机电控制系统第六章

合集下载

第六章机电一体化

第六章机电一体化

第六章机电一体化机电一体化(Mechatronik)是由机械(Mechanik)和电子(Elektronik)构成的合成词。

其中,电子代表“硬件”和“软件”;机械是“机械”和“液压”方法的总称。

它不是简单的通过“电子化”替代机械装置,而是与全面的角度看问题和设计方法学有关。

其目标是对机械、电子硬件和软件进行整体优化,从而在低成本、低重量、小空间且高质量的情况下实现更多功能。

在解决问题的过程中,能否将如今已被分离的学科作为一个整体进行观察,对机电一体化方式是否成功起决定性作用。

第一节机电一体化系统及其组成部件1.1 应用如今机电一体化系统及其组成部件几乎布满在整个车辆系统中:从发动机管理、汽油机和柴油机电喷,到变速箱控制,电热能量管理,直到不同的制动-驱动力控制系统。

此外还有满足不同控制需求的通信和信息系统。

除系统及其组成部件层面外,机电一体化还在微机械领域中扮演着越来越重要的角色。

1.2系统级实例为了实现车辆全自动导向和转向,系统的进一步开发呈现出一个通用趋势:即机械系统在未来将越来越多地被线控(X by Wire)系统所代替。

“Drive by wire”(线控驱动),即电子油门,就是一个已经实际运用的例子。

“线控制动系统”省去了制动踏板和车轮制动器间的机械-液压连接。

传感器获取驾驶员刹车指令,并把这一信息传给电控单元。

控制单元通过相应的执行机构在车轮处产生所需的制动作用。

“线控制动系统”的一种可能实现形式为电动液压制动(SBC,测控一体化制动控制)。

在实施制动时或者在通过电子稳定程序ESP进行稳定性干预时,SBC控制器计算出每个车轮上期望的理想制动压力。

由于每个车轮所需的理想制动压力单独计算,且每个车轮的实际制动力独立获取,所以能通过轮压调节器对每个车轮的制动压力进行独立调节。

这四个压力调节器各由一个输入和输出阀组成,由控制器的驱动电路控制,相互配合,从而获得最佳的制动压力闭环调节。

在共轨系统中,压力生成和喷射是解耦的。

自动控制6第六章控制系统的综合与校正

自动控制6第六章控制系统的综合与校正

复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

信息文本单项选择题(共20道题,每题4分,共90分)题目1标记题目题干在采用频率法设计校正装置时,串联超前校正网络是利用它()。

选择一项:A. 相位超前特性B. 低频衰减特性C. 相位滞后特性D. 高频衰减特性反馈恭喜您,答对了。

正确答案是:相位超前特性题目2标记题目题干闭环系统因为有了负反馈,能有效地抑制()中参数变换对系统性能的影响。

选择一项:A. 正向及反馈通道B. 反馈通道C. 前馈通道D. 正向通道反馈恭喜您,答对了。

正确答案是:正向及反馈通道题目3标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统的抗干扰能力差,需要改变高频段特性。

B. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

C. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

D. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

题目4正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

B. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

C. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

D. 系统的抗干扰能力差,需要改变高频段特性。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

题目5正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

第6章 控制系统的校正及综合

第6章   控制系统的校正及综合
W
(s ) =
100 s + 1 s 10
A(ω c ) ≈
100
ωc
ωc
10
=1
ω c = 31.6
31.6 γ (ω c ) = 180° + − 90° − arctan = 17.5° 10
6.2 串联校正
Bode图如下图所示 图如下图所示
6.2 串联校正
γd
γd
频率特性为
jω T + 1 Wc ( jω ) = ⋅ γ d jω T + 1 1
γd
6.2 串联校正
校正电路的Bode图如下:
ω 2 = γ d ω1
ωmax = ω1 ⋅ ω2,ϕ max γ d −1 = arcsin γ d +1
6.2 串联校正
引前校正的设计步骤:
(1)根据稳态误差的要求确定系统开环放大系数,绘制 Bode图,计算出未校正系统的相位裕量和增益裕量。 (2)根据给定相位裕量,估计需要附加的相角位移。 (3)根据要求的附加相角位移确定γd。 (4)确定1/Td 和γd/Td ,使校正后中频段(穿过零分贝线) 斜率为-20dB/十倍频,并且使校正装置的最大移相角 出现在穿越频率的位置上。 (5)计算校正后频率特性的相位裕量是否满足给定要求, 如不满足须重新计算。 (6)计算校正装置参数。
6.2 串联校正
校正电路的Bode图:
6.2 串联校正
例6-3 一系统的开环传递函数为
K W (s ) = s (s + 1 )(s + 2 )
试确定滞后-引前校正装置, 试确定滞后-引前校正装置,使系统满足 下列指标: 下列指标:速度误差系数 K v = 10,相位裕 量 γ (ωc ) = 50°,增益裕量 GM ≥10dB 。

自动控制系统第六章 习题解答

自动控制系统第六章 习题解答

第六、七、八章 习题解答(参考)6-1 简述恒压频比控制方式.解答:根据变压器公式Sg 1s N m 444==s V E .f N k Φ,在忽略定子阻抗压降的前提下,电机的相电压与定子频率和磁通的乘积成正比.控制电压与定子频率之比例恒定不变,就可保证磁通不变.基速以下,保持磁通为额定值不变,可以充分地利用电机的最大转矩.而磁通过大,会使电机磁路饱和,励磁电流过大,铁损增大,铁心过热甚至烧毁电机.恒压频比控制包括三段:低频段:(0-5Hz)电压补偿.中频段(5-50Hz)恒压频比;基频以上(50-75)恒定电压控制.由于恒压频比控制方式依据的是电路的稳态方程,所以动态性能不理想.即给定信号如转速即定子频率必须由给定积分器施加.也就是转差频率不能太大,否则,电机会出现停转的现象.由于系统本身没有自动限制起制动电流的作用,因此,频定设定信号必须通过给定积分算法产生平缓升速或降速信号,升速和降速的积分时间可以根据负载需要由操作人员分别选择。

