【试题】2018年全国各地高考数学试题及解答分类汇编大全(03 函数的性质及其应用)

合集下载

2018全国三卷及答案

2018全国三卷及答案
2018年普通高等学校招生全国统一考试
理科数学
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
21.答案:
(1)见解答;
(2) .
解答:
(1)若 时, ,
∴ .
令 ,
∴ .
∴当 时, , 在 上单调递增,
当 时, , 在 上单调递减.
∴ ,
∴ 恒成立,
∴ 在 上单调递增,
又 ,
∴当 时, ;当 时, .
(2) ,



.
设 ,
∴ ,ቤተ መጻሕፍቲ ባይዱ, ,
∴在 邻域内, 时, , 时, .
时, ,由洛必达法则得 ,
三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)
(一)必考题:共60分。
17.(12分)
等比数列 中, .
⑴求 的通项公式;
⑵记 为 的前 项和.若 ,求 .
18.(12分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

2018年普通高等学校招生全国统一考试数学试题 理(全国卷3,含解析)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷3,含解析)

2018年普通高等学校招生全国统一考试数学试题理(全国卷3)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。

详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。

2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。

详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。

3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。

详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。

4. 若,则A. B. C. D.【答案】B【解析】分析:由公式可得。

详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。

5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题。

6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。

2018全国各地高考数学试题汇编附解析

2018全国各地高考数学试题汇编附解析

2018全国各地高考数学试题汇编(附解析)2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1.已知集合{0,1,2,8}B=-,那么A B=▲.A=,{1,1,6,8}[答案]{1,8}2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲.[答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.[答案]85.函数()f x=的定义域为▲.[答案][)∞+,26.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]1037.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . [答案]6-π8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一条渐近线,则其离心率的值是 ▲ . [答案]29.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤ 则((15))f f 的值为 ▲ .[答案]2210.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[答案]3411.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ . [答案]-312.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . [答案]313.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ . [答案]914.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . [答案]2715.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.[答案]16.已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值. [答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B 均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.[答案]19.记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()x b g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. [答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国I卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。

2018年全国各地高考数学试题及解答分类汇编大全(03 函数的性质及其应用)

2018年全国各地高考数学试题及解答分类汇编大全(03 函数的性质及其应用)

2018年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)一、选择题1. (2018上海)设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( ) (A(B)2(C)3(D )2.(2018浙江)函数y =||2x sin2x 的图象可能是( )A .B .C .D .2.答案:D解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.3.(2018天津文)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为( )(A )a b c >> (B )b a c >> (C )c b a >> (D )c a b >>3.【答案】D【解析】由题意可知:3337log 3log log 92<<,即12a <<,11031110444⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即01b <<,133317log log 5log 52=>,即c a >,综上可得:c a b >>.故选D .4.(2018天津理)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 ( ) (A) a b c >>(B) b a c >> (C) c b a >> (D) c a b >>4.【答案】D【解析】由题意结合对数函数的性质可知:2log e 1a =>,()21ln 20,1log e b ==∈,12221log log 3o 3e l g c ==>, 据此可得c a b >>,故选D .5.(2018全国新课标Ⅰ文)设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( ) A .(]1-∞-, B .()0+∞, C .()10-, D .()0-∞,5.答案:D解答:取12x =-,则化为1()(1)2f f <-,满足,排除,A B ; 取1x =-,则化为(0)(2)f f <-,满足,排除C ,故选D .6.(2018全国新课标Ⅰ理)已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是( ) A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞)6. 答案:C解答:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如下:要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,∴选C.7.(2018全国新课标Ⅱ文、理)函数()2e e x xf x x --=的图像大致为( )7.【答案】B【解析】0x ≠,()()2e e x xf x f x x ---==-,()f x ∴为奇函数,舍去A ,()11e e 0f -=->,∴舍去D ;()()()()()243ee e e 22e 2e xx x x x xx xx x f x xx---+---++='=,2x ∴>,()0f x '>,所以舍去C ;因此选B .8.(2018全国新课标Ⅲ文)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+8.答案:B解答:()f x 关于1x =对称,则()(2)ln(2)f x f x x =-=-.故选B.9.(2018全国新课标Ⅲ文、理)函数422y x x =-++的图像大致为( )9.答案:D解答:当0x =时,2y =,可以排除A 、B 选项;又因为3424(22y x x x x x '=-+=-+-,则()0f x '>的解集为(,)(0,)22-∞-U ,()f x 单调递增区间为(,)2-∞-,(0,2;()0f x '<的解集为(,)22-+∞U ,()f x单调递减区间为(2-,()2+∞.结合图象,可知D 选项正确.10.(2018全国新课标Ⅱ文、理)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=( )10.【答案】C 【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+,所以()()11f x f x +=--,()()()311f x f x f x ∴+=-+=-,4T ∴=,因此()()()()()()()()()()1235012123412f f f f f f f f f f ++++=+++++⎡⎤⎣⎦, 因为()()31f f =-,()()42f f =-,所以()()()()12340f f f f +++=,()()()222f f f =-=-,()20f ∴=,从而()()()()()1235012f f f f f ++++==,选C .11.(2018全国新课标Ⅲ理)设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+11.答案:B解答:∵0.2log 0.3a =,2log 0.3b =,∴0.31log 0.2a =,0.31log 2b =, ∴0.311log 0.4a b +=,∴1101a b <+<即01a b ab+<<, 又∵0a >,0b <,∴0ab a b <+<,故选B.二、填空:1.(2018北京理)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 1.【答案】sin y x =(答案不唯一) 【解析】令()(]00402x f x x x =⎧⎪=⎨-∈⎪⎩,,,,则()()0f x f >对任意的(]0,2x ∈都成立, 但()f x 在[]0,2上不是增函数.又如,令()sin f x x =,则()00f =,()()0f x f >对任意的(]0,2x ∈都成立,但()f x 在[]0,2上不是增函数.2. (2018上海)设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

