2019年一轮北师大版(理)数学教案:热点探究课5 平面解析几何中的高考热点题型
2019年一轮北师大版(理)数学教案:热点探究课5 平面解析几何中的高考热点题型
![2019年一轮北师大版(理)数学教案:热点探究课5 平面解析几何中的高考热点题型](https://img.taocdn.com/s3/m/73791f01a300a6c30c229f2b.png)
热点探究课(五) 平面解析几何中的高考热点题型[命题解读]圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的又一重点,涉及a,b,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2017·石家庄质检)如图1,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.图1(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.[解](1)由椭圆的定义,2a=|PF1|+|PF2|=(2+2)+(2-2)=4,故a=2. 2分设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|=|PF1|2+|PF2|2=(2+2)2+(2-2)2=2 3.即c=3,从而b=a2-c2=1,故所求椭圆的标准方程为x24+y2=1. 5分(2)连接F1Q,如图,由椭圆的定义知|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,又|PF1|=|PQ|=|PF2|+|QF2|=(2a-|PF1|)+(2a-|QF1|),可得|QF1|=4a-2|PF1|. ①又因为PF1⊥PQ且|PF1|=|PQ|,所以|QF1|=2|PF1|.②由①②可得|PF1|=(4-22)a,8分从而|PF2|=2a-|PF1|=(22-2)a.由PF1⊥PF2知|PF1|2+|PF2|2=|F1F2|2,即(4-22)2a2+(22-2)2a2=4c2,10分可得(9-62)a2=c2,即c2a2=9-62,因此e=ca=9-62=6- 3. 12分[规律方法] 1.用定义法求圆锥曲线的方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只要明确a,b,c中任意两量的等量关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.[对点训练1]已知椭圆中心在坐标原点,焦点在x轴上,离心率为22,它的一个顶点为抛物线x2=4y的焦点.(1)求椭圆方程;(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程.[解](1)椭圆中心在原点,焦点在x轴上.设椭圆的方程为x2a2+y2b2=1(a>b>0).因为抛物线x2=4y的焦点为(0,1),所以b=1. 4分由离心率e =c a =22,a 2=b 2+c 2=1+c 2,从而得a =2,所以椭圆的标准方程为x 22+y 2=1. 6分(2)由⎩⎨⎧ x 2=4y ,y =x -1,解得⎩⎨⎧x =2,y =1,所以点A (2,1). 8分 因为抛物线的准线方程为y =-1,所以圆的半径r =1-(-1)=2, 10分所以圆的方程为(x -2)2+(y -1)2=4.12分 热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.☞角度1 圆锥曲线中的定值问题(2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.[解] (1)由题意得⎩⎪⎨⎪⎧ c a =32,12ab =1,a 2=b 2+c 2,解得⎩⎨⎧ a =2,b =1,c = 3. 3分所以椭圆C 的方程为x 24+y 2=1. 5分(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2,。
高考数学一轮复习第8章平面解析几何热点探究课5平面解析几何中的高考热点问题教师用书文北师大版
![高考数学一轮复习第8章平面解析几何热点探究课5平面解析几何中的高考热点问题教师用书文北师大版](https://img.taocdn.com/s3/m/b31a142fa6c30c2259019e33.png)
热点探究课(五) 平面解析几何中的高考热点问题[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求圆锥曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1 圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的另一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.图1(2017·石家庄质检)如图1,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . [解] (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=+22+-22=2 3. 3分即c =3,从而b =a 2-c 2=1,故所求椭圆的标准方程为x 24+y 2=1. 5分(2)连接F 1Q ,如图,由椭圆的定义知|PF 1|+|PF 2|=2a , |QF 1|+|QF 2|=2a ,又|PF 1|=|PQ |=|PF 2|+|QF 2|=(2a -|PF 1|)+(2a -|QF 1|), 可得|QF 1|=4a -2|PF 1|. ① 又因为PF 1⊥PQ 且|PF 1|=|PQ |, 所以|QF 1|=2|PF 1|. ②8分 由①②可得|PF 1|=(4-22)a , 从而|PF 2|=2a -|PF 1|=(22-2)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2, 即(4-22)2a 2+(22-2)2a 2=4c 2,10分可得(9-62)a 2=c 2,即c 2a2=9-62,因此e =ca=9-62=6- 3. 12分[规律方法] 1.用定义法求圆锥曲线的标准方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只需明确a ,b ,c 中任意两量的关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.[对点训练1] 已知椭圆中心在坐标原点,焦点在x 轴上,离心率为22,它的一个顶点为抛物线x 2=4y 的焦点.(1)求椭圆的标准方程;(2)若直线y =x -1与抛物线相切于点A ,求以A 为圆心且与抛物线的准线相切的圆的方程.[解] (1)椭圆中心在原点,焦点在x 轴上.设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),因为抛物线x 2=4y 的焦点为(0,1), 所以b =1. 2分 由离心率e =c a =22,a 2=b 2+c 2=1+c 2, 从而得a =2,所以椭圆的标准方程为x 22+y 2=1. 5分(2)由⎩⎪⎨⎪⎧x 2=4y ,y =x -1,解得⎩⎪⎨⎪⎧x =2,y =1,所以点A (2,1). 8分因为抛物线的准线方程为y =-1, 所以圆的半径r =1-(-1)=2,所以圆的方程为(x -2)2+(y -1)2=4. 12分热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.☞角度1 圆锥曲线的定值问题(2016·北京高考)已知椭圆C :x 2a 2+y 2b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[解] (1)由题意得a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1. 3分又c =a 2-b 2=3,所以离心率e =c a =32. 5分 (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 又A (2,0),B (0,1), 所以直线PA 的方程为y =y 0x 0-2(x -2). 7分令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 9分 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 所以四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值. 12分 [规律方法] 1.求定值问题的常用方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类问题中选择消元的方向是非常关键的.☞角度2 圆锥曲线中的定点问题设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62.(1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.【导学号:66482412】[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2,2分椭圆方程为x 22b 2+y 2b2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4, 故椭圆E 的方程为x 24+y 22=1. 5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得(m 2+2)y 2+2mty +t 2-4=0, 设M (x 1,y 1),N (x 2,y 2),则 y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2, x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m2m 2+2. 8分因为以MN 为直径的圆过点A , 所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+4+y 1y 2 =2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=t +t +m 2+2=0. 10分因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0,由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0. 12分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.图2已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).【导学号:66482413】[解] (1)由题意知m ≠0, 可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 2分 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. 故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞. 5分 (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 7分设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22, 当且仅当t 2=12,即m =±2时,等号成立.故△AOB 面积的最大值为22. 12分 [规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练2] 已知椭圆C :y 2a +x 2b=1(a >b >0)的焦距为4,且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] 由椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4.