画弦FG ,使FG =F A .21.(本小题满分8分)如图,正方形ABCD 内接于⊙O ,E 是BC 的中点,连接AE ,DE ,CE . (1)求证:AE =DE ;(2)若CE =1,求四边形AECD 的面积.22.(本小题满分10分)疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x ≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y 与x 之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).(1) CBAFABE (2)问题背景 如图(1),△ABD ,△AEC 都是等边三角形,△ACD 可以由△AEB 通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小. 尝试应用 如图(2),在Rt △ABC 中,∠ACB =90°,分别以AC ,AB 为边,作等边△ACD 和等边△ABE ,连接ED ,并延长交BC 于点F ,连接BD .若BD ⊥BC ,求DFDE的值. 拓展创新 如图(3),在R △ABC 中,∠ACB =90°,AB =2,将线段AC 绕点A 顺时针旋转90°得到线段AP ,连接PB ,直接写出PB 的最大值.24.(本小题满分12分)如图,经过定点A 的直线y =k (x -2)+1(k <0)交抛物线y =-x 2+4x 于B ,C 两点(点C 在点B 的右侧),D 为抛物线的顶点. (1)直接写出点A 的坐标; (2)如图(1),若△ACD 的面积是△ABD 面积的两倍,求k 的值; (3)如图(2),以AC 为直径作OE ,若OE 与直线y =t 所截的弦长恒为定值,求t 的值.(1)CBEAD(2)F DBCEA(3)BCAP(1)(2)。
2018-2019学年度武汉市九年级元月调考数学模拟试卷及答案
2018-2019学年度武汉市部分学校元月调考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x2+1=6x的二次项系数和一次项系数分别为()A.3和6 B.3和-6 C.3和-1 D.3和1 2.抛物线y=(x-5)2+6的对称轴是()A.直线x=-5 B.直线x=5 C.直线x=-6 D.直线x=6 3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C. D4.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3、3、3的三条线段围成一个等腰三角形,其中确定事件的个数是()A.1 B.2 C.3 D.45.“明天降水概率是30%”,对此消息下列说法中正确的是( ).A.明天降水的可能性较小B.明天将有30%的时间降水C.明天将有30%的地区降水D.明天肯定不降水6.如果关于x的一元二次方程mx2+4x-1=0没有实数根,那么m的取值范围是()A.m<4且m≠0 B.m<-4 C.m>-4且m≠0 D.m>4 7.在⊙O 中,弦AB 的长为6,圆心O 到AB 的距离为4,OP=6,则点P 与⊙O 的位置关系是()A.P 在⊙O 上B.P 在⊙O 外C.P 在⊙O 内D.P 与A 或B 重合8.如图所示,ABC△为O⊙的内接三角形,130AB C=∠=,°,则O⊙的内接正方形的面积为()A.2 B.4 C.89.如图,Rt△ABC中,∠C=90°,内切圆⊙O与其三边的切点分别为D、E、F,若AB、BC、AC的长分别为c、a、b,且AE∙BE =m,a+b+c=n,则⊙O的半径r的值为( )A.n m B .)(21n m + C .n m 2 D .n m -2110.如图,抛物线y =ax 2+bx +c (c ≠0)过点(-1,0)和(0,-3),且顶点在第四象限.设s =a +b +c ,则s 的取值范围是( ) A .-3<s <-1 B .-6<s <0 C .-3<s <0 D .-6<s <-3二、填空题(本大题共6个小题,每小题3分,共18分) 11.点A (-2,5)关于原点的对称点B 的坐标是__________12.将抛物线 y=x2 ﹣2x+3 向左平移 2 个单位,再向上平移 1 个单位,得到的抛物线的解析式为 __________13.已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为__________________14.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共73.若设主干长出x 个支干,则可列方程是 .15.如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC 、CD 分别相交于点G 、H ,则的值是 .第15题图 第16题图16. 已知⊙O 的半径为 2,A 为圆上一定点,P 为圆上一动点,以 AP 为边作等腰 Rt △APG ,P 点在圆上运动一周的过程中,OG 的最大值为___________三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-4x +1=018.(本题8分)如图,⊙O中,直径CD⊥弦AB于M,AE⊥BD于E,交CD 于N,连AC(1)求证:AC=AN;(2)若OM∶OC=3∶5,AB=5,求⊙O的半径;19.(本题8分)“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,回答以下问题:(1)请画树状图,列举所有可能出现的结果;(2)他遇到三次红灯的概率是多大?20.(本题8分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.21.(本题8分)如图,A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC =BC ,AC =12OB. (1)求证:AB 是⊙O 的切线;(2)若∠ACD =45°,OC =2,求弦AD 的长.22.(本题10分)如图所示,为了改造小区环境,某小区决定要在一块一边靠墙(墙的最大可使用长度13 m )的空地上建造一个矩形绿化带.除靠墙一边(AD )外,用长为36 m 的栅栏围成矩形ABCD ,中间隔有一道栅栏(EF ).设 绿化带宽AB 为x m ,面积为S m 2(1) 求S 与x 的函数关系式,并求出x 的取值范围(2) 绿化带的面积能达到108 m 2吗?若能,请求出AB 的长度;若不能,请说明理由(3) 当x 为何值时,满足条件的绿化带面积最大?23.(本题10分)23.已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF(1)如图1,请直接给出线段MD、MF的数量及位置关系是;(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出的值.24.(本题12分)已知抛物线y=ax2-2amx+am2+2m+4的顶点P在一条定直线l上.(1)直接写出直线l的解析式;(2)若存在唯一的实数m,使抛物线经过原点.①求此时的a和m的值;②抛物线的对称轴与x轴交于点A,B为抛物线上一动点,以OA、OB为边作□OACB,若点C在抛物线上,求B的坐标.(3)抛物线与直线l的另一个交点Q,若a=1,直接写出△OPQ的面积的值或取值范围.参考答案二、填空题(共6小题,每小题3分,共18分) 11.( 2,-5) 12.y=(x+1)2+313.1214. 1+x +x 2=7315.16.222+三、解答题(共8题,共72分) 17.解:32±=x18.解:(1)连接AC ,∵∠AED=∠AMO=90°,∴∠BDC=∠EAB=∠BAC .∵AM ⊥OC ,∴∠AMC=∠AMN .在△AMN 与△AMC 中,∵∠EAB=∠BAC ,AM=AM ,∠AMN=∠AMC ,∴△AMN ≌△AMC (ASA ),∴AC=AN ;(2)连接OA ,设OM=3x ,OC=5x ,∴OA=5x ,AM=4x ,∵AB=5,∴19.解:(1) 由树状图可以看出,共有8种等可能的结果,即:红红红、 红红绿、 红绿红、红绿绿、绿红红、绿红绿、绿绿红、绿绿绿、(2) P(三次红灯)=1 8.20.解:(1)如图,△A1B1C1为所作.(2)如图,△A2B2C2为所作.(3)OA1=42+42=42,点A经过点A1到达A2的路径总长=52+12+90×42π180=26+22π.21.(1)证明:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线;(2)解:作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=,∵∠D=30°,∴AD=2.22.解:(1)∵四边形ABCD是矩形,∴AB=CD=EF,AD=BC,∵AB=xm,AB+BC+CD+EF=36m,∴BC=36-3x,∴绿化带的面积为:y=x•(36-3x)=﹣3x2+36x,y与x之间的函数关系式为:y=﹣3x2+36x;(2)由题意得:﹣3x 2+36x=108,解得:x 1=x 2=6,∵6能达到108 m 2.(3)∵y=﹣3x 2+36x =﹣3(x ﹣6)2+108,∵a=﹣3<0,∴当x >6时,y 随x 的增大而减小,∴当y 最大,∴当x23.解:(1)线段MD 、MF 的数量及位置关系是MD=MF ,MD ⊥MF , 理由:如图1,延长DM 交EF 于点P ,∵四边形ABCD 和四边形FCGE 是正方形, ∴AD ∥EF ,∠MAD=∠MEP .∠CFE=90°. ∴△DFP 是直角三角形. ∵M 为AE 的中点, ∴AM=EM .在△ADM 和△EPM 中,,∴△ADM ≌△EPM (ASA ), ∴DM=PM ,AD=PE , ∴M 是DP 的中点.∴MF=DP=MD , ∵AD=CD , ∴CD=PE , ∵FC=FE , ∴FD=FP ,∴△DFP是等腰直角三角形,∴FM⊥DP,即FM⊥DM.故答案为:MD=MF,MD⊥MF;(2)MD=MF,MD⊥MF仍成立.证明:如图2,延长DM交CE于点N,连接FN、DF,∵CE是正方形CFEG对角线,∴∠FCN=∠CEF=45°,∵∠DCE=90°,∴∠DCF=45°,∵AD∥BC,∴∠DAM=∠NEM,在△ADM和△ENM中,,∴△ADM≌△ENM(ASA),∴EN=AD,DM=MN,∵AD=CD,∴CD=EN,在△CDF和△ENF中,,∴△CDF≌△ENF,(SAS)∴DF=NF,∴FM=DM ,FM ⊥DM .(3)如图所示,若CF 边恰好平分线段AE ,则CF 过点M ,由(1)可得FM=DM ,FM ⊥DM , 设FM=DM=1, ∵∠DCF=30°,∴Rt △DCM 中,CM=,CD=2=CB ,∴CF=+1=CG ,∴=.24.解:(1) y=a (x-m )2+2m+4,P (m ,2m+4),∴y=2x+4; (2)①将x=0,y=0代入,∴am 2+2m+4=0∴△=0,a=14,m=-4;②B 、C 关于对称轴对称,∴B 的横坐标为-2,y=14 (x+4)2-4,∴B (-2,-3);(3)y=2x+4与x 轴交于点B (-2,0),交y 轴于点A (0,4),作OM ⊥AB 于M 。
