山东省日照市莒县2017年南四校联盟中考数学一模试卷及参考答案

合集下载

山东省日照市莒县中考一模数学考试卷(解析版)(初三)中考模拟.doc

山东省日照市莒县中考一模数学考试卷(解析版)(初三)中考模拟.doc

山东省日照市莒县中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图所示的几何体是由五个小正方体组合而成的,它的主视图是()【答案】A【解析】试题解析:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A考点:简单几何体的三视图.【题文】化简(-a2)3的结果是()A.-a5 B.a5 C.-a6 D.a6【答案】C.【解析】试题解析:(-a2)3=(-1)3(a2)3=-a6.故选C.考点:积的乘方与幂的乘方.【题文】某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,劳动时间(小时)3456人数112评卷人得分1以下说法正确的是()A.中位数是5,平均数是3.6B.众数是5,平均数是4.6C.中位数是4,平均数是3.6D.众数是2,平均数是4.6【答案】B.【解析】试题解析:这组数据中5出现的次数最多,则众数为5,∵共有5个人,∴第3个人的劳动时间为中位数,∴中位数为:5,平均数为=4.6;故选B.考点:1.众数;2.中位数;3.平均数.【题文】不等式组的解集在数轴上表示为()【答案】B.【解析】试题解析:由①得,x<0;由②得,x≤1,故此不等式组的解集为:x<0,在数轴上表示为:故选B.考点:在数轴上表示不等式组的解集【题文】将直线y=-2x+3向上平移2个单位长度,得到一次函数的解析式为()A.y=-2x+1 B.y=-2x+5 C.y=4x+3 D.y=-2x+2 【答案】B.【解析】试题解析:由“上加下减”的原则可知,把直线y=-2x+3向上平移2个单位长度后所得直线的解析式为:y=-2x+3+2,即y=-2x+5.故选B.考点:一次函数的图象与几何变换.【题文】如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(2,0),则点C的坐标为()A(2,2) B.(1,2) C.(,2) D.(2,1)【答案】A.【解析】试题解析:∵∠OAB=∠OCD=90°,CO=CD,Rt△OAB与Rt△OCD是位似图形,点B的坐标为(2,0),∴BO=2,则AO=AB=,∴A(1,1),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(2,2).故选A.考点:位似变换.【题文】某县为大力推进义务教育均衡发展,加强学校“信息化”建设,计划用三年时间对全县学校的信息化设施和设备进行全面改造和更新.2016年县政府已投资2.5亿元人民币,若每年投资的增长率相同,预设2018年投资3.6亿元人民币,那么每年投资的增长率为()A.20%、-220% B.40% C.-220% D.20% 【答案】D.【解析】试题解析:设每年投资的增长率为x,根据题意,得:2.5(1+x)2=3.6,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选D.考点:一元二次方程的实际应用.【题文】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.-4 B.4 C.-2 D.2 【答案】A.【解析】试题解析:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(-2n,2m),∴k=-2n2m=-4mn=-4.故选A.考点:反比例函数图象上点的坐标特征.【题文】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()【答案】C.【解析】试题解析:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF ,BD=BF,则a-x+b-x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴,∴,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴,,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c;又∵b-x=AE=AD=a+x-c;所以x=,故本选项错误.故选C.考点:1.正方形的性质和判定,2.切线的性质,3.全等三角形的性质和判定,4.三角形的内切圆与内心【题文】在同一平面直角坐标系中,函数y=ax2+bx(a≠0)与y=bx+a(b≠0)的图象可能是()【答案l【题文】如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1,C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2、B1B2、C1C2、D1D2=A1B1,…,依次规律继续下去,则正方形AnBnCnDn的面积为()A. B.()na2 C.()n-1a2 D.()na2 【答案】D.【解析】试题解析:在Rt△A1BB1中,由勾股定理可知;A1B12=A1B2+B1B2=(a)2+(a)2=a2,即正方形A1B1C1D1的面积=a2;在Rt△A2B1B2中,由勾股定理可知:A2B22=A2B12+B2B12=(×a)2+(×a)2=()2a2;即正方形A2B2C2D2的面积=()2a2;…∴正方形AnBnCnDn的面积=()na2.故选D.考点:规律型:图形变化类.【题文】分解因式:m2n-2mn+n=.【答案】n(m-1)2【解析】试题解析:原式=n(m2-2m+1)=n(m-1)2.考点:提公因式法与公式法的综合运用.【题文】已知=,则=______.【答案】.【解析】试题解析l∴C点的坐标是(-3,3),∴当双曲线y=经过点(-1,1)时,k=-1;当双曲线y=经过点(-3,3)时,k=-9,因而-9≤k≤-1.考点:反比例函数.【题文】如图,在平面直角坐标系中,抛物线y=2经过平移得到抛物线y=-3x,其对称轴与两段抛物线所围成的阴影部分的面积为.【答案】.【解析】试题解析:如图,∵y=x2-3x=(x-3)2-,∴平移后抛物线的顶点坐标为(3,-),对称轴为直线x=3,当x=3时,y=×32=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×3=.考点:二次函数图象与几何变换.【题文】(1)计算:2sin45°-+(-2016)0(2)先化简,再求值:(+1)÷,其中a是不等式3a+7>1的负整数解.【答案】(1)+2;(2)-2.试题分析:(1)原式利用特殊角的三角函数值,二次根式性质,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的负整数解确定出a的值,代入计算即可求出值.试题解析:(1)原式=2×-2+3+1=+2;(2)原式===a-1,不等式3a+7>1,得到a>-2,∵a为负整数,∴a=-1,则原式=-1-1=-2.考点:1.实数的运算;2.分式的化简;3.解一元一次不等式.【题文】为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.【答案】(1)500;90°;(2)380;(3)C、D两个厂家;(4).试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.考点:1.条形统计图;2.扇形统计图;3. 树状图法.【题文】如图,AB分别是⊙O的直径,AC是弦,DC是⊙O的切线,C为切点,AD⊥DC于点D.(1)已知∠ACD=a,求∠AOC的大小;(2)求证:AC2=AB·AD.【答案】(1)2α;(2)证明见解析.【解析】试题分析:(1)由CD是⊙O的切线得到∠OCD=90°,即∠ACD+∠ACO=90°,利用OC=OA得到∠ACO=∠CAO ,然后利用三角形的内角和即可证明题目的结论;(2)如图,连接BC.由AB是直径得到∠ACB=90°,然后利用已知条件可以证明在Rt△ACD∽Rt△ABC,接着利用相似三角形的性质即可解决问题.试题解析:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°,①∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边除以2得:∠AOC+∠ACO=90°,②由①,②,得:∠ACD-∠AOC=0,即∠AOC=2∠ACD=2α;(2)如图,连接BC.∵AB是直径,∴∠ACB=90°,在Rt△ACD与Rt△ABC中,∵∠AOC=2∠B,∴∠B=∠ACD,∴Rt△ACD∽Rt△ABC,∴,即AC2=AB·AD.考点:切线性质.【题文】如图,矩形纸片ABCD,AB=,对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN 交BC于点G.(1)求证:∠ABM=30°;(2)求证:△BMG是等边三角形;(3)若P为线段BM上一动点,求PN+PG的最小值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)由对折,判断出BN垂直平分MG,通过计算即可;(2)由(1)∠ABM=∠NBM=GBN=30°,得出∠MBG=60°,即可;(3)先计算出BG=BM=2,再判断出点N与点A关于直线BM对称,得到PN+PG的最小值为AG,计算即可.试题解析:(1)∵对折AD与BC重合,∴点E是AB的中点,∴点N是MG的中点,∵∠BNM=∠A=90°,∴BN垂直平分MG,∴BM=BG,∴∠GBN=∠MBN,由翻折的性质,∠ABM=∠NBM,∴∠ABM=∠NBM=∠GBN=×90°=30°,∴∠MBG=60°;(2)由(1)知,∠ABM=∠NBM=GBN=30°,∴∠MBG=60°,∵BM=BG,∴△BMG为等边三角形,(3)如图,连接PN,PA,PG,∵AB=,∠ABM=30°,∴BM=2,∴BG=BM=2,∴由折叠的性质知,点N与点A关于直线BM对称,∴PN=PA,∴PN+PG的最小值为AG,∵AG=,∴PN+PG的最小值为.考点:四边形综合题【题文】阅读材料:我们知道|x|=,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值),在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x<2时,原式=x+1-(x-2)=3;(3)当x≥2时,原式=x+1+x-2=2x-1.综上所述,原式=学以致用:(Ⅰ)分别求出|x+3|和|x-1|的零点值;(Ⅱ)化简代数式|x+3|+|x-1|;拓展应用:(Ⅲ)求函数y=|x+3|+|x-1|(-3≤x≤3)的最大值和最小值.【答案】(1)零点值分别为-3和1;(2);(3)最大值是8和最小值是4.【解析】试题分析:(Ⅰ)阅读材料,根据零点值的求法,即绝对值里面的代数式等于0,即可解答;(Ⅱ)根据阅读材料中,化简带绝对值的代数式的方法,根据x的取值范围,分为三种情况,根据绝对值的性质解答即可;(Ⅲ)分x<-3、-3≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出函数的最值.试题解析:(Ⅰ)令x+3=0和x-1=0,分别求得x=-3,x=1,所以|x+3|和|x-1|的零点值分别为-3和1;(Ⅱ)在实范围内,零点值x=-3和x=1可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x<-3时,原式=-(x+3)-(x-1)=-2x-2;(2)当-3≤x<1时,原式=(x+3)-(x-1)=4;(3)当x≥1时,原式=x+3+x-1=2x+2.综上所述,原式=;(Ⅲ)由(Ⅱ)可化简函数为y=.该函数的大致图形如图所示:所以函数y=|x+3|+|x-1|(-3≤x≤3)的最大值是8和最小值是4.考点:一次函数综合题.【题文】如图,直线y=-2x+2与抛物线y=ax2+bx(a<0)相交于点A,B.双曲线y=过A、B两点,已知点B的坐标为(2,-2),点A在第二象限内,且tan∠Aoy=.(1)求双曲线和抛物线的解析式;(2)计算△AOB的面积;(3)在抛物线上是否存在点P,使△AOP的面积等于△AOB的面积?若存在,请你写出点P的坐标;若不存在,请你说明理由.【答案】(1)双曲线解析式为y=-,抛物线解析式为y=x2-3x,(2)3,(3)P(-3,18).【解析】试题分析:(1)先用待定系数法求出双曲线解析式,再用待定系数法求出抛物线解析式;(2)先求出△AOB的面积,在求出△BOC的面积即可;(3)先求出直线PB解析式为y=-4x+6,和抛物线解析式为y=x2-3x,联立方程组求解即可.试题解析:(1)∵双曲线经过点B,∴k=-4,∴双曲线解析式为y=-,∵tan∠AOy=,设A(-m,4m),∵点A 过双曲线,∴m=1或m=-1(舍),∴A(-1,4);∵抛物线过点A,B,∴,∴,∴抛物线解析式为y=x2-3x,(2)设直线y=-2x+2交于x轴于C,令y=0,∴x=1,∴OC=1,∴S△AOB=S△AOC+S△BOC=×1×4+×1×2=3,(3)存在点P(-3,18),理由:假设存在点P,使△AOP的面积等于△AOB的面积;∴点P到直线OA的距离等于点B到直线OA的距离,∴PB∥AO,∵直线AO解析式为y=-4x,∴设直线PB的解析式为y=-4x+f,∵直线PB过点B,∴-2=-4×2+f,∴f=6,∴直线PB解析式为y=-4x+6,∴,∴或(舍),P(-3,18).考点:二次函数综合题.。

