浙江省杭州市2020届高考数学命题比赛模拟试题202

合集下载

浙江省杭州市2020届高考数学模拟试题

浙江省杭州市2020届高考数学模拟试题

浙江省杭州市2020届高考数学命题比赛模拟试题172020年试卷命题双向细目表说明:题型及考点分布按照《2019年考试说明》2020年高考模拟试卷数学卷本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷上无效。

参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(原创)已知复数ibi-2z =实部和虚部相等,则z =( )A .2B . 3C .D . (命题意图:考查复数的概念及复数模的求法,属容易题)2.(原创)已知x R ∈,则“3>x ”是“0652>+-x x ”成立的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(命题意图:考查充分条件、必要条件与充要条件的意义,属容易题)3.(原创)已知等差数列{}n a 的前n 项和为n s ,若21975=++a a a ,则13s =( )A .36B .72C .91D .182(命题意图:考查等差数列前n 项和的公式及等差数列性质的应用,属中档题)4.(根据惠州市2017届第二次调研考试改编)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个四等分点(F 是靠近B 处的),那么=( ) A.3121- B. 3141+ C.2131+ D. 4321- (命题意图:考查平面向量基本定理的应用,属容易题)5.(原创)已知双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线与直线013-=+y x 垂直,则双曲线的离心率为( )A. 3B.25C.10D.2 (命题意图:考查双曲线的离心率概念,渐近线表示及直线垂直位置关系的表示,属中档题)6.(根据山东省济南市2017届高三一模考试改编)已知某几何体的三视图及相关数据如图所示,则该几何体的表面积为 A. 2πB. π276+C. 43πD. ππ25276++(命题意图:考查三视图,直观图,属容易题)7.(原创)设变量,x y 满足不等式组⎪⎩⎪⎨⎧≤--≥-≥+2224y x y x y x ,则22x y +的最小值是( )A .22B .9C .8D .2(命题意图:考查线性规划中的最值及数形结合的思想方法,中等偏难题)8.(原创)在正四棱锥ABCD P -中,2=PA ,二面角C AB P --的平面角为︒60,则PA 与底面ABCD 所成角的正弦值是( ) A .515 B .33 C .23 D .55(命题意图:考查空间二面角及直线和平面所成角,属中档题) 9.(根据浙江省宁波市2016届高三适应性考试改编)已知函数⎩⎨⎧≤+->=mx x x m x x f ,22,3)(2,若函数()()g x f x x =-有三个不同的零点,则实数m的取值范围是( )A .3>mB .3≤mC .2≥mD .32<≤m (命题意图:考查函数零点的定义,及函数数形结合思想应用,属中等偏难题) 10.(根据广东省惠州市2017届高三二模考试改编) 定义在R 上的函数)(x f y =满足)()25)()5(>'-=-x f x x f x f ,(,若21x x <,且521>+x x ,则有 ( )A .)()(21x f x f >B .)()(21x f x f <C .)()(21x f x f =D .不确定 (命题意图:考查函数的导数定义,利用导数求函数的单调性,属较难题) 非选择题部分(共110分) 注意事项:1.用黑色的字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x |x 2﹣4x ≤0},则A ∩B =( ) A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.(4分)设i 为虚数单位,复数z =2+3ii,则z 的共轭复数是( ) A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i3.(4分)设变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,则z =(x ﹣3)2+y 2的最小值为( )A .2B .4√55C .4D .1654.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.(4分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是( )A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为π4C .PQ ≥√2ABD .CD 1与PQ 不可能垂直7.(4分)已知0<a <23,随机变量ξ的分布列如图:则当a 增大时,ξ的期望E (ξ)变化情况是( )ξ ﹣10 1 P13abA .E (ξ)增大B .E (ξ)减小C .E (ξ)先增后减D .E (ξ)先减后增8.(4分)已知函数f(x)={x 2+4x +2,x ≤0log 2x ,x >0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为( ) A .(−154,0]B .(−154,2]C .[﹣4,+∞)D .[﹣4,2)9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则( )A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ10.(4分)设数列{a n }满足a n +1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是( ) A .﹣3B .﹣2C .﹣1D .1二.填空题(共7小题,满分36分)11.(6分)过点P (1,1)作直线l 与双曲线x 2−y 22=λ交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是 .12.(6分)一个几何体的三视图如图所示,则该几何体的体积为 .13.(6分)已知(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2= ,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6= . 14.(6分)在△ABC 中,a =1,cos C =34,△ABC 的面积为√74,则c = . 15.(4分)在平面直角坐标系xOy 中,已知椭圆x 2a +y 2b =1(a >b >0)的上、下顶点分别为B 2,B 1,若一个半径为√2b ,过点B 1,B 2的圆M 与椭圆的一个交点为P (异于顶点B 1,B 2),且|k PB 1−kPB 2|=89,则椭圆的离心率为 .16.(4分)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°, CB =CD =2√3.若点M 为边BC 上的动点,则AM →•DM →的最小值为 .17.(4分)设f (x )是定义在(0,+∞)上的可导函数,且满足f (x )+xf '(x )>0,则不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为 三.解答题(共5小题,满分74分)18.(14分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13,△ABC 的面积为2√2.(Ⅰ)求a 及sin C 的值; (Ⅱ)求cos (2A −π6)的值.19.(15分)如图,三棱锥D ﹣ABC 中,AD =CD ,AB =BC =4√2,AB ⊥BC . (1)求证:AC ⊥BD ;(2)若二面角D ﹣AC ﹣B 的大小为150°且BD =4√7时,求直线BM 与面ABC 所成角的正弦值.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14. (1)求数列{a n },{b n }的通项公式;(2)令c n =a b n ,(﹣1)n d n =n c n +n ,求数列{d n }的前项和为T n .21.(15分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.22.(15分)设函数f(x)=e x cos x,g(x)=e2x﹣2ax.(1)当x∈[0,π3]时,求f(x)的值域;(2)当x∈[0,+∞)时,不等式g(x)≥f′(x)e2x恒成立(f'(x)是f(x)的导函数),求实数a的取值范围.2020年浙江省高考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x |x 2﹣4x ≤0},则A ∩B =( ) A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]【解答】解:由题意得:A ={x ∈N *|x ≤3}={1,2,3},B ={x |x 2﹣4x ≤0}={x |0≤x ≤4}, ∴所以A ∩B ={1,2,3}, 故选:A .2.