2018年数学真题及解析_2018年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2018年数学真题及解析_2018年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2018年云南省高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.12.(5.00分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国卷3理科数学试题和参考答案

2018年高考全国卷3理科数学试题和参考答案

2018年高考全国卷3理科数学试题及参考答案1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=A{0} B{1} C{1,2} D{0,1,2}2.(1+i)(2-i)=A-3-i B-3+i C3-i D3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD. D4.若,则A B C D5.的展开式中的系数为A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则∆ABP面积的取值围是A[2,6] B[4,8] C D7.函数y=-+x²+2的图像大致为A. BC. DA.AB.BC.CD.D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">A.0.7B.0.6C.0.4D.0.39.∆ABC的角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=A B C D10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为A12 B18 C24 D5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A B2 C D分值: 5分查看题目解析 >A.AB.BC.CD.D13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a= 。

2018年高考全国卷3理科数学试题和参考答案

2018年高考全国卷3理科数学试题和参考答案

2018年高考全国卷3理科数学试题及参考答案1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=A{0} B{1} C{1,2} D{0,1,2}2.(1+i)(2-i)=A-3-i B-3+i C3-i D3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD. D4.若,则A B CD5.的展开式中的系数为A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则∆ABP面积的取值围是A[2,6] B[4,8] C D7.函数y=-+x²+2的图像大致为A.BC.DA.AB.BC.CD.D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">A.0.7B.0.6C.0.4D.0.39.∆ABC的角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=A B C D10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为A12B18C24D5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A B2 C D分值: 5分查看题目解析>A.AB.BC.CD.D13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a=。

2018年高考数学试题汇编(精校Word版)全国各地试卷高考真题汇总含答案

2018年高考数学试题汇编(精校Word版)全国各地试卷高考真题汇总含答案

2018年全国统一考试高考数学试题汇编(精校版Word版含答案)2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版-------------- 2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版答案-------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版------------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版答案------ 2018年全国卷文科数学高考真题(全国卷II)Word版--------------- 2018年全国卷文科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷理科数学高考真题(全国卷II)Word版--------------- 2018年全国卷理科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版答案------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版答案-------- 2018年文科数学高考真题(北京卷)Word版含答案---------------- 2018年理科数学高考真题(北京卷)Word版含答案----------------- 2018年文科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(上海卷)Word版含答案---------------- 2018年理科数学高考真题(浙江卷)Word版含答案----------------绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)文科数学试题注意事项:1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B = ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( )A .0B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC -B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱 侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()f x f x x a =++( ),若()g x 存在2个零点,则a 的取值范围是A .[)10-,B .[)+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.设函数()2010x x f x y -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知s i n s i n 4s i n s b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