6-2 简述异步电动机下面四种不同的电压-频率协调控制时的机械特性并进行比较: 1 恒压恒频正弦波供电时异步电动机的机械特性;2 基频以下电压-频率协调控制时异步电动机的机械特性3 基频以上恒压变频时异步电动机的机械特性解 实际应用中,不仅要求调节转速,还要求调速系统具有优良的机械特性. 1 正弦波供电恒压恒频2'lr ls 2122'r s 'r 121s p e )()(3L L s R sR R s U n T +++⎪⎪⎭⎫ ⎝⎛=ωωω异步电动机的机械特性分为两段, 即在最大转差率时对应最大的转矩.S 很小时, s R s U n T ∝⎪⎪⎭⎫ ⎝⎛≈'r 121s p e 3ωω.大于最大转差率时,电机存在负阻性,易于产生不稳定.S 接近1时, s L L R s R U n T 1])([32'lrls 212s 'r 121s p e ∝++⎪⎪⎭⎫ ⎝⎛≈ωωωeT emax n n n n 0n 0n 0n而在小于最大转差率时,电机存在正阻性,机械特性如同直流电动机,易于稳定运行. 而最大转矩与电压成正比2 恒压频比基频以下时,机械特性同正弦波恒压恒频供电时的机械特性相似.机械特性曲线基本平行.但最大转矩随转差角频率的降低而减小,即低速时最大转矩减小.因此低频即低速时,电机带载能力减弱.初始起动转矩很小,须适当抬高电压,增大转矩.3 基频以上恒压变频时,将迫使磁通随频率上升而减弱.相当于直流电动机弱磁升速.能保持电磁功率基本不变,为恒功率控制.最大转矩与频率成反比,即随着转速的上升,最大转矩减小. 6-3 如何区别交-直-交变压变频器是电压源变频器还是电流源变频器?它们在性能上有什么差异?解答:电压源型变频器和电流源型变频器的区别在于缓冲单元.如果直流电源串入电抗器进入逆变器,则因电抗器具有维持动态电流不变的性质,称为电流源型.如果直流电源并联电容器进入逆变器,则电容器具有维持动态电压不变的性质,称电压源型.电源源型变频器只有在交流电压峰值才能电容充电,而在低于电容电压时,电流为零,会在电网上产生谐波,为抑制谐波,常在电网和变频器之间加一个进线电抗器.由于电容量很大,合闸时会产生很大的充电电流,因此,为限制充电电流,常采用限流电阻和延时开关组成的预充电电路对电容进行充电.二极管整流不能再生制动.制动时,整流桥和逆变器都处于整流状态,电机机进入发电状态,都向电容充电,会引起泵升电压,此时,可检测电压值,当其上升到一定值时,控制开通功率管接通制动电阻,就可旅行能耗制动.电流源型过去曾用得较多.但现已很少应用.大多采用电压源型.而电压源型PWM 控制逆变器时,由于电压变化率大,会影响电机绕组的绝缘甚至导致轴损坏.6-5 采用二极管不控整流器和功率开关器件脉宽调制(PWM)逆变器组成的交直交变频器有什么优点?电压源型变频器的优点:1)只有逆变单元可控,通过它同时调节电压和频率,结构简单。

第六章 机电系统数字控制方法

第六章 机电系统数字控制方法
t z 1
闭环系统稳态误差为
ess lim ek lim 1 z
k
1
z 1
E z lim 1 z 1 D z G z
1 z 1
R z
6.3 DDC系统分析
6.3.1 DDC系统的Z域分析 四、DDC系统的动态特性
DDC系统的突出优点:得益于软件的“柔性”,便于实现复杂、高级的控制 算法,例如预测控制、滑模变结构控制、自适应和自学习控制、模糊控制、神 经元网络控制等,还可实现误差动态补偿、运行状态监测、故障诊断和容错控 制等,从而使机电一体化系统的性能得到进一步提高,这是传统的连续控制方 法无法实现的。此外还可利用计算机的快速性和分时功能,实现一台计算机对 多个回路的控制。 在机电一体化系统中,受控量主要是机械量,例如力、力矩、位移、速度、 加速度等,受控对象绝大多数是连续系统,因此机电—体化系统的DDC问题, 大都属于数模混合系统的分析与综合问题,但连续控制系统的分析和综合的基 本思想仍然是十分有用的。与过程控制(process control)相比,机电系统的 DDC有其特殊性,例如由摩擦、间隙等引起的非线性、由闭环之外的机械结构 的柔性引起的谐振问题等,这些在机电一体化系统数字控制器分析与设计时应 予充分注意。
T 1 T T 2 1 1 T 2
0.004837 z 1 0.004679 z 2 当T = 0.1s, C z 1 2.9 z 1 2.8095 z 2 0.9095 z 3
6.3 DDC系统分析
6.3.1 DDC系统的Z域分析 四、DDC系统的动态特性 例6-4 试求采样时间分别为T分别为0.1s,2s,4s时,单位阶跃输入的动态响应。
与连续控制系统相仿,DDC系统的动态特性,同样取决于闭环系统特征方程 特征根(闭环极点)的分布。由图可见,只要闭环极点位于单位圆内,动态响应总 是收敛的,即闭环是稳定的。只要闭环极点位于单位圆外,动态响应总是发散的, 即闭环是不稳定的。单位圆内的闭环极点,越靠近坐标原点,动态响应衰减越快。 对于闭环极点为复极点的情况,动态响应是振荡的,其振荡频率同极点复向量与正 实轴夹角(参见下图)有关:

电机拖动控制(机电传动控制)6--继电器—接触器控制系统

电机拖动控制(机电传动控制)6--继电器—接触器控制系统

ƒ 第六章 继电器接触器控制第六章 继电器接触器控制ƒ 主要内容: ƒ 6.1常用低压电器 ƒ 6.2电气原理图 ƒ 6.3三相异步电动机基本控制线路 ƒ 6.4其他常用基本控制线路 ƒ 6.5自动循环工作控制线路第六章 继电器接触器控制学习要求: ¾ 熟悉各种电器的工作原理、作用、特点、应 用场所和表示符号;¾ 掌握继电器接触器控制电路中基本控制 环节和常用的几种自动控制方式;¾ 学会设计一些简单的继电器接触器控制电路。

电力拖动控制是指对电动机的起动、调速、 停止、反转、制动等过程所实施的控制。

可按 作用方式分为手动控制与自动控制。

ƒ 手动控制:用闸刀、转换开关等手控电器来实 现电动机传动控制。

ƒ 自动控制:用自动电器来实现电力拖动控制, 控制系统也向无触点连续控制、微机控制发展, 但由于继电器—接触器所用的控制电器结构简 单价格便宜,对小型机床、老机床的改进中也 还是很重要,本章,主要介绍最常用的控制电 器与执行电器,在此基础上,分析继电器—接 触器的基本路线。