得曲线C 的焦点F 1(0,-2),F 2(0,2). 2分 又点(2,-2)在椭圆C 上, 2a =2+0+2++2=42,所以a =22,b =2,即椭圆C 的方程是y 28+x 24=1. 5分(2)若直线l 垂直于x 轴,①则点E (0,22),F (0,-22),OE →·OF →=-8. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2),将直线l 的方程代入椭圆C 的方程得到:(2+k 2)x 2+4kx -4=0,则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k 2,8分所以OE →·OF →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+2k (x 1+x 2)+4=-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8. 10分因为0<202+k2≤10,所以-8<OE →·OF →≤2.综上可知,OE →·OF →的取值范围是(-8,2]. 12分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分12分)(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.[规范解答] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ). 1分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a=a (x -2a ),即ax -y -a =0. 3分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a(x +2a ),即ax +y +a =0. 5分故所求切线方程为ax -y -a =0或ax +y +a =0. 6分 (2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 7分将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 8分 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba. 10分 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意. 12分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数.第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式.第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确, 否则可能是思路正确,但是运算结果错误,而不得分.[对点训练3] 如图3,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图3(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.[解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1, 于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2. 4分所以椭圆E 的方程为x 24+y 22=1. 5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0. 8分其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =-2λ-k 2+-2λ-2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 10分此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3. 12分。
高考数学一轮复习高考大题增分课5平面解析几何中的高考热点问题教学案理含解析北师大版
![高考数学一轮复习高考大题增分课5平面解析几何中的高考热点问题教学案理含解析北师大版](https://img.taocdn.com/s3/m/143d04d4c77da26924c5b063.png)
五 平面解析几何中的高考热点问题圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一圆锥曲线中的几何证明一般包括两大方面:一是位置关系的证明,如证明相切、垂直、++--1)代入x22+y 2=1得4=的斜率之积为y1x1·y2x2++(4,-2),因此圆锥曲线中的最值与取值范围问题是高考中的常考题型,以解答题为主,难度一般较大,-,+y23=1,+.·····························4k2+3过点B(1,0)+-⎭⎪⎫6m +42-4×-93m2+圆锥曲线中的探索性问题具有开放性和发散性,此类问题的条件和结论不完备,需要结-3,=-+.=2×-+,解得≠3,i=1,2,所以当直线+-1,4x,得y2+4ky+-,则|y1-y2|=1 2 |-++⎝y2+-⎭⎪⎫+t -32(x 2-1)+(x 1+=+>+x2=-4k 1+2k2,-+++x1+x2-,+2k2)x2-8k-x1-1+-x2-1=++-++12kx1x2-3k(x1+x+-+8-16k21+2k2·1+k2,+=2k2+1∈(1,2),,即k=±。
高考数学一轮复习专题探究课5平面解析几何中的高考热点问题理北师大版
![高考数学一轮复习专题探究课5平面解析几何中的高考热点问题理北师大版](https://img.taocdn.com/s3/m/2f67e7d34a7302768f99396b.png)
五 平面解析几何中的高考热点问题(对应学生用书第153页)[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对运算能力,分析问题解决问题的能力要求较高,难度较大,常以压轴题的形式出现.圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的又一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2017·石家庄质检)如图1,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.【导学号:79140313】图1(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . [解] (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=2 3. 即c =3,从而b =a 2-c 2=1, 故所求椭圆的标准方程为x 24+y 2=1.(2)连接F 1Q ,如图,由椭圆的定义知|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,又|PF 1|=|PQ |=|PF 2|+|QF 2| =(2a -|PF 1|)+(2a -|QF 1|), 可得|QF 1|=4a -2|PF 1|.①又因为PF 1⊥PQ 且|PF 1|=|PQ |,所以|QF 1|=2|PF 1|.② 由①②可得|PF 1|=(4-22)a , 从而|PF 2|=2a -|PF 1|=(22-2)a . 由PF 1⊥PF 2知|PF 1|2+|PF 2|2=|F 1F 2|2, 即(4-22)2a 2+(22-2)2a 2=4c 2, 可得(9-62)a 2=c 2,即c 2a2=9-62, 因此e =ca=9-62=6- 3.[规律方法] 1.用定义法求圆锥曲线的方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只要明确a ,b ,c 中任意两量的等量关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.轴上,过点F 的直线交抛物线于A ,B 两点,线段AB 的长是8,AB 的中点到x 轴的距离是3.(1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点.连接QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.[解] (1)设抛物线的方程是x 2=2py (p >0),A (x 1,y 1),B (x 2,y 2),由抛物线定义可知y 1+y 2+p =8,又AB 的中点到x 轴的距离为3,∴y 1+y 2=6,∴p =2, ∴抛物线的标准方程是x 2=4y .(2)由题意知,直线m 的斜率存在,设直线m :y =kx +6(k ≠0),P (x 3,y 3),Q (x 4,y 4),由⎩⎪⎨⎪⎧y =kx +6,x 2=4y 消去y 得x 2-4kx -24=0,∴⎩⎪⎨⎪⎧x 3+x 4=4k ,x 3·x 4=-24.(*)易知抛物线在点P ⎝ ⎛⎭⎪⎫x 3,x 234处的切线方程为y -x 234=x 32(x -x 3), 令y =-1,得x =x 23-42x 3,∴R ⎝ ⎛⎭⎪⎫x 23-42x 3,-1,又Q ,F ,R 三点共线,∴k QF =k FR ,又F (0,1),∴x 244-1x 4=-1-1x 23-42x 3,即(x 23-4)(x 24-4)+16x 3x 4=0,整理得(x 3x 4)2-4[(x 3+x 4)2-2x 3x 4]+16+16x 3x 4=0, 将(*)式代入上式得k 2=14,∴k =±12,∴直线m 的方程为y =±12x +6.圆锥曲线中的定点、定值问题(答题模板)定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.(本小题满分12分)(2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32① 中恰有三点在椭圆C 上.②(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,③证明:l 过定点. [审题指导] 题眼 挖掘关键信息①②根据椭圆的对称性,以及所给四点中P 3、P 4关于y 轴对称,可知P 3、P 4在3434 又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 2分因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1. 4分(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.6分从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 8分而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2. 由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 10分即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1). 12分[阅卷者说]易错点防范措施不会判断四点中哪三点在椭圆上可画出四点,数形给合进行判断忽视直线l 斜率不存在的情况 应树立分类讨论的意识,求直线方程,应以直线斜率是否存在为标准分类求解[规律方法] 定点问题的常见解法 1根据题意选择参数,建立一个含参数的直线系或曲线系方程,经过分析、整理,对方程进行等价变形,以找出适合方程且与参数无关的坐标该坐标对应的点即为所求定点. 2从特殊位置入手,找出定点,再证明该点符合题意.