浙江省金华市2020年初中毕业生学业模拟考试数学试卷(一)
浙江省金华市2020年中考数学第一次模拟试卷
![浙江省金华市2020年中考数学第一次模拟试卷](https://img.taocdn.com/s3/m/22e799856c175f0e7cd137fb.png)
2020年中考数学模拟试卷一、选择题1.点M(1,﹣2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)2.下列事件属于随机事件的是()A.明天的早晨,太阳从东方升起B.13人中至少有两人同生肖C.抛出一枚骰子,点数为0D.打开电视机,正在播放广告3.下列运算正确的是()A.a8÷a4=a2B.(a3)2=a6C.a2•a3=a6D.a4+a4=2a84.在下列立体图形中,三视图中没有圆的是()A.B.C.D.5.某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.6.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.7.如图,一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面的B点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为()A.B.C.4πD.6π8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则sin∠BAC的值为()A.B.C.D.9.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③5a﹣2b+c<0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的个数是()A.1B.2C.3D.410.如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有()A.2个B.3个C.4个D.5个二、填空题(本题有6小题,每题4分,满分24分,将答案填在答题纸上)11.因式分解:4x2﹣9=.12.数据2,9,8,4中最大值与最小值的差是.13.如图,D、E分别是△ABC的边BC、AB上的点,AD、CE相交于点F,AE=EB,BD =BC,则CF:EF=.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.15.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为.16.如图,直线与x轴交于点A,与y轴交于点B,抛物线经过A、B两点,与x轴的另一个交点为C,点P是第一象限抛物线上的点,连结OP交直线AB于点Q,设点P的横坐为m,PQ与OQ的比值为y.(1)c=;(2)当y取最大值时,=.三、解答题:本题有8小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.计算:18.如图,在9×9网格中,每个小方格的边长看作单位1,每个小方格的顶点叫作格点,△ABC的顶点都在格点上.(1)请在网格中画出△ABC的一个位似图形△A1B1C,使两个图形以点C为位似中心,且所画图形与△ABC的相似比为2:1;(2)将△A1B1C绕着点C顺时针旋转90°得△A2B2C,画出图形,并在如图所示的坐标系中分别写出△A2B2C三个顶点的坐标.19.如图,在不是菱形的平行四边形ABCD中,E、F在对角线BD上,在以下三个条件中再选一个,①AE、CF分别是△ABD、△BCD的中线,②AE、CF分别是△ABD、△BCD 的角平分线,③AE=CF.使得四边形AECF是平行四边形,并说明理由.20.某中学对本校2018届500名学生的中考体育测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图(图①,图②),请根据统计图提供的信息,解答下列问题:(1)该校毕业生中男生有人;扇形统计图中a=;500名学生中中考体育测试成绩的中位数是;(2)补全条形统计图;(3)从500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?21.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O的切线与AC的延长线交于点E,点D是弧BC的中点,连结AD交BC于点F.(1)求证:DE∥BC;(2)若AC=2,CF=1,求AB的长.22.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)若这种冰箱的售价降低50元,每天的利润是元;(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到更多的实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时利润最高,并求出最高利润.23.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y 轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.24.如图,在平面直角坐标系中,已知点A的坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线C:y=x2沿射线OA方向平移得到抛物线C',抛物线C'与直线x=2交于点P,设抛物线C'的顶点M的横坐标为m.(1)求抛物线C'的解析式(用含m的式子表示);(2)连结OP,当tan(∠OAB﹣∠AOP)=时,求点P的坐标;(3)点Q为y轴上的动点,以P为直角顶点的△MQP与△OAB相似,求m的值.参考答案1.A.2.D.3.B.4.C.5.D.6.A.7.A.8.B.9.B.10.D.11.(2x+3)(2x﹣3).12.713.12.14.﹣2<x<2.15.8.16..17.解:原式=+4×﹣2﹣(π﹣3),=+2﹣2﹣π+3,=3﹣π.18.解:(1)如图所示;(2)如图所示:△A2B2C的三个顶点的坐标分别为:A2(7,﹣1),B2(7,5),C(3,3).19.