6.1 常用控制电器与执行电器1.概念 ☆控制电器(用于生产机械中)多属低压电器,U <500V☆用来接通或断开电路,以及用来控制、 调节和保护用电设备的电气器具。

2.分类ぬ电器按动作性质可分为以下两类。

✡ (1)非自动电器:这类电器没有动力 机构,依靠人力或其他外力来接通或切断电路, 如:刀开关、转换开关、行程开关等。

✡ (2)自动电器:这类电器有电磁铁等 动力机构,按照指令、信号或参数变化而自动 动作,是工作电路接通和切断,如:接触器、 继电器、自动开关等。

ぬ电器按其用途又可分为以下三类。

✡ (1)控制电器:用来控制电动机的起动、反 转、调速、制动等动作,如:磁力起动器、接触器、 继电器等。

✡ (2)保护电器:用来保护电动机,使其安全 运行,以及保护生产机械使其不受损坏,如:熔断器、 电流继电器、热继电器等。

第六章--机电一体化系统设计试题汇总

第六章--机电一体化系统设计试题汇总

第六章10.一般说来,如果增大幅值穿越频率ωc的数值,则动态性能指标中的调整时间t s( B )A.增大B.减小C.不变D.不定11.已知f(t)=a+bt,则它的拉氏变换式为( B )A.as +b B.2sbsa+ C. bsas+2D. asbs+311. 复合控制器必定具有( D )A. 顺序控制器B. CPUC. 正反馈D. 前馈控制器13. 一般说来,如果增大幅值穿越频率ωc的数值,则动态性能指标中的调整时间t s( B )A. 产大B. 减小C. 不变D. 不定10.一般来说,引入微分负反馈将使系统动态性能指标中的最大超调量( B )A.增加B.减小C.不变D.不定11.在采样—数据系统中,执行实时算法程序所花费的时间总和最好应小于采样周期的( A )A.0.1B.0.2C.0.5D.0.86.步进电机一般用于( A )控制系统中。

A.开环B.闭环C.半闭环D.前馈11.PD称为( B )控制算法。

A.比例B.比例微分C.比例积分D.比例积分微分13.如果增加相位裕量φm,则动态性能指标中的最大超调量σ%为( C )。

A.增大B.不变C.减小D.不能确定10.若考虑系统抑制干扰的能力,选择采样周期的一条法则是:采样速率应选为闭环系统通频带的【D 】A.5倍B.8倍C.10倍D.10倍以上11.在数控系统中,软伺服系统的系统增益K a为【B 】A.(2~5)1/s B.(8~50)1/s C.(50~100)1/s D.(120~150)1/s 10.若考虑对系统响应速度的影响,采样-数据系统中的采样周期应选为系统最小时间常数的【 A 】A.(O.1~1)倍B.2倍C.5倍D.10倍11.在串联校正的比例-积分-微分(PID)控制器中,I的作用是【 C 】A.改善稳定性B.加快系统响应速度C.提高无静差度D.增大相位裕量10.在最佳阻尼比条件下,伺服系统的自然频率w n唯一取决于【 C 】A.速度环开环增益B.电动机机电时间常数C. 速度环开环增益与电动机机电时间常数之比D. 速度环开环增益与电动机机电时间常数之积11在伺服系统中,若要提高系统无静差度,可采用串联【A 】A.PI校正B.P校正C.PD校正D.D校正7.PID控制器中,P的作用是【 A 】A.降低系统稳态误差B.增加系统稳定性C.提高系统无静差度D.减小系统阻尼7.采样一数据系统中,若考虑系统的抑制干扰能力时,采样速率应为闭环系统通频带的【A 】A .10倍以上B.5倍 C .2倍 D.(0.1~1)倍8.PID控制器中,P的含义是【D 】A.前馈 B.微分 C.积分 D.比例(2011 07)9.在软伺服系统中,一般认为速度环的闭环增益最好为系统的 【 】A.0.1倍B.2~4倍C.5倍D.10倍1.PID 控制器中,I 的作用是 【 A 】A .提高系统误差精度B .增加系统通频带C .加快系统调整时间D .减小系统伺服刚度2.要求系统响应应以零稳态误差跟踪输入信号可采用 (C ) A.前馈控制器B.PI 控制器C.复合控制器D.反馈控制器3.一般说来,如果增大自然频率ωn 的数值,则动态性能指标中的调整时间t s 将 ( B ) A.增大 B.减小 C.不变 D.不定4. 在伺服系统中,若要提高系统无静差度,可采用串联 【 A 】 A.PI 校正 B.P 校正 C.PD 校正 D.D 校正5. 伺服系统的输入可以为(B )A.模拟电流B.模拟电压C.控制信号D.反馈信号 6. 伺服系统一般包括控制器、受控对象、比较器和(D )等部分A.换向结构B.转化电路C.存储电路D.反馈测量装置 7. 下列那一项是反馈控制系统( )A.顺序控制系统B.伺服系统C.数控机床D.工业机器人8. PD 称为( B )控制算法。

第六章 控制系统参数优化及仿真

第六章 控制系统参数优化及仿真
例如,图6.1.1所示的控制系统,在某个给定函数的
作作用为下指, 标测 函量 数给 ,定要求与调输整出控量制器y之的间参的数偏,差使E得,该用指标0tf e2dt
函数达到最小。
图6.1.1 控制器参数的调整
6.1 参数优化与函数优化
假定控制器有N个可调整参数1,2 ,,3,显然上述 指标是这些参数的函数,即

L L 2L ,
2 1 0
因此可以得到:
=
1 2
5
取正值 =0.6180339
(6.2.3)
这样,若计算分割后的函数值,则由计算两个点的函数 值变为计算一个点的函数值,在一定分割次数内,减少 了计算函数的次数。这种分割方法称为黄金分割法。
6.2 单变量寻优技术
其中 x为 n 维状态向量; 为m 维被寻优参数的向
量;f 为 n 维系统运动方程结构向量。要求在满足
下列条件下:
6.1 参数优化与函数优化
不等式限制
H ( ) 0
q维
等式限制
G( ) 0
p维
等式终端限制 S(,t f ) 0 维(是终端时间)
找到一组参数 *,
三、参数优化方法
系统的参数优化问题求解方法,按其求解方式可 分为两类:间接寻优和直接寻优。
(1) 间接寻优 间接寻优就是把一个优化问题用数学方程描述出
来,然后按照优化的充分必要条件用数学分析的方 法求出解析解,故又称其为解析法。
6.1 参数优化与函数优化
数学中的变分法,拉格朗日乘子法和最大值原理, 动态规划等都是解析法,所以也都是间接寻优法。
使指标函数
Q() Q( *) min
(2) 函数优化