[跟踪训练] (2016·北京高考)已知椭圆C :a 2+b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. [解] (1)由题意得a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1.又c =a 2-b 2=3,所以离心率e =c a =32. (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 又A (2,0),B (0,1), 所以直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 所以四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.(2018·石家庄质检(二))已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP →·OQ →+MP →·MQ →的取值范围.【导学号:79140314】[解] (1)设T (x ,y ),则直线TA 的斜率为k 1=yx +4,直线TB 的斜率为k 2=yx -4.于是由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),直线PQ 与椭圆方程联立⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2,得(4k 2+3)x 2+16kx-32=0,所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP →·OQ →+MP →·MQ →=x 1x 2+y 1y 2+[x 1x 2+(y 1-2)(y 2-2)] =2(1+k 2)x 1x 2+2k (x 1+x 2)+4 =-80k 2-524k 2+3=-20+84k 2+3. -20<OP →·OQ →+MP →·MQ →≤-523.当直线PQ 斜率不存在时,易得P ,Q 两点的坐标为(0,23),(0,-23), 所以OP →·OQ →+MP →·MQ →的值为-20.综上所述,OP →·OQ →+MP →·MQ →的取值范围为⎣⎢⎡⎦⎥⎤-20,-523. [规律方法] 范围最值问题的主要求解方法 1几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决. 2代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中的曲线E 于A ,B 两点,求△AOB 面积的最大值.[解] (1)设点M (x ,y ),∵QP →=PM →,∴P 为QM 的中点,又有PQ ⊥y 轴,∴P ⎝ ⎛⎭⎪⎫x2,y ,∵点P 是圆:x 2+y 2=1上的点, ∴⎝ ⎛⎭⎪⎫x 22+y 2=1. 即点M 的轨迹E 的方程为x 24+y 2=1.(2)由题意可知直线l 与y 轴不垂直,故可设l :x =ty +m ,t ∈R ,A (x 1,y 1),B (x 2,y 2),∵l 与圆O :x 2+y 2=1相切, ∴|m |t 2+1=1,即m 2=t 2+1, ①由⎩⎪⎨⎪⎧x 2+4y 2=4,x =ty +m 消去x ,并整理得(t 2+4)y 2+2mty +m 2-4=0, 其中Δ=4m 2t 2-4(t 2+4)(m 2-4)=48>0, 则y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.②∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(t 2+1)(y 1+y 2)2-4y 1y 2, 将①②代入上式得|AB |=t 2+14m 2t 2(t 2+4)2-4(m 2-4)t 2+4=43|m |m 2+3,|m |≥1, ∴S △AOB =12|AB |·1=12·43|m |m 2+3=23|m |+3|m |≤2323=1,当且仅当|m |=3|m |,即m =±3时,等号成立,∴(S △AOB )max =1.圆锥曲线中的探索性问题圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(2018·郑州第二次质量预测)已知椭圆x 2+2y 2=m (m >0),以椭圆内一点M (2,1)为中点作弦AB ,设线段AB 的中垂线与椭圆相交于C ,D 两点.(1)求椭圆的离心率;(2)试判断是否存在这样的m ,使得A ,B ,C ,D 在同一个圆上,并说明理由.[解] (1)将椭圆化成标准方程x 2m +y 2m2=1(m >0),e =1-m2m =22.(2)由题意,直线AB 的斜率存在,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 设AB 的方程为y =k (x -2)+1,联立x 2+2y 2=m (m >0), 得(1+2k 2)x 2+4k (1-2k )x +2(2k -1)2-m =0(m >0).x 1+x 2=4k (2k -1)1+2k2=4,k =-1, 此时由Δ>0,得m >6. 则AB 的方程为x +y -3=0, 则CD 的方程为x -y -1=0.联立⎩⎪⎨⎪⎧x -y -1=0,x 2+2y 2=m ,得3y 2+2y +1-m =0,y 3+y 4=-23,故CD 的中点N 为⎝ ⎛⎭⎪⎫23,-13.由弦长公式可得|AB |=1+k 2|x 1-x 2|=2·12(m -6)3, |CD |=1+⎝ ⎛⎭⎪⎫-1k 2|y 3-y 4|=2·12m -83>|AB |, 若存在符合题意的圆,则圆心在CD 上,CD 的中点N 到直线AB 的距离为⎪⎪⎪⎪⎪⎪23-13-312+12=423.|NA |2=|NB |2=⎝ ⎛⎭⎪⎫4232+⎝⎛⎭⎪⎫|AB |22=6m -49. 又⎝ ⎛⎭⎪⎫|CD |22=14⎝ ⎛⎭⎪⎫2·12m -832=6m -49,所以存在m >6,使得A ,B ,C ,D 在同一个圆上. [规律方法] 探索性问题的求解方法1探索性问题通常采用“肯定顺推法”.其步骤如下:假设满足条件的元素点、直线、曲线或参数存在,列出与该元素相关的方程组,若方程组有实数解,则元素存在,否则,元素不存在.2反证法与验证法也是求解探索性问题的常用方法.[跟踪训练] (2017·湖北武汉调研)已知直线y =k (x -2)与抛物线Г:y 2=2x 相交于A ,B两点,M 是线段AB 的中点,过M 作y 轴的垂线交Г于点N .(1)证明:抛物线Г在点N 处的切线与直线AB 平行;(2)是否存在实数k 使NA →·NB →=0?若存在,求k 的值;若不存在,说明理由.[解] (1)证明:由⎩⎪⎨⎪⎧y =k (x -2),y 2=12x 消去y 并整理,得2k 2x 2-(8k 2+1)x +8k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 2+12k2,x 1x 2=4,∴x M =x 1+x 22=8k 2+14k2,则y M =k (x M -2)=k ⎝ ⎛⎭⎪⎫8k 2+14k 2-2=14k, 由题设条件可知,y N =y M =14k ,则x N =2y 2N =18k 2,∴N ⎝⎛⎭⎪⎫18k 2,14k ,设抛物线在点N 处的切线方程为y -14k =m ⎝ ⎛⎭⎪⎫x -18k 2,将x =2y 2代入上式,得2my 2-y +14k -m 8k 2=0,∵直线与抛物线相切,∴Δ=12-4×2m ×⎝ ⎛⎭⎪⎫14k -m 8k 2=(m -k )2k 2=0,∴m =k ,即抛物线Г在点N 处的切线与直线AB 平行. (2)假设存在实数k ,使NA →·NB →=0,则NA ⊥NB , ∵M 是AB 的中点,∴|MN |=12|AB |,由(1)得|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫8k 2+12k 22-4×4=1+k 2·16k 2+12k 2, ∵MN ⊥y 轴,∴|MN |=|x M -x N |=8k 2+14k 2-18k 2=16k 2+18k2, ∴16k 2+18k 2=121+k 2·16k 2+12k 2,解得k =±12,故存在k =±12,使NA →·NB →=0.。
高考数学复习第8章平面解析几何热点探究课5平面解析几何中的高考热点问题学案文北师大版
![高考数学复习第8章平面解析几何热点探究课5平面解析几何中的高考热点问题学案文北师大版](https://img.taocdn.com/s3/m/bc977e53fc4ffe473268ab4c.png)
热点探究课(五) 平面解析几何中的高考热点问题(对应学生用书第128页)[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求圆锥曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1 圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的另一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2018·太原模拟)如图1,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.图1(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . [解] (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=2+22+2-22=2 3.3分即c =3,从而b =a 2-c 2=1, 故所求椭圆的标准方程为x 24+y 2=1.5分(2)连接F 1Q ,如图,由椭圆的定义知|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,又|PF 1|=|PQ |=|PF 2|+|QF 2|=(2a -|PF 1|)+(2a -|QF 1|), 可得|QF 1|=4a -2|PF 1|. ① 又因为PF 1⊥PQ 且|PF 1|=|PQ |, 所以|QF 1|=2|PF 1|. ②8分 由①②可得|PF 1|=(4-22)a , 从而|PF 2|=2a -|PF 1|=(22-2)A . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2, 即(4-22)2a 2+(22-2)2a 2=4c 2,10分可得(9-62)a 2=c 2,即c 2a2=9-62,因此e =ca=9-62=6- 3.12分[规律方法] 1.用定义法求圆锥曲线的标准方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只需明确a ,b ,c 中任意两量的关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制. [对点训练1] 已知椭圆中心在坐标原点,焦点在x 轴上,离心率为22,它的一个顶点为抛物线x 2=4y 的焦点. (1)求椭圆的标准方程;(2)若直线y =x -1与抛物线相切于点A ,求以A 为圆心且与抛物线的准线相切的圆的方程.【导学号:00090306】[解] (1)椭圆中心在原点,焦点在x 轴上.设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),因为抛物线x 2=4y 的焦点为(0,1), 所以b =1.2分 由离心率e =c a =22,a 2=b 2+c 2=1+c 2,从而得a =2,所以椭圆的标准方程为x 22+y 2=1.5分(2)由⎩⎪⎨⎪⎧x 2=4y ,y =x -1,解得⎩⎪⎨⎪⎧x =2,y =1,所以点A (2,1).8分因为抛物线的准线方程为y =-1, 所以圆的半径r =1-(-1)=2,所以圆的方程为(x -2)2+(y -1)2=4.12分热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题. 