2018年高考数学全国卷试题答案解析(6套)

2018年高考数学全国卷试题答案解析(6套)

中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则

高考最新-2018年全国高考试题分类汇编及解析(数学)数列、解析几何、立体几何解析几何部分参考答案精

高考最新-2018年全国高考试题分类汇编及解析(数学)数列、解析几何、立体几何解析几何部分参考答案精

2018年全国高考试题分类汇编免费教育资源网解析几何部分参考答案、选择题二、填空题1.22x2y2411.用代数的方法研究图形的几何性质2 152 .2x y2 112. 5 23 1 13.44.5 14.[-1,3]15.455(0,-1) 1 2 a 1 216.2x- y+4=06.x 2+(y+1) 2=1 1-2 ≤ a≤1+ 2 17.213 18.11[ ,0) (0, ]7( ,13)10 1048.(5,0) 19.22(x 1)2 (y 1)2 259.22(x- 2)2+(y+3) 2=520.12210. (x- 2)2+(y+3) 2=5三、解答题1.(本小题主要考查直线和双曲线的概念和性质,综合解题能力 .满分 14 分 .解:( I)由 C 与 t 相交于两个不同的点,故知方程组x2y2 1,2y21,a x y 1.平面向量的运算等解析几何的基本思想和有两个不同的实数解 .消去 y 并整理得(1-a2)x2+2a2x-2a2=0. ① ⋯⋯ 2 分双曲线的离心率即离心率 e 的取值范围为 ( 6, 2) ( 2, ). 6分II)设 A(x 1,y 1),B(x 2,y 2), P 1(0,1)2. 本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和 综合解题能力。

满分 12 分。

解:(Ⅰ) C 的焦点为 F(1, 0),直线 l 的斜率为 1,所以 l 的方程为y x 1.22将 y x 1代入方程 y 2 4x ,并整理得 x 26x 1 0.设A (x 1, y 1),B (x 2,y 2),则有 x 1 x 2 6,x 1x 2 1.OA OB (x 1, y 1) (x 2,y 2) x 1x 2 y 1y 2 2x 1x 2 (x 1 x 2) 1 3. | OA ||OB | x 12y 12x 22y 22x 1x 2[x 1x 2 4(x 1 x 2) 16] 41.OA OB 3 14 cos(OA, OB) . |OA| |OB | 41314 所以 OA 与OB 夹角的大小为 arccos3 14. 41(Ⅱ)由题设 FB AF 得 (x 2 1,y 2)(1 x 1, y 1),即x 2 1 (1 x 1), ①y2y1.②所以 21 a 20. 4 2 24a 4 8a 2(1 a 2) 0.解得 0 a 2且a 1.e1 a 212 1. 0 a 2且 a 1, a 255 PA 5 PB, (x 1,y 1 1) 5(x 2,y 2 1). 12 12由此得 x 1 152x 2. 8分 由于 x 1,x 2 都是方程①的根,且 所以 17 x 2 12 22 1a12 17.13.14分 5 x 222a 2 2a 2 2891 a2 .消去, x 2 ,得 1 a 2 60 由 a 0,所以 a2a 2y12 4x1,y22 4x2, ∴ x22x1. ③联立①、③解得x2 ,依题意有0.∴B( ,2 ),或B( , 2 ),又 F(1,0),得直线 l方程为( 1)y 2 (x 1)或( 1)y 2 (x 1),当[4,9]时,l 在方程 y轴上的截距为2或 1由②得y22 2y12,2 2 2 11 可知2在[4,9]上是递减的,4,4 23,3 134,4直线 l 在 y 轴上截距的变化范围为[ 43 3] [3,4].4] [4,3]. 以及综合. 满分 14 分 .解:( 1)由题设有m 0,c m.设点 P的坐标为(x0,y0),由PF1 PF2,得y0x0 cy0x0 c1,化简得x02y02m. ①2 将①与x0 m1y021联立,解得 2x02m 1 2,y0由m 0,x021 0,得 m 1. 所以 m 的取值范围是1.2)准线 L 的方程为m 1.设点 Q的坐标为(x1,y1),则m x1m 1.mm1m |QF2 | x1 c m|PF| c x m x2 m1 |QF2| 22m m 1.将x0 代入②,化简得.满分 12 分 .2m1代入②,化简得由题设 |QF 2| | PF 2 |2 3 ,得 mm 21 2 3 ,无解 .将 x.满分 12 分 .m|QF 2 | 1m m 2 1.|PF 2 | m m 21由题设 ||QPF F22 || 2 3 ,得 m m 21 2 3.解得 m=2.从而 x 03, y 02,c 2, 得到 PF 2 的方程22y ( 3 2)(x 2).4.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力 满分 12 分 . 解: y ′ =2x+1.直线 l 1 的方程为 y=3 x - 3.设直线 l 2过曲线 y=x 2+x -2 上 的点 B( b, b 2+b -2),则 l 2的方程为y=(2b+1) x -b 2-2 1因为 l 1⊥ l 2,则有 2b+1= ,b 1 231 x所以直线 l 2的方程为 y2 322II )解方程组 y 3x 3,1 22yx391 x, 6 5 y2(1, 5).(6, 2).221,0)、 ( ,0).3所以直线 l 1和 l 2 的交点的坐标为 l 1、l 2与 x 轴交点的坐标分别为(2 32 125.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力 解:直线 l 的方程为 x y1,即 bx ay ab 0.aba 1ly 1 2(y 2 2),∴y 1 y 24d1b(a 1)a 2b 2同理得到点(- 1, 0) b(a 1)2到直线 l 的距离 d 2a2 bs d 1 d 22ab2aba 2b 2由 s4c,得 2ab 4c,5 c 5即 5a c 2 a 2 2c 2.于是得 5 e 2 1 2e 2,即4e 425e 225 0.解不等式,得 54 e 25.由于 e 1 0,所以 e 的取值范围是25 e 5.26.(Ⅰ)由已知条件 ,可设抛物线的方程为 y 2∵点 P(1,2) 在抛物线上 , ∴ 222p 1, 得 p =2.2故所求抛物线的方程是 y 2准线方程是 x=-- 1.(Ⅱ ) 设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB , ∵PA 与 PB 的斜率存在且倾斜角互补 ,∴k PA k PB .由 A(x 1,y 1), B(x 2,y 2)在抛物线上 ,得2 y14x 1, ① 4x 2, ②2 y 2 221221 y2 14 2 y2y 1 1 4 y 1由① --②得直线 AB 的斜率y2 y1 4 4kAB1(x1 x2). (14 分)x2 x1 y1 y2 47.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力、满分 14 分。