第六章 控制系统的频率特性

第六章 控制系统的频率特性

第六章 控制系统的频率特性采用频率特性法原因: (1) (2) (3)第一节 频率特性的基本概念一.概念 1.频率响应:指控制系统对正弦输入信号的稳态正弦输出响应。

例:如图所示的机械系统,K 为弹簧刚度系数,单位N/m ,C 是阻尼系数,单位m/s.N,当输入力为正弦信号f(t)=Fsinwt 时,求其位移x(t)的稳态响应解:列写力平衡方程)()()(t f t kx dtt dx C =+其传递函数为:11111)()()(+=+=+==Ts K s KC K K Cs s F s X s Gx (t )tF t f ωsin )(=22)(ωω+=s F s F输出位移)()()(s F s G s X =2232122111ωωω++++=+⋅+=s K s K Ts k s F s KCKTt e T KF T T arctg t T K Ft x -++-+=22221)sin(1)(ωωωωω上式中第一项为稳态分量,第二项为瞬态分量,当时间t 趋向于无穷大时为零。

系统稳态输出为:)](sin[)](sin[)()sin(1)(22ωϕωωϕωωωωω+=+⋅=-+=t X t F A T arctg t T K Ft x其幅值为:2)(11)()(ωωωT K F X A FA X +===相位为:T arctg ωωϕ-=)(从上式的推导可以看出,频率响应是时间响应的一种特例。

正弦输入引起的稳态输出是频率相同的正弦信号,输入输出幅值成比例)(ωA ,相位)(ωϕ都是频率ω的函数,而且与系统的参数c,k 有关。

二 频率特性及其求解方法 1.频率特性:指线性系统或环节在正弦函数作用下,稳态输出与输入幅值比)(ωA 和相位差)(ωϕ随输入频率的变化关系。

用)(ωj G 表示。

)()]([)(Im Im )()()(ωϕωωϕωωωj tj t j eA eF eX t f t x j G ===+2)(11)()(ωωωT K F X j G A +===T arctg j G ωωωϕ-=∠=)()()(ωj G 称为系统的频率特性,其模)(ωA 称为系统的幅频特性,相位差)(ωϕ称为相频特性2.频率特性求解 (1)根据已知系统的微分方程或传递函数,输入用正弦函数代入,求其稳态解,取输出和输入的复数比(2)根据传递函数来求取 (3)通过实验测得令传递函数中的ωj s =则得到频率表达式)(ωj G ,又由于)(ωj G 是一个复变函数,可在复平面上用复数表示,分解为实部和虚部,即:)()()()()(w j e w A w jV w U jw G ϕ=+=)(cos )()(w w A w U ϕ= )(sin )()(w w A w V ϕ=)()()(22w V w U w A += )()()(w U w V arctg w =ϕ例:某闭环系统传递函数为237)(+=s s G ,当输入为)4532sin(71 +t 时,试求系统稳态输出。

机电一体化第六章伺服驱动控制系统设计

机电一体化第六章伺服驱动控制系统设计
更加简单。步进电机既是驱动元件,又是脉冲角位移变换元件。 E. 当控制脉冲数很小,细分数较大时,运行速度达到每转30分
钟。 F.体积小、自定位和价格低是步进电动机驱动控制的三大优势。 G. 步进电机控制系统抗干扰性好
上一页 下一页
二、 伺服驱动控制系统设计的基本要求
1. 高精度控制 2. 3. 调速范围宽、低速稳定性好 4. 快速的应变能力和过载能力强 5. 6.
闭环调节系统。
(4) ①
② 调节方法。
(5) ① 使用仪器。用整定电流环的仪器记录或观察转速实际值波形,电
② 调节方法。
上一页 下一页
六、 晶体管脉宽(PWN)直流调速系统
晶体管脉宽直流调速系统与用频率信号作开关的晶闸管系统相比,具 (1) 由于系统主电源采用整流滤波,因而对电网波形影响小,几乎不 (2) 由于晶体管开关工作频率很高(在2 kHz左右),因此系统的 (3) 电枢电流的脉动量小,容易连续,不必外加滤波电抗器也可平稳 (4) 系统的调速范围很宽,并使传动装置具有较好的线性,采用Z2
上一页 下一页
(2) ① A. 步进电动机型号:130BYG3100D (其他型号干扰大) B. 静转矩15 N·m C. 步距角0.3°/0 6°
D. 空载工作频率40 kHz E. 负载工作频率16 kHz ② A. 驱动器型号ZD-HB30810 B. 输出功率500 W C. 工作电压85~110 V D. 工作电流8 A E. 控制信号,方波电压5~9 V,正弦信号6~15 V ③ 控制信号源。
(3) ① 标准信号控制系统(如图6-16) ②检测信号控制系统 (如图6-17)
③ 计算机控制系统(如图6-18)
上一页 返 回
图6-16 标准信号控制系统图 图6-17 检测信号控制系统图 图6-18 计算机控制系统图