2021-2022学年武汉市初三数学元月调考数学模拟练习试卷及解析
2021年武汉市初三数学元月调考数学模拟练习试卷一、选择题(共10小题,每小题3分,共30分)1.将方程2326x x -=化为一般形式,若二次项系数为3,则一次项系数和常数项分别为( ) A .2-,6B .2-,6-C .2,6D .2,6-2.下面四个图形,是中心对称图形的是( )A .B .C .D .3.关于方程2240x x +-=的根的情况,下列结论错误的是( ) A .有两个不相等的实数根 B .两实数根的和为2C .两实数根的差为25±D .两实数根的积为4-4.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( ) A .连续抛掷2次必有1次正面朝上 B .连续抛掷10次不可能都正面朝上 C .大量反复抛掷每100次出现正面朝上50次 D .通过抛掷硬币确定谁先发球的比赛规则是公平的5.如图,AB 为O 的直径,CD 为O 的弦,AB CD ⊥于E ,下列说法错误的是( )A .CE DE =B .AC AD =C .OE BE =D .2COB BAD ∠=∠6.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是( ) A .相离B .相切C .相交D .相交或相切7.如图,Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,将ABC ∆绕点B 逆时针旋转得△A BC '',若点C '在AB 上,则AA '的长为( )A .13B .4C .25D .58.若m ,n 为方程2310x x --=的两根,则多项式23m n +的值为( ) A .8-B .9-C .9D .109.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-10.若方程220x x t --=在14x -<范围内有实数根,则t 的取值范围为( ) A .38t <B .13t -C .18t -<D .18t -二、填空题(共6小题,每小题3分,共18分) 11.若2是方程20x c -=的一个根,则c 的值为 .12.把抛物线22y x =先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 . 13.如图,四边形ABCD 内接于O ,110A ∠=︒,则BOD ∠= ︒.14.有不同的两把锁和三把钥匙,其中两把钥匙能分别打开这两把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是 .15.二次函数2(y ax bx c a =++、b 、c 为常数,0)a ≠中的x 与y 的部分对应值如表:x1-0 3 yn3-3-当0n >时,下列结论中一定正确的是 .(填序号即可)①0bc >;②当2x >时,y 的值随x 值的增大而增大;③4n a >;④当1n =时,关于x 的一元二次方程2(1)0ax b x c +++=的解是11x =-,23x =.16.如图,AB 为O 的直径,C 为O 上一动点,将AC 绕点A 逆时针旋转120︒得AD ,若2AB =,则BD 的最大值为 .三、解答题17.已知关于x 的方程2(2)210x m x m +++-=,当m 为何值时,方程的两根相互为相反数?并求出此时方程的解.18.如图,在O 中,弦AB 与弦CD 相交于点E ,且AB CD =.求证:CE BE =.19.把一副普通扑克牌中的4张:黑2,红3,梅4,方5,洗匀后正面朝下放在桌面上. (1)从中随机抽取一张牌是红心的概率是 ;(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽取的两张牌牌面数字之和大于7的概率.20.如图,在下列的网格中,横、纵坐标均为整数的点叫做格点,例如(3,0)A ,(0,4)B ,(4,2)C 都是格点. (1)直接写出ABC ∆的形状;(2)要求在上图中仅用无刻度的直尺作图:将ABC ∆绕点B 逆时针旋转得到△11A BC ,旋转角2ABC =∠,请你完成作图;(3)在网格中找一个格点G ,使得1C G AB ⊥,并直接写出G 点坐标.21.如图,O 是ABC ∆的外心,I 是ABC ∆的内心,连AI 并延长交BC 和O 于D 、E 两点. (1)求证:EB EI =;(2)若4AB =,3AC =,2BE =,求AI 的长.22.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y (件)与销售单价x (元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x (元) 40 60 80 日销售量y (件) 806040(1)求y 与x 的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润; (3)若物价部门规定该商品销售单价不能超过a 元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y (件)与销售单价x (元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a 的值.23.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,D 为BC 边上的点,将DA 绕D 逆时针旋转120︒得到DE . (1)如图1,若30DAC ∠=︒. ①求证:AB BE =;②直接写出22BE CD +与2AD 的数量关系为 ;(2)如图2,D 为BC 边上任意一点,线段BE 、CD 、AD 是否满足(1)中②的关系,请给出结论并证明.24.抛物线2y ax ax b =-+交x 轴于A ,B 两点(A 在B 的左边),交y 轴于C ,直线4y x =-+经过B ,C 两点.(1)求抛物线的解析式;(2)如图1,P 为直线BC 上方的抛物线上一点,//PD y 轴交BC 于D 点,过点D 作DE AC ⊥于E 点.设1021m PD DE =+,求m 的最大值及此时P 点坐标; (3)如图2,点N 在y 轴负半轴上,点A 绕点N 顺时针旋转,恰好落在第四象限的抛物线上点M 处,且180ANM ACM ∠+∠=︒,求N 点坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.解:由2326x x -=,得23260x x --=,所以一次项系数是2-、常数项是6-, 故选:B .2.解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故本选项符合题意.故选:D .3.解:方程2240x x +-=, 这里1a =,2b =,4c =-, △416200=+=>,∴方程有两个不相等的实数根,且122x x +=-,124x x =-,12x x ∴-==±故结论错误的是B , 故选:C .4.解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的. 故选:D .5.解:连接OD ,如图, AB CD ⊥,CE DE ∴=,AC AD =,BC BD =, BC BD =,BOC BOD ∴∠=∠, 2BOD BAD ∠=∠, 2BOC BAD ∴∠=∠.故选:C .6.解:圆的直径为13 cm ,∴圆的半径为6.5 cm ,圆心与直线上某一点的距离是6.5cm ,∴圆的半径圆心到直线的距离,∴直线于圆相切或相交,故选:D .7.解:根据旋转可知:90AC B C ∠''=∠=︒,4AC AC ''==,AB A B =',根据勾股定理,得2222345AB BC AC ++=, 5A B AB ∴'==, 2AC AB BC ∴'=-'=,在Rt △AA C ''中,根据勾股定理,得22222425AA AC A C ''''=++ 故选:C .8.解:m ,n 为方程2310x x --=的两根, 2310m m ∴--=,3m n +=, 231m m ∴-=.22333313()13310m n m m m n m n ∴+=-++=++=+⨯=. 故选:D .9.解:过A 作AD BC ⊥于D ,ABC ∆是等边三角形,2AB AC BC ∴===,60BAC ABC ACB ∠=∠=∠=︒, AD BC ⊥,1BD CD ∴==,33AD BD ==ABC ∴∆的面积为1123322BC AD ⨯⨯=⨯260223603BACS ππ⨯==扇形,∴莱洛三角形的面积23232233S ππ=⨯-=-故选:D .10.解:设212y x x =-,212y x x =-的对称轴为直线1x =,∴一元二次方程220x x t --=的实数根可以看作212y x x =-与函数2y t =的交点,方程在14x -<的范围内有实数根, 当1x =-时,13y =; 当4x =时,18y =;函数212y x x =-在1x =时有最小值1-;∴当18t -时,212y x x =-与函数2y t =有交点,即方程220x x t --=在18t -<范围内有实数根;故选:D .二、填空题(共6小题,每小题3分,共18分)11.解:根据题意,将2x =代入方程20x c -=,得:40c -=, 解得4c =, 故答案为:4.12.解:由“上加下减”的原则可知,二次函数22y x =的图象向下平移1个单位得到221y x =-, 由“左加右减”的原则可知,将二次函数221y x =-的图象向左平移2个单位可得到函数22(2)1y x =+-,故答案是:22(2)1y x =+-.13.解:四边形ABCD 内接于O ,110A ∠=︒, 180********C A ∴∠=︒-∠=︒-︒=︒, 2140BOD C ∴∠=∠=︒.故答案为:140.14.解:画树状图为:(两把钥匙能分别打开这两把锁表示为A 、a 和B 、b ,第三把钥匙表示为)c共有6种等可能的结果数,其中任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数为2, 所以任意取出一把钥匙去开任意的一把锁,一次打开锁的概率2163==. 故答案为13.15.