(4分)设i 为虚数单位,复数z =2+3ii,则z 的共轭复数是( ) A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i【解答】解:∵z =2+3i i =(2+3i)(−i)−i2=3−2i , ∴z =3+2i . 故选:B .3.(4分)设变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,则z =(x ﹣3)2+y 2的最小值为( )A .2B .4√55C .4D .165【解答】解:画出变量x ,y 满足约束条件{x +y ≥1,2x −y ≤2,x −y +1≥0,的可行域,可发现z =(x ﹣3)2+y 2的最小值是(3,0)到2x ﹣y ﹣2=0距离的平方. 取得最小值:(6−24+1)2=165.故选:D .4.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要【解答】解:若cos2α=13,则cos2α=1﹣2sin 2α,sin α=±√33,则cos2α=13”是“sin α=√33”的不充分条件;若sin α=√33,则cos2α=1﹣2sin 2α,cos2α=13,则cos2α=13”是“sin α=√33”的必要条件; 综上所述:“cos2α=13”是“sin α=√33”的必要不充分条件.故选:B .5.(4分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .【解答】解:因为对于任意的x ∈R ,f (x )=x 2+e |x |>0恒成立,所以排除A ,B , 由于f (0)=02+e |0|=1,则排除D , 故选:C .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是( )A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为π4C .PQ ≥√2ABD .CD 1与PQ 不可能垂直【解答】解:在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点, 在A 中,当Q 为线段B 1C 1中点时,线段PQ 与平面CDD 1C 1平行,故A 正确; 在C 中,当Q 为线段B 1C 1的中点时,PQ ∥DC 1, ∴线段PQ 与DD 1所成角为∠C 1DD 1=π4,故B 正确;在C 中,PQ ≥√2AB ,当且仅当Q 为线段B 1C 1的中点时取等号,故C 正确; 在D 中,当Q 为线段B 1C 1的中点时,PQ ∥DC 1,CD 1与PQ 垂直,故D 错误. 故选:D .7.(4分)已知0<a <23,随机变量ξ的分布列如图:则当a 增大时,ξ的期望E (ξ)变化情况是( )ξ ﹣10 1 P13abA .E (ξ)增大B .E (ξ)减小C .E (ξ)先增后减D .E (ξ)先减后增【解答】解:依题可知{E(ξ)=−13+b a +b =23,∴E(ξ)=−13+23−a ,∴当a 增大时,ξ的期望E (ξ)减小.故选:B .8.(4分)已知函数f(x)={x 2+4x +2,x ≤0log 2x ,x >0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为( ) A .(−154,0] B .(−154,2] C .[﹣4,+∞) D .[﹣4,2)【解答】解:作出函数f (x )的图象,方程f (x )=a 有三个不同的实数根 即等价于函数y =f (x )的图象与直线y =a 有三个交点A ,B ,C ,故有﹣2<a ≤2, 不妨设x 1<x 2<x 3,因为点A ,B 关于直线x =﹣2对称,所以x 1+x 2=﹣4, ﹣2<log 2x 3≤2,即14<x 3≤4,故−154<x 1+x 2+x 3≤0.故选:A .9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则( )A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ【解答】解:∵在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点, 记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β, 二面角M ﹣AC ﹣B 的平面角为γ. ∴根据最小角定理得α≥β, 根据最大角定理得β≤γ. 故选:A .10.(4分)设数列{a n }满足a n +1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是( ) A .﹣3B .﹣2C .﹣1D .1【解答】解:a n+1−a n =a n 2+a n −2=(a n +2)(a n −1),若a n <﹣2,则a n +1>a n ,则该数列单调递增,所以无限趋于﹣2.若a n =﹣2,则a n +1=a n ,则该数列为常数列,即a n =2.所以,综上所述,λ≥﹣2.∴λ的最小值是﹣2.故选:B . 二.填空题(共7小题,满分36分)11.(6分)过点P (1,1)作直线l 与双曲线x 2−y 22=λ交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是 (﹣∞,0)∪(0,12) .【解答】解:设A (x 1,y 1),B (x 2,y 2),代入双曲线可得:{x 12−y 122=λx 22−y 222=λ,两式相减可得:y 1−y 2x 1−x 2=2(x 1+x 2)y 1+y 2,而由题意可得,x 1+x 2=2×1=2,y 1+y 2=2×1=2, 所以直线AB 的斜率k =y 1−y 2x 1−x 2=2×22=2,所以直线AB 的方程为:y ﹣1=2(x ﹣1),即y =2x ﹣1,代入双曲线的方程可得:2x 2﹣4x +1+2λ=0,因为直线与双曲线由两个交点,所以△>0,且λ≠0,即△=16﹣4×2×(1+2λ)>0,解得:λ<12, 所以实数λ的取值范围是(﹣∞,0)∪(0,12),故答案为:(﹣∞,0)∪(0,12).12.(6分)一个几何体的三视图如图所示,则该几何体的体积为 9 .【解答】解:根据几何体的三视图转换为几何体为: 下底面为直角梯形,高为3的四棱锥体, 如图所示:所以:V =13×12(2+4)×3×3=9, 故答案为:913.(6分)已知(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2= 15 ,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6= 64 .【解答】解:由(1﹣x )6的通项为T r+1=C 6r (−x)r 可得,令r =2,即x 2项的系数a 2为C 62=15,即a 2=15,由(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,取x =﹣1,得a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6=[1﹣(﹣1)]6=64,故答案为:15,64. 14.(6分)在△ABC 中,a =1,cos C =34,△ABC 的面积为√74,则c = √2 . 【解答】解:∵a =1,cos C =34,△ABC 的面积为√74, ∴sin C =√1−cos 2C =√74,可得√74=12ab sin C =√78ab ,解得ab =2,∴b =2,∴由余弦定理可得c =2+b 2−2abcosC =√12+22−2×1×2×34=√2. 故答案为:√2.15.(4分)在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上、下顶点分别为B 2,B 1,若一个半径为√2b ,过点B 1,B 2的圆M 与椭圆的一个交点为P (异于顶点B 1,B 2),且|k PB 1−kPB 2|=89,则椭圆的离心率为2√23. 【解答】解:设P (x 0,y 0),B 1(0,﹣b ),B 2(0,+b ),由|kPB 1−kPB 2|=89,|y 0−b x 0−y 0+b x 0|=89,∴|x 0|=94b ,由题意得圆M 的圆心在x 轴上,设圆心(t ,0),由题意知:t 2+b 2=2b 2∴t 2=b 2, ∴MP 2=2b 2=(x 0﹣t )2+y 02,∴y 02=716b 2,P 在椭圆上,所以81b 216a +716=1, ∴a 2=9b 2=9(a 2﹣c 2),∴e 2=89,所以离心率为2√23,故答案为:2√23. 16.(4分)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°,CB =CD =2√3.若点M 为边BC 上的动点,则AM →•DM →的最小值为214.