电机控制与拖动-第6章-控制电机及其控制系统 - 6.4 步进电动机

电机控制与拖动-第6章-控制电机及其控制系统 - 6.4 步进电动机
11
(2)多段式:又称为轴向分相式。按其磁路特点又可分为轴 向磁路多段式和径向磁路多段式两种。 ①轴向磁路多段式:定转子均沿 电机轴向按相数分段,每一组 定子铁芯中放置一相环形的控 制绕组。定转子圆周上冲有齿 形相近和齿数相同的均布小齿。 定子(或转子)铁芯每两相邻 段错开1/m齿距。优点是使定 子空间利用率好,环形控制绕 组绕制方便,转子的惯量较低, 步距角可以做得较小,起动和 运行频率较高。但是铁芯分段 和错位工艺较复杂,精度不易 保证。
(1)单脉冲运行 ① 定义 步进电动机的单脉冲运行是指电动机仅仅 改变一次通电状态时的运行方式。
27
② 动稳定区 步进电动机从一种通电状态切换到另一种通 电状态时,不致引起失步的区域。无负载时 为图中的ab区域。切换时失调角为:
( se ) ( se )
r
28
③ 裕量角:动稳定区边界a点到初始位置平衡 点O0的区域称为裕量角。
反转则为:AC-CB-BA-AC
9
3. 步距角:步进电动机每一拍转子所转过的角度。它的大小 是由转子的齿数、控制绕组的相数和通电方式所决定的。
360 其中:m为相数,Zr为齿数,C为通电方式系数。 s mZ r C
若为单拍或双拍方式,则为1,若为单、双方式,则为2。 4. 电机转速
60 f 其中:f 为脉冲频率。 mZ r C 5. 定子的相数:若需要更小的步距角,则可以用增大相数的 方法来实现,但是太多的相数会使电机转速减慢,同时也 使得电源更为复杂,造价也越高。一般步进电机的相数最 多到六相,只有极个别的特殊电机才作成更多相的。 n
驱动电源的基本部分包括变频信号源、脉冲分配 器和脉冲功率放大器三个部分。
37
分类:
(1)按步进电动机容量大小:功率步进电动机驱动 电源和伺服步进电动机驱动电源。

06第六章 计算机控制系统的离散化设计

06第六章 计算机控制系统的离散化设计

• H(z)的零点表达式中,包含G(z)在z平面单位圆外或单位圆上
的所有零点。
系统的准确性定对H(z)的要求:
p He ( z) ( z 1) p F ( z) (1 z 1)F ( z 1 )
pm
系统的快速性对闭环系统的要求
p He ( z) ( z 1) p F ( z) (1 z 1)F ( z 1 ) p尽可能小
如果m>n,则 e(k n m) ek n m 为未来时刻的状态,则就要求D(z) 具有超前性质,这是不可能的。
t=kT
(k-1)T kT (k+1)T
结论:
U ( z ) b0 z ( nm) b1 z ( nm1) bm1 z ( n1) bm z n D( z) E( z) 1 a1 z 1 an1 z ( n1) an z n
即若对象G(z)的分母比分子高d阶,则闭环传递函数H(z) 也必须至少有分母比分子高d阶。 或:若对象G(z)有d拍延时,则H(z)也必须至少有d拍延 时。
2)由系统的稳定性确定H(z)
系统稳定性的条件:特征方程的根应在单位圆内。
B( z ) G( z) A( z )
D( z )

解析设计法步骤:
根据控制系统的性能指标要求及其他约束条件,确定
出所需要的闭环脉冲传递函数H(z)。 根据式
1 H ( z) H ( z) D( z ) ,确定计算机 G( z ) 1 H ( z ) G( z ) H e ( z )
控制器的脉冲传递函数D(z) 。 根据D(z)编制控制算法程序。
F (z)
1 1 是 z 的有限多项式,不含有 (1 z ) 因子,

第六章计算机控制系统

第六章计算机控制系统

⊥ a2
an ⊥
Uo
+
倒R-2R型
早期的D/A集成芯片
只具有从数字量 到模拟电流输出量转 换的功能。
使用时必须在外 电路中加数字输入锁 存器(I/O或扩展I/O 口、参考电压源以及 输出电压转换电路
中期的D/A集成芯片 近期的D/A集成芯片
增加了一些与 计算机接口相关的 电路及引脚,具有 数字输入所存功能 电路,能和CPU数 据总线直接相连。
脉冲个数的检测 脉冲频率与周期的检测 脉冲宽度的检测
测频法原理
(a)
(b)
(c)
被测信号fx
脉冲形 成电路
脉冲信号
闸门
(e)
T
fx
N T
门控 电路
(d)
时基信号 发生器
测周法原理
计数器 振荡器
脉冲 形成电路
闸门
被测信号fx
脉冲
形成电路
门控 电路
计数器
6.4.4 计算机测试系统的设计
主机选型
设计任务 输入通道结构

电信号经过处理并转换成计算机能
工 业
。 。
道 开 关
识别的数字量,输入计算机中。
对 象
计算机将采集来的数字量根据
需要进行不同的判识、预算,得出
所需要的结果。
A/D
显示


打印



报警


直接数字控制系统
分时地对被控对象的状态参数进行测试,根据测试的结果与给定值
的差值,按照预先制定的控制算法进行数学分析、运算后,控制量输出
企业级经营管理计算机
到其他工厂的生 产数据运输指令
工业级集中监督计算机

第六章 控制系统的校正

第六章 控制系统的校正

现:GB(S) = K/(TS + 1) 稳定
自动控制原理 蒋大明
一、利用反馈校正改变局部结构和参数
2.比例反馈包围惯性环节 比例反馈包围惯性环节
G(S) = K/(TS+1) / [ 1+ KKH/(TS+1)] = [K/(1+KKH)] / { [TS/(1+KKH)] + 1} 结果仍为惯性环节。 时间常数减小,快速性变好。
自动控制原理 蒋大明
前置校正定理
设控制系统的闭环传递函数为: b0Sm + b1Sm-1 +…+ bjSl + bj+1Sl-1 +…+ bm GB(S) = --------------------------------------Sn + a1Sn-1 +…+ aiSl + ai+1Sl-1 +…+ an 则系统被控量 C(t) 对给定输入 r(t) 为L型无差的条件为: GB(S)中分子,分母后L项构成的多项式恒等。既: bj+1Sl-1 +…+ bm = ai+1Sl-1 +…+ an 或:bj+1 = ai+1 … bm = an
自动控制原理 蒋大明
举例
校正后:GB*(S) = GC(S) GB(S) 根据前置校正定理: GB*(S) = (14S + 100) / (S2+14S + 100) 所以: GC(S) = 0.14S + 1 一阶微分环节
校正部分在回路之外,和反馈回路的稳定性毫无关系( 加前置校正后, 特征方程并不改变)。本来相互矛盾和牵连的两个问题 —— 稳定与精 度,被分开来可以单独考虑。反馈回路的设计保证系统的稳定性;前置 校正的配置着重于系统的精度。