中考数学一模试卷含答案解析中考数学考点

中考数学一模试卷含答案解析中考数学考点

山东省日照市莒县中考数学一模试卷(解析版)一、选择题(本题共12个小题,1-8题每小题3分,9-12题每小题3分,共40分)1.的倒数是()A.﹣3 B.C.3 D.2.下列计算正确的是()A. += B.x6÷x3=x2C.=2 D.a2(﹣a2)=a43.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣54.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥5.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是()A.B.C.D.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.8.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x米/分,根据题意,下面列出的方程正确的是()A. B.C.D.9.(4分)关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0①若|a|=|b|,则a2=b2;②若ma2>na2,则m>n;③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.A.1个 B.2个 C.3个 D.4个11.(4分)如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.6 B.13 C. D.212.(4分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(本题共4小题,每小题4分,共16分)13.(4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(4,﹣2),则k的值为.14.(4分)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=.15.(4分)如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为.16.(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)三、解答题(本题共6小题,共64分)请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(10分)某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有,并补全条形统计图;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.18.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)19.(10分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?20.(10分)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.21.(12分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.22.(12分)已知:在平面直角坐标系中,抛物线交x轴于A、B 两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.(1)求抛物线的解析式及顶点D的坐标.(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.山东省日照市莒县中考数学一模试卷参考答案与试题解析一、选择题(本题共12个小题,1-8题每小题3分,9-12题每小题3分,共40分)1.的倒数是()A.﹣3 B.C.3 D.【考点】倒数.【分析】根据乘积是1的两数互为倒数,即可得出答案.【解答】解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选A.【点评】本题考查了倒数的性质:乘积是1的两数互为倒数,可得出答案,属于基础题.2.下列计算正确的是()A. += B.x6÷x3=x2C.=2 D.a2(﹣a2)=a4【考点】实数的运算;同底数幂的除法;单项式乘单项式.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=x3,错误;C、原式=2,正确;D、原式=﹣a4,错误,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥【考点】函数自变量的取值范围.【分析】根据函数表达式是二次根式时,被开方数非负,可得答案.【解答】解:在函数y=中,自变量x的取值范围是x≤,故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.5.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据一个袋子中装有3个红球和2个黄球,随机从袋子里同时摸出2个球,可以列表得出,注意重复去掉.【解答】解:∵一个袋子中装有3个红球和2个黄球,随机从袋子里同时摸出2个球,∴其中2个球的颜色相同的概率是:=.故选:D.红1红2红3黄1黄2红1﹣红1红2红1红3红1黄1红1黄2红2红2红1﹣红2红3红2黄1红2黄2红3红3红1红3红2﹣红3黄1红3黄2黄1黄1红1黄1红2黄1红3﹣黄1黄2黄2黄2红1黄2红2黄2红3黄2黄1﹣【点评】此题主要考查了列表法求概率,列出图表注意重复的(例如红1红1)去掉是解决问题的关键.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x米/分,根据题意,下面列出的方程正确的是()A. B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据时间=路程÷速度,以及关键语“骑自行车比步行上学早到30分钟”可得出的等量关系是:小玲上学走的路程÷步行的速度﹣小玲上学走的路程÷骑车的速度=30.【解答】解:设小玲步行的平均速度为x米/分,则骑自行车的速度为4x米/分,依题意,得.故选A.【点评】考查了由实际问题抽象出分式方程,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.9.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0【考点】根的判别式.【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴△=b2﹣4ac≥0,即:9+4k≥0,解得:k≥﹣,∵关于x的一元二次方程kx2+3x﹣1=0中k≠0,则k的取值范围是k≥﹣且k≠0.故选D.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.①若|a|=|b|,则a2=b2;②若ma2>na2,则m>n;③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.A.1个 B.2个 C.3个 D.4个故选B.11.如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.6 B.13 C. D.2【考点】垂径定理;勾股定理;等腰直角三角形.【分析】过O作OD⊥BC,由垂径定理可知BD=CD=BC,根据△ABC是等腰直角三角形可知∠ABC=45°,故△ABD也是等腰直角三角形,BD=AD,再由OA=1可求出OD的长,在Rt△OBD中利用勾股定理即可求出OB的长.【解答】解:过O作OD⊥BC,∵BC是⊙O的一条弦,且BC=6,∴BD=CD=BC=×6=3,∴OD垂直平分BC,又AB=AC,∴点A在BC的垂直平分线上,即A,O、D三点共线,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴△ABD也是等腰直角三角形,∴AD=BD=3,∵OA=1,∴OD=AD﹣OA=3﹣1=2,在Rt△OBD中,OB===故选C.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c <x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B【点评】主要考查图象与二次函数系数之间的关系.关键是注意掌握数形结合思想的应用.二、填空题(本题共4小题,每小题4分,共16分)13.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(4,﹣2),则k的值为﹣8.【考点】反比例函数图象上点的坐标特征.【分析】根据矩形的性质和已知点A的坐标,求出点C的坐标,代入反比例函数y=,求出k,得到答案.【解答】解:点A的坐标为(4,﹣2),根据矩形的性质,点C的坐标为(﹣4,2),把(﹣4,2)代入y=,得k=﹣8.故答案为:﹣8.【点评】本题考查的是反比例函数图象上的点的坐标特征,根据矩形的性质,求出点C的坐标是解题的关键,注意:函数图象上的点的坐标满足函数解析式.14.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=.【考点】平行四边形的性质;相似三角形的判定与性质.【分析】利用平行四边形的性质得出△BEF∽△DCF,进而求出DF的长,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△BEF∽△DCF,∵AE:BE=4:3,且BF=2,∴=,则=,解得:DF=,故BD=BF+DF=2+=.故答案为:.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,得出△BEF∽△DCF是解题关键.15.如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】连接OA、OD,则阴影部分的面积等于梯形的面积减去三角形的面积.根据题目中的条件不难发现等边三角形AOD、AOB、COD,从而求解.【解答】解:设圆心为O,连接OA、OD.∵AD∥BC,AC平分∠BCD,∠ADC=120°,∴∠BCD=60°,∵AC平分∠BCD,∴∠ACD=30°,∴∠AOD=2∠ACD=60°,∠OAC=∠ACO=30°.∴∠BAC=90°,∴BC是直径,又∵OA=OD=OB=OC,则△AOD、△AOB、△COD都是等边三角形.∴AB=AD=CD.又∵四边形ABCD的周长为10cm,∴OB=OC=AB=AD=DC=2(cm).∴阴影部分的面积=S梯形﹣S△ABC=(2+4)×﹣×4×=3﹣2=.故答案为.【点评】此题综合考查了梯形的面积,三角形的面积以及等边三角形的判定和性质.作出辅助线构建等边三角形是解题的关键.16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是①④(填序号)【考点】相似三角形的判定与性质;含30度角的直角三角形;翻折变换(折叠问题).【分析】由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.【解答】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.【点评】本题主要考查矩形的性质和轴对称的性质、等边三角形的判定、直角三角形的性质等知识,综合性较强,掌握直角三角形中30°角所对的直角边是斜边的一半是解题的关键.三、解答题(本题共6小题,共64分)请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(10分)(2014•吉林)某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有48,并补全条形统计图;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据C的人数除以占的百分比,得到抽取作品的总份数;(2)由总份数减去其他份数,求出B的份数,补全条形统计图即可;(3)求出A占的百分比,乘以800即可得到结果.【解答】解:(1)根据题意得:30÷25%=120(份),则抽取了120份作品;(2)等级B的人数为120﹣(36+30+6)=48(份),补全统计图,如图所示:故答案为:48;(3)根据题意得:800×=240(份),则估计等级为A的作品约有240份.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.18.(10分)(2010•兰州)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)【考点】解直角三角形的应用.【分析】(1)过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.【解答】解:(1)如图,作AD⊥BC于点D.Rt△ABD中,AD=ABsin45°=4×=2.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=4≈5.6.即新传送带AC的长度约为5.6米;(2)结论:货物MNQP应挪走.解:在Rt△ABD中,BD=ABcos45°=4×=2.在Rt△ACD中,CD=ACcos30°=2.∴CB=CD﹣BD=2﹣2=2(﹣)≈2.1.∵PC=PB﹣CB≈4﹣2.1=1.9<2,∴货物MNQP应挪走.【点评】应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.19.(10分)(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.20.(10分)(2011•安顺)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.【考点】切线的判定与性质;勾股定理;圆周角定理;解直角三角形.【分析】(1)连接CD,由BC为直径可知CD⊥AB,又BC=AC,由等腰三角形的底边“三线合一”证明结论;(2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,证明结论;(3)连接CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,则AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE.【解答】(1)证明:连接CD,∵BC为⊙O的直径,∴CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中点.(2)解:DE是⊙O的切线.证明:连接OD,则DO是△ABC的中位线,∴DO∥AC,又∵DE⊥AC,∴DE⊥DO即DE是⊙O的切线;(3)解:∵AC=BC,∴∠B=∠A,∴cosB=cosA=,∵cosB=,BC=18,∴BD=6,∴AD=6,∵cosA=,∴AE=2,在Rt△AED中,DE=.【点评】本题考查了切线的判定与性质,勾股定理,圆周角定理,解直角三角形的运用,关键是作辅助线,将问题转化为直角三角形,等腰三角形解题.21.(12分)(2013•包头)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG= BG.【考点】相似形综合题.【分析】(1)利用相似三角形的性质求得EF与DF的比值,依据△CEF和△CDF 同高,则面积的比就是EF与DF的比值,据此即可求解;(2)利用三角形的外角和定理证得∠ADF=∠AFD,可以证得AD=AF,在直角△AOD中,利用勾股定理可以证得;(3)连接OE,易证OE是△BCD的中位线,然后根据△FGC是等腰直角三角形,易证△EGF∽△ECD,利用相似三角形的对应边的比相等即可证得.【解答】(1)解:∵=,∴=.∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF,又∵AC、BD是正方形ABCD的对角线.∴∠ADO=∠FCD=45°,∠AOD=90°,OA=OD,而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,∴∠ADF=∠AFD,∴AD=AF,在直角△AOD中,根据勾股定理得:AD==OA,∴AF=OA.(3)证明:连接OE.∵点O是正方形ABCD的对角线AC、BD的交点.∴点O是BD的中点.又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE∥CD,OE=CD,∴△OFE∽△CFD.∴==,∴=.又∵FG⊥BC,CD⊥BC,∴FG∥CD,∴△EGF∽△ECD,∴==.在直角△FGC中,∵∠GCF=45°.∴CG=GF,又∵CD=BC,∴==,∴=.∴CG=BG.【点评】本题是勾股定理、三角形的中位线定理、以及相似三角形的判定与性质的综合应用,理解正方形的性质是关键.22.(12分)(2013•呼伦贝尔)已知:在平面直角坐标系中,抛物线交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.(1)求抛物线的解析式及顶点D的坐标.(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的对称轴列式求出b的值,即可得到抛物线解析式,然后整理成顶点式形式,再写出顶点坐标即可;(2)令y=0解关于x 的一元二次方程求出点A 、B 的坐标,过点D 作DE ⊥y 轴于E ,然后根据△PAD 的面积为S=S 梯形AOCE ﹣S △AOP ﹣S △PDE ,列式整理,然后利用一次函数的增减性确定出最小值以及t 值;(3)过点D 作DF ⊥x 轴于F ,根据点A 、D 的坐标判断出△ADF 是等腰直角三角形,然后求出∠ADF=45°,根据二次函数的对称性可得∠BDF=∠ADF=45°,从而求出∠PDA=90°时点P 为BD 与y 轴的交点,然后求出点P 的坐标,再利用勾股定理列式求出AD 、PD ,再根据两边对应成比例夹角相等两三角形相似判断即可.【解答】解:(1)对称轴为x=﹣=﹣2,解得b=﹣1,所以,抛物线的解析式为y=﹣x 2﹣x +3,∵y=﹣x 2﹣x +3=﹣(x +2)2+4,∴顶点D 的坐标为(﹣2,4);(2)令y=0,则﹣x 2﹣x +3=0,整理得,x 2+4x ﹣12=0,解得x 1=﹣6,x 2=2,∴点A (﹣6,0),B (2,0),如图1,过点D 作DE ⊥y 轴于E ,∵0≤t ≤4,∴△PAD 的面积为S=S 梯形AOED ﹣S △AOP ﹣S △PDE ,=×(2+6)×4﹣×6t ﹣×2×(4﹣t ),=﹣2t +12,∵k=﹣2<0,∴S 随t 的增大而减小,∴t=4时,S 有最小值,最小值为﹣2×4+12=4;(3)如图2,过点D 作DF ⊥x 轴于F ,∵A(﹣6,0),D(﹣2,4),∴AF=﹣2﹣(﹣6)=4,∴AF=DF,∴△ADF是等腰直角三角形,∴∠ADF=45°,由二次函数对称性,∠BDF=∠ADF=45°,∴∠PDA=90°时点P为BD与y轴的交点,∵OF=OB=2,∴PO为△BDF的中位线,∴OP=DF=2,∴点P的坐标为(0,2),由勾股定理得,DP==2,AD=AF=4,∴==2,令x=0,则y=3,∴点C的坐标为(0,3),OC=3,∴==2,∴=,又∵∠PDA=90°,∠COA=90°,∴Rt△ADP∽Rt△AOC.【点评】本题是二次函数综合题型,主要利用了二次函数的对称轴,三角形的面积二次函数的性质,相似三角形的判定,综合题,但难度不是很大,(2)利用梯形和三角形的面积表示出△ADP的面积是解题的关键,(3)难点在于判断出点P为BD与y轴的交点.。

2017年山东省日照市中考数学试题(含解析)

2017年山东省日照市中考数学试题(含解析)