解:①函数的对称轴为直线13(03)22x =+=,即322b a =-,则3b a =-,0n >,故在对称轴的左侧,y 随x 的增大而减小,故抛物线开口向上,则0a >,对称轴在y 轴的右侧,故0b <,而3c =-,故0bc >正确,符合题意;②2x =在函数对称轴的右侧,故y 的值随x 值的增大而增大,故②正确,符合题意; ③当1x =-时,434n y a b c a a ==-+=-<,故③错误,不符合题意; ④当1n =时,即:1x =-时,1y =,2(1)0ax b x c +++=可以变形为2ax bx c x ++=-,即探讨一次函数y x =-与二次函数为2y ax bx c =++图象情况,当1x =-,1y =,即(1,1)-是上述两个图象的交点,则抛物线和另一个交点在第四象限,且横纵坐标互为相反数,而本题表中告诉了(3,3)-在二次函数图象上,所以另一个交点为(3,3)-, 故两个函数交点的横坐标为1-、3,即关于x 的一元二次方程2(1)0ax b x c +++=的解是11x =-,23x =,正确,符合题意, 故答案为:①②④.16.解:解法一:如图,将ABD ∆绕点A 顺时针旋转120︒,则D 与C 重合,B '是定点,BD 的最大值即B C '的最大值,即B '、O 、C 三点共线时,BD 最大,过B '作B E AB '⊥于点E ,由题意得:2AB AB '==,120BAB '∠=︒, 60EAB '∴∠=︒,Rt AEB '∆中,30AB E '∠=︒,112AE AB '∴==,22213EB '=-=, 由勾股定理得:22222(3)7OB OE B E ''=+=+=, 71B C OB OC ''∴=+=+.解法二:如图1,连接OC ,将AOC ∆绕点A 逆时针旋转120︒得到AGD ∆,发现点D 的运动轨迹是:以G 为圆心,以AG 为半径的圆,所以当B 、G 、D 三点共线时,BD 的值最大,如图2,过点G 作GH AB ⊥,交BA 的延长线于H ,由旋转得:1AO AG ==,120OAG ∠=︒, 60HAG ∴∠=︒, 30AGH ∴∠=︒,12AH ∴=,3GH由勾股定理得:222231()(2)722BG GH BH =+=++= BD ∴71.故答案为:71+. 三、解答题17.解:关于x 的方程2(2)210x m x m +++-=两根相互为相反数,(2)0m ∴-+=,解得2m =-,则方程为250x -=,解得15x =,25x =-.18.证明:AB CD =,∴AB CD =,∴AB CB CD CB -=-,即AC BD =,C B ∴∠=∠,CE BE ∴=.19.解:(1)从黑2,红3,梅4,方5这4张扑克牌中任摸一张,是红心的可能性为14, 故答案为:14; (2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中和大于7的有4种,所以抽取的两张牌牌面数字之和大于7的概率为41123=. 20.解:如图所示:(1)ABC ∆的形状为:直角三角形;(2)将ABC ∆绕点B 逆时针旋转得到△11A BC ,旋转角2ABC =∠;(3)在网格中找一个格点G ,使得1C G AB ⊥,G 点坐标为(0,3).21.(1)证明:I 是ABC ∆的内心,AE ∴平分CAB ∠,BI 平分ABC ∠,BAE CAE ∴∠=∠,ABI CBI ∠=∠,BIE BAE ABI ∠=∠+∠,IBE IBD EBD ∠=∠+∠,CBE CAE ∠=∠,BIE EBI ∴∠=∠,EB EI ∴=;(2)解:连接EC .BAE CAE ∠=∠,∴BE EC =,2BE EC ∴==,ADB CDE ∠=∠,BAD DCE ∠=∠,ADB CDE ∴∆∆∽, ∴422BD AD AB DE DC EC ====,设DE m =,CD n =,则2BD m =,2AD n =, 同法可证:ADC BDE ∆∆∽, ∴AD AC BD BE =, ∴2322n m =, :3:2n m ∴=,设3n k =,2m k =,CED AEC ∠=∠,ECD BAE CAE ∠=∠=∠,ECD EAC ∴∆∆∽,2EC ED EA ∴=⋅,4(2)m m n ∴=⋅+,42(26)k k k ∴=+ 12k ∴=或12-(舍弃), 1DE ∴=,3AD =,4AE ∴=,2EI BE ==,2AI AE EI ∴=-=.解法二:过点E 作EM AB ⊥,EN AC ⊥交AC 的延长线于N .利用全等三角形的性质证明AM AN =,BM CN =,EM EN =,求出BM ,EM ,AE ,可得结论.22.解:(1)设函数的表达式为y kx b =+,将(40,80)、(60,60)代入上式得:40806060k b k b +=⎧⎨+=⎩,解得1120k b =-⎧⎨=⎩, 故y 与x 的关系式为120y x =-+;(2)公司销售该商品获得的最大日利润为w 元, 则2(20)(20)(120)(70)2500w x y x x x =-=--+=--+,200x -,1200x -+,2020100%x -⨯,2040x ∴,10-<,故抛物线开口向下,故当70x <时,w 随x 的增大而增大,∴当40x =(元)时,w 的最大值为1600(元),故公司销售该商品获得的最大日利润为1600元;(3)当1500w =最大时,2(80)16001500x --+=,解得170x =,290x =,2200x -⨯,40x ∴,又x a ,40x a ∴.∴有两种情况,①80a <时,即40x a ,在对称轴左侧,w 随x 的增大而增大,∴当70x a ==时,1500w =最大,②80a 时,即40x a ,在40x a 范围内16001500w =≠最大,∴这种情况不成立,70a ∴=.23.(1)①证明:如图1中,AB AC =,120BAC ∠=︒30ABC ACB ∴∠=∠=︒,30DAC ∠=︒30DAC ACB ∴∠=∠=︒,60ADB CAD ACB ∠=∠+∠=︒,90BAD ∴∠=︒,由旋转得:DE DA CD ==,60BDE ADB ∠=∠=︒,()BDE BDA SAS ∴∆≅∆,AB BE ∴=.②解:BDE BDA ∆≅∆,90BED BAD ∴∠=∠=︒,BE AB =,22222BE CD BE DE BD ∴+=+= 1cos cos602AD ADB BD =∠=︒=, 2BD AD ∴=,2224BE CD AD ∴+=. 故答案为:2224BE CD AD +=. (2)能满足(1)中的结论.理由:当点E 在BC 的下方时,将ACD ∆绕点A 顺时针旋转120︒得到ABD ∆',使AC 与AB 重合,连接ED ',DD ',AE ,设AB 交DD '于点J .30DBJ ADJ ∠=∠=︒,BJD D JA ∠=∠',BJD ∴∆∽△D JA ',∴BJ DJ D J AJ =', ∴BJ D J DJ AJ'=, BJD DJA ∠'=∠,BJD DJA ∴∆'∆∽,30JBD JDA ∴∠'=∠=︒,同法可证,30EBD EAD ∠=∠=︒,30ED D EAD ∠'=∠=︒,30ABC D BJ EBD ∠=∠'=∠=︒,90D BE ∴∠'=︒,120ADE ∠=︒,30ADD ∠'=︒,90D DE ∴∠'=︒,30ED D ∠'=︒,22D E DE AD ∴'==,在Rt △D BE '中,222D E D B BE '='+,CD BD =',2224CD BE AD ∴+=.当B ,E 重合时,0BE =,90DAC ∠=︒,30C ∠=︒,2CD AD ∴=,24CD AD ∴=,结论成立.当点E 在BC 的上方时,如图3中,同法可证,90EBD ∠'=︒,22ED AD AD '='=.222BD BE ED ∴'+=',2224CD BE AD ∴+=.24.解:(1)当0x =时,4y =;当0y =时,40x -+=,4x =;(4,0)B ∴,(0,4)C ,点B ,C 在抛物线上,∴16404a a b b -+=⎧⎨=⎩,解得:134a b ⎧=-⎪⎨⎪=⎩, 211433y x x ∴=-++; (2)如图1,连接AD ,延长PD 交x 轴于H ,//PD y 轴,PH x ∴⊥轴,设(,4)D t t -+,211(,4)33P t t t -++, 2211144(4)3333PD t t t t t =-++--+=-+, ABC ADC ADB S S S ∆∆∆=+,且(3,0)A -,(4,0)B ,(0,4)C , ∴111747(4)222AC DE t ⨯⨯=⋅+⨯⨯-+, 22345AC =+,75DE t ∴=, 1021m PD DE =+, 22214107112(3)33321533m t t t t t t ∴=-++⋅=-+=--+, ∴当3t =时,m 有最大值是3,此时(3,2)P ;(3)过N 作NF MC ⊥交MC 于点F ,过N 点作NG AC ⊥,交CA 的延长线于点G ,则90G CFN ∠=∠=︒, 180ACM GNF ∴∠+∠=︒,由旋转得:AN MN =, 180ANM ACM ∠+∠=︒, ANM GNF ∴∠=∠, ANG MNF ∴∠=∠, 90G MFN ∠=∠=︒, ()NGA NFM AAS ∴∆≅∆, NG NF ∴=,NC ∴平分ACM ∠, CO AB ⊥,3OK OA ∴==, (3,0)K ∴,CK ∴的解析式为:443y x =-+, 241144333x x x ∴-+=-++, 解得:10x =,25x =,8(5,)3M ∴-, 设(0,)N y ,AN MN =,22228(3)5()3y y ∴-+=++,解得:133y =-, 13(0,)3N ∴-.。
湖北省武汉市勤学早元月调考九年级数学模拟试卷(一)(word版含答案)