角度1 圆锥曲线的定值问题(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【导学号:00090307】 [解] (1)不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.2分 又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.4分(2)证明:BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.5分由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.6分联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m2,y =-12.8分所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.10分故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.12分 [规律方法] 1.求定值问题的常用方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类问题中选择消元的方向是非常关键的. 角度2 圆锥曲线中的定点问题设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62.(1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2,2分椭圆方程为x 22b 2+y 2b2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4, 故椭圆E 的方程为x 24+y 22=1.5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得(m 2+2)y 2+2mty +t 2-4=0, 设M (x 1,y 1),N (x 2,y 2),则 y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2, x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m2m 2+2.8分因为以MN 为直径的圆过点A ,所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+4+y 1y 2 =2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=t +23t +2m 2+2=0.10分 因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0,由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0.12分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.图2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). [解] (1)由题意知m ≠0, 可设直线AB 的方程为y =-1mx +B .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.2分 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. 故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞.5分 (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.7分设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12,即m =±2时,等号成立. 故△AOB 面积的最大值为22.12分 [规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决. (2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练2] 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4,且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] (1)由椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4.得曲线C 的焦点F 1(0,-2),F 2(0,2).2分 又点(2,-2)在椭圆C 上, 2a =2+0+2+2+22=42,所以a =22,b =2,即椭圆C 的方程是y 28+x 24=1.5分(2)若直线l 垂直于x 轴,①则点E (0,22),F (0,-22),OE →·OF →=-8. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2),将直线l 的方程代入椭圆C 的方程得到: (2+k 2)x 2+4kx -4=0,则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k 2,8分所以OE →·OF →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+2k (x 1+x 2)+4=-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8.10分因为0<202+k 2≤10,所以-8<OE →·OF →≤2.综上可知,OE →·OF →的取值范围是(-8,2].12分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分12分)(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【导学号:00090308】[规范解答] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).1分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ), 即ax -y -a =0.3分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.5分故所求切线方程为ax -y -a =0或ax +y +a =0.6分 (2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.7分 将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4A .8分 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba.10分 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.12分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数.第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式.第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确,否则可能是思路正确,但是运算结果错误,而不得分.[对点训练3] 如图3,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图3(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. [解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.4分所以椭圆E 的方程为x 24+y 22=1.5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.8分其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=-2λ-4k 2+-2λ-12k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3.10分此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.12分。
高考数学一轮复习 专题探究课5 平面解析几何中的高考热点问题 理 北师大版
![高考数学一轮复习 专题探究课5 平面解析几何中的高考热点问题 理 北师大版](https://img.taocdn.com/s3/m/c197faed6bec0975f565e24b.png)
五 平面解析几何中的高考热点问题(对应学生用书第153页)[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对运算能力,分析问题解决问题的能力要求较高,难度较大,常以压轴题的形式出现.圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的又一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2017·石家庄质检)如图1,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.【导学号:79140313】图1(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . [解] (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=2 3. 即c =3,从而b =a 2-c 2=1, 故所求椭圆的标准方程为x 24+y 2=1.(2)连接F 1Q ,如图,由椭圆的定义知|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,又|PF 1|=|PQ |=|PF 2|+|QF 2| =(2a -|PF 1|)+(2a -|QF 1|), 可得|QF 1|=4a -2|PF 1|.①又因为PF 1⊥PQ 且|PF 1|=|PQ |,所以|QF 1|=2|PF 1|.② 由①②可得|PF 1|=(4-22)a , 从而|PF 2|=2a -|PF 1|=(22-2)a . 由PF 1⊥PF 2知|PF 1|2+|PF 2|2=|F 1F 2|2, 即(4-22)2a 2+(22-2)2a 2=4c 2, 可得(9-62)a 2=c 2,即c 2a2=9-62, 因此e =ca=9-62=6- 3.轴上,过点F 的直线交抛物线于A ,B 两点,线段AB 的长是8,AB 的中点到x 轴的距离是3.(1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点.连接QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.[解] (1)设抛物线的方程是x 2=2py (p >0),A (x 1,y 1),B (x 2,y 2),由抛物线定义可知y 1+y 2+p =8,又AB 的中点到x 轴的距离为3,∴y 1+y 2=6,∴p =2, ∴抛物线的标准方程是x 2=4y .(2)由题意知,直线m 的斜率存在,设直线m :y =kx +6(k ≠0),P (x 3,y 3),Q (x 4,y 4),由⎩⎪⎨⎪⎧y =kx +6,x 2=4y 消去y 得x 2-4kx -24=0,∴⎩⎪⎨⎪⎧x 3+x 4=4k ,x 3·x 4=-24.(*)易知抛物线在点P ⎝ ⎛⎭⎪⎫x 3,x 234处的切线方程为y -x 234=x 32(x -x 3), 令y =-1,得x =x 23-42x 3,∴R ⎝ ⎛⎭⎪⎫x 23-42x 3,-1,又Q ,F ,R 三点共线,∴k QF =k FR ,又F (0,1),∴x 244-1x 4=-1-1x 23-42x 3,即(x 23-4)(x 24-4)+16x 3x 4=0,整理得(x 3x 4)2-4[(x 3+x 4)2-2x 3x 4]+16+16x 3x 4=0, 将(*)式代入上式得k 2=14,∴k =±12,∴直线m 的方程为y =±12x +6.