2017年山东省日照市中考数学试卷解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题4分,满分40分) 1.(2017•日照,1,3分)-3的绝对值是( )A .-3B .3C .±3D .13答案:B ,解析:当a 是负有理数时,a 的绝对值是它的相反数-a ,所以-3的绝对值是3.故选:B . 2.(2017•日照,2,3分)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A .B .C .D .答案:A ,解析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.A 、既不是中心对称图形,也不是轴对称图形,故本选项正确;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形,也是轴对称图形,故本选项错误;D 、既是中心对称图形,也是轴对称图形,故本选项错误.故选A . 3.(2017•日照,3,3分)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为( )A .4.64×105B .4.64×106C .4.64×107D .4.64×108 答案:C ,解析:【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值是易错点,由于4640万有8位,所以可以确定n =8-1=7.即4640万=4.64×107.故选:C . 4.(2017•日照,4,3分)在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sinA 的值为( )A .513 B .1213 C .512 D .125答案:B ,解析:根据勾股定理求出BC ,根据正弦的概念计算即可. 在Rt △ABC 中,由勾股定理得,BC =22AB AC =12,∴sinA =BC AB =1213,故选:B . 5.(2017•日照,5,3分)如图,AB ∥CD ,直线l 交AB 于点E ,交CD 于点F ,若∠1=60°,则∠2等于( )A .120°B .30°C .40°D .60°答案:D ,解析:根据对顶角的性质和平行线的性质即可得到结论. ∵∠AEF =∠1=60°,∵AB ∥CD ,∴∠2=∠AEF =60°,故选D .6.(2017•日照,6,3分)式子12aa+-有意义,则实数a的取值范围是()A.a≥-1 B.a≠2C.a≥-1且a≠2D.a>2答案:C,解析:直接利用二次根式的定义结合分式有意义的条件分析得出答案.式子12aa+-有意义,则a+1≥0,且a-2≠0,解得:a≥-1且a≠2.故选:C.7.(2017•日照,7,3分)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等答案:A,解析:根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质进行判断即可.如图∠AOB=3606︒=60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE 全等,D错误;故选:A.8.(2017•日照,8,3分)反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.答案:A,解析:根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,图象过二、四象限,A、则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.9.(2017•日照,9,4分)如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.53B.52C.5 D.5 2答案:A,解析:过点D作OD⊥AC于点D,由已知条件和圆的性质易求OD的长,再根据勾股定理即可求出AD的长,进而可求出AC的长.过点D作OD⊥AC于点D,∵AB是⊙O的直径,P A切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=12AO=2.5,∴AD=22AO OD=532,∴AC=2AD=53,故选A.10.(2017•日照,10,4分)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.答案:D,解析:根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.11.(2017•日照,11,4分)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139答案:B,解析:由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.12.(2017•日照,12,4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a +b +c =0; ③a -b +c <0;④抛物线的顶点坐标为(2,b ); ⑤当x <2时,y 随x 增大而增大. 其中结论正确的是( )A .①②③B .③④⑤C .①②④D .①④⑤答案:C ,解析:①由抛物线的对称轴结合抛物线与x 轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b =-4a 、c =0,即4a +b +c =0,结论②正确;③根据抛物线的对称性结合当x =5时y >0,即可得出a -b +c >0,结论③错误;④将x =2代入二次函数解析式中结合4a +b +c =0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x <2时,yy 随x 增大而减小,结论⑤错误.综上即可得出结论.①∵抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0), ∴抛物线与x 轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,且抛物线过原点, ∴-2ba=2,c =0, ∴b =-4a ,c =0,∴4a +b +c =0,结论②正确;③∵当x =-1和x =5时,y 值相同,且均为正, ∴a -b +c >0,结论③错误;④当x =2时,y =ax 2+bx +c =4a +2b +c =(4a +b +c )+b =b , ∴抛物线的顶点坐标为(2,b ),结论④正确;⑤观察函数图象可知:当x <2时,yy 随x 增大而减小,结论⑤错误. 综上所述,正确的结论有:①②④. 故选C .二、填空题(本大题共4小题,每小题4分,满分16分) 13.(2017•日照,13,4分)分解因式:2m 3-8m =_______________. 答案:2m (m +2)(m -2).解析:提公因式2m ,再运用平方差公式对括号里的因式分解. 2m 3-8m =2m (m 2-4) =2m (m +2)(m -2). 故答案为:2m (m +2)(m -2). 14.(2017•日照,14,4分)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是_______________.答案:182.解析:根据平均数的计算公式用所有数据的和除以数据的个数即可计算出这组数据的平均数,从而得出答案.根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.故答案为182.15.(2017•日照,15,4分)如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是_______________.答案:6π.解析:证明△ABE是等边三角形,∠B=60°,再根据扇形的面积公式计算即可.∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴S扇形BAE=2606360π⨯=6π,故答案为:6π.16.(2017•日照,9,4分)如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为2,∠AOB=∠OBA=45°,则k的值为_______________.答案:1+5.解析:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,则OD=MN ,DN =OM ,∠AMO =∠BNA =90°,由等腰三角形的判定与性质得出OA =BA ,∠OAB =90°,证出∠AOM =∠BAN ,由AAS 证明△AOM ≌△BAN ,得出AM =BN =2,OM =AN =2,求出B (2+2,22-),得出方程(2+2)•(22-)=k ,解方程即可.过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示: 则OD =MN ,DN =OM ,∠AMO =∠BNA =90°, ∴∠AOM +∠OAM =90°, ∵∠AOB =∠OBA =45°, ∴OA =BA ,∠OAB =90°, ∴∠OAM +∠BAN =90°, ∴∠AOM =∠BAN ,在△AOM 和△BAN 中,{AOM BANAMO BNAOA BA∠=∠∠=∠=,∴△AOM ≌△BAN (AAS ),∴AM =BN =2,OM =AN =2, ∴OD =2+2,OD =BD =22-,∴B (2+2,22-), ∴双曲线y =k x (x >0)同时经过点A 和B ,∴(2+2)•(22-)=k , 整理得:k 2-2k -4=0,解得:k =1±5(负值舍去), ∴k =1+5;故答案为:1+5.三、解答题17.(2017•日照,17,9分)(1)计算:-(23)-(π-3.14)0+(1-cos 30°)×(12)-2;(2)先化简,再求值:211121a a a a ++-+-÷11a a +-,其中a 2. 【思路分析】(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 解:(1)-(23)-(π-3.14)0+(1-cos 30°)×(12)-2=3-2-1+(1-3)×4=321423--+-=31-+;(2)211121aa a a++-+-÷11aa+-=21111(1)1a aa a a+--⋅+-+=1111a a-+-=()()()1111a aa a--++-=221a--,当a=2时,原式=22221(2)1-==---.18.(2017•日照,18,9分)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形.请加以证明.【思路分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.解:(1)证明:在△DCA和△EAC中,{DC EAAD CEAC CA=∠==,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).19.(2017•日照,19,10分)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【思路分析】(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3, 所以个位数字与十位数字之积能被10整除的概率=315=15. 20.(2017•日照,20,10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务. (1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米? 【思路分析】(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程; (2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式. 解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得3603601.6x x-=4 解得:x =33.75,经检验x =33.75是原分式方程的解, 则1.6x =1.6×33.75=54(万平方米). 答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a 万平方米,根据题意得 54×2+2(54+a )≥360 解得:a ≥72. 答:则至少每年平均增加72万平方米. 21.(2017•日照,21,12分)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d 0022Ax By C A B+++例如:求点P 0(0,0)到直线4x +3y -3=0的距离. 解:由直线4x +3y -3=0知,A =4,B =3,C =-3, ∴点P 0(0,0)到直线4x +3y -3=0的距离为d 224030343⨯+⨯-+=35. 根据以上材料,解决下列问题: 问题1:点P 1(3,4)到直线y =-34x +54的距离为 4 ; 问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y =-34x +b 相切,求实数b 的值;问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x +4y +5=0上的两点,且AB =2,请求出S △ABP 的最大值和最小值.【思路分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.解:(1)点P 1(3,4)到直线3x +4y -5=0的距离d 223344534⨯+⨯-+,故答案为4.(2)∵⊙C 与直线y =-34x +b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x +4y -b =0的距离d =1226434b+-+,解得b =5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d 2264534+++,∴⊙C 上点P 到直线3x +4y +5=0的距离的最大值为4,最小值为2, ∴S △ABP 的最大值=12×2×4=4,S △ABP 的最小值=12×2×2=2. 22.(2017•日照,22,14分)如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M (4,0),N (0,3)两点.已知抛物线开口向上,与⊙C 交于N ,H ,P 三点,P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D . (1)求线段CD 的长及顶点P 的坐标; (2)求抛物线的函数表达式;(3)设抛物线交x 轴于A ,B 两点,在抛物线上是否存在点Q ,使得S 四边形OPMN =8S △QAB ,且△QAB ∽△OBN 成立?若存在,请求出Q 点的坐标;若不存在,请说明理由.【思路分析】(1)连接OC ,由勾股定理可求得MN 的长,则可求得OC 的长,由垂径定理可求得OD 的长,在Rt △OCD 中,可求得CD 的长,则可求得PD 的长,可求得P 点坐标;(2)可设抛物线的解析式为顶点式,再把N 点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A 、B 的坐标,由S 四边形OPMN =8S △QAB 可求得点Q 到x 轴的距离,且点Q 只能在x 轴的下方,则可求得Q 点的坐标,再证明△QAB ∽△OBN 即可. 解:(1)如图,连接OC ,∵M (4,0),N (0,3),∴OM =4,ON =3,∴MN =5,∴OC =12MN =52,∵CD 为抛物线对称轴,∴OD =MD =2, 在Rt △OCD 中,由勾股定理可得CD 22OC OD -225()22-=32, ∴PD =PC -CD =5322-=1,∴P (2,-1);(2)∵抛物线的顶点为P (2,-1),∴设抛物线的函数表达式为y =a (x -2)2-1,∵抛物线过N (0,3),∴3=a (0-2)2-1,解得a =1,∴抛物线的函数表达式为y =(x -2)2-1,即y =x 2-4x +3;(3)在y =x 2-4x +3中,令y =0可得0=x 2-4x +3,解得x =1或x =3,∴A (1,0),B (3,0),∴AB =3-1=2,∵ON =3,OM =4,PD =1,∴S四边形OPMN=S△OMP+S△OMN=12OM•PD+12OM•ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=-1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=-1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,-1).。

山东省日照市2017年中考数学真题试题(含解析1)

山东省日照市2017年中考数学真题试题(含解析1)

2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【答案】A.考点:中心对称图形;轴对称图形.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.即4640万=4.64×107.故选C.考点:科学记数法—表示较大的数.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB,故选B.考点:锐角三角函数的定义.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30° C.40° D.60°【答案】D.试题分析:由∠AEF=∠1=60°,AB∥CD,可得∠2=∠AEF=60°,故选D.考点:平行线的性质.6.式子2a-有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【答案】C.试题分析:式子2a-有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选C. 考点:二次根式有意义的条件.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【答案】A.试题分析:如图,∠AOB=3606=60°,OA=OB,可得△AOB是等边三角形,所以AB=OA,即可得圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选A.考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.8.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【答案】D.试题分析:∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A. B. C.5 D.【答案】A.试题分析:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD= 12AO=2.5,∴= = ,∴故选A.考点:切线的性质.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S 与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【答案】D.考点:动点问题的函数图象.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【答案】B.试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.考点:规律型:数字的变化类.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【答案】C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m= .【答案】2m(m+2)(m﹣2).试题分析:提公因式2m,再运用平方差公式对括号里的因式分解即可,即2m3﹣8m=2m(m2﹣4)=2m (m+2)(m﹣2).考点:提公因式法与公式法的综合运用.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.【答案】182.试题分析::根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.考点:算术平均数.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.【答案】6π.考点:扇形面积的计算;平行四边形的性质.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】试题分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,AOM BANAMO BNA OA BA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△BAN(AAS),∴,∴,∴B),∴双曲线y=(x>0)同时经过点A和B,=k,整理得:k2﹣2k﹣4=0,解得:k=1,∴考点:反比例函数图象上点的坐标特征.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【答案】(1);(2)原式=221a--,当时,原式=2-.试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式﹣2﹣1+(1 4;(2)原式=21111(1)1a a a a a ++-÷+-- =21111(1)1a a a a a +--⋅+-+ =1111a a -+- =1(1)(1)(1)a a a a --++- =221a --,当时,原式=2221=-=--. 考点:分式的化简求值;实数的运算.18.如图,已知BA=AE=DC ,AD=EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.【答案】(1)详见解析;(2)AD=BC (答案不唯一).试题分析:(1)由SSS 证明△DCA ≌△EAC 即可;(2)先证明四边形ABCD 是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;考点:矩形的判定;全等三角形的判定与性质.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)15.试题分析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.试题解析:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.考点:列表法与树状图法.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米.试题分析:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.考点:分式方程的应用;一元一次不等式的应用.21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【答案】(1)4;(2)b=5或15;(3)最大值为4,最小值为2.试题分析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题;(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.试题解析:(1)点P1(3,4)到直线3x+4y﹣5=0的距离;(2)∵⊙C与直线y=﹣34x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离=3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP的最大值=12×2×4=4,S△ABP的最小值=12×2×2=2.考点:一次函数综合题.22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.【答案】(1) CD=32, P(2,﹣1);(2) y=x2﹣4x+3;(3) 存在满足条件的点Q,其坐标为(2,﹣1).试题分析:(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN=8S△QAB可求得点Q到x轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.试题解析:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=12MN=52,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得=32,∴PD=PC﹣CD=52﹣32=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=12OM•PD+12OM•ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).考点:二次函数综合题.。

山东省莒县中考数学模拟测试试题(三)

山东省莒县中考数学模拟测试试题(三)