勤学早●2021元月调考数学模拟试卷(一)一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A.x x 6132=+B.x x 6132=-C.1632=+x xD.1632=-x x 2.下列由正三角形和正方形拼成的图形中,不是中心对称图形的是( )3.二次函数12-=x y 的图象的顶点坐标为( )A.(0,1)B.(0,-1)C.(1,0)D.(-1,0)4.一个不透明的袋子中装有10个黑球和1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( )A.这个球一定是黑球B.摸到黑球和白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球5.已知⊙O 的半径等于8,圆心O 到直线l 上一点的距离为9,则直线l 与⊙O 的公共点的个数为( )A.0B.1C.2D.0或1或26.已知二次函数22-+=bx x y 的图象与x 轴的一个交点的坐标为(1,0),则它与x 轴的另一个交点的坐标是( )A.(1,0)B.(-2,0)C.(2,0)D.(-1,0)7.如图,将△ABC 绕点C 顺时针旋转25°,得到△B A '' C.若AC⊥B A '',则∠BAC 的度数为( )A.65°B.75°C.55°D.35°8. 从甲、乙、丙、丁四人中随机抽调两人参加“垃圾分类宣传”志愿服务队,恰好抽到甲和乙的概率是( ) A.121 B.81 C.61 D.219.关于x 的方程0)1(222=-+-+m m x m x 有两个实数根α,β,且1222=+βα,那么m 的值为( )A.-1B.-4C.-4或1D.-1或4 10.如图,△AB C 是⊙O 的内接等边三角形,D 是弧AC 上一点,连接DA ,DB,DC ,CD=22,∠ABD=15°,则△ADB 的面积为( ) A.32 B.3 C.2 D.22 二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B 关于原点的对称点的坐标是________12.某射击运动员在同一条件下的射击成绩统计记录如下:射击次数20 80 100 200 400 1000 “射中九环以上”的次数 18 68 82 168 327 803 “射中九环以上”的频率 (结果保留两位小数)0.90.850.820.840.820.80根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率(结果保留一位小数)约是_________13.如图,⊙O 是△ABC 的外接圆,连接OA,∠OAC=20°,则∠ABC 的度数为_________第13题图 第14题图 第15题图14.如图是一张长12cm,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm 2的有盖的长方体铁盒,设剪去的正方形的边长为x cm,根据题意,所列方程化成一般形式后为__________________15.如图,AB 为⊙O 的直径,BC,CD 是⊙O 的切线,切点分别为B,D,点E 为线段OB 上的一个动点,连接CE,DE.若AB=34,BC=2,则CE+DE 的最小值为__________16.下列关于函数642+-=x x y 的四个命题: ①当x =2时,y 有最大值2;②若函数图象经过点(0,m a )和(1,0+m b ),其中a <0,b>2,则4>+b a ; ③m 为任意实数,m x -=2时的函数值大于m x +=2时的函数值; ④当-3≤x ≤3时,2≤y≤27.上述四个命题中,其中真命题是(填写所有真命题的序号).________ 三解答题(共8小题,共72分)17.(本题8分)已知x =-2是关于x 的一元二次方程0)2()1(22=+---m m x m x 的一个根,求实数m 的值.18.(本题8分)如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,∠ACD=30°,AE=2.求DB 的长.19.(本题8分)一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n 个白球,搅匀后从盒子里随机摸出1个球,摸到白球的概率为5. (1)n 的值是_____(直接写出结果)(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出1个球.求两次摸球摸到一个白球和一个黑球的概率,请用画树状图或列表的方法进行说明.20.(本题8分)如图,正六边形ABCDEF.请仅用无刻度直尺完成下列画图,不写画法,保留画图痕迹(用虛线表示画图过程,实线表示画图结果)。
2020年湖北省武汉市九年级元月调考数学复习试卷1
2020年湖北省武汉市九年级元月调考数学复习试卷(1)一、选择题(本大题共4小题,共12.0分)1.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题即:“如图所示,CD垂直平分弦AB,CD=1寸,AB=10寸,求圆的直径”(1尺=10寸)根据题意直径长为()A. 10寸B. 20寸C. 13寸D. 26寸2.如图,在Rt△ABC中,∠C=90°,AB=6,AD是∠BAC的平分线,经过A,D两点的圆的圆心O恰好落在AB上,⊙O分别与A、B、AC相交于点E、F.若圆半径为2.则阴影部分面积()A. 13πB. 43πC. 23πD. 92√3−33.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. a=cB. a=bC. b=cD. a=b=c4.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是()A. m≥14B. m<14C. m≤14D. m>14二、填空题(本大题共3小题,共9.0分)5.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A,B,C,D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是______.6.已知,如图是一个三角形点阵,从上向下数有无数多行,其中第一行有一个点,第二行有两个点,…,第n行有n个点,容易发现,三角形点阵中前4行的点数和是10.若三角形点阵中前a行的点数之和为300,则a的值为______.7.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10m.如果水位以0.25m/ℎ的速度上涨,那么达到警戒水位后,再过______h水位达到桥拱最高点O.三、解答题(本大题共5小题,共40.0分)8.如图,在下列的网格中,横、纵坐标均为整点的数叫做格点,例如A(3,0)、B(0,4)、C(4,2)都是格点.(1)直接写出△ABC的形状;(2)要求在上图中仅用无刻度的直尺作图:将△ABC绕点B逆时针旋转得到△A1BC1,旋转角=2∠ABC,请你完成作图;(3)在网格中找一个格点G,使得C1G⊥AB,并直接写出G点坐标.9.如图,不等边△ABC内接于⊙O,I是△ABC内心,AI交⊙O于D点,交BC于点E,连接BD,BI.(1)求证BD=ID;(2)连接OI,若AI⊥OI.且AB=4,BC=6,求AC的长.10.某水果商店以5元/千克的价格购进一批水果进行销售,运输过程中质量耗5%,运输费用是0.7元/千克,假设不计其他费用(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过科中,商店发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系m=−10x+120,那么当销售单价定为多少时,每天获得的利润w最大?(3)该商店决定每销售一千克水果就捐赠a元利润(a≥1)给希望工程,通过销售记录发现,销侮价格大于每千克11元时,扣除捐赠后每天的利润随x增大而减小,直接写出a的取值范围.11.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=√3.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.12.已知抛物线线C1:y1=−2x2+4mx−2m2+m+5的顶点P在定直线l上运动.求直线l的解析式;答案和解析1.【答案】D【解析】【分析】本题考查的是垂径定理,线段垂直平分线的性质,勾股定理,熟知垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.连接OD,OA,根据垂径定理求出AD的长,再根据勾股定理求出OA的值即可.【解答】解:连接OD,OA,∵CD垂直平分弦AB,CD=1寸,AB=10寸,∴AD=5寸,在Rt△OAD中,OA2=OD2+AD2,即OA2=(OA−1)2+52,解得:OA=13,故圆的直径为26寸,故选:D.2.【答案】C【解析】解:连接OD,OF.∵AD是∠BAC的平分线,∴∠DAB=∠DAC,∵OD=OA,∴∠ODA=∠OAD,∴∠ODA=∠DAC,∴OD//AC,∴∠ODB=∠C=90°,∴S△AFD=S△OFA,∴S阴=S扇形OFA,∵OD=OA=2,AB=6,∴OB=4,∴OB=2OD,∴∠B=30°,∴∠A=60°,∵OF=OA,∴△AOF是等边三角形,∴∠AOF=60°,∴S阴=S扇形OFA=60π⋅22360=2π3.故选:C.连接OD,OF.首先证明OD//AC,推出S阴=S扇形OFA,再证明△AOF是等边三角形即可解决问题.本题考查扇形的面积,等边三角形的判定和性质,解直角三角形等知识,解题的关键是添加常用辅助线,用转化的思想思考问题.3.【答案】A【解析】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2−4ac=0,又a+b+c=0,即b=−a−c,代入b2−4ac=0得(−a−c)2−4ac=0,即(a+c)2−4ac=a2+2ac+c2−4ac=a2−2ac+c2=(a−c)2=0,∴a=c.故选:A.因为方程有两个相等的实数根,所以根的判别式△=b2−4ac=0,又a+b+c=0,即b=−a−c,代入b2−4ac=0得(−a−c)2−4ac=0,化简即可得到a与c的关系.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.【答案】D【解析】解:b2−4ac=1−4m<0,解得:m>14.故选:D.二次函数开口向上,当x取任意实数时,都有y>0,则b2−4ac<0,据此即可列不等式求解.本题考查了抛物线与x轴交点个数,个数由b2−4ac的符号确定,当△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac< 0时,抛物线与x轴没有交点.5.【答案】14【解析】解:如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是416=14,故答案为:14.根据题意可以画出相应的树状图,从而可以求得小亮和大刚两人恰好分在同一组的概率.本题考查列表法与树状图法求概率,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6.【答案】24【解析】解:依题意,得:1+2+3+⋯+a=300,整理,得:a2+a−600=0,解得:a1=24,a2=−25(不合题意,舍去).故答案为:24.根据前a行的点数之和为300,即可得出关于a的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.【答案】5【解析】解:解:设抛物线解析式为y =ax 2,因为抛物线关于y 轴对称,AB =20,所以点B 的横坐标为10,设点B(10,n),点D(5,n +3),由题意:{n =100a n +3=25a, 解得{n =−4a =−125,∴y =−125x 2,当x =5时,y =−1,故t =10.2=5(ℎ),答:再过5小时水位达到桥拱最高点O .