【解答】解:如图所示:以B 为原点,以BA 所在的直线为x 轴,以BC 所在的直线为y 轴,过点D 做DP ⊥x 轴,过点D 做DQ ⊥y 轴,∵AB ⊥BC ,AD ⊥CD ,∠BAD =120°,CB =CD =2√3, ∴B (0,0),A (2,0),C (0,2√3),D (3,√3),设M (0,a ),则AM →=(﹣2,a ),DM →=(﹣3,a −√3),故AM →•DM →=6+a (a −√3)=(a −√32)2+214≥214, 故答案为:214.17.(4分)设f (x )是定义在(0,+∞)上的可导函数,且满足f (x )+xf '(x )>0,则不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为 (1,2)【解答】解:令g (x )=xf (x ),x ∈(0,+∞).g ′(x )=f (x )+xf '(x )>0, ∴函数g (x )在x ∈(0,+∞)上单调递增.不等式f (x +1)>(x ﹣1)f (x 2﹣1)即不等式(x +1)f (x +1)>(x 2﹣1)f (x 2﹣1),x +1>0. ∴x +1>x 2﹣1>0,解得:1<x <2.∴不等式f (x +1)>(x ﹣1)f (x 2﹣1)的解集为(1,2).故答案为:(1,2).三.解答题(共5小题,满分74分)18.(14分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13,△ABC 的面积为2√2.(Ⅰ)求a 及sin C 的值; (Ⅱ)求cos (2A −π6)的值.【解答】解:(Ⅰ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b ﹣c =1,cos A =13, ∴sin A =√1−cos 2A =2√23, ∵△ABC 的面积为12bc •sin A =bc 2•2√23=√23bc =2√2,∴bc =6,∴b =3,c =2, ∴a =√b 2+c 2−2bc ⋅cosA =√9+4−2⋅3⋅2⋅13=3. 再根据正弦定理可得a sinA=c sinC,即2√23=2sinC,∴sin C =4√29. (Ⅱ)∴sin2A =2sin A cos A =4√29,cos2A =2cos 2A ﹣1=−79, 故 cos (2A −π6)=cos2A cos π6+sin2A sinπ6=−79•√32+4√29•12=4√2−7√318. 19.(15分)如图,三棱锥D ﹣ABC 中,AD =CD ,AB =BC =4√2,AB ⊥BC . (1)求证:AC ⊥BD ;(2)若二面角D ﹣AC ﹣B 的大小为150°且BD =4√7时,求直线BM 与面ABC 所成角的正弦值.【解答】解:(1)证明:取AC 中点O ,连结BO ,DO , ∵AD =CD ,AB =BC ,∴AC ⊥BO ,AC ⊥DO , ∵BO ∩DO =O ,∴AC ⊥平面BOD , 又BD ⊂平面BOD ,∴AC ⊥BD .(2)解:由(1)知∠BOD 是二面角D ﹣AC ﹣B 的平面角,∴∠BOD =150°, ∵AC ⊥平面BOD ,∴平面BOD ⊥平面ABC , 在平面BOD 内作Oz ⊥OB ,则Oz ⊥平面ABC ,以O 为原点,OB 为x 轴,OC 为y 轴,OD 为z 轴,建立空间直角坐标系, 由题意得OB =4,在△BOD 中由余弦定理得OD =4√3,∴A (0,﹣4,0),B (4,0,0),C (0,4,0),D (﹣6,0,2√3),∴M (﹣3,2,√3),BM →=(﹣7,2,√3),平面ABC 的法向量n →=(0,0,1),设直线BM 与面ABC 所成角为θ,则直线BM 与面ABC 所成角的正弦值为:sin θ=|n →⋅BM →||n →|⋅|BM →|=√356=√4228.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14.(1)求数列{a n },{b n }的通项公式;(2)令c n =a b n ,(﹣1)n d n =n c n +n ,求数列{d n }的前项和为T n .【解答】解:(1)等差数列{a n }的公差设为d ,正项等比数列{b n }的公比设为q ,q >0,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,可得2a 2=b 1+b 2,即2(1+d )=2+2q ,即d =q ,数列{b n }的前n 项和为S n ,且S 3=14,可得2+2q +2q 2=14,解得q =2,d =2,则a n =2n ﹣1,b n =2n ;(2)c n =a b n =2n +1﹣1,(﹣1)n d n =n c n +n =n •2n +1,则d n =2n •(﹣2)n ,前项和为T n =2•(﹣2)+4•4+6•(﹣8)+…+2n •(﹣2)n ,﹣2T n =2•4+4•(﹣8)+6•16+…+2n •(﹣2)n +1,相减可得3T n =﹣4+2(4+(﹣8)+…+(﹣2)n )﹣2n •(﹣2)n +1=﹣4+2•4(1−(−2)n−1)1−(−2)−2n •(﹣2)n +1,化简可得T n =−49−6n+29•(﹣2)n +1. 21.(15分)已知抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.(1)若点M 纵坐标为√2,求M 与焦点的距离;(2)若t =﹣1,P (1,1),Q (1,﹣1),求证:y A •y B 为常数;(3)是否存在t ,使得y A •y B =1且y P •y Q 为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.点M 纵坐标为√2, ∴点M 的横坐标x M =(√2)2=2,∵y 2=x ,∴p =12,∴M 与焦点的距离为MF =x M +p 2=2+14=94.(2)证明:设M (y 02,y 0),直线PM :y ﹣1=y 0−1y 02−1(x ﹣1),当x =﹣1时,y A =y 0−1y 0+1,直线QM :y +1=y 0+1y 02−1(x ﹣1),x =﹣1时,y B =−y 0−1y 0−1,∴y A y B =﹣1, ∴y A •y B 为常数﹣1.(3)解:设M (y 02,y 0),A (t ,y A ),直线MA :y ﹣y 0=y 0−y A y 02−t (x ﹣y 02), 联立y 2=x ,得y 2−y 02−t y 0−y A y +y 02−t y 0−y A y 0−y 02=0,∴y 0+y p =y 02−t y 0−y A ,即y P =y 0y A −t y 0−y A, 同理得y Q =y 0y B −1y 0−y B,∵y A •y B =1,∴y P y Q =y 02−ty 0(y A +y B )+t 2y 02−y 0(y A +y B )+1, 要使y P y Q 为常数,即t =1,此时y P y Q 为常数1,∴存在t =1,使得y A •y B =1且y P •y Q 为常数1.22.(15分)设函数f (x )=e x cos x ,g (x )=e 2x ﹣2ax .(1)当x ∈[0,π3]时,求f (x )的值域;(2)当x ∈[0,+∞)时,不等式g(x)≥f′(x)e 2x 恒成立(f '(x )是f (x )的导函数),求实数a 的取值范围. 【解答】解:(1)由题可得f '(x )=e x cos x ﹣e x sin x =e x (cos x ﹣sin x ).令f '(x )=e x (cos x ﹣sin x )=0,得x =π4∈[0,π3]. 当x ∈(0,π4)时,f '(x )>0,当x ∈(π4,π3)时,f '(x )<0,所以f(x)max =f(π4)=√22e π4,f(x)min =min{f(0),f(π3)}.因为f(π3)=e π32>e 332=e 2>1=f(0),所以f (x )min =1, 所以f (x )的值域为[1,√22e π4]. (2)由g(x)≥f′(x)e 2x 得e 2x −2ax ≥cosx−sinx e x , 即sinx−cosxe +e 2x −2ax ≥0.设ℎ(x)=sinx−cosx e x +e 2x −2ax ,则ℎ′(x)=2cosx e x +2e 2x −2a . 设φ(x )=h '(x ),则φ′(x)=4e 3x −2√2sin(x+π4)e x. 当x ∈[0,+∞)时,4e 3x ≥4,2√2sin(x +π4≤2√2),所以φ'(x )>0. 所以φ(x )即h '(x )在[0,+∞)上单调递增,则h '(x )≥h '(0)=4﹣2a .若a ≤2,则h '(x )≥h '(0)=4﹣2a ≥0,所以h (x )在[0,+∞)上单调递增.所以h (xa >2)≥h (0)=0恒成立,符合题意.若,则h '(0)=4﹣2a <0,必存在正实数x 0,满足:当x ∈(0,x 0)时,h '(x )<0,h (x )单调递减,此时h (x )<h (0)=0,不符合题意综上所述,a 的取值范围是(﹣∞,2].。