自动控制原理—第六章

自动控制原理—第六章

jT 1 jT 1
相角位移:()=arctanT-arctan(T)
伯德图 滞后校正装置伯德图的 特点: 1)转折频率与之间渐 近 线 斜 率 为 -20dB/dec , 起积分作用; 2) ()在整个频率范 围 内 都 <0 , 具 有 相 位 滞后作用; 3) ()有滞后最大值 m; 4) 此装置对输入信号 有低通滤波作用。
图中的m为校正装置出现最大滞后相角的频率,它位于两个 转折频率
1 T
1 和T
的几何中点,m为最大滞后相角,它们分别为
1 T
m

1 2
m arct an
为了避免对系统的相位裕量产生不良影响,应尽量使最大滞后 相角对应的频率远离校正后系统新的幅值穿越频率 ’ c ,一般 ’c远大于第二个转折频率2,即有 ' 1 ' 2 c ~ c
比例—积分调节器主要用于在基本保证闭环系统 稳定性的前提下改善系统的稳态性能。
四、比例、积分、微分控制 (PID控制器)
d 1.时域方程: m(t ) K p e(t ) 0 e(t )dt K p d dt e(t ) Ti
t
Kp
2.传递函数:
1 Gc ( s) K p 1 d s Ts i
第6章——控制系统的校正
6.1 控制系统校正的基本概念 6.2 控制系统的基本控制规律 6.3 超前校正装置及其参数的确定 6.4 滞后校正装置及其参数的确定 6.5 滞后-超前校正装置 6.6 期望对数频率特性设计法

6.1 控制系统校正的基本概念
一、校正的一般概念
系统校正方法有时域法、根轨迹法、频域法 (也称频率法)。系统校正的实质可以认为是在 系统中引入新的环节,改变系统的传递函数(时 域法),改变系统的零极点分布(根轨迹法), 改变系统的开环波德图形状(频域法),使系统 具有满意的性能指标。这三种方法互为补充,且 以频率法应用较为普遍。

机电传动与控制(第四版)第6章课后习题参考答案

机电传动与控制(第四版)第6章课后习题参考答案

第六章6.1 有一台交流伺服电动机,若加上额定电压,电源频率为50Hz,极对数P=1,试问它的理想空在转速是多少?n0=60*f/p=60*50/1=3000r/min理想空在转速是3000 r/min6.2何谓“自转”现象?交流伺服电动机时怎样克服这一现象,使其当控制信号消失时能迅速停止?自转是伺服电动机转动时控制电压取消,转子利用剩磁电压单相供电,转子继续转动.克服这一现象方法是把伺服电动机的转子电阻设计的很大,使电动机在失去控制信号,即成单相运行时,正转矩或负转矩的最大值均出现在Sm>1的地方.当速度n 为正时,电磁转矩T为负,当n为负时,T为正,即去掉控制电压后,单相供电似的电磁转矩的方向总是与转子转向相反,所以是一个制动转矩.可使转子迅速停止不会存在自转现象6.3有一台直流伺服电动机,电枢控制电压和励磁电压均保持不变,当负载增加时,电动机的控制电流、电磁转矩和转速如何变化?当副在增加时, n=U c/K eΦ-RT/K e K tΦ2电磁转矩增大,转速变慢,根据n=U c/K eΦ-R a I a/K e Φ控制电流增大.6.4有一台直流伺服电动机,当电枢控制电压Uc=110V时,电枢电流I a1=0.05A,转速n1=3000r/min;加负载后,电枢电流I a2=1A, 转速n2=1500r/min。

试做出其机械特性n=f (T)。

电动机的电磁转矩为T=BI a NLD/2,n300015000.05A6.5n0=3000r/min;当n0=120Uc/πNBLD6.6细不变,式中的BI a Nl/2紧思维常数,故转矩T与直径D近似成正比.电动机得直径越大力矩就越大.6.7 为什么多数数控机床的进给系统宜采用大惯量直流电动机?因为在设计.制造商保证了电动机能造低速或阻转下运行,在阻转的情况下,能产生足够大的力矩而不损坏,加上他精度高,反应快,速度快线性好等优点.因此它常用在低俗,需要转矩调节和需要一定张力的随动系统中作为执行元件.6.8 永磁式同步电动机为什么要采用异步启动?因为永磁式同步驶电动机刚启动时,器定子长生旋转磁场,但转子具有惯性,跟不上磁场的转动,定子旋转时而吸引转子,时而又排斥转子,因此作用在转子的平均转矩为零,转子也就旋转不起来了.6.9 磁阻式电磁减速同步电动机有什么突出的优点?磁阻式电磁减速同步电动机无需加启动绕组,它的结构简单,制造方便.,成本较低,它的转速一般在每分钟几十转到上百专职践踏是一种常用的低速电动机.6.10 一台磁组式电磁减速同步电动机,定子齿数为46,极对数为2,电源频率为50Hz,转子齿数为50,试求电机的转速。

控制系统的误差分析和计算

控制系统的误差分析和计算

lim
s0
s1 1 G(s)
Xi (s)
这就是求取输入引起的单位反馈系统稳态误差的方法.需要注意 的是,终值定理只有对有终值的变量有意义.如果系统本身不稳定, 用终值定理求出的值是虚假的.故在求取系统稳态误差之前,通常 应首先判断系统的稳定性.
➢ 非单位反馈控制系统
输入引起的系统的偏差传递函数为:
(
s)
H
(
s)
1
G1
G2 s s G2 s
H
s
N
s
干扰引起的偏差为:
s
1
G2(s)H s G2 (s)G1sH
s
N
s
根据终值定理,干扰引起稳态偏差为:
ss
lim t
t
lim
s0
s s
则干扰引起稳态误差为:
ess
ss
H 0
例6-3 系统结构图如图6-8所示,当输入信号xi(t)=1(t),干扰N(t)=1(t)时,求系 统总的稳态误差ess.
输入信号和反馈信号比较后的信号ε(t)也能反映系统误差的大小,
称之为偏差.应该指出,系统的误差信号e(t)与偏差信号ε(t),在
一般情况下并不相同(见图6-1).
控制系统的方块图如图6-1所示.实线部分与实际系统有对应关系, 而虚线部分则是为了说明概念额外画出的.
控制系统的误差信号的象函数是 E(s) sXi s X o s
s0
1 s2
1 K

其中
K
lim sG(s)H (s) s0
,定义为系统静态
速度误差系数。 对于0型系统:
K
lim s s0
K (1s 1)( 2s 1) ( ms 1)