故答案为:5.以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据求出函数解析式,再求出时间t ;本题考查了二次函数的实际应用,根据题意,建立合适的数学模型,进而由函数的性质可得答案. 8.【答案】解:如图所示:(1)△ABC 的形状为:直角三角形;(2)将△ABC 绕点B 逆时针旋转得到△A 1BC 1,旋转角=2∠ABC ;(3)在网格中找一个格点G ,使得C 1G ⊥AB ,G 点坐标为(2,2).【解析】(1)根据所画图形即可写出△ABC 的形状;(2)将△ABC 绕点B 逆时针旋转得到△A 1BC 1,旋转角=2∠ABC ,即可完成作图;(3)在网格中找一个格点G ,使得C 1G ⊥AB ,即可写出G 点坐标.本题考查了作图−旋转变换,解决本题的关键是利用勾股定理及其逆定理.9.【答案】解:(1)证明:∵I是△ABC内心,∴∠BAD=∠CAD,∴CD⏜=BD⏜,∴∠DBC=∠DAB,∵∠ABI=∠CBI,∠DBI=∠DBC+∠CBI∠DIB=∠DAB+∠ABI∴∠DBI=∠DIB,∴BD=ID.(2)连接OD,∵CD⏜=BD⏜,根据垂径定理,得OD⊥BC于点H,BC=3,CH=BH=12∵AI⊥OI.∴AI=DI,∴AI=BD,作IG⊥AB于点G,∴∠AGI=∠BED=90°,∠DBC=∠BAD,∴△AGI≌△BHD,∴AG=BH=3.过点I作IM⊥BC,IN⊥AC于点M、N,∵I是△ABC内心,∴AN=AG=3,BM=BG=4−3=1,CN=CM=6−1=5,∴AC=AN+CN=8.答:AC的长为8.【解析】【试题解析】本题考查了三角形的内切圆与内心、垂径定理、三角形的外接圆与外心,解决本题的关键是区分三角形的内心和外心.(1)根据I是△ABC内心,可得∠BAD=∠CAD,进而得∠DBI=∠DIB,从而证明BD=ID;(2)先根据垂径定理证明AI=DI,再证明△AGI≌△BHD,可得AG=BH=3.根据I是△ABC内心,即可得AC的长.10.【答案】解:(1)设购进水果k千克,水果售价定为y元/千克时,水果商才不会亏本,由题意得y⋅k(1−5%)≥(5+0.7)k,由k>0可解得:y≥6,所以,水果商要把水果售价至少定为6元/千克才不会亏本.(2)由(1)可知,每千克水果的平均成本为6元,由题意得w=(x−6))m=(x−6)(−10x+120)=−10(x−9)2+90因此,当x=9时,w有最大值.所以,当销售单价定为9元/千克时,每天可获利润w最大.(3)设扣除捐赠后的利润为P,则P=(x−6−a)(−10x+120)=−10x2+(10a+180)x−120(a+6),抛物线开口向下,对称轴为直线x=−10a+1802×(−10)=a+182,∵销售价格大于每千克11元时,扣除捐赠后每天的利润P随x增大而减小,∴a+182≤11,解得:a≤4,故1≤a≤4.【解析】(1)设购进水果k千克,水果售价定为y元/千克时,水果商要不亏本,由题意建立不等式求出其值就可以了.(2)由(1)可知,每千克水果的平均成本为6元,再根据售价−进价=利润就可以表示出w,然后化为顶点式就可以求出最值.(3)根据题意列出扣除捐赠后的利润为P与x的函数关系,得到对称轴方程,由销售价格大于每千克11元时,扣除捐赠后每天的利润P随x增大而减小得到关于a的不等式,解之可得.本题考查了二次函数的应用:利用实际问题中的数量关系建立二次函数关系式,然后利用二次函数性质解决问题;注意自变量的取值范围.也考查了不等式的应用.11.【答案】解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3√2,过点C作CM⊥AB于M,连接CF,∴CM=AM=12AB=3√22,∵四边形AGEF是正方形,∴AF=EF=√3,∴MF=AM−AF=3√22−√3,在Rt△CMF中,CF=√CM2+MF2=√184+184+3−3√6=√12−3√6;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH//EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF ∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,{∠BHM=∠EFM ∠BMH=∠EMF BM=EM,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF//AG,∵BH//EF,∴BH//AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,{BH=AF∠CBH=∠CAF BC=AC,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;【解析】(1)先求出CM=AM,进而求出MF,最后用勾股定理即可得出结论;(2)先判断出△BMH≌△EMF(AAS),得出MH=MF,BH=EF=AF,再判断出∠CBH=∠CAF,进而得出△BCH≌△ACF(SAS),得出△FCH是等腰直角三角形,即可得出结论;本题是四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.12.【答案】解:∵y1=−2x2+4mx−2m2+m+5=−2(x−m)2+m+5,∴顶点坐标为(m,m+5),∴顶点在直线y=x+5,∴直线l的解析式为y=x+5.【解析】利用配方法求出顶点坐标即可解决问题.本题考查了二次函数的性质,利用配方法表示出顶点的坐标是解题的关键.。
武汉市九年级元月调考数学模拟卷及
2019年武汉市九年级元月调考数学模拟卷一
考好元调、冲刺外高,外高政策说明会12 月16 日上午 9:30 (本周天)威望专家为你剖析成功进入外高的诀要,让孩子离名校更近一步。
抢座热线吴老师(微信同号)名额有限、不接受空降,感谢配合
不想考外高的能够忽视 , 想考外高必定要提早关注 , 每年很多家长都懊悔认识晚了 , 耽搁了孩子进入名校的时机 , 寒假是你弯道超车针对性准备最后的时机 , 抓住时机 , 成功逆袭
考好元调、冲刺外高,外高政策说明会12 月16 日上午 9:30 (本周天)威望专家为你剖析成功进入外高的诀要,让孩子离名校更近一步。
抢座热线吴老师(微信同号)名额有限、不接受空降,感谢配合
不想考外高的能够忽视 , 想考外高必定要提早关注 , 每年很多家长都懊悔认识晚了 , 耽搁了孩子进入名校的时机 , 寒假是你弯道超车针对性准备最后的时机 , 抓住时机 , 成功逆袭。
武汉市九年级数学元月调考模拟试卷(一)
1、 2016年九年级数学模拟试题 、选择题(共10小题,每小题3分,共30分) 已知关于x 的方程x2 — kx — 6=0的一个根为x=3,则实数k 的值为( A . 1 B . -1 如图所示,点A , B 和C 在O O 上, A. 10° B. 20° 下列图形中,为中心对称图形的是( ) .-2 已知/ AOB= 40°,则/ ACB 的度数是( 头©A. B 4.签筒中有5根纸签,上面分别标有数字 于随机事件的是() A.抽到的纸签上标有数字 0. C.抽到的纸签上标有数字是1. 从中随机抽取一根,下列事件属 5. B . D. 抽到的纸签上标有数字小于 抽到的纸签上标有数字大于 6. 6.5 .袋子中装有5个红球3个绿球,从袋子中随机摸出一个球,是绿球的概率为 3 3 A. B.- 5 8 6. 下列一元二次方程没有实数根的是( 2 2A. x 3=0.B. x x=0. 7. 女口图,矩形 ABCD 中, AB=8, AD=6,将矩形 交线段CD 于 H,且BH=DH 则DH 的值是( A . 7 B . 8-2 3 4C. D . C. x 22x - -1.D. x 3x = 1 .ABCD 绕点B 按顺时针方向旋转后得到矩形 A'BC'D'. 若边A'B ) 25 • 4 若关于x 的一元二次方程ax • bx • c = 0 a 0的两根为 X 2,贝U x 1 X 2 X i X 2 £ •当 a a =1 ,b = 6 , c = 5 时,x 1 x 2 X 1 x 2的值是( 9 . 占 八、、A . A. 5 如图, E, F , 4 n B. — 5 已知矩形 ABCD 中, AB=8, 则图中阴影部分的面积为(B . 5 n / AOD= 90° C. 1 BC=5冗.分别以B , )C . 8 nD 为圆心, D. — 1 AB 为半径画弧,两弧分别交对角线 BD 于 .10n 10 .如图,扇形AOD 中, 点I OPQ 勺内心,过 ,OA= 6,点P 为弧AD 上任意一点(不与点 A 和D 重合),PQ_ OD 于 Q, ) O, I 和D 三点的圆的半径为r .则当点P 在弧AD 上运动时,r 的值满足( A. 0 : r : 3 B. r =3 C. 3 ::r ::: 32 C rA 、填空题(共 6小题,每小题3分,共18 分)11 .平面直角坐标系中,点P (3, 1 -a)与点Q( b 2 , 3)关于原点对称,贝U a b = ___________________12、如图,边长为a的正六边形内有一边长为a的正三角形,则§阴弩= _____________S空白13 •已知x1、x2是方程4x2 _(3m _5)x _6m2=0 的两根,且1_心二?,则m = ____________ 。
2021年湖北省武汉市九年级元月调考数学模拟试卷(1)详细答案与解析