2018年全国卷3理科数学试题及参考答案

2018年全国卷3理科数学试题及参考答案

绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。

2018全国卷3高考试题及答案理科数学

2018全国卷3高考试题及答案理科数学

绝密★启封并使用完成前试题种类:2018 年一般高等学校招生全国一致考试理科数学注意事项:1.本试卷分第Ⅰ卷 (选择题 )和第Ⅱ卷 (非选择题 )两部分 .第Ⅰ卷 1 至 3 页,第Ⅱ卷3至5页.2.答题前,考生务势必自己的姓名、准考据号填写在本试题相应的地点 .3.所有答案在答题卡上达成,答在本试题上无效 .4. 考试结束后,将本试题和答题卡一并交回 .第Ⅰ卷一 . 选择题:本大题共 12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的 . ( )设会合 S= S x P(x 2)(x 3) 0 ,T x x 0 ,则 SI T= 1(A) [2 ,3](B) (- ,2] U [3,+ )(C) [3,+)(D) ( 0, 2] U [3,+ )( 2)若 z=1+2i ,则4izz 1(A)1(B) -1(C) i(D)-iuuv ( 1 , uuuv 3,1), 则 ABC=( 3)已知向量 BA 2) ,BC (2 2 2 2(A)30 0 (B) 45 0 (C) 60 0(D)120 0( 4)某旅行城市为向旅客介绍当地的气温状况,绘制了一年中月均匀最高气温和均匀最低气温的雷达图。