定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.(本小题满分12分)(2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,③证明:l过定点. [审题指导]3434 又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 2分因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1. 4分(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.6分从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 8分而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2. 由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 10分即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1). 12分[阅卷者说]根据题意选择参数,建立一个含参数的直线系或曲线系方程,经过分析、整理,对方程进行等价变形,以找出适合方程且与参数无关的坐标该坐标对应的点即为所求定点从特殊位置入手,找出定点,再证明该点符合题意.[跟踪训练] (2016·北京高考)已知椭圆C :a 2+b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. [解] (1)由题意得a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1.又c =a 2-b 2=3,所以离心率e =c a =32. (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 又A (2,0),B (0,1), 所以直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 所以四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.(2018·石家庄质检(二))已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP →·OQ →+MP →·MQ →的取值范围.【导学号:79140314】[解] (1)设T (x ,y ),则直线TA 的斜率为k 1=yx +4,直线TB 的斜率为k 2=yx -4.于是由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),直线PQ 与椭圆方程联立⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2,得(4k 2+3)x 2+16kx-32=0,所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP →·OQ →+MP →·MQ →=x 1x 2+y 1y 2+[x 1x 2+(y 1-2)(y 2-2)] =2(1+k 2)x 1x 2+2k (x 1+x 2)+4 =-80k 2-524k 2+3=-20+84k 2+3. -20<OP →·OQ →+MP →·MQ →≤-523.当直线PQ 斜率不存在时,易得P ,Q 两点的坐标为(0,23),(0,-23), 所以OP →·OQ →+MP →·MQ →的值为-20.综上所述,OP →·OQ →+MP →·MQ →的取值范围为⎣⎢⎡⎦⎥⎤-20,-523. 最值问题的主要求解方法几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解[跟踪训练作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中的曲线E 于A ,B 两点,求△AOB 面积的最大值.[解] (1)设点M (x ,y ),∵QP →=PM →,∴P 为QM 的中点,又有PQ ⊥y 轴,∴P ⎝ ⎛⎭⎪⎫x2,y ,∵点P 是圆:x 2+y 2=1上的点, ∴⎝ ⎛⎭⎪⎫x 22+y 2=1. 即点M 的轨迹E 的方程为x 24+y 2=1.(2)由题意可知直线l 与y 轴不垂直,故可设l :x =ty +m ,t ∈R ,A (x 1,y 1),B (x 2,y 2),∵l 与圆O :x 2+y 2=1相切, ∴|m |t 2+1=1,即m 2=t 2+1, ①由⎩⎪⎨⎪⎧x 2+4y 2=4,x =ty +m 消去x ,并整理得(t 2+4)y 2+2mty +m 2-4=0, 其中Δ=4m 2t 2-4(t 2+4)(m 2-4)=48>0, 则y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.②∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(t 2+1)(y 1+y 2)2-4y 1y 2, 将①②代入上式得|AB |=t 2+14m 2t 2(t 2+4)2-4(m 2-4)t 2+4=43|m |m 2+3,|m |≥1, ∴S △AOB =12|AB |·1=12·43|m |m 2+3=23|m |+3|m |≤2323=1,当且仅当|m |=3|m |,即m =±3时,等号成立,∴(S △AOB )max =1.圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(2018·郑州第二次质量预测)已知椭圆x 2+2y 2=m (m >0),以椭圆内一点M (2,1)为中点作弦AB ,设线段AB 的中垂线与椭圆相交于C ,D 两点.(1)求椭圆的离心率;(2)试判断是否存在这样的m ,使得A ,B ,C ,D 在同一个圆上,并说明理由.[解] (1)将椭圆化成标准方程x 2m +y 2m2=1(m >0),e =1-m2m =22.(2)由题意,直线AB 的斜率存在,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 设AB 的方程为y =k (x -2)+1,联立x 2+2y 2=m (m >0), 得(1+2k 2)x 2+4k (1-2k )x +2(2k -1)2-m =0(m >0).x 1+x 2=4k (2k -1)1+2k2=4,k =-1, 此时由Δ>0,得m >6. 则AB 的方程为x +y -3=0, 则CD 的方程为x -y -1=0.联立⎩⎪⎨⎪⎧x -y -1=0,x 2+2y 2=m ,得3y 2+2y +1-m =0,y 3+y 4=-23,故CD 的中点N 为⎝ ⎛⎭⎪⎫23,-13.由弦长公式可得|AB |=1+k 2|x 1-x 2|=2·12(m -6)3, |CD |=1+⎝ ⎛⎭⎪⎫-1k 2|y 3-y 4|=2·12m -83>|AB |, 若存在符合题意的圆,则圆心在CD 上,CD 的中点N 到直线AB 的距离为⎪⎪⎪⎪⎪⎪23-13-312+12=423.|NA |2=|NB |2=⎝⎛⎭⎪⎫4232+⎝⎛⎭⎪⎫|AB |22=6m -49. 又⎝⎛⎭⎪⎫|CD |22=14⎝ ⎛⎭⎪⎫2·12m -832=6m -49, 所以存在m >6,使得A ,B ,C ,D 在同一个圆上. 探索性问题通常采用“肯定顺推法”.其步骤如下:假设满足条件的元素点、直线、曲线或参数存在,组,若方程组有实数解,则元素存在,否则,元素不存在反证法与验证法也是求解探索性问题的常用方法.[跟踪训练] (2017·湖北武汉调研)已知直线y =k (x -2)与抛物线Г:y 2=2x 相交于A ,B两点,M 是线段AB 的中点,过M 作y 轴的垂线交Г于点N .(1)证明:抛物线Г在点N 处的切线与直线AB 平行;(2)是否存在实数k 使NA →·NB →=0?若存在,求k 的值;若不存在,说明理由.[解] (1)证明:由⎩⎪⎨⎪⎧y =k (x -2),y 2=12x 消去y 并整理,得2k 2x 2-(8k 2+1)x +8k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 2+12k2,x 1x 2=4,∴x M =x 1+x 22=8k 2+14k2,则y M =k (x M -2)=k ⎝ ⎛⎭⎪⎫8k 2+14k 2-2=14k, 由题设条件可知,y N =y M =14k ,则x N =2y 2N =18k 2,∴N ⎝⎛⎭⎪⎫18k 2,14k ,设抛物线在点N 处的切线方程为y -14k =m ⎝ ⎛⎭⎪⎫x -18k 2,将x =2y 2代入上式,得2my 2-y +14k -m 8k 2=0,∵直线与抛物线相切,∴Δ=12-4×2m ×⎝ ⎛⎭⎪⎫14k -m 8k 2=(m -k )2k 2=0,∴m =k ,即抛物线Г在点N 处的切线与直线AB 平行. (2)假设存在实数k ,使NA →·NB →=0,则NA ⊥NB , ∵M 是AB 的中点,∴|MN |=12|AB |,由(1)得|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫8k 2+12k 22-4×4=1+k 2·16k 2+12k 2, ∵MN ⊥y 轴,∴|MN |=|x M -x N |=8k 2+14k 2-18k 2=16k 2+18k2, ∴16k 2+18k 2=121+k 2·16k 2+12k 2,解得k =±12,故存在k =±12,使NA →·NB →=0.。
北师大版高考数学一轮复习统考第9章平面解析几何高考大题冲关系列5高考解析几何中的热点题型课件
![北师大版高考数学一轮复习统考第9章平面解析几何高考大题冲关系列5高考解析几何中的热点题型课件](https://img.taocdn.com/s3/m/876e5bc2aaea998fcd220e97.png)
最新 PPT 欢迎下载 可修改
9
变式训练 1 (2019·浙江高考)如图,已知点 F(1,0)为抛物线 y2=2px(p>0) 的焦点.过点 F 的直线交抛物线于 A,B 两点,点 C 在抛物线上,使得△ ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q,且 Q 在点 F 的右侧.记 △AFG,△CQG 的面积分别为 S1,S2.
最新 PPT 欢迎下载 可修改
8解
[冲关策略] 处理圆锥曲线最值问题的求解方法 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两 种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几 何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量 或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不 等式方法等进行求解.
最新 PPT 欢迎下载 可修改
2
题型1 最值、范围问题
角度 1 最值问题
例 1 (2020·武汉摸底)如图,已知椭圆 C 的方程
为ax22+by22=1(a>b>0),双曲线ax22-by22=1 的两条渐近线
为 l1,l2.过椭圆 C 的右焦点 F 作直线 l,使 l⊥l1.设直
线 l 与椭圆 C 的两个交点由上至下依次为 A,B,直线
因为点 A(x0,y0)在椭圆ax22+by22=1 上,
所以a2cc22+1λ+a2λ22+b2c2λa1b+2λ2=1,
即(c2+λa2)2+λ2a4=(1+λ)2a2c2,
等式两边同除以 a4 得
(e2+λ)2+λ2=e2(1+λ)2,e∈(0,1).