浙江省杭州市2020届高考数学命题比赛模拟试题142020051601167

浙江省杭州市2020届高考数学命题比赛模拟试题142020051601167

浙江省杭州市2020届高考数学命题比赛模拟试题14本试卷分为选择题和非选择题两部分。

考试时间120分种。

请考生按规定用笔将所有试题的答案标号涂、写在答题纸上。

参考公式:球的表面积公式 柱体的体积公式24πS R = V=Sh球的体积公式 其中S 表示锥体的底面积,h 表示锥体的高34π3V R =台体的体积公式: 其中R 表示球的半径 V=31h (2211S S S S ++) 棱锥的体积公式 其中21,s s 分别表示台体的上、下底面积,V=31Sh h 表示台体的高 其中S 表示锥体的底面积, 如果事件A B ,互斥,那么 h 表示锥体的高 ()()()P A B P A P B +=+第I 卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的。

请在答题卡指定区域内作答。

1.【原创】在复平面内,复数2)21(21i iiz -+-=对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.【原创】盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为 ( ) A .恰有1只是坏的 B .恰有2只是好的 C .4只全是好的 D .至多有2只是坏的3.【原创】在243)1(xx -的展开式中,x 的幂指数是整数的项共有 ( ) A .3项 B .4项 C .5项 D .6项4.【原创】已知集合{}034|2≤+-=x x x A ,{}a x x B ≥=|,则下列选项中不是φ=B A I 的充分条件的是 ( ) A .4≥aB .3≥aC .3>aD .43<<a5.一个多面体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为 ( )A .246+B .224+C .244+D .26.【原创】将函数f (x )=)23sin(x +π(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x ),则g (x )具有性质 ( )A .在(0,π4)上单调递增,为奇函数B .周期为π,图象关于(π4,0)对称C .最大值为2,图象关于直线x =π2对称D .在(-π2,0)上单调递增,为偶函数7.经过双曲线=1(a >b >0)的右焦点为F 作该双曲线一条渐近线的垂线与两条渐近线相交于M ,N 两点,若O 是坐标原点,△OMN 的面积是,则该双曲线的离心率是( )A .2B .C .D .8.【原创】设等差数列{}n a 的前n 项和为n S ,若786S S S <<,则满足01<•+n n S S 的正整数n 的值为 ( ) A .12 B .13 C .14 D .159.已知f (x )=x (1+lnx ),若k ∈Z ,且k (x ﹣2)<f (x )对任意x >2恒成立,则k 的最大值为 ( ) A .3B .4C .5D .610.【原创】已知C B A ,,三点共线,O 为平面直角坐标系原点,且满足m m 34+=,R m ∈,若函数a mxbmx x f ++=)(,),[+∞∈a x ,其中R b a ∈>,0,记),(b a m 为)(x f 的最小值,则当2),(=b a m 时,b 的取值范围为( ) A.0>b B .0<b C .1>b D .1<b第II 卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分。

浙江省杭州市2020届高三模拟数学试卷及解析答案

浙江省杭州市2020届高三模拟数学试卷及解析答案

【解析】利用平面向量线性运算和数量积运算,将 AC BC 转化为
A.1
B.-2
C.2
D.-2i
【答案(答案仅供参考)】B
【解析】利用复数的除法运算化简 z 的表达式,由此求得 z 的虚部.
【详解】
依题意
z
=
2
+ i
i
=
(2
+ i)(−i) i (−i)
=
1−
2i
,故虚部为
−2
.
故选:B 【画龙点睛】 本小题主要考查复数除法运算,考查复数虚部的求法,属于基础题.
3.已知双曲线 C
浙江省杭州市 2020 届高三模拟数学试卷
一、单选题
1.若集合 A = {x | x2 −1 0}, B = {x | 0 <x<4},则 A∩B=( )
A.(-∞,-1)
B.[0,4)
C.[1,4)
D.(4,+∞)
【答案(答案仅供参考)】C
【解析】解一元二次不等式求得集合 A ,由此求得两个集合的交集.