山东莒县教研室编写的2017届中考模拟测试(三)数学试题(考试时间100分钟,满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.下列运算正确的是 A. B.C.D.2.方程的解是A. B. C. D.3.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为 A .千克 B .千克 C .千克 D .千克4.将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图1所示,那么在这个正方体中,和“强”相对的字是A .文 B.明 C.民5.如图2,把一块含有45°角的直角三角板的两个非直角顶点放在直尺的对边上.如果 ∠1=20°,那么∠2的度数是A .30° B.25° C.20° D.15° 6.如图3,直线与x 、y 轴分别交于A 、B 两点,则cos ∠BAO 的值是A .B. C.D.7.数据3,6,7,4,x 的平均数是5, 则这组数据的中位数是A.4B.4.5C.5D.68.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 A.B.C.D.9.已知反比例函数y =的图象经过点(1,-2),则k 的值为A .2B .-C .1D .-210.把x 3﹣9x 分解因式,结果正确的图2 富 强 民 主 文 明 图1 A x O y 图3 BAPB O 图8A .B .C .D . 11.如图4,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r =5,AC =5,则∠B 的度数是A .30° B.45° C.50° D.60°12.海口市2011年平均房价为每平方米8000元,2013年平均房价降到每平方米7000元,设这两年平均房价年平均降低率为x ,根据题意,下面所列方程正确的是 A .8000(1+x )2=7000 B .8000(1﹣x )2=7000 C .7000(1﹣x )2=8000 D .7000(1+x )2=8000 13.如图5,△ABC 的两条中线BE 、CD 交于O ,则A .1∶2B .1∶3C .1∶4D .1∶614.如图6,△ABC 的面积为2,将△ABC 沿AC 方向平移至△DFE ,且AC =CD ,则四边形AEFB 的面积为A .6B .8C .10D .12二、填空题(本大题满分16分,每小题4分)15.一筐苹果总重千克,筐本身重千克,若将苹果平均分成份,则每份重______千克. 16.函数的自变量的取值范围是____________.17.如图7,矩形ABCD 中,AB =8,BC =4,,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么BF = .18.如图8,PA 、PB 切⊙O 于A 、B 两点,若∠P =600,⊙O 的半径为3,则阴影部分的面积为 .三、解答题(本大题满分62分) 19.(满分10分,每小题5分)AB OC 图4 D图7A C E D 图6B F O图5 B DC A E(1)计算:;(2)解不等式组,并写出它的整数解.20.(满分8分)举世瞩目的世界博览会在上海隆重开园,开幕式前,某旅行社组织甲、乙两个公司的部门主管赴上海观摩开幕式的盛况,其中预订的一类门票,二类门票的数量和所花费用如下表:根据下表给出的信息,分别求出一类门票和二类门票的单价.21.(满分8分)“端午节”吃“粽子”是我国的传统习俗.某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图9的两幅统计图(尚不完整).请根据以上信息回答: (1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.22.(满分9分)如图10,一搜救船在海面A 处测得亚航失事客机的第一个黑匣子的俯角∠EAC为600,第二个黑匣子的俯角∠EAB 为300,此处海底的深度AD 为3千米. 求两个黑匣子的距离BC 的长?(取,精确到0.1千米)23.(满分13分)如图11,正方形ABCD 中,直线a 经过点A ,且BE ⊥a 于E ,DF ⊥a 于F .(1)当直线a 绕点A 旋转到图11.1的位置时,求证:①△ABE ≌△DAF ;②EF=BE+DF ;一类门票(张) 二类门票(张) 费用(元) 甲公司2 5 1800 乙公司161600A D CB 人数A D C B60 120 180 24030040%10% 图9A C E D 图10 B(2)当直线a 绕点A 旋转到图11.2的位置时,试探究EF 、BE 、DF 具有怎样的等量关系?请写出这个等量关系,并加以证明;(3)当直线a 绕点A 旋转到图11.3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,不证明.24.(满分14分)如图12,抛物线经过点A (5,0),B (-3,0),C (0,4).(1)求这条抛物线的函数关系式;(2)过C 作CD ∥x 轴交抛物线于D , 连续BC 、AD ,两个动点P 、Q 分别从A 、B 两点同时出发,都以每秒1个单位长度的速度运动.其中,点P 沿着线段AB 向B 点运动,点Q 沿着折线B→C→D 的路线向D 点运动.设这两个动点运动的时间为(秒)(0<<7),△PQB 的面积记为S .①求S 与的函数关系式;②当为何值时,S 有最大值,最大值是多少?③是否存在这样的值,使得△PQB 是直角三角形?若存在,请直接写出的值;若不存在,请说明理由.参考答案及评分标准一、选择题:1.C,2.A,3.C,4.A,5.B,6.A,7.C,8.C,9.D,10.C,11.D,12.B,13.B,14.C.aA BCD EF 图11.1aA BCDEF图11.2aA B C DEF图11.3yD O A x Q C B 图12 P二、填空题: 15.,16.且,17.3,18.9.三、解答题:19.(1)解:原式=12÷(-4)-1…(3分) (2)解:解不等式①得…(1分)=-3-1 ………(4分) 解不等式②得…(3分) =-4 ………(5分) ∴不等式组的解集是…(4分)不等式组的整数解是1和2 …(5分)20.解:设一类门票和二类门票的单价分别是x、y元,依题意得…(1分)……………(4分)解得……………(7分)答:一类门票和二类门票的单价分别是400和200元. …(8分)21.解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.……………(2分)(2)画图略;……………(4分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.……………(6分)(4) 树状图略P(C粽)==.……………(8分) 22. 解:由题意知:∠DAC=30°,△ADC是直角三角形,在Rt△ADC中,cos30°=,……………(3分)∴AC=2……………(6分)∵∠CAB=∠ABC=30º,∴BC=AC=2 3.5(千米)……………(8分)答:两个黑匣子的距离BC的长为3.5千米.……………(9分) 23.(1)①证明:∵四边形ABCD是正方形∴AB=AD,∠BAD=90º.∴∠BAE+∠DAF=90º……(2分)又∵BE⊥a,DF⊥a,∴∠AEB=∠DFA=90º∴∠BAE+∠ABE=90º∴∠ABE=∠DAF ……(3分)∴ΔABE≌ΔDAF. ……(4分)②∵ΔABE≌ΔDAF∴AE=DF,BE=AF ……(5分)又∵EF=AE+AF∴EF=BE+DF ……(6分)(2)EF=DF-BE ……(7分)证明:∵四边形ABCD是正方形∴AB=AD,∠BAD=90º,∴∠BAE+∠DAF=90º……(8分)又∵BE⊥a,DF⊥a,∴∠AEB=∠DFA=90º ∴∠BAE+∠ABE=90º ∴∠ABE=∠DAF∴ΔABE ≌ΔDAF. ……(10分) ∴AE=DF,BE=AF 又∵EF=AE-AF∴EF=DF-BE ……(11分) (3)EF=BE-DF ……(13分) 24.(1)∵抛物线经过A(5,0),B(-3,0)∴设y =a (x +3)(x -5). ………(3分)∴4=a (0+3)(0-5),解得a =-. ………(4分) ∴抛物线的函数关系式为y =-(x +3)(x -5),即.……(5分)(注:用其它方法求抛物线的函数关系式参照以上标准给分.) (2)①易求D (3,4)(ⅰ)当0<≤5时,QB=t ,PB=8-.过点Q 作QF ⊥轴于F ,则QF=,∴S=PB ·QF . ……(7分)(ⅱ)当5≤<7时,Q 点的纵坐标为4,PB=8-.S=. ……………………(8分)②(ⅰ)当0<≤5时,.∵,∴当=4时,S 有最大值,最大值S=. ……(9分)(ⅱ)当5≤<7时,S . ∵ ,∴S 随着的增大而减小.∴当=5时,S 有最大值,最大值s=6. ……(10分) 综合(ⅰ)(ⅱ),当=4时,S 有最大值,最大值为. ……(11分)③ 存在. …………………………(12分)当点Q 在线段BC 上(不与C 重合)时,要使得△PQB 是直角三角形,必须使得∠PQB=90°,Fy DO AxQ C BP这时ΔBOC~ΔBQP,∴,即,∴. ……(13分)当点Q与C重合时,符合要求,此时=5. ………………(14分)(注:用其它方法求解参照以上标准给分.)。

2017年山东省日照市中考数学真题及答案

2017年山东省日照市中考数学真题及答案

试卷类型:A2017年日照市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( )A . 31 B . -31 C . 3 D . -3 2. 下列运算正确的是( )A .523x x x =⋅B .336()x x =C .5510x x x +=D . 336x x x =- 3. 下列图形中,是中心对称图形的是( )A .B .C .D .4、下图能说明∠1>∠2的是( )12)A.21)D.12 ))B.12 )) C.5、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为( )A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(2,3)B .(2,-1)C .(4,1) D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmOBA(第7题图)5cm输入x 值 y =x -1 (-1≤x <0)1y x(2≤x ≤4)y =x 2(0≤x <2)输出y 值C . 8cmD . 2cm8.若43=x,79=y ,则y x 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ).A . k ≥1B . k ≤1C . k >1D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线xy 6=上的概率为( )A .118 B .112 C .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3) B .(2,-3)A BCO xy-46(第11题图)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数xy 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④yxD CABOF E(第12题图)试卷类型:A2017年日照市初中学生学业考试数学试题第Ⅱ卷(非选择题共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.2.答卷前将密封线内的项目填写清楚.题号二三总分18 19 20 21 22 23 24得分二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为.14.分解因式:xx93 = .15.某校篮球班21名同学的身高如下表:得分评卷人身高/cm180185187190201人数/名46542则该校篮球班21名同学身高的中位数是______________cm . 16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .17. 在平面直角坐标系xOy中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…BDCA(第16题图2)(第16题图1)y xy=kx+OB 3B 2 B 1 A3A2A1(第17题图)都是等腰直角三角形,如果A 1(1,1),A 2(23,27),那么点n A 的纵坐标是_ _____.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫ ⎝⎛--;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.得 分评 卷 人19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.捐款人数分组统计表 组别捐款额x /元 人数 A 1≤x <10a B 10≤x <20 100 C 20≤x <30 D 30≤x <40 Ex ≥40捐款人数分组统计图1捐款人数分组统计图2座号得 分评 卷 人(1) a=,本次调查样本的容量是;(2) 先求出C组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.得 分评 卷 人(第20题图)A DNEBC OM得分评卷人21.(本题满分9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?22.(本题满分9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°23.(本题满分10分)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD . (3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.(第23题图1)AEBCDF(第23题图3)B CA DE(第23题图2)AEBCDG24.(本题满分11分)已知抛物线36232++=bx x y 经过A (2,0). 设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值,求出点P 、点B 的坐标;(2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.得 分评 卷 人APB xyO(第24题图)x y 3=试卷类型:A2017年日照市初中学生学业考试数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.题1 2 3 4 5 6 7 8 9 10 11 12 号答B A BC BD A A D C D C 案二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.3.6×106; 14.x (x +3)(x -3); 15. 187; 16. 30; 17.123-⎪⎭⎫⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分) (1)解:原式=-3-33+1+23…………………………2分=-2-3…………………………3分(2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分 解不等式组⎩⎨⎧<+>-812,02x x 得722x <<, (2)分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分19.解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分 补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分 20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180° ∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分 ∴ CD=cm )(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300(第20题答案图)A DNEBC OM吨. ………7分(2)依题意,得:300×8000-400×1000-15000-97200=1887800 ∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里. 在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分∵AC +BC =AB =21×5,∴54215123x x+=⨯,解得60x =. ∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里).∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分23. 解答:(1)证明:在正方形ABCD 中, ∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,(第23题答案图1)AEB CDFAEDGF又∠GCE =45°,∴∠GCF =∠GCE =45°. ∵CE =CF ,∠GCE =∠GCF ,GC =GC , ∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分 (3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中,∵AD ∥BC ,∴∠A =∠B =90°, 又∠CGA =90°,AB =BC , ∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6在Rt △AED 中, ∵222AE AD DE +=,即()()2224610-+-=x x . 解这个方程,得:x =12,或x =-2(舍去).…………………………9分∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD答:梯形ABCD 的面积为108. …………………………10分 24.解:(1)由于抛物线36232++=bx x y 经过A (2,0),(第23题答案图3)B CA D EG(第23题答案图3)所以3624230++⨯=b , 解得34-=b .…………………………1分所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , 所以顶点P 的坐标为(4,-23)…………………………2分令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k 解得⎪⎩⎪⎨⎧-==.36,3b k所以直线PB 的解析式为363-=x y .…………………………5分又直线OD 的解析式为xy 3=所以直线PB ∥OD . …………………………6分 设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分 设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则PC =23,AC =2,由勾股定理,可得AP =4,PB =4,又AB =4,所以△APB 是等边三角形,只要作∠PAB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠PAM =∠BAM ,AB =AP ,可得△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB.…………………………11分A PB xyO 第24题答案图C MDx y 3=。

山东省日照市2017年中考数学真题试题(含解析1)[精品]

山东省日照市2017年中考数学真题试题(含解析1)[精品]

图象经过 y 轴正半轴,则 b>0,此时,k,b 异号,故此选项不合题意;选项 B 图象过二、四象限,则 k<0,
.
图象经过原点,则 b=0,此时,k,b 不同号,故此选项不合题意;选项 C 图象过一、三象限,则 k>0,图 象经过 y 轴负半轴,则 b<0,此时,k,b 异号,故此选项不合题意;选项 D 图象过一、三象限, 则 k>0,图象经过 y 轴正半轴,则 b>0,此时,k,b 同号,故此选项符合题意;故选 D. 考点:反比例函数的图象;一次函数的图象. 9.如图,AB 是⊙O 的直径,PA 切⊙O 于点 A,连结 PO 并延长交⊙O 于点 C,连结 AC,AB=10,∠P=30°, 则 AC 的长度是( )
.
所以个位数字与十位数字之积能被 10 整除的概率= 考点:列表法与树状图法.
3 1 . 15 5
20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增 360 万平方米.自 2013 年初开始实施后,实际每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任务. (1)问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016 年起加快绿化速度,要求不超过 2 年完成,那么实际平均每年 绿化面积至少还要增加多少万平方米? 【答案】(1) 实际每年绿化面积为 54 万平方米;(2) 则至少每年平均增加 72 万平方米. 试题分析: (1)设原计划每年绿化面积为 x 万平方米,则实际每年绿化面积为 1.6x 万平方米.根据“实际 每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任务”列出方程; (2)设平均每年绿化面积增加 a 万平方米.则由“完成新增绿化面积不超过 2 年”列出不等式.
B.30° C.40° D.60°