第六章 控制系统的误差分析和计算

第六章 控制系统的误差分析和计算
设G1(s)=1,系统是一阶的,因此稳定.图6-9中,R是电动机电枢电阻,CM为力矩系 数,N是扰动力矩,干扰作用为一个常值阶跃干扰,故稳态偏差为
- K2Kc
ssls i0m s1TKM 1sK2K 1c
NR K2Kc NR CMs 1K1K2Kc CM
TMs1
则稳态误差为 essKscs1KK 1K 22Kc C NMR

es
s1
lims 1 s0 1K1
K2 s
10 s
- K2
再求干扰引起的稳态误差
ess2
lims s
s0
1K1
K2 s
1 1 s K1
所以,总误差为
11 esses1ses2 s0-K1K1
例6-4 某直流伺服电动机调速系统如图6-9所示,试求扰动力矩N(s)引起的稳态误 差.
解:首先应选择合适的G1(s)使系统稳定.Kc是测速负反馈系数,这是一个非单位反 馈的控制系统,先求扰动作用下的稳态偏差,再求稳态误差ess.
控制系统的方块图如图6-1所示.实线部分与实际系统有对应关系, 而虚线部分则是为了说明概念额外画出的.
控制系统的误差信号的象函数是 E ( s ) s X is X o s (6-1)

偏差信号的象函数是 (s) X is Y s (6-2)
考虑Xi(s)与Y(s)近似相等,且Y(s)=H(s)Xo(s),得
对于一个实际的控制系统,由于系统的结构、输入作用的类型 (给定量或扰动量)、输入函数的形式(阶跃、斜坡或抛物线)不同, 控制系统的稳态输出不可能在任何情况下都与输入量一致或相当, 也不可能在任何形式的扰动作用下都能准确地恢复到原平衡位置. 这类由于系统结构、输入作用形式和类型所产生的稳态误差称为 原理性稳态误差.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