y2 a2

x2 b2
= 0 可得
y
=
a b
x ,即为双曲线的渐近线的方程,
又渐近线方程为 y = 1 x , 2
∴a =1, b2
∴b = 2. a
∴离心率 e = c = a
a2 + b2 = a
1+
b2 a2
=
5.
故选 B.
【画龙点睛】
(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量 a, b, c
V = 14 2 2 = 8,
3
3

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .1654.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.(4分)函数f (x )=x 2+e |x|的图象只可能是()A .B .C .D .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是()A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为4C .≥√2D .CD 1与PQ 不可能垂直7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a bA.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f(x)=a有三个不同的实数根x1,x2,x3,则x1+x2+x3的取值范围为()A.(-154,0]B.(-154,2]C.[﹣4,+∞)D.[﹣4,2)9.(4分)如图,在三棱台ABC﹣A1B1C1中,M是棱A1C1上的点,记直线AM与直线BC所成的角为α,直线AM与平面ABC所成的角为β,二面角M﹣AC﹣B的平面角为γ.则()A.α≥β,β≤γB.α≤β,β≤γC.α≥β,β≥γD.α≤β,β≥γ10.(4分)设数列{a n}满足a n+1=a n2+2a n﹣2(n∈N*),若存在常数λ,使得a n≤λ恒成立,则λ的最小值是()A.﹣3B.﹣2C.﹣1D.1二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是.12.(6分)一个几何体的三视图如图所示,则该几何体的体积为.13.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=,a0﹣a1+a2﹣a3+a4﹣a5+a6=.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.20.(15分)在等差数列{a n}和正项等比数列{b n}中,a1=1,b1=2,且b1,a2,b2成等差数列,数列{b n}的前n项和为Sn,且S3=14.(1)求数列{a n},{b n}的通项公式;(2)令??=????,(﹣1)n d n=nc n+n,求数列{d n}的前项和为T n.21.(15分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A y B为常数;(3)是否存在t,使得y A y B=1且y P?y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.22.(15分)设函数f(x)=e x cosx,g(x)=e2x﹣2ax.(1)当??∈[0,]时,求f(x)的值域;3恒成立(f'(x)是f(x)的导函数),求实数a的取值范围.(2)当x∈[0,+∞)时,不等式??(??)≥′(??)2??2020年浙江省高考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]【解答】解:由题意得:A ={x ∈N *|x ≤3}={1,2,3},B ={x|x 2﹣4x ≤0}={x|0≤x ≤4},∴所以A ∩B ={1,2,3},故选:A .2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i【解答】解:∵??=2+3??=(2+3??)(-??)-??2=3-2??,∴??=3+2??.故选:B .3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .165【解答】解:画出变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,的可行域,可发现z =(x ﹣3)2+y 2的最小值是(3,0)到2x ﹣y ﹣2=0距离的平方.取得最小值:(6-2√4+1)2=165.故选:D .4.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【解答】解:若cos2α=13,则cos2α=1﹣2sin 2α,sin α=±√33,则cos2α=13”是“sin α=√33”的不充分条件;若sin α=√33,则cos2α=1﹣2sin 2α,cos2α=13,则cos2α=13”是“sin α=√33”的必要条件;综上所述:“cos2α=13”是“sin α=√33”的必要不充分条件.故选:B .5.(4分)函数f(x)=x2+e|x|的图象只可能是()A.B.C.D.【解答】解:因为对于任意的x∈R,f(x)=x2+e|x|>0恒成立,所以排除A,B,由于f(0)=02+e|0|=1,则排除D,故选:C.6.(4分)如图,在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,则下列说法中错误的是()A.线段PQ与平面CDD1C1可能平行B.当Q为线段B1C1的中点时,线段PQ与DD1所成角为4C.≥√2D.CD1与PQ不可能垂直【解答】解:在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,在A中,当Q为线段B1C1中点时,线段PQ与平面CDD1C1平行,故A正确;在C中,当Q为线段B1C1的中点时,PQ∥DC1,∴线段PQ与DD1所成角为∠C1DD1=4,故B正确;在C中,PQ≥√2AB,当且仅当Q为线段B1C1的中点时取等号,故C正确;在D中,当Q为线段B1C1的中点时,PQ∥DC1,CD1与PQ垂直,故D错误.故选:D.7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a b A.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增【解答】解:依题可知{()=-13+??+??=23,∴??(??)=-13+23-??,∴当a 增大时,ξ的期望E (ξ)减小.故选:B .8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为()A .(-154,0]B .(-154,2]C .[﹣4,+∞)D .[﹣4,2)【解答】解:作出函数f (x )的图象,方程f (x )=a 有三个不同的实数根即等价于函数y =f (x )的图象与直线y =a 有三个交点A ,B ,C ,故有﹣2<a ≤2,不妨设x 1<x 2<x 3,因为点A ,B 关于直线x =﹣2对称,所以x 1+x 2=﹣4,﹣2<log 2x 3≤2,即14<x 3≤4,故-154<x 1+x 2+x 3≤0.故选:A .9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则()A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ【解答】解:∵在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.∴根据最小角定理得α≥β,根据最大角定理得β≤γ.故选:A .10.(4分)设数列{a n }满足a n+1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是()A .﹣3B .﹣2C .﹣1D .1【解答】解:??+1-????=????2+????-2=(????+2)(????-1),若a n <﹣2,则a n+1>a n ,则该数列单调递增,所以无限趋于﹣2.若a n =﹣2,则a n+1=a n ,则该数列为常数列,即a n =2.所以,综上所述,λ≥﹣2.∴λ的最小值是﹣2.故选:B.二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是(﹣∞,0)∪(0,12).【解答】解:设A(x1,y1),B(x2,y2),代入双曲线可得:{12-122=??22-222=??,两式相减可得:1-??2??1-??2=2(??1+??2)??1+??2,而由题意可得,x1+x2=2×1=2,y1+y2=2×1=2,所以直线AB的斜率k=1-??21-??2=2×22=2,所以直线AB的方程为:y﹣1=2(x﹣1),即y=2x﹣1,代入双曲线的方程可得:2x2﹣4x+1+2λ=0,因为直线与双曲线由两个交点,所以△>0,且λ≠0,即△=16﹣4×2×(1+2λ)>0,解得:??<12,所以实数λ的取值范围是(﹣∞,0)∪(0,12),故答案为:(﹣∞,0)∪(0,12).12.(6分)一个几何体的三视图如图所示,则该几何体的体积为9.【解答】解:根据几何体的三视图转换为几何体为:下底面为直角梯形,高为3的四棱锥体,如图所示:所以:V=13×12(2+4)×3×3=9,故答案为:913.