2020年湖北省武汉市九年级元月调考数学模拟试卷(1)一、选择题(每小题3分,共30分)1. 若一元二次方程x2−2kx+1=0的一根为x=−1,则k的值为()A.−1B.0C.1D.22. 二次函数y=−2(x−3)2−2的顶点坐标是()A.(−3, −2)B.(−3, 2)C.(3, −2)D.(3, 2)3. 如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A的坐标为(−3, 4),则点C的坐标为()A.(−3, −4)B.(−3, 4)C.(−4, 3)D.(3, −4)4. 掷一枚质地均匀的硬币100次,下列说法正确的是()A.不可能100次正面朝上B.不可能50次正面朝上C.必有50次正面朝上D.可能50次正面朝上5. 如图,⊙O是△ABC的外接圆,∠AOB=60∘,AB=AC=2,则弦BC的长为()A.√3B.3C.2√3D.46. 已知关于x的一元二次方程x2−m=2x有两个不相等的实数根,则m的取值范围是()A.m>−1B.m<−2C.m≥0D.m<07. 现有A、B、C三个不透明的盒子,A盒中装有红、黄、蓝球各1个,B盒中装有红、黄球各1个,C盒中装有红、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C 三个盒子中任意摸出一个球,摸出的三个球至少有一个红球的概率是()A.2 3B.56C.34D.138. 从地面竖直向上先后抛出两个小球,小球的高度ℎ(米)与运动时间t(秒)之间的函数关系式为ℎ=−409(t−3)2+40,若后抛出的小球经过2.5秒比先抛出的小球高103米,则抛出两个小球的间隔时间是()A.1秒B.1.5秒C.2秒D.2.5秒9. 如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画AĈ,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2−S1的值为()A.3π2−4 B.3π2+4 C.3π4−2 D.3π4+210. 已知函数y=2x与y=x2−c(c为常数,−1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=−1B.−l≤c<0或c=3C.−1≤c≤3D.−1< c≤3且c≠0二、填空题(每小题3分,共18分)某校图书馆的藏书在两年内从5万册增加到7.2万册,设平均每年藏书增长的百分率为x,则依据题意可得方程________.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为________事件.将抛物线y=2x2分别向上、向左平移2个、1个单位,得到的抛物线的解析式为________.如图,在△ABC中,∠A=62∘,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是________.已知A(m, n),B(m+8, n)是抛物线y=−(x−ℎ)2+2036上两点,则n=________.如图,定直线l经过圆心O,P是半径OA上一动点,AC⊥l于点C,当半径OA绕着点O 旋转时,总有OP=OC,若OA绕点O旋转60∘时,P、A两点的运动路径长的比值是________.三、解答题(共8小题,共72分)解方程:x2−4x−3=0.̂的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,如图,AB是⊙O的直径,点C为BD连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≅△CDG;(2)若AD=BE=2,求BF的长.不透明的袋子中装有3个红球和2个绿球,它们除颜色外无其它差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出所有等可能的结果有多少种?两次摸出的球中至少有一个红球的概率是多少?(2)随机摸出两个小球,直接写出“两次取出的球都是红球”的概率是________.如图,由边长为1的小正方形构成的网格中,每个小正方形的顶点叫做格点,△ABC的顶点在格点上.(1)直接写出△ABC的面积为________;(2)请用无刻度的直尺画出将CB绕C点顺时针旋转α(α=2∠BAC)角后得到的线段CD,并写出点D的坐标为________;(3)若一个多边形各点都不在⊙M外,则称⊙M全覆盖这个5多边形,已知点E(6, 5),⊙M全覆盖四边形ABCE,则⊙M的直径最小为________.如图,在△ABC中,∠ACB=90∘,点O是BC上一点.(1)尺规作图:作⊙O,使⊙O与AC,AB都相切(不写作法与证明,保留作图痕迹);(2)在(1)所作的图中,若⊙O与AB相切于点D,与BC的另一个交点为点E,BE=2,BD=4,求AO的长.如图,用长33米的竹篱笆围成一个矩形院墙,其中一面靠墙,墙长15米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x米,院墙的面积为S平方米.(1)直接写出S与x的函数关系式;(2)若院墙的面积为143平方米,求x的值;(3)若在墙的对面再开一个宽为a(a<3)米的门,且面积S的最大值为165平方米,求a的值.在菱形ABCD中,∠ABC=60∘,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120∘到CQ,连接DQ.(1)如图1,求证:△BCP≅△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2√3,直接写出菱形ABCD的面积为________.如图1,抛物线M1:y=−x2+4x交x轴的正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式(一般式);(2)点P是抛物线M1上A,B间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,判断EG的值是否为定值,证明你的结论.HF参考答案与试题解析2020年湖北省武汉市九年级元月调考数学模拟试卷(1)一、选择题(每小题3分,共30分)1.【答案】A【考点】一元二次方程的解【解析】将x=−1代入方程即可求出k的值.【解答】将x=−1代入方程可得:1+2k+1=0,∴k=−1,2.【答案】C【考点】二次函数的性质【解析】因为顶点式y=a(x−ℎ)2+k,其顶点坐标是(ℎ, k),对照求二次函数y=−2(x−3)2−2的顶点坐标.【解答】∵二次函数y=−2(x−3)2−2是顶点式,∴顶点坐标为(3, −2).3.【答案】D【考点】平行四边形的性质坐标与图形性质【解析】根据平行四边形的对角线互相平分,再由对角线的交点为原点,则点A与点C的坐标关于原点成中心对称,据此可解.【解答】∵四边形ABCD为平行四边形∴OA=OC,且点A与点C关于原点成中心对称∵点A的坐标为(−3, 4),∴点C的坐标为(3, −4)4.【答案】D【考点】概率的意义【解析】根据概率的意义即可判断.【解答】掷一枚质地均匀的硬币100次,此事件是随机事件,因此有可能100次正面朝上,有可能50次正面朝上,故A、B、C错误;5.【答案】C【考点】圆周角定理解直角三角形垂径定理【解析】如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30∘,通过解直角△ACD可以求得CD的长度.则BC=2CD.【解答】如图,设AO与BC交于点D.∵∠AOB=60∘,AB̂=AB̂,∴∠C=1∠AOB=30∘,2又∵AB=AC,∴AB̂=AĈ∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC⋅cos30∘=2×√3=√3,2∴BC=2CD=2√3.6.【答案】A【考点】根的判别式【解析】因为关于x的一元二次方程x2−m=2x有两个不相等的实数根,所以△=4+4m>0,解此不等式即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2−m=2x有两个不相等的实数根,∴Δ=(−2)2−4×(−m)=4+4m>0,即m>−1.故选A.7.【答案】B【考点】列表法与树状图法【解析】画树状图展示所有12种等可能的结果数,摸出的三个球中至少有一个红球的结果有10种,由概率公式即可得出结果.【解答】画树形图如下:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,所以摸出的三个球中至少有一个红球的概率为:1012=56;8.【答案】B【考点】二次函数的应用【解析】分别求得两个高度的时间,从而求得抛出两个小球的时间即可.【解答】2.5秒时,后球的高度为:ℎ2=−409(2.5−3)2+40=3509,则此时,前球的高度为ℎ1=3509−103=3209,令−409(t−3)2+40=3209,整理得(t−3)2=1,∴t1=4,t2=2(舍),△t=4−2.5=1.5.9.【答案】A【考点】正方形的性质扇形面积的计算【解析】根据图形得到S2−S1=扇形ADC的面积+半圆BC的面积-正方形ABCD的面积,根据扇形面积公式计算即可.【解答】由图形可知,扇形ADC的面积+半圆BC的面积+阴影部分①的面积-正方形ABCD的面积=阴影部分②的面积,∴S2−S1=扇形ADC的面积+半圆BC的面积-正方形ABCD的面积=90π×22360+12π×12−22=3π2−4,10.【答案】A【考点】一次函数图象上点的坐标特点二次函数图象上点的坐标特征【解析】利用直线y=2x与y=x2−c(c为常数,−1≤x≤2)的图象有且仅有一个公共点,由根的判别式求出c的值,即可求得直线的解析式.【解答】把y=2x代入y=x2−c,整理得x2−2x−c=0,根据题意△=(−2)2+4c=0,解得c=−1,把x=−1代入y=2x与y=x2−c得,c=3,把x=2代入y=2x与y=x2−c得,c=0,由图象可知当0<c≤3或c=−1时,函数y=2x与y=x2−c(c为常数,−1≤x≤2)的图象有且仅有一个公共点,二、填空题(每小题3分,共18分)【答案】5(1+x)2=7.2【考点】由实际问题抽象出一元二次方程【解析】利用平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增长的百分率为x,根据“某校图书馆的藏书在两年内从5万册增加到7.2万册”,即可得出方程.【解答】设平均每年增长的百分率为x;第一年藏书量为:5(1+x);第二年藏书量为:5(1+x)(1+x)=5(1+x)2;依题意,可列方程:5(1+x)2=7.2.【答案】随机【考点】随机事件【解析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为随机事件,【答案】y=2(x+1)2+2【考点】二次函数图象与几何变换【解析】根据“左加右减、上加下减”的原则进行解答即可.【解答】将抛物线y=2x2分别向上、向左平移2个、1个单位,得到的抛物线的解析式为:y=2(x+1)2+2.【答案】121∘【考点】角平分线的性质垂径定理【解析】先利用⊙O截△ABC的三条边所得的弦长相等,得出即O是△ABC的内心,从而,∠1=∠2,∠3=∠4,进一步求出∠BOC的度数.【解答】∵△ABC中∠A=62∘,⊙O截△ABC的三条边所得的弦长相等,∴O到三角形三条边的距离相等,即O是△ABC的内心,∴∠1=∠2,∠3=∠4,∠1+∠3=12(180∘−∠A)=12(180∘−62∘)=59∘,∴∠BOC=180∘−(∠1+∠3)=180∘−59∘=121∘.【答案】2020【考点】二次函数图象上点的坐标特征【解析】由A(m, n)、B(m+8, n)是抛物线y=−(x−ℎ)2+2036上两点,可得A(ℎ−4, 0),B(ℎ+4, 0),当x=ℎ+4时,n=−(ℎ+4−ℎ)2+2036=2020【解答】∵A(m, n)、B(m+8, n)是抛物线y=−(x−ℎ)2+2036上两点,∴A(ℎ−4, n),B(ℎ+4, n),当x=ℎ+4时,n=−(ℎ+4−ℎ)2+2036=2020,【答案】1【考点】轨迹圆周角定理旋转的性质相似三角形的性质与判定【解析】设⊙O的半径为R,l与⊙O交于点B,由直角三角形的性质得出OC=12OA=12OB,由已知得出OP=12OA,证明△AOB是等边三角形,得出BP⊥OA,∠OPB=90∘,得出点P在以OB为直径的圆上运动,圆心为C,由圆周角定理得出∠PCB=2∠AOB=120∘,由弧长公式求出点A的路径长为60πR180=13πR,点P的路径长为120π180×12R=13πR,即可得出答案.