最新 PPT 欢迎下载 可修改
6解
所以 λ2=e22--ee24,
2019高三数学理北师大版一轮专题突破练5 平面解析几何中的高考热点问题
![2019高三数学理北师大版一轮专题突破练5 平面解析几何中的高考热点问题](https://img.taocdn.com/s3/m/f59fc6ade53a580216fcfeab.png)
专题突破练(五) 平面解析几何中的高考热点问题(对应学生用书第309页)1.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .【导学号:79140315】[解] (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去). 故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则 ⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28,故a =7,b =27.2.(2018·海口调研)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点⎝ ⎛⎭⎪⎫52,32,离心率为255,点O 为坐标原点.图2(1)求椭圆E 的标准方程;(2)如图2,过椭圆E 的左焦点F 任作一条不垂直于坐标轴的直线l ,交椭圆E 于P ,Q 两点,记弦PQ 的中点为M, 过F 作PQ 的垂线FN 交直线OM 于点N ,证明:点N 在一条定直线上.[解](1)由题易得⎩⎪⎨⎪⎧54a 2+34b2=1,e 2=1-b 2a 2=45,解得⎩⎪⎨⎪⎧a =5,b =1,所以c =2,所以椭圆E 的方程为x 25+y 2=1. (2)证明:设直线l 的方程为y =k (x +2)(k ≠0),P (x 1,y 1),Q (x 2,y 2), 联立y =k (x +2)与x 25+y 2=1, 可得(1+5k 2)x 2+20k 2x +20k 2-5=0,所以x 1+x 2=-20k 21+5k 2,x 1x 2=20k 2-51+5k 2.设直线FN 的方程为y =-1k (x +2),M (x 0,y 0), 则x 0=x 1+x 22=-10k 21+5k 2,y 0=k (x 0+2)=2k1+5k 2, 所以k OM =y 0x 0=-15k ,所以直线OM 的方程为y =-15k x , 联立⎩⎪⎨⎪⎧y =-15k x ,y =-1k(x +2).解得⎩⎪⎨⎪⎧x =-52,y =12k ,所以点N 在定直线x =-52上.3.(2018·合肥二检)如图3,已知抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上一动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .图3(1)求抛物线E 的方程;(2)求点M 到直线CD 距离的最大值.[解] (1)由x A =2得y 2A =4,故4p =4,解得p =1. 于是抛物线E 的方程为y 2=2x .(2)设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x 得ky 2-2y +2y 1-ky 21=0, 由Δ=4-4k (2y 1-ky 21)=0解得k =1y 1,∴l 1的方程为y =1y 1x +y 12,同理,l 2的方程为y =1y 2x +y 22.联立⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎪⎨⎪⎧x =y 1·y 22,y =y 1+y 22,易得CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,22].联立⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0,则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎪⎨⎪⎧x =y 1·y 22,y =y 1+y 22,∴M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,即点M 的坐标为⎝ ⎛⎭⎪⎫-8x 0,-y 0x 0. 点M 到直线CD :x 0x +y 0y =8的距离d =⎪⎪⎪⎪⎪⎪-8-y 20x 0-8x 20+y 20=y 20x 0+1622=8-x 20x 0+1622=8x 0-x 0+1622为关于x 0的单调递减函数,故当且仅当x 0=2时,d max =1822=922.4.(2018·陕西质检(一))已知F 1,F 2为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P ⎝ ⎛⎭⎪⎫1,32在椭圆上,且|PF 1|+|PF 2|=4.(1)求椭圆E 的方程;(2)过F 1的直线l 1,l 2分别交椭圆E 于A ,C 和B ,D ,且l 1⊥l 2,问是否存在常数λ,使得1|AC |,λ,1|BD |成等差数列?若存在,求出λ的值,若不存在,请说明理由.【导学号:79140316】[解] (1)∵|PF 1|+|PF 2|=4,∴2a =4,a =2. ∴椭圆E 的方程为x 24+y 2b 2=1. 将P ⎝ ⎛⎭⎪⎫1,32代入可得b 2=3, ∴椭圆E 的方程为x 24+y 23=1.(2)存在.①当AC 的斜率为零或斜率不存在时, 1|AC |+1|BD |=13+14=712;②当AC 的斜率k 存在且k ≠0时, 设AC 的方程为y =k (x +1), 代入椭圆方程x 24+y 23=1,并化简得 (3+4k 2)x 2+8k 2x +4k 2-12=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k2, |AC |=1+k 2|x 1-x 2|=(1+k2)[(x1+x2)2-4x1·x2]=12(1+k2) 3+4k2.同理,∵直线BD的斜率为-1 k,∴|BD|=12⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎪⎫-1k23+4⎝⎛⎭⎪⎫-1k2=12(1+k2)3k2+4.∴1|AC|+1|BD|=3+4k212(1+k2)+3k2+412(1+k2)=712.综上,2λ=1|AC|+1|BD|=712,∴λ=724.∴存在常数λ=724,使得1|AC|,λ,1|BD|成等差数列.。
近年年高考数学一轮复习专题探究课5平面解析几何中的高考热点问题理北师大版(2021学年)
![近年年高考数学一轮复习专题探究课5平面解析几何中的高考热点问题理北师大版(2021学年)](https://img.taocdn.com/s3/m/60b872f10b4e767f5bcfced8.png)
2019年高考数学一轮复习专题探究课5 平面解析几何中的高考热点问题理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮复习专题探究课 5 平面解析几何中的高考热点问题理北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮复习专题探究课5平面解析几何中的高考热点问题理北师大版的全部内容。
五平面解析几何中的高考热点问题(对应学生用书第153页)[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对运算能力,分析问题解决问题的能力要求较高,难度较大,常以压轴题的形式出现.圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的又一重点,涉及a,b,c三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2017·石家庄质检)如图1,椭圆错误!+错误!=1(a>b〉0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1。
【导学号:79140313】图1(1)若|PF1|=2+错误!,|PF2|=2-错误!,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.[解] (1)由椭圆的定义,2a=|PF1|+|PF2|=(2+2)+(2-错误!)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|=|PF1|2+|PF2|2=错误!=2错误!。
近年年高考数学一轮复习热点探究训练5平面解析几何中的高考热点问题文北师大版(2021学年)
![近年年高考数学一轮复习热点探究训练5平面解析几何中的高考热点问题文北师大版(2021学年)](https://img.taocdn.com/s3/m/9ac45246284ac850ad0242ef.png)
2019年高考数学一轮复习热点探究训练5 平面解析几何中的高考热点问题文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮复习热点探究训练 5 平面解析几何中的高考热点问题文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮复习热点探究训练 5 平面解析几何中的高考热点问题文北师大版的全部内容。
热点探究训练(五)平面解析几何中的高考热点问题1.(2018·长春模拟)设F1,F2分别是椭圆C:\f(x2,a2)+错误!=1(a>b〉0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为\f(3,4),求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,B.【导学号:00090313】[解] (1)根据c=\r(a2-b2)及题设知M错误!,错误!=错误!,2b2=3aC.ﻩ2分将b2=a2-c2代入2b2=3ac,解得\f(c,a)=\f(1,2),\f(c,a)=-2(舍去).故C的离心率为\f(1,2).ﻩﻩ5分(2)由题意,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故错误!=4,即b2=4A.①ﻩ8分由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1〈0,则错误!即错误!ﻩ10分代入C的方程,得错误!+错误!=1.ﻩ②将①及c=错误!代入②得错误!+错误!=1.解得a=7,b2=4a=28,故a=7,b=27。
高考数学一轮复习 第8章 平面解析几何 热点探究课5 平面解析几何中的高考热点问题学案 文 北师大版
![高考数学一轮复习 第8章 平面解析几何 热点探究课5 平面解析几何中的高考热点问题学案 文 北师大版](https://img.taocdn.com/s3/m/9a907c7f84868762cbaed5e4.png)
热点探究课(五) 平面解析几何中的高考热点问题(对应学生用书第128页)[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求圆锥曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1 圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的另一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2018·太原模拟)如图1,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.图1(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . [解] (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=2+22+2-22=2 3. 3分即c =3,从而b =a 2-c 2=1, 故所求椭圆的标准方程为x 24+y 2=1.5分(2)连接F 1Q ,如图,由椭圆的定义知|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,又|PF 1|=|PQ |=|PF 2|+|QF 2|=(2a -|PF 1|)+(2a -|QF 1|), 可得|QF 1|=4a -2|PF 1|. ① 又因为PF 1⊥PQ 且|PF 1|=|PQ |, 所以|QF 1|=2|PF 1|. ② 8分由①②可得|PF 1|=(4-22)a , 从而|PF 2|=2a -|PF 1|=(22-2)A . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2, 即(4-22)2a 2+(22-2)2a 2=4c 2,10分可得(9-62)a 2=c 2,即c 2a2=9-62,因此e =c a=9-62=6- 3.12分[规律方法] 1.用定义法求圆锥曲线的标准方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只需明确a ,b ,c 中任意两量的关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制. [对点训练1] 已知椭圆中心在坐标原点,焦点在x 轴上,离心率为22,它的一个顶点为抛物线x 2=4y 的焦点. (1)求椭圆的标准方程;(2)若直线y =x -1与抛物线相切于点A ,求以A 为圆心且与抛物线的准线相切的圆的方程.【导学号:00090306】[解] (1)椭圆中心在原点,焦点在x 轴上.设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),因为抛物线x 2=4y 的焦点为(0,1),所以b =1. 2分由离心率e =c a =22,a 2=b 2+c 2=1+c 2, 从而得a =2,所以椭圆的标准方程为x 22+y 2=1.5分(2)由⎩⎪⎨⎪⎧x 2=4y ,y =x -1,解得⎩⎪⎨⎪⎧x =2,y =1,所以点A (2,1). 8分因为抛物线的准线方程为y =-1, 所以圆的半径r =1-(-1)=2, 所以圆的方程为(x -2)2+(y -1)2=4.12分热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题. 角度1 圆锥曲线的定值问题(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【导学号:00090307】 [解] (1)不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.2分又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.4分(2)证明:BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.5分由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.6分联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m2,y =-12.8分所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.10分故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 12分[规律方法] 1.