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=15,a0﹣a1+a2﹣a3+a4﹣a5+a6=64.【解答】解:由(1﹣x)6的通项为??+1=??6(-??)??可得,令r=2,即x2项的系数a2为??62=15,即a2=15,由(1﹣x)6=a0+a1x+a2x2+…+a6x6,取x=﹣1,得a0﹣a1+a2﹣a3+a4﹣a5+a6=[1﹣(﹣1)]6=64,故答案为:15,64.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=√2.【解答】解:∵a=1,cosC=34,△ABC的面积为√74,∴sinC=√1-2??=√74,可得√74=12absinC=√78ab,解得ab=2,∴b=2,∴由余弦定理可得c=√??2+??2-2=√12+22-2×1×2×34=√2.故答案为:√2.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为2√23.【解答】解:设P(x0,y0),B1(0,﹣b),B2(0,+b),由|k1-k2|=89,|0-??-??0+????0|=89,∴|x0|=94b,由题意得圆M的圆心在x轴上,设圆心(t,0),由题意知:t2+b2=2b2∴t2=b2,∴MP2=2b2=(x0﹣t)2+y02,∴y02=716??2,P在椭圆上,所以81??216??2+716=1,∴a2=9b2=9(a2﹣c2),∴e2=89,所以离心率为2√23,故答案为:2√23.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为214.【解答】解:如图所示:以B为原点,以BA所在的直线为x轴,以BC所在的直线为y轴,过点D做DP⊥x轴,过点D做DQ⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,==2√3,∴B(0,0),A(2,0),C(0,2√3),D(3,√3),设M(0,a),则→=(﹣2,a),→=(﹣3,a-√3),故→→=6+a(a-√3)=(??-√32)2+214≥214,故答案为:214.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2)【解答】解:令g(x)=xf(x),x∈(0,+∞).g′(x)=f(x)+xf'(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增.不等式f(x+1)>(x﹣1)f(x2﹣1)即不等式(x+1)f(x+1)>(x2﹣1)f(x2﹣1),x+1>0.∴x+1>x2﹣1>0,解得:1<x<2.∴不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2).故答案为:(1,2).三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,∴sinA=√1-2=2√23,∵△ABC的面积为12bc?sinA=22√23=√23bc=2√2,∴bc=6,∴b=3,c=2,∴a=√??2+??2-2=√9+4-2?3?2?13=3.再根据正弦定理可得=??,即32√23=2,∴sinC=4√29.(Ⅱ)∴sin2A=2sinAcosA=4√29,cos2A=2cos2A﹣1=-79,故cos(2A-6)=cos2Acos6+sin2Asin??6=-79√32+4√29?12=4√2-7√318.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.【解答】解:(1)证明:取AC中点O,连结BO,DO,∵AD=CD,AB=BC,∴AC⊥BO,AC⊥DO,∵BO∩DO=O,∴AC⊥平面BOD,又BD?平面BOD,∴AC⊥BD.(2)解:由(1)知∠BOD是二面角D﹣AC﹣B的平面角,∴∠BOD=150°,∵AC⊥平面BOD,∴平面BOD⊥平面ABC,在平面BOD内作Oz⊥OB,则Oz⊥平面ABC,以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系,由题意得OB=4,在△BOD中由余弦定理得OD=4√3,∴A(0,﹣4,0),B(4,0,0),C(0,4,0),D(﹣6,0,2√3),∴M(﹣3,2,√3),→=(﹣7,2,√3),平面ABC 的法向量??→=(0,0,1),设直线BM 与面ABC 所成角为θ,则直线BM 与面ABC 所成角的正弦值为:sin θ=|??→→||??→|?|→|=√3√56=√4228.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14.(1)求数列{a n },{b n }的通项公式;(2)令??=????,(﹣1)nd n =nc n +n ,求数列{d n }的前项和为T n .【解答】解:(1)等差数列{a n }的公差设为d ,正项等比数列{b n }的公比设为q ,q >0,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,可得2a 2=b 1+b 2,即2(1+d )=2+2q ,即d =q ,数列{b n }的前n 项和为S n ,且S 3=14,可得2+2q+2q 2=14,解得q =2,d =2,则a n =2n ﹣1,b n =2n ;(2)??=?????=2n +1﹣1,(﹣1)n d n =nc n +n =n?2n+1,则d n =2n?(﹣2)n ,前项和为T n =2?(﹣2)+4?4+6?(﹣8)+…+2n?(﹣2)n ,﹣2T n =2?4+4?(﹣8)+6?16+…+2n?(﹣2)n+1,相减可得3T n =﹣4+2(4+(﹣8)+…+(﹣2)n )﹣2n?(﹣2)n+1=﹣4+2?4(1-(-2)-1)1-(-2)-2n?(﹣2)n+1,化简可得T n =-49-6??+29(﹣2)n+1.21.(15分)已知抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.(1)若点M 纵坐标为√2,求M 与焦点的距离;(2)若t =﹣1,P (1,1),Q (1,﹣1),求证:y A y B 为常数;(3)是否存在t ,使得y A y B =1且y P ?y Q 为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.点M 纵坐标为√2,∴点M 的横坐标x M =(√2)2=2,∵y 2=x ,∴p=12,∴M 与焦点的距离为MF =??+2=2+14=94.(2)证明:设M (??02,??0),直线PM :y ﹣1=0-102-1(x ﹣1),当x =﹣1时,??=0-10+1,直线QM :y+1=??0+102-1(x ﹣1),x =﹣1时,y B =-??0-1??0-1,∴y A y B =﹣1,∴y A y B 为常数﹣1.(3)解:设M (??02,??0),A (t ,y A ),直线MA :y ﹣y 0=0-????02-??(x ﹣y 02),联立y 2=x ,得??2-02-??0-??????+??02-????0-??????0-??02=0,∴y 0+y p =??02-????0-????,即y P =??0????-????0-????,同理得y Q =0????-10-????,∵y A ?y B =1,∴y P y Q =??02-0(????+????)+??202-??0(????+????)+1,要使y P y Q 为常数,即t =1,此时y P y Q 为常数1,∴存在t =1,使得y A ?y B =1且y P ?y Q 为常数1.22.(15分)设函数f (x )=e x cosx ,g (x )=e 2x﹣2ax .(1)当??∈[0,3]时,求f (x )的值域;(2)当x ∈[0,+∞)时,不等式??(??)≥′(??)2??恒成立(f'(x )是f (x )的导函数),求实数a 的取值范围.【解答】解:(1)由题可得f '(x )=e x cosx ﹣e x sinx =e x (cosx ﹣sinx ).令f'(x )=e x (cosx ﹣sin x )=0,得??=4∈[0,??3].当??∈(0,4)时,f'(x )>0,当??∈(??4,??3)时,f'(x )<0,所以??(??)=??(4)=√22??4,??(??)={??(0),??(??3)}.因为??(3)=??32>??332=??2>1=??(0),所以f (x )min =1,所以f (x )的值域为[1,√224].(2)由??(??)≥′(??)2??得??2??-2≥-,即-+??2??-2≥0.设(??)=-+??2??-2,则?′(??)=2????+2??2??-2??.设φ(x )=h'(x ),则??′(??)=4??3??-2√2(??+4).当x ∈[0,+∞)时,4e 3x ≥4,2√2(??+4≤2√2),所以φ'(x )>0.所以φ(x )即h'(x )在[0,+∞)上单调递增,则h'(x )≥h'(0)=4﹣2a .若a ≤2,则h'(x )≥h'(0)=4﹣2a ≥0,所以h (x )在[0,+∞)上单调递增.所以h (xa >2)≥h (0)=0恒成立,符合题意.若,则h'(0)=4﹣2a <0,必存在正实数x 0,满足:当x ∈(0,x 0)时,h'(x )<0,h (x )单调递减,此时h (x )<h (0)=0,不符合题意综上所述,a 的取值范围是(﹣∞,2].。