【解答】设⊙O的半径为R,l与⊙O交于点B,连接AB、BP、PC、如图所示:∵AC⊥l于点C,∠AOB=60∘,∴∠OAC=30∘,∴OC=12OA=12OB,∵OP=OC,∴OP=12OA,∵OA=OB,∠AOB=60∘,∴△AOB是等边三角形,∴BP⊥OA,∴∠OPB=90∘,∴点P在以OB为直径的圆上运动,圆心为C,∴∠PCB=2∠AOB=120∘,∴点A的路径长为60πR180=13πR,点P的路径长为120π180×12R=13πR,∴P、A两点的运动路径长的比值是1,故答案为:1.三、解答题(共8小题,共72分)【答案】解:移项得x2−4x=3,配方得x2−4x+4=3+4,即(x−2)2=7,开方得x−2=±√7,∴x1=2+√7,x2=2−√7.【考点】解一元二次方程-配方法【解析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2−4x=3,配方得x2−4x+4=3+4,即(x−2)2=7,开方得x−2=±√7,∴x1=2+√7,x2=2−√7.【答案】(1)证明∵C是BD̂的中点,∴CD̂=BĈ.∵AB是⊙O的直径,且CF⊥AB,∴BĈ=BF̂,∴CD̂=BF̂,∴CD=BF.在△BFG和△CDG中,∵{∠F=∠CDG,∠FGB=∠DGC, BF=CD,∴△BFG≅△CDG(AAS).(2)解:如图,连接OC,交BD于点H,∵C是BD̂的中点,∴OC⊥BD,∴DH=BH.∵OA=OB,∴OH=12AD=1.∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90∘,∴△COE≅△BOH(AAS),∴OH=OE=1,∴CE=EF=√32−12=2√2,∴BF=√BE2+EF2=√22+(2√2)2=2√3.【考点】全等三角形的性质与判定圆周角定理垂径定理三角形中位线定理勾股定理全等三角形的判定【解析】(1)根据AAS证明:△BFG≅△CDG;(2)连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≅△BOH,并利用勾股定理可得结论.【解答】(1)证明∵C是BD̂的中点,∴CD̂=BĈ.∵AB是⊙O的直径,且CF⊥AB,∴BĈ=BF̂,∴CD̂=BF̂,∴CD=BF.在△BFG和△CDG中,∵{∠F=∠CDG,∠FGB=∠DGC, BF=CD,∴△BFG≅△CDG(AAS).(2)解:如图,连接OC,交BD于点H,∵C是BD̂的中点,∴OC⊥BD,∴DH=BH.∵OA=OB,∴OH=12AD=1.∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90∘,∴△COE≅△BOH(AAS),∴OH=OE=1,∴CE=EF=√32−12=2√2,∴BF=√BE2+EF2=√22+(2√2)2=2√3.【答案】画树状图为:共有25种等可能的结果数,两次摸出的球中至少有一个红球的结果数为21,所以两次摸出的球中至少有一个红球的概率=2125;310【考点】列表法与树状图法【解析】(1)画树状图展示所有25种等可能的结果数,找出两次摸出的球中至少有一个红球的结果数,然后根据概率公式求解;(2)画树状图展示所有20种等可能的结果数,找出两次取出的球都是红球的结果数,然后根据概率公式求解.【解答】画树状图为:共有25种等可能的结果数,两次摸出的球中至少有一个红球的结果数为21,所以两次摸出的球中至少有一个红球的概率=2125;画树状图为:共有20种等可能的结果数,两次取出的球都是红球的结果数为6,所以两次取出的球都是红球的概率=620=310.故答案为310【答案】10(9, 5)√41【考点】作图-旋转变换三角形的外接圆与外心解直角三角形垂径定理【解析】(1)利用三角形的面积公式计算即可.(2)根据要求画出点D即可解决问题.(3)作出△ABC,△ACE,△ABE,△ECB的外接圆可知:△BCE的外接圆⊙M全覆盖四边形ABCE,且⊙M的直径最小.【解答】×5×4=10.S△ABC=12故答案为10.如图,AB=√32+42=5,BC=5,∴AB=CB,∴∠BAC=∠ACB,∵∠BCD=∠ACB+∠ACD=∠BAC+∠ACD=2∠BAC,∴∠ACD=∠BAC,∴AB // CD,点D即为所求,D(9, 5).故答案为(9, 5).如图,作出△ABC,△ACE,△ABE,△ECB的外接圆可知:△BCE的外接圆⊙M全覆盖四边形ABCE,且⊙M的直径最小,直径=BE=√52+42=√41故答案为√41.【答案】如图,作∠CAB的平分线交BC于点O,以点O为圆心,OC为半径作⊙O,则⊙O与AC,AB都相切;连接OD,设OD=OE=R,在Rt△OBD中,R2+42=(R+2)2解得R=3,则CE=6,设AC=AD=x,在Rt△ABC中,x2+82=(x+4)2解得x=6,∴AO=√AC2+OC2=√62+32=3√5.【考点】作图—复杂作图切线的判定与性质【解析】(1)尺规作图:作∠CAB的平分线交BC于点O,以点O为圆心,OC为半径作⊙O,使⊙O与AC,AB都相切即可;(2)在(1)所作的图中,若⊙O与AB相切于点D,与BC的另一个交点为点E,BE=2,BD=4,根据勾股定理即可求AO的长.【解答】如图,作∠CAB的平分线交BC于点O,以点O为圆心,OC为半径作⊙O,则⊙O与AC,AB都相切;连接OD,设OD=OE=R,在Rt△OBD中,R2+42=(R+2)2解得R=3,则CE=6,设AC=AD=x,在Rt△ABC中,x2+82=(x+4)2解得x=6,∴AO=√AC2+OC2=√62+32=3√5.【答案】根据题意得,S=(33−2x+2)x=−2x2+35x;当S=143时,即143=−2x2+35x,解得:x1=11,x2=132,∵墙长15米,∴33−13+2=22>15,∴x的值为11;∵S=(33−2x+a+2)x=−2x2+(35+a)x,∵35−2x+a≤15x≥12a+10∵面积取得最大值为S=165,∴−2x2+(35+a)x=165,把x=12a+10代入,得−2(12a+10)2+(35+a)(12a+10)=165解得a=2.答:a的值为2米.【考点】二次函数的应用一元二次方程的应用【解析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=143代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(35−2x+a)m,根据矩形的面积公式即可求解.【解答】根据题意得,S=(33−2x+2)x=−2x2+35x;当S=143时,即143=−2x2+35x,解得:x1=11,x2=132,∵墙长15米,∴33−13+2=22>15,∴x的值为11;∵S=(33−2x+a+2)x=−2x2+(35+a)x,∵35−2x+a≤15x≥12a+10∵面积取得最大值为S=165,∴−2x2+(35+a)x=165,把x=12a+10代入,得−2(12a+10)2+(35+a)(12a+10)=165解得a=2.答:a的值为2米.【答案】证明:四边形ABCD是菱形,∴BC=DC,AB // CD,∴∠PBM=∠PBC=12∠ABC=30∘,∠ABC+∠BCD=180∘,∴∠BCD=180∘−∠ABC=120∘由旋转的性质得:PC=QC,∠PCQ=120∘,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,{BC=DC∠BCP=∠DCQPC=QC,∴△BCP≅△DCQ(SAS);8√3【考点】四边形综合题【解析】(1)由菱形的性质得出BC=DC,∠BCD=120∘,由旋转的性质得PC=QC,∠PCQ=120∘,得出∠BCP=∠DCQ,由SAS得出△BCP≅△DCQ即可(2)①由全等三角形的性质得出BP=DQ,得出∠QDC=∠PBC=∠PBM=30∘.在CD上取点E,使QE=QN,则∠QEN=∠QNE,得出∠QED=∠QNC=∠PMB,证明△PBM≅△QDE (AAS),即可得出结论;②由①知PM=QN,得出MN=PQ=√3PC,当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,菱形ABCD的面积=2△ABC的面积,即可得出答案.【解答】证明:四边形ABCD是菱形,∴BC=DC,AB // CD,∴∠PBM=∠PBC=12∠ABC=30∘,∠ABC+∠BCD=180∘,∴∠BCD=180∘−∠ABC=120∘由旋转的性质得:PC=QC,∠PCQ=120∘,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,{BC=DC∠BCP=∠DCQPC=QC,∴△BCP≅△DCQ(SAS);①证明:由(1)得:△BCP≅△DCQ,∴BP=DQ,∠QDC=∠PBC=∠PBM=30∘.在CD上取点E,使QE=QN,如图2所示:则∠QEN=∠QNE,∴∠QED=∠QNC=∠PMB,在△PBM和△QDE中,{∠PMB=∠QED∠PBM=∠QDEBP=DQ,∴△PBM≅△QDE (AAS),∴PM=QE=QN.②由①知PM=QN,∴MN=PQ=√3PC,∴当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,∴菱形ABCD的面积=2S△ABC=2×√34×42=8√3;故答案为:8√3.【答案】解:(1)∵y=−x2+4x=−(x−2)2+4,∴将其先向右平移3个单位,再向上平移3个单位的解析式为:y=−(x−5)2+7=−x2+10x−18.(2)∵抛物线M1与M2交于点B,∴−x2+4x=−x2+10x−18,解得,x=3,∴B(3, 3),将点B(3, 3)代入y=kx,得,k=1,∴ y OB =x ,∵ 抛物线M 2与直线OB 交于点C ,∴ x =−x 2+10x −18,解得,x 1=3,x 2=6,∴ C(6, 6),∵ 点P 的横坐标为m ,∴ 点P(m, −m 2+4m),则Q(m, −m 2+10m −18),∴ QP =−m 2+10m −18−(−m 2+4m)=6m −18,∴ S △PQC =12(6m −18)(6−m) =−3m 2+27m −54,=−3(m −92)2+274,在y =−m 2+4m 中,当y =0时,x 1=0,x 2=4,∴ A(4, 0),∵ B(3, 3),∴ 3≤m ≤4,∴ 在S =−3(m −92)2+274中,根据二次函数的图象及性质可知,当m =4时,△PCQ 有最大值,最大值为6. (3)GE HF 的值是定值1,理由如下: 设将直线OB 向下平移k 个单位长度得到直线EH , 分别过G ,H 作y 轴的平行线,过E ,F 作x 轴的平行线,交点分别为M ,N ,Q ,则y EH =x −k ,∴ 令x −k =−x 2+4x ,解得,x 1=3+√9+4k 2,x 2=3−√9+4k 2, ∴ x F =3+√9+4k2,x E =3−√9+4k2,令x −k =−x 2+10x −18,解得,x 1=9+√9+4k 2,x 2=9−√9+4k 2, ∴ x H =9+√9+4k2,x G =9−√9+4k2,∴ ME =x G −x E =9−√9+4k2−3−√9+4k2=3,FN =x H −x F =9+√9+4k 2−3+√9+4k 2=3,则∠HFN =∠GEM ,∠HNF =∠GME =90∘,∴ △GEM ∼△HFN ,∴ GE HF=EM FN =33=1, ∴ GE HF 的值是定值1.