2017年山东省日照市莒县中考数学一模试卷

2017年山东省日照市莒县中考数学一模试卷

2017年山东省日照市莒县中考数学一模试卷一、选择题(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,共40分)1.(3分)在已知实数:﹣3,0,,﹣1中,最小的一个实数是()A.﹣1 B.0 C.D.﹣32.(3分)如图,一个空心圆柱体,其主视图正确的是()A. B. C. D.3.(3分)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4 C.1.05×10﹣5D.105×10﹣74.(3分)某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165,165 B.165,170 C.170,165 D.170,1705.(3分)某果园2015年水果产量为a吨,2016年因干旱影响产量下降15%,2017年新增滴灌系统,预计产量能在2016年基础上上升20%,估计2017年该果园水果产量为()A.(1﹣15%)(1+20%)a吨B.(1﹣15%)20%a吨C.(1+15%)(1﹣20%)a吨D.(1+20%)15%a吨6.(3分)将直线y=2x+1变成y=2x﹣1经过的变化是()A.向上平移2个单位B.向下平移2个单位C.向右平移2个单位D.向左平移2个单位7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)已知实数a、b(a≠b)都能使方程x2﹣3x﹣1=0的左右两边相等,则+的值为()A.﹣3 B.﹣1 C.1 D.39.(4分)为了进一步落实“节能减排”工作,某单位决定对3600平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标.比较两个工程队的标书发现:乙队每天完成的工程量是甲队的2倍,这样乙队单独干比甲队单独干能提前10天完成任务.设甲队每天完成x平方米,可列方程为()A.﹣=10 B.﹣=10C.+=10 D.10(2x+x)=360010.(4分)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的横坐标是()A.2 B.2n﹣1 C.2n D.2n+111.(4分)已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.12.(4分)一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a2017等于()A.﹣1 B.C.1 D.2二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)分解因式:x3﹣xy2=.14.(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.15.(4分)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.16.(4分)如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,若OA2﹣AB2=18,则k的值为.三、解答题(本大题共6小题,共64分)17.(8分)(1)先化简再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=3.(2)解不等式组:.18.(10分)从今年起,某市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)该校八年级一班生物第一兴趣小组有甲、乙、丙、丁四人,分别是A、B、C、D四个等级,计划从四人中随机抽出两人去参加生物竞赛,请用画树状图或列表的方法,求出刚好抽到甲、乙两名学生的概率.19.(10分)如图①,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD 沿CE折叠,此时顶点B恰好落在DE上的点H处,如图②.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.20.(10分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;21.(12分)问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现PA是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P 为x轴上的动点,则PM+PN的最小值等于.22.(14分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2017年山东省日照市莒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,共40分)1.(3分)(2017•莒县一模)在已知实数:﹣3,0,,﹣1中,最小的一个实数是()A.﹣1 B.0 C.D.﹣3【解答】解:∵3>1,∴﹣3<﹣1.又∵正数大于零,0大于负数,∴﹣3<﹣1<0<.∴最小的是﹣3.故选:D.2.(3分)(2016•临沂)如图,一个空心圆柱体,其主视图正确的是()A. B. C. D.【解答】解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,3.(3分)(2016•日照)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4 C.1.05×10﹣5D.105×10﹣7【解答】解:0.0000105=1.05×10﹣5,故选:C.4.(3分)(2017•莒县一模)某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165,165 B.165,170 C.170,165 D.170,170【解答】解:由表格可知,165cm出现了3次,出现的次数最多,则这10名学生校服尺寸的众数是165cm;这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,则这10名学生校服尺寸的中位数是=170cm;则这10名学生校服尺寸的众数和中位数分别为165cm,170cm;故选B.5.(3分)(2017•莒县一模)某果园2015年水果产量为a吨,2016年因干旱影响产量下降15%,2017年新增滴灌系统,预计产量能在2016年基础上上升20%,估计2017年该果园水果产量为()A.(1﹣15%)(1+20%)a吨B.(1﹣15%)20%a吨C.(1+15%)(1﹣20%)a吨D.(1+20%)15%a吨【解答】解:由题意可得,2017年该果园水果产量为:a(1﹣15%)(1+20%)吨,6.(3分)(2017•莒县一模)将直线y=2x+1变成y=2x﹣1经过的变化是()A.向上平移2个单位B.向下平移2个单位C.向右平移2个单位D.向左平移2个单位【解答】解:将直线y=2x+1变成y=2x﹣1经过的变化是向下平移2个单位;故选B7.(3分)(2016•青岛)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC 的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【解答】解:∵AB=25,BD=15,∴AD=10,∴S=2×(﹣)贴纸=2×175π=350πcm2,故选B.8.(3分)(2017•莒县一模)已知实数a、b(a≠b)都能使方程x2﹣3x﹣1=0的左右两边相等,则+的值为()A.﹣3 B.﹣1 C.1 D.3【解答】解:根据题意得a+b=1,ab=﹣1,所以+==﹣3.故选A.9.(4分)(2017•莒县一模)为了进一步落实“节能减排”工作,某单位决定对3600平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标.比较两个工程队的标书发现:乙队每天完成的工程量是甲队的2倍,这样乙队单独干比甲队单独干能提前10天完成任务.设甲队每天完成x平方米,可列方程为()A.﹣=10 B.﹣=10C.+=10 D.10(2x+x)=3600【解答】解:设甲队每天完成x平方米,则乙队每天完成2x平方米,可得:,故选A10.(4分)(2017•莒县一模)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点1B n的横坐标是()A.2 B.2n﹣1 C.2n D.2n+1【解答】解:∵观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴A n(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1).故选B.11.(4分)(2016•威海)已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.【解答】解:观察二次函数图象,发现:抛物线的顶点坐标在第四象限,即a>0,﹣b<0,∴a>0,b>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=ax+b,a>0,b>0,∴一次函数y=ax+b的图象过第一、二、三象限.故选B.12.(4分)(2017•莒县一模)一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a2017等于()A.﹣1 B.C.1 D.2【解答】解:∵a1=,a n=,∴a2===2,a3===﹣1,a4===,…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴a2017=a1=,故选B.二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)(2017•莒县一模)分解因式:x3﹣xy2=x(x+y)(x﹣y).【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).14.(4分)(2016•青岛)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.15.(4分)(2016•临沂)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.【解答】解:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=•﹣•=.故答案为.16.(4分)(2017•莒县一模)如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,若OA2﹣AB2=18,则k的值为9.【解答】解:设点B(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=18,∴2AC2﹣2AD2=18即AC2﹣AD2=9∴(AC+AD)(AC﹣AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,故答案为9.三、解答题(本大题共6小题,共64分)17.(8分)(2017•莒县一模)(1)先化简再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=3.(2)解不等式组:.【解答】解:(1)a(1﹣4a)+(2a+1)(2a﹣1)=a﹣4a2+4a2﹣1=a﹣1,当a=3时,原式=2;(2)∵解不等式①得;x≤3,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x≤3.18.(10分)(2017•莒县一模)从今年起,某市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)该校八年级一班生物第一兴趣小组有甲、乙、丙、丁四人,分别是A、B、C、D四个等级,计划从四人中随机抽出两人去参加生物竞赛,请用画树状图或列表的方法,求出刚好抽到甲、乙两名学生的概率.【解答】解:(1)这次抽样调查共抽取学生:15÷30%=50(名),D等级人数为:50﹣15﹣22﹣8=5(名),则其对应扇形圆心角为360°×=36°.故答案为:50,36.(2)如图所示:(3)画树状图得:∵共有12种等可能的结果,甲、乙两名选手恰好被抽到的有2种情况,∴甲、乙两名选手恰好被抽到的概率为:=.19.(10分)(2017•莒县一模)如图①,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图②.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.【解答】解:(1)证明:由折叠可得:AE=A'E=BC=CH=GE,∠A=∠FGE=∠B=∠CHE=90°,∠AEF=∠GEF,∠BEC=∠HEC,∴∠GEF+∠HEC=90°,∠GEF+∠GFE=90°,∴∠GEF=∠HCE,∴在△GEF和△HEC中,,∴△GEF≌△HEC,∴EG=CH;(2)∵四边形AEA'D是正方形,∴∠ADE=45°,AD=AE,又∵AF=2,∴FG=DG=2,DF=2,∴AD=2+2,AB=2+4.20.(10分)(2017•莒县一模)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),∴点B(6,4).(2)延长DP交OA于点E,如图②所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S=EP•(y A﹣y O)=××(4﹣0)=3.△AOP21.(12分)(2017•莒县一模)问题情境:如图①,P是⊙O外的一点,直线PO 分别交⊙O于点A、B,可以发现PA是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是﹣1.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【解答】解:(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE=,P'E=1,∴AP'=﹣1;故答案为:﹣1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=2,在Rt△CHM中,CM==4,∴A'C=CM﹣A'M=4﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'==∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN=﹣3.故答案为:﹣3.22.(14分)(2017•莒县一模)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)将A(0,1),B(9,10)代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x+1;(2)∵AC∥x轴,A(0,1),∴x2﹣2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,m2﹣2m+1)∴E(m,m+1),∴PE=m+1﹣(m2﹣2m+1)=﹣m2+3m.∵AC⊥PE,AC=6,=S△AEC+S△APC=AC•EF+AC•PF∴S四边形AECP=AC•(EF+PF)=AC•EP=×6(﹣m2+3m)=﹣m2+9m=﹣(m﹣)2+,∵0<m<6,∴当m=时,四边形AECP的面积最大值是,此时P(,﹣);(3)∵y=x2﹣2x+1=(x﹣3)2﹣2,P(3,﹣2).PF=y F﹣y p=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件得点Q,设Q(t,1)且AB=9,AC=6,CP=3,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,=,=,解得t=4,Q(4,1);②当△CQP∽△ABC时,∴=,=,解得t=﹣3,Q(﹣3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(﹣3,1).参与本试卷答题和审题的老师有:梁宝华;三界无我;gbl210;lantin;zgm666;1987483819;王学峰;sjzx;ZJX;曹先生;HLing;gsls;733599;zjx111;zhjh;守拙;星月相随;2300680618(排名不分先后)菁优网2017年6月9日。

山东省日照市中考数学模拟试卷(含解析)

山东省日照市中考数学模拟试卷(含解析)