求定值问题的常用方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类问题中选择消元的方向是非常关键的. 角度2 圆锥曲线中的定点问题设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62.(1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2,2分椭圆方程为x 22b 2+y 2b2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4, 故椭圆E 的方程为x 24+y 22=1.5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得(m 2+2)y 2+2mty +t 2-4=0, 设M (x 1,y 1),N (x 2,y 2),则 y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m2m 2+2.8分因为以MN 为直径的圆过点A , 所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+4+y 1y 2 =2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=t +23t +2m 2+2=0. 10分因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0,由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0.12分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.图2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). [解] (1)由题意知m ≠0, 可设直线AB 的方程为y =-1mx +B .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.2分因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. 故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞. 5分(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 7分设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12,即m =±2时,等号成立. 故△AOB 面积的最大值为22.12分[规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练2] 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4,且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] (1)由椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4.得曲线C 的焦点F 1(0,-2),F 2(0,2). 2分又点(2,-2)在椭圆C 上, 2a =2+0+2+2+22=42,所以a =22,b =2, 即椭圆C 的方程是y 28+x 24=1.5分(2)若直线l 垂直于x 轴,①则点E (0,22),F (0,-22),OE →·OF →=-8. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2),将直线l 的方程代入椭圆C 的方程得到:(2+k 2)x 2+4kx -4=0, 则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k2,8分所以OE →·OF →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+2k (x 1+x 2)+4 =-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8.10分因为0<202+k 2≤10,所以-8<OE →·OF →≤2.综上可知,OE →·OF →的取值范围是(-8,2]. 12分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分12分)(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【导学号:00090308】[规范解答] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).1分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a=a (x -2a ), 即ax -y -a =0.3分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x+2a ), 即ax +y +a =0.5分 故所求切线方程为ax -y -a =0或ax +y +a =0. 6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程,得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4A . 8分从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba.10分当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.12分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数.第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式.第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确,否则可能是思路正确,但是运算结果错误,而不得分.[对点训练3] 如图3,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图3(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. [解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.4分 所以椭圆E 的方程为x 24+y 22=1.5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.8分其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =-2λ-4k 2+-2λ-12k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 10分此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3. 12分。
第8章 平面解析几何 热点探究课5 平面解析几何中的高考热点问题学案 文 北师大版
![第8章 平面解析几何 热点探究课5 平面解析几何中的高考热点问题学案 文 北师大版](https://img.taocdn.com/s3/m/d973e24f08a1284ac9504329.png)
热点探究课(五) 平面解析几何中的高考热点问题(对应学生用书第128页)[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求圆锥曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1 圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的另一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2018·太原模拟)如图1,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.图1(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . [解] (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=2+22+2-22=2 3. 3分即c =3,从而b =a 2-c 2=1, 故所求椭圆的标准方程为x 24+y 2=1.5分(2)连接F 1Q ,如图,由椭圆的定义知|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,又|PF 1|=|PQ |=|PF 2|+|QF 2|=(2a -|PF 1|)+(2a -|QF 1|), 可得|QF 1|=4a -2|PF 1|. ① 又因为PF 1⊥PQ 且|PF 1|=|PQ |, 所以|QF 1|=2|PF 1|. ② 8分由①②可得|PF 1|=(4-22)a , 从而|PF 2|=2a -|PF 1|=(22-2)A . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2, 即(4-22)2a 2+(22-2)2a 2=4c 2,10分可得(9-62)a 2=c 2,即c 2a2=9-62,因此e =c a=9-62=6- 3.12分[规律方法] 1.用定义法求圆锥曲线的标准方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只需明确a ,b ,c 中任意两量的关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制. [对点训练1] 已知椭圆中心在坐标原点,焦点在x 轴上,离心率为22,它的一个顶点为抛物线x 2=4y 的焦点. (1)求椭圆的标准方程;(2)若直线y =x -1与抛物线相切于点A ,求以A 为圆心且与抛物线的准线相切的圆的方程.【导学号:00090306】[解] (1)椭圆中心在原点,焦点在x 轴上.设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),因为抛物线x 2=4y 的焦点为(0,1), 所以b =1.2分由离心率e =c a =22,a 2=b 2+c 2=1+c 2,从而得a =2,所以椭圆的标准方程为x 22+y 2=1.5分(2)由⎩⎪⎨⎪⎧x 2=4y ,y =x -1,解得⎩⎪⎨⎪⎧x =2,y =1,所以点A (2,1). 8分因为抛物线的准线方程为y =-1, 所以圆的半径r =1-(-1)=2, 所以圆的方程为(x -2)2+(y -1)2=4.12分热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题. 角度1 圆锥曲线的定值问题(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【导学号:00090307】 [解] (1)不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.2分又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.4分(2)证明:BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.5分由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.6分联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m2,y =-12.8分所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.10分故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 12分[规律方法] 1.求定值问题的常用方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类问题中选择消元的方向是非常关键的. 角度2 圆锥曲线中的定点问题设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62.(1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2,2分椭圆方程为x 22b 2+y 2b2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4, 故椭圆E 的方程为x 24+y 22=1.5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得(m 2+2)y 2+2mty +t 2-4=0, 设M (x 1,y 1),N (x 2,y 2),则 y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m2m 2+2.8分因为以MN 为直径的圆过点A ,所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+4+y 1y 2 =2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=t +23t +2m 2+2=0. 10分因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0,由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0.12分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.图2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). [解] (1)由题意知m ≠0, 可设直线AB 的方程为y =-1mx +B .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.2分因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. 故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞. 5分(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 7分设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12,即m =±2时,等号成立. 故△AOB 面积的最大值为22. 12分[规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练2] 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4,且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] (1)由椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4.