【考点】二次函数综合题二次函数图象上点的坐标特征【解析】(1)先将抛物线M 1:y =−x 2+4x 化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M 2的解析式;(2)分别求出点A ,点B ,点C 的坐标,求出m 的取值范围,再用含m 的代数式表示出△CPQ 的面积,可用函数的思想求出其最大值;(3)设将直线OB 向下平移k 个单位长度得到直线EH ,分别求出点E ,F ,G ,H 的横坐标,分别过G ,H 作y 轴的平行线,过E ,F 作x 轴的平行线,构造相似三角形△GEM 与△HFN ,可通过相似三角形的性质求出EG HF 的值为1.【解答】解:(1)∵ y =−x 2+4x =−(x −2)2+4,∴ 将其先向右平移3个单位,再向上平移3个单位的解析式为:y =−(x −5)2+7=−x 2+10x −18.(2)∵ 抛物线M 1与M 2交于点B ,∴ −x 2+4x =−x 2+10x −18,解得,x =3,∴ B(3, 3),将点B(3, 3)代入y =kx ,得,k =1,∴ y OB =x ,∵ 抛物线M 2与直线OB 交于点C ,∴ x =−x 2+10x −18,解得,x 1=3,x 2=6,∴ C(6, 6),∵ 点P 的横坐标为m ,∴ 点P(m, −m 2+4m),则Q(m, −m 2+10m −18),∴ QP =−m 2+10m −18−(−m 2+4m)=6m −18,∴ S △PQC =12(6m −18)(6−m)=−3m 2+27m −54,=−3(m −92)2+274,在y =−m 2+4m 中,当y =0时,x 1=0,x 2=4,∴ A(4, 0),试卷第21页,总21页 ∵ B(3, 3),∴ 3≤m ≤4,∴ 在S =−3(m −92)2+274中,根据二次函数的图象及性质可知,当m =4时,△PCQ 有最大值,最大值为6. (3)GE HF 的值是定值1,理由如下: 设将直线OB 向下平移k 个单位长度得到直线EH , 分别过G ,H 作y 轴的平行线,过E ,F 作x 轴的平行线,交点分别为M ,N ,Q ,则y EH =x −k ,∴ 令x −k =−x 2+4x ,解得,x 1=3+√9+4k 2,x 2=3−√9+4k 2, ∴ x F =3+√9+4k2,x E =3−√9+4k2,令x −k =−x 2+10x −18,解得,x 1=9+√9+4k 2,x 2=9−√9+4k 2, ∴ x H =9+√9+4k2,x G =9−√9+4k2,∴ ME =x G −x E =9−√9+4k 2−3−√9+4k 2=3, FN =x H −x F =9+√9+4k2−3+√9+4k2=3,则∠HFN =∠GEM ,∠HNF =∠GME =90∘,∴ △GEM ∼△HFN ,∴ GEHF=EM FN =33=1, ∴ GE HF的值是定值1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年九年级数学模拟试题
一、选择题(共10小题,每小题3分,共30分)
1、已知关于x的方程x²-kx -6=0的一个根为x=3,则实数k的值为( ) A.1ﻩﻩ B .-1 C .2ﻩﻩ D.-2
2.如图所示,点A ,B 和C 在⊙O 上,已知∠AO B=40°,则∠A CB 的度数是( ) A .10° B .20° C .30° D .40°
3.下列图形中,为中心对称图形的是( )
4.签筒中有5根纸签,上面分别标有数字1,2,3,4,5. 从中随机抽取一根,下列事件属 于随机事件的是( )
A .抽到的纸签上标有数字0. B.抽到的纸签上标有数字小于6. C .抽到的纸签上标有数字是1. D .抽到的纸签上标有数字大于6.
5.袋子中装有5个红球3个绿球,从袋子中随机摸出一个球,是绿球的概率为( )
A .53
B .83
C .85 D.
5
2 6.下列一元二次方程没有实数根的是( )
A .032=+x . B.02=+x x . C.122-=+x x . D.132=+x x .
7.如图,矩形A BCD 中,A B=8,AD=6,将矩形ABCD绕点B 按顺时针方向旋转后得到矩形A'BC'D'.若边A'B 交线段C D于H ,且BH=D H,则DH 的值是( )
A.
47 B.8−23 C.4
25 D.62 8.若关于x 的一元二次方程()002
≠=++a c bx ax 的两根为1x 、2x ,则a b x x -=+21,a
c x x =⋅21. 当
1=a ,6=b ,5=c 时,2121x x x x ++的值是( )
A .5
B .-5
C .1 D.-1
9.如图,已知矩形AB CD 中,AB=8,BC =5π.分别以B ,D 为圆心,AB 为半径画弧,两弧分别交对角线BD
于点E ,F,则图中阴影部分的面积为( )
A.4π B .5π C .8π D.10π 10.如图,扇形AOD 中,∠AO D=90°,OA =6,点P 为弧AD 上任意一点(不与点A 和D 重合),P Q⊥OD 于Q ,点I 为△OPQ 的内心,过O ,I 和D 三点的圆的半径为r . 则当点P在弧AD 上运动时,r 的值满足( )
A .30<<r B.3=r C .233<<r D .23=r
二、填空题(共6小题,每小题3分,共18分)
A
B
C
O
I
O
A
D
P
A M
D
11.平面直角坐标系中,点P(3,a -1)与点Q(2+b ,3)关于原点对称,则b a += . 12、如图,边长为a的正六边形内有一边长为a的正三角形,则
______=空白
阴影S S
13.已知1x 、2x 是方程22
4(35)60x m x m ---=的两根,且
12||3
||2
x x =,则m = 。
14.甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5. 从2个口袋中各随机取出1个小球. 取出的两个球上的数字之和为5的概率是 . 15、如图,∠A CB=60°,⊙O的圆心O 在边B C上,⊙O 的半径为3,在圆心O 向点C 运动的过程中,当CO =__________ 时,⊙O与直线CA 相切.
16.如图,在Rt △ABC 中,∠ACB =90°,AC=4,BC=3,点D 是平面内的一个动点,且AD =2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .
三、解答题(共8小题,共72分)
17.(本题6分)解方程:()12x 2
--=-x x .
18.(本题6分).设x 1、x 2是关于x 的方程x 2
-4x+k +1=0的两个实数根. (1)试确定k 的取值范围.(2)是否存在整数k 使得2x 1⋅x 2>x 1+x2成立?若存在,求出k;若不存在,请说明理由.
19.( 6分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A (2,4).
(1)画出△AB C关于x 轴对称的△111C B A ,并写出点1A 的坐标; (2)画出△ABC 绕原点O逆时针旋转90°后得到的△222C B A ,并写出
2A 的坐标.
20.(7分)小红参加一次竞技活动,活动包括笔试和面试两个环节,都是以抽签答题的方式进行,笔试从A,B,C 和D 等四种类型的题目随机抽答一题,面试从E,F和G三种类型的题目随机抽答一题. (1)用列表法或画树形图法求出参加一次活动可能抽答的所有结果;;
(2)小红对A 和F两种类型题目很熟练,求“小红刚好抽答A 和F 两种类型的题目”的概率.
21.(7分)已知关于x 的一元二次方程012
=++bx ax 中,1++-+-
=m a m m a b .
(1)若4=a ,求b 的值;
(2)若方程012
=++bx ax 有两个相等的实数根,求方程的根.
22.(8分)如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与边BC 和A C相交于点E 和F ,过E作⊙O 的切线交边A C于H .
(1)求证:CH =FH ;
(2)如图2,连接OH ,若OH =7,HC =1, 求:⊙O 的半径.
23.( 10分)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x的关系如下表:
图1
C F
H
E
O
B
A A
B O
E H F
C 图2
销售单价q(元/件)与x 满足:当1≤x<25时q=x+60;当25≤x ≤50时q =40+
x
1125
. (1)、请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系. (2)、求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式. (3)、这50天中,该超市第几天获得利润最大?最大利润为多少? 24、(10分)如图,点P 在y轴的正半轴上,⊙P 交x轴于B 、C 两点,以AC 为直角边作等腰R t△A CD,BD 分别交y 轴和⊙P 于E 、F 两点,交连接A C、F C.
(1)求证:∠ACF =∠A DB ; (2)若点A 到BD 的距离为m,BF +CF =n,求线段CD 的长; (3)当⊙P 的大小发生变化而其他条件不变时,AO
DE
的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
25、(12分)如图1,直线y=
3
3
x+(2+3)分别交x 轴,y 轴于点A ,C,点B 为线段AC 中点,连接OB,将△B OC 折叠,使点B 落在边O C上点F 处,折痕为DE,EF ∥x 轴.
(1)求点E 和点F 的坐标;(2)若经过点E,F 的抛物线与x 轴交于点G,H,且点G(3,0),求该抛物线的解析式;(3)若点P是(2)中抛物线上(x 轴下方)一点(图2),PF 交x 轴于N,问是否存在使S △GFN ≥3
1S△GFP 的点P?若存在,请求出点P 横坐标的取值范围;若不存在,请说明理由.。