2020年6月浙江省杭州市第二中学2020届高三毕业班高考仿真模拟考试数学试题(解析版)

2020年6月浙江省杭州市第二中学2020届高三毕业班高考仿真模拟考试数学试题(解析版)

绝密★启用前
浙江省杭州市第二中学
2020届高三毕业班下学期高考仿真模拟考试
数学试题
(解析版)
2020年6月
第Ⅰ卷(选择题部分,共40分)
一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={x|x<1},B={x|},则
A. B.
C. D.
【答案】A
【解析】
∵集合

∵集合
∴,
故选A
2.“”的一个充分但不必要的条件是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
先解不等式,再由充分不必要条件的概念可知,只需找不等式解集的真
子集即可. 【详解】由解得, 要找“
”的一个充分但不必要的条件, 即是找的一个子集即可,
易得,B 选项满足题意.
故选B
【点睛】本题主要考查命题的充分不必要条件,熟记充分条件与必要条件的定义即可,属于常考题型. 3.,满足约束条则的最小值为( ) A. 1
B. -1
C. 3
D. -3 【答案】A
【解析】
【分析】
作出可行域,作出目标函数对应的直线,平移该直线可得最优解. 【详解】作出可行域,如图阴暗部分(射线与射线所夹部分,含边界),由解得,即, 作直线,平移直线,当直线过点时,取得最小值.
故选:A .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省杭州市2020届高考数学命题比赛模拟试题20考试设计说明本试卷设计是在认真研读《2020年考试说明》的基础上精心编制而成,以下从三方面加以说明。

一、在选题上:(1)遵循“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

(2)试卷保持相对稳定,适度创新,逐步形成“立意鲜明,背景新颖,设问灵活,层次清晰”的特色。

二、命题原则:(1)强化主干知识,从学科整体意义上设计试题.(2)注重通性通法,强调考查数学思想方法.(3)注重基础的同时强调以能力立意,突出对能力的全面考查.(4)考查数学应用意识,坚持“贴近生活,背景公平,控制难度”的原则.(5)结合运动、开放、探究类试题考查探究精神和创新意识.(6)体现多角度,多层次的考查,合理控制试卷难度。

2020年高考模拟试卷数学卷本试卷分第(Ⅰ)卷(选择题)和第(Ⅱ)卷(非选择题)两部分.满分150分,考试时间120分钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。