得曲线C 的焦点F 1(0,-2),F 2(0,2). 2分又点(2,-2)在椭圆C 上, 2a =2+0+2+2+22=42,所以a =22,b =2, 即椭圆C 的方程是y 28+x 24=1.5分(2)若直线l 垂直于x 轴,①则点E (0,22),F (0,-22),OE →·OF →=-8. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2),将直线l 的方程代入椭圆C 的方程得到:(2+k 2)x 2+4kx -4=0, 则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k 2,8分所以OE →·OF →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+2k (x 1+x 2)+4 =-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8.10分因为0<202+k2≤10,所以-8<OE →·OF →≤2. 综上可知,OE →·OF →的取值范围是(-8,2]. 12分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分12分)(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【导学号:00090308】[规范解答] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).1分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a=a (x -2a ), 即ax -y -a =0.3分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x+2a ), 即ax +y +a =0.5分 故所求切线方程为ax -y -a =0或ax +y +a =0. 6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4A . 8分从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba.10分当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.12分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数.第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式.第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确,否则可能是思路正确,但是运算结果错误,而不得分.[对点训练3] 如图3,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图3(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. [解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.4分 所以椭圆E 的方程为x 24+y 22=1.5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.8分其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =-2λ-4k 2+-2λ-12k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 10分此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点探究课(五) 平面解析几何中的高考热点题型[命题解读]圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的又一重点,涉及a,b,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2017·石家庄质检)如图1,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.图1(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.[解](1)由椭圆的定义,2a=|PF1|+|PF2|=(2+2)+(2-2)=4,故a=2. 2分设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|=|PF1|2+|PF2|2=(2+2)2+(2-2)2=2 3.即c=3,从而b=a2-c2=1,故所求椭圆的标准方程为x24+y2=1. 5分(2)连接F1Q,如图,由椭圆的定义知|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,又|PF1|=|PQ|=|PF2|+|QF2|=(2a-|PF1|)+(2a-|QF1|),可得|QF1|=4a-2|PF1|. ①又因为PF1⊥PQ且|PF1|=|PQ|,所以|QF1|=2|PF1|.②由①②可得|PF1|=(4-22)a,8分从而|PF2|=2a-|PF1|=(22-2)a.由PF1⊥PF2知|PF1|2+|PF2|2=|F1F2|2,即(4-22)2a2+(22-2)2a2=4c2,10分可得(9-62)a2=c2,即c2a2=9-62,因此e=ca=9-62=6- 3. 12分[规律方法] 1.用定义法求圆锥曲线的方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只要明确a,b,c中任意两量的等量关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.[对点训练1]已知椭圆中心在坐标原点,焦点在x轴上,离心率为22,它的一个顶点为抛物线x2=4y的焦点.(1)求椭圆方程;(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程.[解](1)椭圆中心在原点,焦点在x轴上.设椭圆的方程为x2a2+y2b2=1(a>b>0).因为抛物线x2=4y的焦点为(0,1),所以b=1. 4分由离心率e =c a =22,a 2=b 2+c 2=1+c 2,从而得a =2,所以椭圆的标准方程为x 22+y 2=1. 6分(2)由⎩⎨⎧ x 2=4y ,y =x -1,解得⎩⎨⎧x =2,y =1,所以点A (2,1). 8分 因为抛物线的准线方程为y =-1,所以圆的半径r =1-(-1)=2, 10分所以圆的方程为(x -2)2+(y -1)2=4.12分 热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.☞角度1 圆锥曲线中的定值问题(2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.[解] (1)由题意得⎩⎪⎨⎪⎧ c a =32,12ab =1,a 2=b 2+c 2,解得⎩⎨⎧ a =2,b =1,c = 3. 3分所以椭圆C 的方程为x 24+y 2=1. 5分(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 8分令y =0,得x N =-x 0y 0-1, 从而|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1. 所以|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2 =4. 10分 当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.综上,|AN |·|BM |为定值. 12分[规律方法] 1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.☞角度2 圆锥曲线中的定点问题设椭圆E: x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62. (1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.【导学号:57962427】[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2, 2分椭圆方程为x 22b 2+y 2b 2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4,故椭圆E 的方程为x 24+y 22=1. 5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得:(m 2+2)y 2+2mty +t 2-4=0,设M (x 1,y 1),N (x 2,y 2)得:y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m 2m 2+2. 8分因为以MN 为直径的圆过点A ,所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=(t +2)(3t +2)m 2+2=0.因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0,10分由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0. 12分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.(2017·杭州调研)已知椭圆x 22+y 2=1上两个不同的点A ,B关于直线y =mx +12对称.图2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧ x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 2分因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0. ①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.② 由①②得m <-63或m >63.故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞. 5分 (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62, 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d =t 2+12t 2+1. 9分 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22, 当且仅当t 2=12时,即m =±2时,等号成立.故△AOB 面积的最大值为22. 12分[规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练2] 如图3所示,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;图3(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.[解] (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p 2=1,即p =2. 5分(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0).由⎩⎨⎧y 2=4x x =sy +1,消去x 得y 2-4sy -4=0. 故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t . 8分又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t . 从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t . 设M (m,0),由A ,M ,N 三点共线得2t t 2-m =2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1, 所以m <0或m >2. 10分 经推理知,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 12分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分12分)(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.[规范解答] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ). 1分.又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0. 3分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0. 故所求切线方程为ax -y -a =0或ax +y +a =0. 6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 8分将y =kx +a 代入C 的方程,得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 10分 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意. 12分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数. 第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式. 第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确,否则可能是思路正确,但是运算结果错误,而不得分.[对点训练3] 如图4,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图4(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.[解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ).又点P 的坐标为(0,1),且PC →·PD →=-1, 2分于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.所以椭圆E 的方程为x 24+y 22=1. 5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧ x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0. 8分其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 10分 此时,OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3. 12分。