2017年山东省日照市中考数学模拟试卷一、选择题(共12小题,每小题3分,满分40分)1.﹣2017的绝对值是()A.2017 B.C.﹣2017 D.﹣2.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π3.下列事件中是必然事件的是()A.﹣a是负数B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来对应线段相等4.据统计,某年我国国内生产总值达397983亿元.则以亿元为单位用科学记数法表示这一年我国的国内生产总值为()亿元.A.3.97983×1013 B.3.97983×105C.4.0×1013 D.4.0×1055.下列运算正确的是()A.x3•x5=x15B.(x2)5=x7C. =3 D. =﹣16.如图所示,AB∥CD,AD与BC相交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=()A.70° B.40° C.35° D.30°7.若关于x的方程x2+3x+a=0有一个根为1,则另一个根为()A.﹣4 B.2 C.4 D.﹣38.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.29.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣210.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.11.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D 等于()A.20° B.30° C.40° D.50°12.如图,AB为半圆O的直径,CD切⊙O于点E,AD、BC分别切⊙O于A、B两点,AD与CD 相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°;⑥若切点E在半圆上运动(A、B两点除外),则线段AD与BC的积为定值.其中正确的个数是()A.5 B.4 C.3 D.2二、填空题(本题共4个小题,每小题4分,满分16分)13.因式分解:﹣2x2y+12xy﹣16y= .14.已知是二元一次方程组的解,则m+3n的立方根为.15.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是.16.两个反比例函数y=(k>1)和y=在第一象限内的图象如图所示,点P在y=(的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,BE⊥x轴于点E,当点P在y=(的图象上运动时,以下结论:①BA与DC始终平行;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④△OBA的面积等于四边形ACEB的面积.其中一定正确的是(填写序号).三、解答题(本大题共6个小题,满分64分)17.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.18.某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?21.AB为⊙O直径,BC为⊙O切线,切点为B,CO平行于弦AD,作直线DC.①求证:DC为⊙O切线;②若AD•OC=8,求⊙O半径r.22.如图,平行四边形ABCD中,D点在抛物线y=x2+bx+c上,且OB=OC,AB=5,tan∠ACB=,M是抛物线与y轴的交点.(1)求直线AC和抛物线的解析式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ的面积.2017年山东省日照市中考数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分40分)1.﹣2017的绝对值是()A.2017 B.C.﹣2017 D.﹣【考点】绝对值.【分析】根据绝对值的性质解答即可.【解答】解:﹣2017的绝对值等于2017.故选:A.2.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π【考点】圆锥的计算;由三视图判断几何体.【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选B.3.下列事件中是必然事件的是()A.﹣a是负数B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来对应线段相等【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、﹣a是非正数,是随机事件,故A错误;B、两个相似图形是位似图形是随机事件,故B错误;C、随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C错误;D、平移后的图形与原来对应线段相等是必然事件,故D正确;故选:D.4.据统计,某年我国国内生产总值达397983亿元.则以亿元为单位用科学记数法表示这一年我国的国内生产总值为()亿元.A.3.97983×1013 B.3.97983×105C.4.0×1013 D.4.0×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:397983亿元用科学记数法表示为3.97983×105亿元,故选:B.5.下列运算正确的是()A.x3•x5=x15B.(x2)5=x7C. =3 D. =﹣1【考点】幂的乘方与积的乘方;立方根;同底数幂的乘法.【分析】根据同底数幂的乘法、幂的乘方、立方根、多项式除以单项式法则分别求出每个式子的值,再判断即可.【解答】解:A、结果是x8,故本选项不符合题意;B、结果是x10,故本选项不符合题意;C、结果是3,故本选项符合题意;D、结果是1,故本选项不符合题意;故选C.6.如图所示,AB∥CD,AD与BC相交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=()A.70° B.40° C.35° D.30°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠D的度数,再利用三角形外角的性质以及角平分线的性质得出答案.【解答】解:∵AB∥CD,∴∠1=∠D,∴∠BED=∠2+∠D=30°+40°=70°,∵EF是∠BED的平分线,∴∠BEF=∠BEF=35°,故选:C.7.若关于x的方程x2+3x+a=0有一个根为1,则另一个根为()A.﹣4 B.2 C.4 D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得1+x1=﹣3,解得:x1=﹣4.故选A.8.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.2【考点】翻折变换(折叠问题).【分析】利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;【解答】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12﹣x,GE=x+6,∵GE2=CG2+CE2∴(x+6)2=(12﹣x)2+62,解得 x=4∴BG=4.故选B.9.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣2【考点】不等式的解集.【分析】先解不等式组,然后根据题意可得a>﹣2,由此求得a的取值.【解答】解:,解不等式x+a≥0得,x≥﹣a,由不等式4﹣2x>x﹣2得,x<2,∵不等式组:不等式组有解,∴a>﹣2,故选D.10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】本题需要根据抛物线的位置,反馈数据的信息,即a+b+c,b,b2﹣4ac的符号,从而确定反比例函数、一次函数的图象位置.【解答】解:由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选:D.11.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D 等于()A.20° B.30° C.40° D.50°【考点】切线的性质;圆周角定理.【分析】先连接BC,由于AB 是直径,可知∠BCA=90°,而∠A=25°,易求∠CBA,又DC 是切线,利用弦切角定理可知∠DCB=∠A=25°,再利用三角形外角性质可求∠D.【解答】解:如右图所示,连接BC,∵AB 是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°﹣25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA﹣∠BCD=65°﹣25°=40°.故选C.12.如图,AB为半圆O的直径,CD切⊙O于点E,AD、BC分别切⊙O于A、B两点,AD与CD 相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°;⑥若切点E在半圆上运动(A、B两点除外),则线段AD与BC的积为定值.其中正确的个数是()A.5 B.4 C.3 D.2【考点】圆的综合题.【分析】根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,根据全等三角形的性质得到∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC 为直角,选项①正确;根据相似三角形的性质得比例可得出OD2=DE•CD,选项⑤正确;由△ODE∽△OEC,,得到OD≠OC,选项③错误;根据射影定理即可得到AD•BC=OE2,于是得到线段AD与BC的积为定值,故⑥正确.【解答】解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;∴S梯形ABCD=(AD+BC)•AB=CD•OA;选项④正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∵∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;同理△ODE∽△OEC,∴,∴OD≠OC,选项③错误;∵∠COD=90°,OE⊥CD,∴OE2=CE•DE,∵DA=DE,CE=CB,∴AD•BC=OE2,∴线段AD与BC的积为定值,故⑥正确.故选A.二、填空题(本题共4个小题,每小题4分,满分16分)13.因式分解:﹣2x2y+12xy﹣16y= ﹣2y(x﹣2)(x﹣4).【考点】因式分解﹣十字相乘法等;因式分解﹣提公因式法.【分析】原式提取公因式,再利用十字相乘法分解即可.【解答】解:原式=﹣2y(x2﹣6x+8)=﹣2y(x﹣2)(x﹣4),故答案为:﹣2y(x﹣2)(x﹣4)14.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】二元一次方程组的解;立方根.【分析】将代入方程组,可得关于m、n的二元一次方程组,得出代数式即可得出m+3n的值,再根据立方根的定义即可求解.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.15.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是6π﹣9.【考点】扇形面积的计算;菱形的性质.【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【解答】解:连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠A DC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=6,∴△ABD的高为3,∵扇形BEF的半径为6,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×6×3=6π﹣9.故答案为:6π﹣9.16.两个反比例函数y=(k>1)和y=在第一象限内的图象如图所示,点P在y=(的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,BE ⊥x轴于点E,当点P在y=(的图象上运动时,以下结论:①BA与DC始终平行;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④△OBA的面积等于四边形ACEB的面积.其中一定正确的是①③④(填写序号).【考点】反比例函数系数k的几何意义.【分析】①正确.只要证明=即可;②错误.只有当四边形OCPD为正方形时满足PA=PB;③正确.由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;④正确.只要证明△OBA的面积=矩形OCPD的面积﹣S△ODB﹣S△BAP﹣S△AOC,四边形ACEB的面积=矩形OCPD的面积﹣S△ODB﹣S△BAP﹣S△OBE即可.【解答】解:①正确.∵A、B在y=上,∴S△AOC=S△BOE,∴•OC•AC=•OE•BE,∴OC•AC=OE•BE,∵OC=PD,BE=PC,∴PD•AC=DB•PC,∴=,∴AB∥CD.故此选项正确.②错误,不一定,只有当四边形OCPD为正方形时满足PA=PB;③正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;故此选项正确.④正确.∵△ODB的面积=△OCA的面积=,∴△ODB与△OCA的面积相等,同理可得:S△ODB=S△OBE,∵△OBA的面积=矩形OCPD的面积﹣S△ODB﹣S△BAP﹣S△AOC,四边形ACEB的面积=矩形OCPD的面积﹣S△ODB﹣S△BAP﹣S△OBE∴△OBA的面积=四边形ACEB的面积,故此选项正确,故一定正确的是①③④.故答案为:①③④.三、解答题(本大题共6个小题,满分64分)17.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.【解答】解:连接AE,在Rt△ABE中,AB=3m,BE=m,则AE==2m,又∵tan∠EAB==,∴∠EAB=30°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠EAF=2×=3m.答:木箱端点E距地面AC的高度为3m.18.某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?【考点】一元一次不等式组的应用.【分析】(1)设今年三月份甲种电脑每台售价为x元,则去年同期甲种电脑每台售价为(x+1000)元,根据总价=单价×数量即可得出关于x的分式方程,解之即可得出结论;(2)设购进甲种电脑y台,则购进乙种电脑(15﹣y)台(0≤y≤15),根据总价=甲种电脑单价×购买数量+乙种电脑单价×购买数量结合总价不多于5万元且不少于4.8万元即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,取期内的正整数即可得出结论.【解答】解:(1)设今年三月份甲种电脑每台售价为x元,则去年同期甲种电脑每台售价为(x+1000)元,根据题意得: =,解得:x=4000,经检验x=4000是分式方程=的解.答:今年三月份甲种电脑每台售价4000元.(2)设购进甲种电脑y台,则购进乙种电脑(15﹣y)台(0≤y≤15),根据题意得:,解得:6≤y≤10,∴y可以为6、7、8、9、10.答:有五种进货方案.19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A ,∴.20.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍. (1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少? 【考点】一元一次不等式组的应用;分式方程的应用.【分析】(1)设去年每吨大蒜的平均价格是x 元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x ﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润. 【解答】解:(1)设去年每吨大蒜的平均价格是x 元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意, 答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.21.AB为⊙O直径,BC为⊙O切线,切点为B,CO平行于弦AD,作直线DC.①求证:DC为⊙O切线;②若AD•OC=8,求⊙O半径r.【考点】切线的判定与性质.【分析】①连接OD,要证明DC是⊙O的切线,只要证明∠ODC=90°即可.根据题意,可证△OCD≌△OCB,即可得∠CDO=∠CBO=90°,由此可证DC是⊙O的切线;②连接BD,OD.先根据两角对应相等的两三角形相似证明△ADB∽△ODC,再根据相似三角形对应边成比例即可得到r的值.【解答】①证明:连接OD.∵OA=OD,∴∠A=∠ADO.∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD,∴∠BOC=∠COD.∵在△OBC与△ODC中,,∴△OBC≌△ODC(SAS),∴∠OBC=∠ODC,又∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴DC是⊙O的切线;②解:连接BD.∵在△ADB与△ODC中,,∴△ADB∽△ODC,∴AD:OD=AB:OC,∴AD•OC=OD•AB=r•2r=2r2,即2r2=8,故r=2.22.如图,平行四边形ABCD中,D点在抛物线y=x2+bx+c上,且OB=OC,AB=5,tan∠ACB=,M是抛物线与y轴的交点.(1)求直线AC和抛物线的解析式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ的面积.【考点】二次函数综合题.【分析】(1)首先利用锐角三角函数关系得出A,C点坐标,再求出一次函数解析式,根据平行四边形的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式;(2)设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO或△AQP∽△CAO,利用对应边成比例可求出t的值,继而确定点P的位置;(3)只需使△APQ的面积最大,就能满足四边形PDCQ的面积最小,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO,利用对应边成比例得出h的表达式,继而表示出△APQ的面积表达式,即可得出四边形PDCQ的最小值,也可确定点P的位置,进而得出Q 的位置,进而得出△CMQ的面积.【解答】解:(1)如图1,∵tan∠ACB=,∴=,∴设AO=3x,CO=4x,∵OB=OC,∴BO=4x,∴AB2=AO2+BO2,则25=25x2,解得:x=1(负数舍去),∴AO=3,BO=CO=4,∴A(0,3),B(﹣4,0),C(4,0),∴设直线AC的解析式为:y=kx+d,则,解得:,故直线AC的解析式为:y=﹣x+3;∵四边形ABCD是平行四边形,∴BC=AD=8,∴D(8,3),∵B,D点都在抛物线y=x2+bx+c上,∴,解得:,故此抛物线解析式为:y=x2﹣x﹣3;(2)①如图2,∵OA=3,OB=4,∴AC=5.设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴=,即=,解得:t=.②如图3,设点P运动了t秒时,当QP⊥AD,此时AP=t,CQ=t,AQ=5﹣t,∵QP⊥AD,∴∠APQ=∠AOC=90°,∠PAQ=∠ACO,∴△AQP∽△CAO,∴=,即=,解得:t=.即当点P运动到距离A点或个单位长度处,△APQ是直角三角形;(3)如图4,∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得: =,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A,个单位处时,四边形PDCQ面积最小,则AQ=QC=,故△CMQ的面积为: S△AMC=××4×6=6.。

2017年山东省日照市中考数学试卷

2017年山东省日照市中考数学试卷

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前山东省日照市2017年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共12小题,其中1~8题每小题3分,9~12题每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A .3-B .3C .3±D .132.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD3.铁路部门消息:2017年端午节小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为( )A .54.6410⨯B .64.6410⨯C .74.6410⨯D .84.6410⨯4.在Rt ABC △中,90C =∠,13AB =,5AC =,则sin A 的值为( )A .513B .1213 C .512D .1255.如图,AB CD ∥,直线l 交AB 于点E ,交CD 于点F ,若160=∠,则2∠等于( )A .120B .30 C .40 D .606.,则实数a 的取值范围是 ( )A .1a -≥B .2a ≠C .1a -≥且2a ≠D .2a > 7.下列说法正确的是 ( )A .圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点C .一元二次方程2(0)0ax bx c a ++=≠一定有实数根D .将ABC △绕点A 按顺时针方向旋转60得ADE △,则ABC △与ADE △不全等8.反比例函数kby x=的图象如图所示,则一次函数()0y kx b k =+≠的图象大致是( )AB C D 9.如图,AB 是O 的直径,PA 切O 于点A ,连接PO 并延长交O 于点C ,连接AC ,10AB =,30P =∠,则AC 的长度是( )A.B.C .5D .5210.如图,60BAC =∠,点O 从点A 出发,以2cm/s 的速度沿BAC ∠的角平分线向右运动.在运动过程中,以点O 为圆心的圆始终保持与BAC ∠的两边相切.设O 的面积为2()cm S ,则O 的面积S 与圆心O 运动的时间()s t 的函数图象大致为 ( )A B C D毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为 ( )A .23B .75C .77D .13912.已知抛物线2()0y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②40a b c ++=;③0a b c -+<;④抛物线的顶点坐标为(2,)b ;⑤当2x <时,y 随x 增大而增大.其中结论正确的是 ( ) A .①②③ B .③④⑤ C .①②④D .①④⑤第Ⅱ卷(非选择题 共80分)二、填空题(本大题共4小题,每小题4分,共16分) 13.分解因式:328m m -= .14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是 .15.如图,四边形ABCD 中,AB CD =,AD BC ∥,以点B 为圆心,BA 长为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,6AB =,则扇形(图中阴影部分)的面积是 .16.如图,在平面直角坐标系中,经过点A 的双曲线(0)ky x x=>同时经过点B ,且点A 在点B 的左侧,点A,45AOB OBA ==∠∠,则k 的值为 .三、解答题(本大题共6小题,共64分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分9分)(1)计算:021(()(2π 3.141co )()2s30----⨯-+.(2)先化简,再求值:21111211a a a a a a ++-÷--+-,其中a18.(本小题满分9分)如图,已知BA AE DC ==,AD EC =,CE AE ⊥,垂足为点E . (1)求证:DCA EAC △≌△.(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.19.(本小题满分10分)若n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”.(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)20.(本小题满分10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问:实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.(本小题满分12分) 阅读材料:在平面直角坐标系xOy 中,点00(),P x y 到直线0Ax By C ++=的距离公式为d . 例如:求点0()0,0P 到直线4330x y +-=的距离. 解:由直线4330x y +-=知,4A =,3B =,3C =-, ∴点0()0,0P 到直线4330x y +-=的距离为35d =. 根据以上材料,解决下列问题:(1)点1()3,4P 到直线3544y x =-+的距离为 ; (2)已知:C 是以点()2,1C 为圆心、1为半径的圆,C 与直线34y x b =-+相切,求实数b 的值;(3)如图,设点P 为(2)中C 上的任意一点,点,A B 为直线3450x y ++=上的两点,且2AB =,请求出ABP S △的最大值和最小值.22.(本小题满分14分)如图所示,在平面直角坐标系中,C 经过坐标原点O ,且与x 轴、y 轴分别相交于4,0,()()0,3M N 两点.已知抛物线开口向上,与C 交于,,N H P 三点,点P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D . (1)求线段CD 的长及顶点P 的坐标. (2)求抛物线的函数表达式.(3)设抛物线交x 轴于,A B 两点,在抛物线上是否存在点Q ,使得8QAB OPMN S S =四边形△,且QAB OBN ∽△△成立?若存在,请求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