图中 A 点表示十月的均匀最高气温约为 150C ,B 点表示四月的均匀最低气温约为 50 C 。

下边表达不正确的选项是(A) 各月的均匀最低气温都在 00C 以上 (B) 七月的均匀温差比一月的均匀温差大 (C) 三月和十一月的均匀最高气温基真同样(D) 均匀气温高于 20 0C 的月份有 5 个( 5)若 tan3 ,则 cos 2 2sin 24(A)64(B)48 (C) 1(D)16252525431( 6)已知 a 23 , b 4 4 , c 253 ,则( A ) b a c ( B ) a b c (C ) b ( 7)履行下列图的程序框图,假如输入的c a (D ) c a ba=4 ,b=6,那么输出的 n=( A )3 ( B )4 ( C )5 ( D )6( 8)在 △ABC 中, B = π,BC 边上的高等于 1BC ,则 cos A =43(A )3 10(B )10(C ) - 10(D ) - 3 1010101010(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( A )18 36 5 ( B )54 18 5 ( C )90( D )81(10) 在关闭的直三棱柱 ABC -A 1B 1 C 1 内有一个体积为 V 的球,若 AB BC ,AB=6 , BC=8,AA 1 =3,则 V 的最大值是( A )4π (B ) 9( ) π 322C 6(D )3( 11)已知 O 为坐标原点, F 是椭圆 C :x 2y 21(a b0) 的左焦点, A , Ba 2b 2分别为 C 的左,右极点 .P 为 C 上一点,且 PF ⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的离心率为 (A )1(B )1(C )2323(D )34( 12)定义 “规范 01 数列 ”{a n }以下:{a n }共有 2m 项,此中 m 项为 0 ,m 项为 1,且对随意 k 2m ,a 1 , a 2 ,L , a k 中 0 的个数许多于 1 的个数 .若 m=4,则不一样的“规范 01 数列”共有(A )18 个(B )16 个(C )14 个(D )12 个第II 卷本卷包含必考题和选考题两部分 .第(13) 题 ~第(21) 题为必考题,每个试题考生都一定作答 .第(22) 题~第(24) 题为选考题,考生依据要求作答 .二、填空题:本大题共 3 小题,每题 5 分x - y + 1 ≥ 0( 13)若 x ,y 知足拘束条件 { x - 2y ? 0x + 2y - 2 ? 0则 z=x+y 的最大值为 _____________.(14)函数y = sin x -√3 cos x的图像可由函数y = sin x +√3 cos x的图像起码向右平移 _____________ 个单位长度获得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【试题】2018年全国各地高考数学试题及解答分类汇编大全
(03函数的性质及其应用)
一、选择题
1. (2018上海)设D 是含数1的有限实数集,f x ()
是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6
后与原图像重合,则在以下各项中,1f ()
的可能取值只能是( ) (A
(B
)2 (C
)3 (D )
2.(2018浙江)函数y =||2x sin2x 的图象可能是( ) A . B . C . D .
2.答案:D
解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以
()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.
3.(2018天津文)已知13313
711log ,(),log 245a b c ===,则,,a b c 的大小关系为( ) (A )a b c >> (B )b a c >> (C )c b a >> (D )c a b >>
3.【答案】D 【解析】由题意可知:3337log 3log log 92<<,即12a <<,1
10
31110444⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
, 即01b <<,1333
17log log 5log 52=>,即c a >,综上可得:c a b >>.故选D .
4.(2018天津理)已知2log e =a ,ln 2b =,1
2
1log 3c =,则a ,b ,c 的大小关系为 ( ) (A) a b c >> (B) b a c >> (C) c b a >> (D) c a b >>
4.【答案】D
【解析】由题意结合对数函数的性质可知:
2log e 1a =>,()21ln 20,1log e b ==∈,1222
1log log 3o 3e l g c ==>, 据此可得c a b >>,故选D .
5.(2018全国新课标Ⅰ文)设函数()201 0
x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )
A .(]1-∞-,
B .()0+∞,
C .()10-,
D .()0-∞,
5.答案:D 解答:取12x =-,则化为1()(1)2
f f <-,满足,排除,A B ; 取1x =-,则化为(0)(2)f f <-,满足,排除C ,故选D .
6.(2018全国新课标Ⅰ理)已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,
()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是( )
A .[–1,0)
B .[0,+∞)
C .[–1,+∞)
D .[1,+∞)
6. 答案:C
解答:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如下:
要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,∴选C.
7.(2018全国新课标Ⅱ文、理)函数()2
e e x x
f x x --=的图像大致为( )。

相关文档
最新文档