60 fθ b 60 × 600 ×1.5 n= = = 150(rpm) 360 360
6.3 步进电机的驱动

A相驱动驱动电路
C相驱动电路
环形分配器的作用: 环形分配器的作用:把脉冲信号按状态转换表的状态顺序产生 各相的控制信号,每来一个脉冲,环形分配器就转换一次, 各相的控制信号,每来一个脉冲,环形分配器就转换一次,因此步 进电机转速、正反转、起停完全取决于脉冲的频率和有无。 进电机转速、正反转、起停完全取决于脉冲的频率和有无。 驱动电路的作用:把环形分配器输出的各相绕组导通、 驱动电路的作用:把环形分配器输出的各相绕组导通、截止信号 放大、产生电机工作所需的激磁电流 电流。 放大、产生电机工作所需的激磁电流。
6.1 步进电机的工作原理 ——认识 认识
1. 步进电机动作特征的认识
步进电机的速度相对时间不是恒定的, 步进电机的速度相对时间不是恒定的, 所以单位轴转角△ 随时间不是直线增加 随时间不是直线增加, 所以单位轴转角△θ随时间不是直线增加, 而是不连续且分散的值,因此称为数字性。 而是不连续且分散的值,因此称为数字性。
6.2 步进电机的特点与性能指标 步进电机的特点与性能指标——技术指标 技术指标
最大静态位置误差: 最大静态位置误差:当负载转矩作用在步进电机 为了使转子保持平衡, 上,为了使转子保持平衡,此时转子所停留的位 置与励磁所要求的位置存在一定的偏差, 置与励磁所要求的位置存在一定的偏差,这就是 负载转矩产生的静态位置误差
6.2 步进电机的特点与性能指标 步进电机的特点与性能指标——技术指标 技术指标
2. 步进电机的主要技术指标 步距角:每给一个电脉冲信号,电机转子所转过 步距角:每给一个电脉冲信号, 的角度的理论值
360 θb = mNC
矩角特性: 矩角特性:不改变通电状 态时电磁转矩与转子位置间 的关系曲线, 的关系曲线,转子位移不超 过转子齿距的一半时, 过转子齿距的一半时,能够 回到正确的步进位置。 回到正确的步进位置。 通常, 通常,未磁饱和时反应 式步进电机的转矩与相电流 的平方呈正比, 的平方呈正比,混合式步进 电机的转矩与相电流呈线性 比例关系
6.1 步进电机的工作原理 ——VR型原理 型原理
感应子式步进电机与传统反应式步进电机相比: 感应子式步进电机与传统反应式步进电机相比: 结构上的改进: 结构上的改进: 转子加有永磁体,以提供软磁材料的工作点, 转子加有永磁体,以提供软磁材料的工作点,而定 子激磁只需提供变化的磁场而不必提供磁材料工作点 的耗能。 的耗能。 特点: 特点: 该电机效率高,电流小,发热低。 该电机效率高,电流小,发热低。 因永磁体的存在,该电机具有较强的反电势, 因永磁体的存在,该电机具有较强的反电势,其自 尼作用比较好,使其在运转过程中比较平稳、 身阻 尼作用比较好,使其在运转过程中比较平稳、 噪音低、低频振动小。 噪音低、低频振动小。
6.3 步进电机的驱动
i1
导通时,电压平衡方程为:
U = i1 RL + L di1 +E dt 假设电机堵转,E = 0, 解方程得:
U/RL
t
t U i1 = (1 e τ ) RL
TL
其中,τ =
L 电气时间常数 RL
关断时,电压平衡方程为:
di2 +E dt 假 E = 0, 解 程 : 设 方 得 0 = i2 RL + L i2 = i1e τ
6.2 步进电机的特点与性能指标 步进电机的特点与性能指标——缺点和适用场合 缺点和适用场合 步距角是固定的, 步距角是固定的,在步进分辨率方面缺乏灵活性 在单步响应中, 在单步响应中,有较大的超调量和振荡 过载能力较差, 过载能力较差,过载时易丢步 输出功率较小,对于需要大电流的大功率电机, 输出功率较小,对于需要大电流的大功率电机,控制装 置和功率放大器都变得复杂、笨重、不经济, 置和功率放大器都变得复杂、笨重、不经济,所以步进电 机的尺寸和功率都不大 运动时发生共振, 运动时发生共振,需要加入阻尼机构或其他补救措施 目前主要用于开环, 目前主要用于开环,闭环控制时所用元件和线路比较复 杂 不能把步进电机直接接到直流电源上, 不能把步进电机直接接到直流电源上,必须配有驱动电 而驱动定路复杂、 路,而驱动定路复杂、成本较高 总之,步进电机主要用于功率要求不大, 总之,步进电机主要用于功率要求不大,负载波动范 围不大,控制精度要求不是很高,尤其应该指出的是, 围不大,控制精度要求不是很高,尤其应该指出的是,对 于负载较小的点位控制系统,可以优先选用。 于负载较小的点位控制系统,可以优先选用。
6.1 步进电机的工作原理 ——VR型原理 型原理
从A相励磁时的稳定状 态切换到B相通电, 态切换到B相通电,则转子 转过15 15—— 一个步距角 转过15
θb = 15
步距角计算: 步距角计算:
360 θb = mNC
m 为励磁相数 N 为转子的齿数
为通电状态系数, C 为通电状态系数, 单三拍时为1; 单三拍时为 ; 为步距角细分提供了原始思路 三相六拍时为2 三相六拍时为
6.1 步进电机的工作原理 步进电机的工作原理——种类 种类
2. 步进电机的种类
VR型步进电机 型步进电机——Variable Reluctance 型步进电机 亦称变磁阻步进电机 反应式步进电机
PM型步进电机 型步进电机——Permanent Magnet 型步进电机 亦称永磁式步进电机 HB型步进电机 型步进电机——Hybrid 型步进电机 亦称混合式步进电机、 亦称混合式步进电机、感应子式步进电机 还可还运动形式分 旋转型步进电机 直线型步进电机
第六章 步进电机驱动与控制
6.1 步进电机工作原理
照片
接线图
矩频特性
6.1 步进电机的工作原理
1. 步进电机动作特征的认识
步进电机是将电脉冲信号转变为固定角位移或线位移的控制 元件。 元件。 在非超载的情况下,电机的转速、 在非超载的情况下,电机的转速、停止的位置只取决于脉冲 信号的频率和脉冲数,而不受负载变化的影响, 信号的频率和脉冲数,而不受负载变化的影响,即给电机加一 个脉冲信号,电机则转过一个步距角。 个脉冲信号,电机则转过一个步距角。 当连续供给电脉冲,步进电机就一步一步地连续转动,因此, 当连续供给电脉冲,步进电机就一步一步地连续转动,因此, 命名为步进电机。 命名为步进电机。 步进电机的位移量与输入的脉冲数量严格成正比, 步进电机的位移量与输入的脉冲数量严格成正比,转速与脉 冲频率成正比。 冲频率成正比。 转向与电机各相绕组的通电顺序有关。 转向与电机各相绕组的通电顺序有关。 只需开环控制,偶尔可以通过闭环控制提高精度。 只需开环控制,偶尔可以通过闭环控制提高精度。
6.2 步进电机的特点与性能指标 步进电机的特点与性能指标——技术指标 技术指标
举例: 三相反应式步进电机为A-B-C-A送电方式时,电机顺 时针方向旋转,步距角1.5,请填入正确答案: 顺时针转,步距角0.75 ,送电方式应为: (A→AB→B→BC→C→CA→A) 逆时针转,步距角0.75 ,送电方式应为: (A←AB←B←BC←C←CA←A) 顺时针转,步距角1.5 ,送电方式应为: (A→B→C→A)或(AB→BC→CA→AB )
6.2 步进电机的特点与性能指标 步进电机的特点与性能指标——优点 优点
1. 步进电机的特点 实现位置和速度的开环控制: 实现位置和速度的开环控制:位置等于总输入脉 冲个数; 冲个数;速度正比于输入脉冲的频率 天生具有数字控制系统元件的特点 位置误差不积累 具有自锁能力 可以超低速度运行, 可以超低速度运行,不用减速器 抗干扰能力强,即在负载能力范围内, 抗干扰能力强,即在负载能力范围内,转角和转 速不受电压大小、负载波动的影响, 速不受电压大小、负载波动的影响,也不受环境 温度、冲击、振动的影响,仅与频率、脉冲数、 温度、冲击、振动的影响,仅与频率、脉冲数、 步距角有关 若用同一频率的脉冲电源控制几台步进电机, 若用同一频率的脉冲电源控制几台步进电机,可 以实现多个电机的同步
各参数定义如前
电磁转矩 最大静转矩 2/3额定电流 1/3额定电流
失调角 稳定点
6.2 步进电机的特点与性能指标 步进电机的特点与性能指标——技术指标 技术指标
最大静转矩:步进电机在规定的通电相数下, 最大静转矩:步进电机在规定的通电相数下,矩 角特性曲线上的转矩最大值 额定电流:电动机静止时, 额定电流:电动机静止时,每一相绕组允许通过 的最大电流 额定电压:驱动电源应供给的电压, 额定电压:驱动电源应供给的电压,一般不等于 加在绕组两端的电压 启动频率:步进电机不失步启动的最高频率, 启动频率:步进电机不失步启动的最高频率,通 常是指空载启动 运行频率:步进电机启动后, 运行频率:步进电机启动后,不失步所达到的最 高频率, 高频率,通常是指空载运行 启动矩频特性:在负载惯量一定情况下, 启动矩频特性:在负载惯量一定情况下,启动频 率随负载转矩变化的特性
6.1 步进电机的工作原理 ——BM型原理 型原理
BM型步进电机工作原理 4. BM型步进电机工作原理 通电方式: 通电方式: 正转: 正转:A→B →C →D… 反转:D→C →B →A… 反转:
360° θb = mp
p 为极对数(极数/2) 为极对数(极数/2 /2)
转子是2 极对数1 永久磁铁, 转子是2极(极对数1)永久磁铁, 定子上4组线圈连接成四相式:A→B→C→D, 定子上4组线圈连接成四相式:A→B→C→D, 转子每次向顺时针方向旋转90 转子每次向顺时针方向旋转90
6.2 步进电机的特点与性能指标 步进电机的特点与性能指标——技术指标 技术指标
运行矩频特性:在一定的负载力矩下, 运行矩频特性:在一定的负载力矩下,运行频率 和负载转矩之间的关系 惯频特性:在负载力矩一定时,频率和负载惯量 惯频特性:在负载力矩一定时, 之间的关系。 之间的关系。惯频特性分为启动惯频特性和运行 惯频特性。 惯频特性。如图所示
相关文档
最新文档