山东省日照市莒县2017年中考数学试卷(2)(含解析)

山东省日照市莒县2017年中考数学试卷(2)(含解析)

2017年山东省日照市莒县中考数学试卷(2)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.如果a的倒数是﹣1,则a2015的值是()A.1 B.﹣1 C.2015 D.﹣20152.若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x3.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x本(x>10),则付款金额为()A.6.4x元B.(6.4x+80)元C.(6.4x+16)元D.(144﹣6.4x)元4.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在5.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35° B.45° C.50° D.55°6.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°7.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.58.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.89.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2013年昆明市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是100010.把a3﹣2a2+a分解因式的结果是()A.a2(a﹣2)+a B.a(a2﹣2a)C.a(a+1)(a﹣1) D.a(a﹣1)211.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.12.一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.B.C.D.13.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan ∠ACB的值为()A.B.C.D.314.将抛物线y=x2﹣2x+3平移得到抛物线y=x2,则这个平移过程正确的是()A.先向左平移1个单位,再向下平移2个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移2个单位,再向上平移1个单位二、填空题(本大题满分16分,每小题4分)15.已知关于x的一元二次方程x2﹣2x﹣k=0的一个根为﹣1,则它的另一根为.16.在平面直角坐标系中,如果点(x,4),(0,8),(﹣4,0)在同一条直线上,则x= .17.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.三、解答题(本大题满分62分)19.(1)计算:;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)(a+b)20.从A地到B地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,一辆客车从A地开往B地一共行驶了3.5h.求A、B两地间国道和高速公路各多少千米?21.近年来,琼海市在国际和国内的知名度越来越大,带动旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假,下面的图1和2分别反映了该市2011﹣2014年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题:(1)2014年游客总人数为万人次,旅游业总收入为万元;(2)在2012年,2013年,2014年这三年中,旅游业总收入增长幅度最大的是年,这一年的旅游业总收入比上一年增长的百分率为(精确到1%);(3)据统计,2014年琼海共接待国内游客1200万人,人均消费约700元.求海外游客人均消费约多少元?(注:旅游收入=游客人数×游客的人均消费)22.一艘轮船向正东方向航行,在A处测得灯塔P在A的北偏东60°方向,航行40海里到达B处,此时测得灯塔P在B的北偏东15°方向上.(1)求灯塔P到轮船航线的距离PD是多少海里?(结果保留根号)(2)当轮船从B处继续向东航行时,一艘快艇从灯塔P处同时前往D处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分钟到达D处,求轮船每小时航行多少海里?(结果保留到个位,参考数据:).23. ABPD是一个边长为1的正方形,△DPC是一个直角边长为1的等腰直角三角形,把正方形ABPD 和△DPC拼成一个如图所示的直角梯形,E、F分别为线段DP、CP上两个动点(不与D、P、C重合),且DE=CF=x,BE的延长线分别交DF、DC于H、G.(1)求证:①△BPE≌△DPF.②BG⊥DF.(2)试问:是否存在这样x的值,使得DF和EG互相垂直平分,若存在,请求出x的值;若不存在,请说明理由.(3)若连结AH,在运动过程中,∠AHB的大小是否发生改变?若改变,请说出是如何变化的;若不改变,请猜想∠AHB的度数,不用说明理由.24.如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.2017年山东省日照市莒县教研室中考数学试卷(2)参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.如果a的倒数是﹣1,则a2015的值是()A.1 B.﹣1 C.2015 D.﹣2015【考点】倒数;有理数的乘方.【分析】根据乘积为1的两个数互为倒数,可得a的值,再根据负数的奇数次幂是负数,可得答案.【解答】解:由a的倒数是﹣1,得a=﹣1.a2015=(﹣1)2015=﹣1,故选:B.【点评】本题考查了倒数,先利用倒数求出a的值,再利用负数的奇数次幂是负数.2.若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x【考点】单项式乘单项式.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3x2y÷3xy=x,故选:C【点评】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.3.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x本(x>10),则付款金额为()A.6.4x元B.(6.4x+80)元C.(6.4x+16)元D.(144﹣6.4x)元【考点】列代数式.【分析】根据购买10本,每本需要8元,一次购买超过10本,则超过部分按八折付款,根据:10本按原价付款数+超过10件的总钱数×0.8,列出代数式式即可得.【解答】解:设一次购书数量为x本(x>10),则付款金额为:8×0.8(x﹣10)+10×8=6.4x+16,故选:C.【点评】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.4.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在【考点】一元一次不等式组的整数解.【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35° B.45° C.50° D.55°【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠4=∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵直线a∥b,∴∠4=∠2=55°,∴∠1=∠3﹣∠4=100°﹣55°=45°.故选B.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.6.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°【考点】旋转的性质.【专题】几何图形问题.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.5【考点】直线与圆的位置关系;坐标与图形性质.【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.8.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.8【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2013年昆明市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是1000【考点】总体、个体、样本、样本容量.【分析】根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可.【解答】解:A、2013年昆明市九年级学生的数学成绩是总体,原说法错误,故A选项错误;B、每一名九年级学生的数学成绩是个体,原说法错误,故B选项错误;C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故C选项错误;D、样本容量是1000,该说法正确,故D选项正确.故选D.【点评】本题考查了总体、个体、样本、样本容量的知识,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.把a3﹣2a2+a分解因式的结果是()A.a2(a﹣2)+a B.a(a2﹣2a)C.a(a+1)(a﹣1) D.a(a﹣1)2【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故选D.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体,而D选项,上底面不可能有两个,故不是正方体的展开图.故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据题意列出树状图,看两次都摸到黑球的情况数占总情况数的多少即可.【解答】解:根据题意画图如下:因为一共有6种情况,两次都摸到黑球的有2种情况,所以两次都摸到黑球的概率是=.故选B.【点评】主要考查了事件的分类和概率的求法.用到的知识点为:可能发生,也可能不发生的事件叫做随机事件;概率=所求情况数与总情况数之比.13.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan ∠ACB的值为()A.B.C.D.3【考点】解直角三角形.【分析】根据勾股定理即可求出AC、BC、DE、DF的长度,然后证明△FDE∽△ABC,所以【解答】解:由勾股定理可求出:BC=2,AC=2,DF=,DE=,∴,,,∴,∴△FDE∽△CAB,∴∠DFE=∠ACB,∴tan∠DFE=tan∠ACB=,故选(B)【点评】本题考查解直角三角形,涉及勾股定理,相似三角形的判定与性质.14.将抛物线y=x2﹣2x+3平移得到抛物线y=x2,则这个平移过程正确的是()A.先向左平移1个单位,再向下平移2个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移2个单位,再向上平移1个单位【考点】二次函数图象与几何变换.【分析】先利用顶点式得到两抛物线的顶点坐标,然后通过点的平移情况判断抛物线平移的情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=x2﹣2x+3=(x﹣1)2+2顶点坐标为(1,2),∵点(1,2)向左平移1个单位,再向下平移2个单位可得到(0,0),∴将抛物线y=x2﹣2x+3左平移1个单位,再向下平移2个单位得到抛物线y=x2.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二、填空题(本大题满分16分,每小题4分)15.已知关于x的一元二次方程x2﹣2x﹣k=0的一个根为﹣1,则它的另一根为 3 .【考点】根与系数的关系;一元二次方程的解.【分析】设方程x2﹣2x﹣k=0的解为x1、x2,根据根与系数的关系即可得出x1+x2=2,代入x1=﹣1即可求出x2的值.【解答】解:设方程x2﹣2x﹣k=0的解为x1、x2,则有:x1+x2=2,∵x1=﹣1,∴x2=3.故答案为:3.【点评】本题考查了根与系数的关系,熟练掌握两根之和等于﹣是解题的关键.16.在平面直角坐标系中,如果点(x,4),(0,8),(﹣4,0)在同一条直线上,则x= ﹣2 .【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】设出直线的解析式,把(0,8),(﹣4,0)代入求得相应的解析式,令函数值为4即可求得x的值.【解答】解:设该直线解析式为y=kx+b,则b=8,﹣4k+b=0,解得:k=2,∴y=2x+8,当y=4时,x=﹣2.故答案为:﹣2.【点评】用到的知识点为:直线的解析式为y=kx+b,把相关两点坐标代入即可求解;点在函数解析式上,横纵坐标就适合函数解析式.17.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为15 .【考点】三角形中位线定理;平行四边形的性质.【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【解答】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案为:15.【点评】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为2.【考点】垂径定理;勾股定理;三角形中位线定理;圆周角定理.【专题】计算题.【分析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,根据勾股定理得到(R﹣2)2+42=R2,解得R=5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理.三、解答题(本大题满分62分)19.(10分)(1)计算:;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)(a+b)【考点】整式的除法;实数的运算;平方差公式;负整数指数幂.【分析】(1)首先算乘方,再乘除,后加减,在运算过程中都要注意先定符号后运算;(2)首先计算整式的乘除,然后再计算整式的加减即可.【解答】解:(1)原式=8×(﹣)﹣(﹣3)=﹣4+3=﹣1;(2)原式=a2﹣2ab﹣b2﹣(a2﹣b2)=a2﹣2ab﹣b2﹣a2+b2=﹣2ab.【点评】此题主要考查了整式的运算,关键是掌握计算公式和计算法则.20.从A地到B地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,一辆客车从A地开往B地一共行驶了3.5h.求A、B两地间国道和高速公路各多少千米?【考点】二元一次方程组的应用.【分析】首先设A、B两地间国道和高速公路分别是x、y千米,根据题意可得等量关系:国道路程+高速路程=290,在国道上行驶的时间+在高速公路上行驶的时间=3.5,根据等量关系列出方程组,再解即可.【解答】解:设A、B两地间国道和高速公路分别是x、y千米,依题意得:,解得,答:A、B两地间国道和高速公路分别是90、200千米.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.21.近年来,琼海市在国际和国内的知名度越来越大,带动旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假,下面的图1和2分别反映了该市2011﹣2014年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题:(1)2014年游客总人数为1225 万人次,旅游业总收入为940000 万元;(2)在2012年,2013年,2014年这三年中,旅游业总收入增长幅度最大的是2014 年,这一年的旅游业总收入比上一年增长的百分率为41% (精确到1%);(3)据统计,2014年琼海共接待国内游客1200万人,人均消费约700元.求海外游客人均消费约多少元?(注:旅游收入=游客人数×游客的人均消费)【考点】条形统计图;扇形统计图.【分析】(1)2014年游客总人数为1225万人次,旅游业总收入为940000万元;(2)在2012年,2013年,2014年这三年中,旅游业总收入增长幅度最大的是2014年,这一年比上一年增长的百分率为(940000﹣665000)÷665000≈41%;(3)设海外游客的人均消费为x元,根据题意,1200×700+(1225﹣1200)x=940000解得x的值即可.【解答】解:(1)由图可知,2014年游客总人数为1225万人次,旅游业总收入为940000万元,故答案为:1225;940000.(2)在2012年,2013年,2014年这三年中,旅游业总收入增长幅度最大的是2014年,这一年比上一年增长的百分率为(940000﹣665000)÷665000≈41%,故答案为:2014;41%;(3)设海外游客的人均消费为x元,根据题意得:1200×700+(1225﹣1200)x=940000解这个方程,得x=4000.答:海外游客的人均消费为4000元.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.22.一艘轮船向正东方向航行,在A处测得灯塔P在A的北偏东60°方向,航行40海里到达B处,此时测得灯塔P在B的北偏东15°方向上.(1)求灯塔P到轮船航线的距离PD是多少海里?(结果保留根号)(2)当轮船从B处继续向东航行时,一艘快艇从灯塔P处同时前往D处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分钟到达D处,求轮船每小时航行多少海里?(结果保留到个位,参考数据:).【考点】解直角三角形的应用-方向角问题.【专题】行程问题.【分析】(1)过点B作BC⊥AP于点C,先求出BC、AC的长度,然后确定∠CBP的度数,继而在直角三角形PAD中可求出根据PD.(2)设轮船每小时航行x海里,在Rt△ADP中求出AD,继而表示出BD,列出方程可解出x的值.【解答】解:(1)过点B作BC⊥AP于点C,在Rt△ABC,∠ACB=90°,∠BAC=30°,∴BC=AB=20,AC=AB•cos30°=20.∵∠PBD=90°﹣15°=75°,∠ABC=90°﹣30°=60°,∴∠CBP=180°﹣75°﹣60°=45°,∴AP=AC+PC=(20+20)海里.∵PD⊥AD,∠PAD=30°,∴PD=AP=10+10,答:灯塔P到轮船航线的距离PD是10+10海里;(2)设轮船每小时航行x海里,在Rt△ADP中,AD=AP•cos30°=(20+20)=(30+10)海里.∴BD=AD﹣AB=30+10﹣40=(10﹣10)海里.+=,解得x=60﹣20.经检验,x=60﹣20是原方程的解.∴x=60﹣20≈x=60﹣20×1.73=25.4≈25,答:轮船每小时航行25海里.【点评】本题考查解直角三角形的应用,有一定的难度,注意在解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23. ABPD是一个边长为1的正方形,△DPC是一个直角边长为1的等腰直角三角形,把正方形ABPD 和△DPC拼成一个如图所示的直角梯形,E、F分别为线段DP、CP上两个动点(不与D、P、C重合),且DE=CF=x,BE的延长线分别交DF、DC于H、G.(1)求证:①△BPE≌△DPF.②BG⊥DF.(2)试问:是否存在这样x的值,使得DF和EG互相垂直平分,若存在,请求出x的值;若不存在,请说明理由.(3)若连结AH,在运动过程中,∠AHB的大小是否发生改变?若改变,请说出是如何变化的;若不改变,请猜想∠AHB的度数,不用说明理由.【考点】四边形综合题.【分析】(1)①根据正方形和等腰直角三角形的性质得:BP=PD=PC,∠BPE=∠DPF=90°,由DE=CF和等式的性质得:PE=PF,从而得△BPE≌△DPF;②先根据全等得:∠EBP=∠FDP,再由直角三角形的两锐角互余得:∠EBP+∠BFH=90°,所以BG⊥DF;(2)如图2,存在,先假设直线BG垂直平分线段DF,连接BD,根据垂直平分线的性质得:BD=BF=,表示出x=FC=2﹣,再利用等腰三角形三线合一的性质证明EH=GH,所以DF也是EG的垂直平分线,此时DF和EG互相垂直平分;(3)如图2,根据正方形的角为直角证明A、B、H、D四点共圆,得∠AHB=45°.【解答】解:(1)①证明:如图1,∵四边形ABPD是正方形,△DPC是等腰直角三角形,∴BP=PD=PC,∠BPE=∠DPF=90°,又∵DE=CF,∴PE=PF,∴△BPE≌△DPF;②∵△BPE≌△DPF,∴∠EBP=∠FDP,又∵∠FDP+∠BFH=90°,∴∠EBP+∠BFH=90°,∴BG⊥DF;(2)存在,如图2,连结BD,若直线BG垂直平分线段DF,则BF=BD,∵四边形ABCD是正方形,且AB=1,∴BD=,∴BF=BD=,∴x=CF=2﹣,此时,∠FBH=∠DBG=×45°=22.5°,∴∠PBH=∠PDF=22.5°,∵∠PDC=45°,∴∠PDF=∠CDF=22.5°,又∵BG⊥DF,∴EH=GH,∴直线DF垂直平分线段EG,∴当x=2﹣时,DF和EG互相垂直平分;(3)∠AHB的大小不改变,∠AHB=45°,理由是:如图2,∵四边形ABCD是正方形,∴∠BAD=90°,∠ADB=45°,∵BG⊥DF,∴∠DHB=90°,∴∠BAD+∠DHB=180°,∴A、B、H、D四点共圆,∴∠AHB=∠ADB=45°.【点评】本题是四边形的综合题,考查了正方形的性质、等腰直角三角形的性质、全等三角形的性质和判定以及四点共圆的性质和判定,难度适中;以证明两三角形全等为突破口,根据直角三角形的两锐角互余及四点共圆中,同弧所对的圆周角相等为依据,解决此题.24.(14分)如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.【考点】二次函数综合题.【专题】综合题.【分析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x﹣5),将点C (0,3)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)①设直线BC的函数解析式为y=kx+b,结合点B、点C的坐标,利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m得出点D、点E的坐标,结合两点间的距离公式以及三角形的面积公式,即可得出结论;②由①的结论,利用配方法将S关于m的函数关系式进行变形,从而得出结论;③结合图象可知△BDE和△BFE是等高的,由此得出它们的面积比=DE:EF,分两种情况考虑,根据两点间的距离公式即可得出关于m的分式方程,解方程即可得出m的值,将其代入到点D的坐标中即可得出结论.【解答】(1)∵抛物线经过A(﹣1,0),B(5,0),C(0,5),∴设y=a(x+1)(x﹣5),∴5=a(0+1)(0﹣5),解得a=﹣1,∴抛物线的函数关系式为y=﹣(x+1)(x﹣5),即y=﹣x2+4x+5;(2)①设直线BC的函数关系式为y=kx+b,则解得,∴y=﹣x+5,设D(m,﹣m2+4m+5),E(m,﹣m+5),∴DE=﹣m2+4m+5+m﹣5=﹣m2+5m∴s=(﹣m2+5m)=﹣m2+m (0<m<5);②s=﹣m2+m=,∵,∴当m=时,S有最大值,S最大值=;③∵△BDE和△BFE是等高的,∴它们的面积比=DE:EF,(ⅰ)当DE:EF=2:3时,即,解得:(舍),此时,D();(ⅱ)当DE:EF=3:2时,即,解得:(舍),此时,D().综上所述,点D的坐标为()或().【点评】本题属于二次函数综合题,主要考查了二次函数的性质、待定系数法求函数解析式、两点间的距离公式以及三角形的面积公式的综合应用,解题的关键是运用待定系数法求函数解析式;找出直线BC的函数解析式;运用配方法解决最值问题.解题时注意分类讨论思想的运用.。