参考公式:球的表面积公式:24πS R =,其中R 表示球的半径; 球的体积公式:34π3V R =,其中R 表示球的半径;棱柱体积公式:V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高; 棱锥体积公式:13V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高;台体的体积公式:()1213V h S S = 其中12,S S 分别表示台体的上底、下底面积,h表示台体的高.第Ⅰ卷(选择题 共40分) 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创) 设集合}11{ 2,{ 22xA x N xB x ⎛⎫⎫=∈≤=≤⎬ ⎪⎝⎭⎭,则A∩B =( )A. }{ 1x x ≥B. }{0 ,1C. }{1 ,2D. }{ 1x x ≤ 2.(改编)已知R b a ∈,“0>>b a ”是“11->-b a ”的 ( ) A 充分不必要条件 B 必要不充分条件C 充要条件D 既不充分也不必要条件3.(摘录)设复数z 满足i 2i z ⋅=+,其中i 为虚数单位,则复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(改编) 若直线l 不平行于平面a ,且a l ⊄则 ( ) A.a 内所有直线与l 异面 B.a 内只存在有限条直线与l 共面 C.a 内存在唯一的直线与l 平行 D.a 内存在无数条直线与l 相交5.(改编) 已知函数()y f x =的导函数()y f x '=的图象如图所示,则()f x ( ) A .有极小值,但无极大值 B .既有极小值,也有极大值 C .有极大值,但无极小值 D .既无极小值,也无极大值 6. (改编)设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是( ).A .0a ≤B .85a ≥3 C .8875a a ≤-≥或 D .87a ≤- 7.(改编2020高考)已知随机变量i ξ(i=1,2)的分布列如下表所示:ξ0 1 2p13i pi 2p 3- 若0<p 1<12<p 2<23,则( ) A .1()E ξ>2()E ξ,1()D ξ>2()D ξ B .1()E ξ<2()E ξ,1()D ξ>2()D ξ C .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ<2()E ξ,1()D ξ<2()D ξ8.(改编).设θ为两个非零向量,a b r r 的夹角,且02πθ<<,已知对任意实数()1,1t ∈-,b ta+r r 无最小值,则以下说法正确的是( )A .若θ和b r 确定,则a r 唯一确定B .若θ和b r 确定,则a r由最大值C .若θ确定,则a b ≥r rD .若θ不确定,则a r 和br 的大小关系不确定9.(改编)已知函数()222,0,e e ,0,x x x a x f x ax x ⎧++<⎪=⎨-+-≥⎪⎩恰有两个零点,则实数a 的取值范围是( )A. )()(+∞⋃,e 1,02B.)(+∞,eC.)()(+∞⋃,e 1,0D.)(1,0 10.如图1,在平面四边形ABCD 中,1AB =,3BC =,AC CD ⊥,3CD AC =,当ABC ∠变化时,当对角线BD 取最大值时,如图2,将ABC ∆沿AC 折起,在将ABC ∆开始折起到与平面ACD 重合的过程中,直线AB 与CD 所成角的余弦值的取值范围是 ( )图1 图2A .]6426,0[+B . ]1,6426[+ C .]1,6426[- D .]6426,0[-第Ⅱ卷(非选择题 共110分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、填空题:本大题7小题,11-14题每题6分,15-17每题4分,共36分,把答案填在题中的横线上.11.(原创) 若正项等比数列{}n a 满足243a a +=,351a a =,则公比q = ,n a = .12.(原创) 某几何体的三视图如图所示,则该几何体的体积为 . 表面积是 .13.(摘录)已知实数x ,y 满足条件1,4,20,-≥-⎧⎪+≤⎨⎪-≤⎩x y x y x y 若存在实数a 使得函数)0(<+=a y ax z 取到最大值)(a z 的解有无数个,则=a ,)(a z = .14.(原创)多项式51(2)(2)xx ++的展开式中,含2x 的系数是 .常数项是 .AB C D15.(原创) 有编号分别为1,2,3,4的4个红球和4个黑球,从中取出3个,则取出的编号互不相同的概率是.16.(改编)倾斜角为的直线l经过双曲线的左焦点,交双曲线于A、B两点,线段AB的垂直平分线过右焦点,则此双曲线的渐近线方程为.17.(摘录)设x∈R,(){}{}22max,22min1,33f x x x x x x=++++-,则函数()f x在R上的最小值为 .三、解答题:本大题共5小题,共74分.解答题应写出必要的文字说明、证明过程或演算步骤.18.(原创)(本题满分14分)1. 已知,为钝角且,.求的值;求的值.19.(本题满分15分)如图,在四棱锥P ABCD -中,//AD BC ,2AB BC ==,4AD PD ==,60BAD ∠=o,120ADP ∠=o ,点E 为PA 的中点.(1)求证://BE 平面PCD ;(2)若平面PAD ⊥平面ABCD ,求直线BE 与平面PAC 所成角的正弦值. 20.(本小题满分15分)(摘录)已知数列满足PECDBA,.(1)证明是等比数列,并求的通项公式;(2)证明:.21.(本小题满分15分)(改编). 已知椭圆的方程为,离心率,且短轴长为4.求椭圆的方程;已知,,若直线l与圆相切,且交椭圆E于C、D两点,记的面积为,记的面积为,求的最大值22.(本题满分15分)已知函数()(),,,R.x f x e g x ax b a b ==+∈(1) 若存在1,x e e ⎛⎫∈ ⎪⎝⎭使得不等式f (x )>x 2+m 成立,求实数m 的取值范围;(2) 若对任意实数a ,函数F (x )=f (x )-g (x )在()0,+∞上总有零点,求实数b 的取值范围.2020年高考模拟试卷数学卷参考答案与解题提示一、选择题:本大题共10小题,每小题4分,共40分.1.C 【命题意图】 本题考查集合的运算,∵{}{}0,1,2,|1A B x x ==≥,∴{}1,2A B ⋂=.故选C. 点晴:集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解不等式.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.属于容易题. 2.D 【命题意图】 本题考查绝对值的概念,属于容易题. 3.D 【命题立意】本题主要考查复数的定义,属于容易题.4.D 【命题意图】本题考查空间中直线与平面的位置关系,属于容易题 命题意图空间中直线与平面的位置关系5.A .【命题意图】本题考查函数导数性质等基础知识,意在考查学生的学生读图能力,观察分析,解决问题的能力. 6.D 87a ≤-【命题意图】函数奇偶性,不等式恒成立 试题分析:因为()y f x =是定义在R 上的奇函数,所以当0x =时,()0f x =;当0x >时,22()()[97]97a a f x f x x x x x =--=--++=+--,因此01a ≥+且2971a x a x+-≥+对一切0x >成立所以1a ≤-且2829716717a x a a a a x ⋅-≥+⇒--≥+⇒≤-,即87a ≤-.7.A 【命题意图】 本题考查两点分布数学期望与方差属于中档题【解题思路】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确. 8.B 9. A10. D点睛:本题主要考查二面角的平面角和直线与平面所成的角,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.属于难题二、填空题:本大题7小题,11-14题每题6分,15-17每题4分,共36分.11.22,222n-试题分析:因为23541a a a ==,40a >,所以41a =,因为243a a +=,所以22a =,因为24212a q a ==,0q >,所以2q =,所以22222222n n n n a a q ---⎛⎫==⨯= ⎪ ⎪⎝⎭,所以答案应填:22,222n-.【命题立意】本题考查:1、等比数列的性质;2、等比数列的通项公式.基本量运算,属于容易题.12.5,14+19. 试题分析:试题分析:由三视图可知该几何体为长方体截去两个三棱锥后剩下的部分,如图.根据三视图可知,长方体的长、宽、高分别为2,1,3,所以几何体的体积51631121312312=-=⨯⨯⨯⨯⨯-⨯⨯=V ,表面积1119123232123122=14192222S =⨯⨯+⨯+⨯+⨯⨯⨯+⨯⨯⨯+.【命题意图】本题考查三视图及棱柱、棱锥的体积公式.属于容易题 13.1-;1【命题意图】本题考查:线性规划的基本问题;属于容易题.14. 200 144【命题意图】 本题考查二项式展开式的计算.属于容易题. 15.74【命题立意】本题考查:1、古典概型;2、概率的计算公式;试题分析: 先由组合数公式计算从8个小球中取出3个的取法38C ,要满足条件,可以有分步原理3个球是同一个颜色342C ,也可以是不同的颜色12214342,C C C C gg ,则取出的编号互不相同的概率是324567P == 16.由垂直平分线性质定理可得,运用解直角三角形知识和双曲线的定义,求得,结合勾股定理,可得a ,c 的关系,进而得到a ,b 的关系,即可得到所求双曲线的渐近线方程。

相关文档
最新文档