山东日照数学(含答案) 2017年中考数学真题试卷

山东日照数学(含答案)   2017年中考数学真题试卷

2017年山东省日照市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【考点】15:绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:﹣3的绝对值是3.故选:B.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选A.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.【解答】解:4640万=4.64×107.故选:C.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°【考点】JA:平行线的性质.【分析】根据对顶角的性质和平行线的性质即可得到结论.【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【考点】72:二次根式有意义的条件.【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案.【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【考点】MM:正多边形和圆;AA:根的判别式;D1:点的坐标;R2:旋转的性质.【分析】根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质进行判断即可.【解答】解:如图∠AOB==60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选:A.8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B. C.5 D.【考点】MC:切线的性质.【分析】过点D作OD⊥AC于点D,由已知条件和圆的性质易求OD的长,再根据勾股定理即可求出AD的长,进而可求出AC的长.【解答】解:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD==,∴AC=2AD=5,故选A.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【考点】37:规律型:数字的变化类.【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y >0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是182.【考点】W1:算术平均数.【分析】根据平均数的计算公式用所有数据的和除以数据的个数即可计算出这组数据的平均数,从而得出答案.【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是÷5=182.故答案为182.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是6π.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】证明△ABE是等边三角形,∠B=60°,根据扇形的面积公式计算即可.【解答】解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,==6π,∴S扇形BAE故答案为:6π.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为1+.【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=,OM=AN=,求出B(+,﹣),得出方程(+)•(﹣)=k,解方程即可.【解答】解:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM 交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+;故答案为:1+.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:(1)﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2=﹣2﹣1+(1﹣)×4==;(2)﹣÷====,当a=时,原式=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【考点】X6:列表法与树状图法.【分析】(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【解答】解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率==.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为4;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【考点】FI :一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P 1(3,4)到直线3x +4y ﹣5=0的距离d==4,故答案为4.(2)∵⊙C 与直线y=﹣x +b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x +4y ﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d==3,∴⊙C 上点P 到直线3x +4y +5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.22.如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.【考点】HF:二次函数综合题.【分析】(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;=8S△QAB可求得点Q到x (3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q 点纵坐标为y ,则×2×|y |=1,解得y=1或y=﹣1,当y=1时,则△QAB 为钝角三角形,而△OBN 为直角三角形,不合题意,舍去,当y=﹣1时,可知P 点即为所求的Q 点, ∵D 为AB 的中点, ∴AD=BD=QD ,∴△QAB 为等腰直角三角形, ∵ON=OB=3,∴△OBN 为等腰直角三角形, ∴△QAB ∽△OBN ,综上可知存在满足条件的点Q ,其坐标为(2,﹣1).随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .336a a a +=B .222()a b a b -=-C .326()a a -= D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A .圆锥B .长方体C .圆柱D .三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是( )A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作AOC AOB∠=∠的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x元,每本笔记本y元,则可列方程组()A.203011010585x yx y+=⎧⎨+=⎩B.201011030585x yx y+=⎧⎨+=⎩C.205110301085x yx y+=⎧⎨+=⎩D.520110103085x yx y+=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2DE AD CM =⋅;④点N 为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB 两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:201()(2017)|2|3π----. 18.解分式方程:2311xx x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan 55 1.4︒≈,tan 350.7︒≈,sin 550.8︒≈,sin 350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少? (3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路: 思路1:不需作辅助线,直接证三角形全等; 思路2:不证三角形全等,连接BD 交AF 于点H .、 ……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AMNE的值;(3)在(2)的条件下,若AF k AB =(k ,直接用含k 的代数式表示AMMF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线233y x x =--+A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.
A . 1个 B . 2个 C . 3个 D . 4个 11. 如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为( )
A . 6 B . 13 C . D . 2 12. 函数y=x2+bx+c与y=x的图象如图所示,有以下结论: ①b2﹣4c>0;
销售任务.
(1) 试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围; (2) 当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少? 20. 已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1) 求证:点D是AB的中点; (2) 判断DE与⊙O的位置关系,并证明你的结论; (3) 若⊙O的直径为18,cosB= ,求DE的长. 21. 如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)
如图①,当
时,求
的值;
(2) 如图②当DE平分∠CDB时,求证:AF= OA;
A.
B.
C.
D.
9. 关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是( ) A . k≤﹣ B . k≤﹣ 且k≠0 C . k≥﹣ D . k≥﹣ 且k≠0
10. 下列命题中,原命题与逆命题均为真命题的有( ) ①若|a|=|b|,则a2=b2;②若ma2>na2 , 则m>n;
A . 2.5×10﹣7 B . 2.5×10﹣6 C . 25×10﹣7 D . 0.25×10﹣5
4. 在函数y=
中,自变量x的取值范围是( )
A . x< B . x≤ C . x> D . x≥
5. 不等式5x﹣1>2x+5的解集在数轴上表示正确的是( )
A.
B.
C.
D.
6. 一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同 时摸出2个球,其中2个球的颜色相同的概率是( )
A. B. C. D.
7. 如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视
图是( )
A.
B.
C.
ቤተ መጻሕፍቲ ባይዱ
D.
8. 小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比 步行上学早到30分钟.设小玲步行的平均速度为x米/分,根据题意,下面列出的方程正确的是( )
16. 如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上 的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正 确的是________(填序号)
三、解答题 17. 某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四
14. 如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=________ .
15. 如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的 周长为10,则图中阴影部分的面积为________.
由.
参考答案 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11. 12. 13. 14. 15. 16. 17.
18.
19.
20. 21.
22.
②b+c+1=0;
③3b+c+6=0;
2
④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为( )
A . 1个 B . 2个 C . 3个 D . 4个 二、填空题
13. 如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y= 的图象上,若 点A的坐标为(4,﹣2),则k的值为________.
(3) 如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG= BG.
22. 已知:在平面直角坐标系中,抛物线 (0,t)是y轴上的一个动点.
交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P
(1) 求抛物线的解析式及顶点D的坐标. (2) 如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和 此时t的值. (3) 如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理
(1) 求新传送带AC的长度; (2) 如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由. (说明:(1)(2)的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45) 19. 我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用 空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降 低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的
个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.
(1)
求抽取了多少份作品;
(2) 此次抽取的作品中等级为B的作品有,并补全条形统计图 ; (3) 若该校共征集到800份作品,请估计等级为A的作品约有多少份. 18. 如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由 45°改为30°.已知原传送带AB长为4米.
山东省日照市莒县2017年南四校联盟中考数学一模试卷
一、选择题
1. 的倒数是( )
A . ﹣3 B . C . 3 D .
2. 下列计算正确的是( ) A . + = B . x6÷x3=x2 C . =2 D . a2(﹣a2)=a4
3. PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )
相关文档
最新文档