解:当AE、CF分别是△ABD、△BCD的角平分线,使得四边形AECF是平行四边形,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠BAD=∠BCD,∴∠ABD=∠CDB,∵AE、CF分别是△ABD、△BCD的角平分线,∴∠BAE=∠DAE=∠BCE=∠DCE,∵∠ABE=∠CDF,AB=CD,∠BAE=∠DCF,∴△ABE≌△CDF(ASA)∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,且AE=CF,∴四边形AECF是平行四边形.20.解(1)如图,男生人数为20+40+60+180=300,8分对应百分数为(40+20)÷500=12%,500名学生中中考体育测试成绩的中位数是10分.故答案为:300,12,10;(2)补图如图所示:(3)500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是=.21.(1)证明:如图,连接OD.∵DE是⊙O的切线,∴DE⊥OD,∵=,∴OD⊥BC,∴DE∥BC.(2)解:连接BD.∵=,∴∠CAD=∠DAB=∠DBF,∵AB是直径,∴∠ACF=∠ADB=90°,∴△ACF∽△ADB∽△BDF,∴===2,设DF=m,则BD=2m,AD=4m,∵AF===,∵DF=AD﹣AF,∴m=4m﹣,∴m=,∴BD=,AD=,∴AB===.22.解:(1)根据题意,得(8+4×)×(2400﹣50﹣2000)=4200元,故答案为:4200;(2)设出每台冰箱应降价x元,由题意得:(2400﹣2000﹣x)(8+×4)=4800,﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0,解这个方程,得x1=100,x2=200,要使百姓得到实惠,取x=200元,∴每台冰箱应降价200元;(3)设每台冰箱降价为x元,商场每天销售这种冰箱的利润为y元,根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元,售价2250元时,商场的利润最大,最大利润是5000元.23.解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠PAQ=60°=∠PAC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠PAC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故PA=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠PAH,PA=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).24.解:(1)设直线OA的解析式为y=kx,将点A(2,4)代入y=kx中,得2k=4,∴k =2,∴直线OA的解析式为y=2x,∵点M在射线OA上,且点M的横坐标为m,∴点M(m,2m),∵抛物线C'是抛物线C:y=x2平移所得,∴抛物线C'的解析式为y=(x﹣m)2+2m;(2)如图1,连接OP,过点O作直线OH交BA的延长线于点H,使∠HOA=∠AOP,∵∠OHA=∠OAB﹣∠HOA=∠OAB﹣∠AOP,则tan∠OHA=,则sin∠OHA=,在Rt△OBH中,OH==,∵∠HOA=∠AOP,∴点A到OH的距离等于点A到OP的距离,设这个距离为h,设点P的坐标为(2,t),则OP=,则S△OAH=S△OBH﹣S△OBA=2×4﹣2×t=OH•h=××h,解得:h=,同理S△AOP=S△OAB﹣S△OBP=×2×4﹣×2×t=OP×h=×,整理得:24t2﹣202t+399=0,解得:t=或(舍去),故点P的坐标为:(2,);(3)如图2,∵△MQP与△OAB相似,∴,即;由(1)知:抛物线C'的解析式为y=(x﹣m)2+2m,点M(m,2m),当x=2时,y=(x﹣m)2+2m=m2﹣2m+4,故点P(2,m2﹣2m+4),过点Q作QG⊥AB交BA的延长线于点G,作MN⊥AB于点N,则GQ=OB=2,PN=(m2﹣2m+4)﹣2m=m2﹣4m+4;∵∠MPN+∠PMN=90°,∠MPN+∠QPG=90°,∴∠QPG=∠PMN,而∠PGQ=∠MNP=90°,∴△PGQ∽△MNP,∴,即,解得:m=0或1或3或4(舍去0),故m=1或3或4.。
2020年浙江省金华市永康市中考数学一模试卷 (解析版)
![2020年浙江省金华市永康市中考数学一模试卷 (解析版)](https://img.taocdn.com/s3/m/c707b6b0915f804d2a16c15b.png)
2020年金华市永康市中考数学一模试卷一、选择题1.﹣2的倒数是()A.﹣2B.2C.﹣D.2.下列计算不正确的是()A.a2•a3=a5B.(a2)3=a6C.a3÷a2=a D.a3+a3=a63.截至2020年5月4日,海外确诊病例累计逾349.5万例,数349.5万用科学记数法表示为()A.3.495×106B.34.95×105C.3.495×105D.0.3495×107 4.如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠55.如图所示的几何体,它的左视图是()A.B.C.D.6.中国抗击疫情最宝贵的经验就是“早发现,早报告,早隔离,早治疗”.在这12个字中“早”字出现的频率是()A.B.C.D.7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,将边长分别为10cm和4cm的矩形纸片沿着虚线剪成两个全等的梯形纸片.裁剪线与矩形较长边所夹的锐角是45°,则梯形纸片中较短的底边长为()A.2cm B.2.5cm C.3cm D.3.5cm9.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ+cosθ)2=()A.B.C.D.10.如图,抛物线y=ax2+bx+1的顶点在直线y=kx+1上,对称轴为直线x=1,有以下四个结论:①ab<0,②b<,③a=﹣k,④当0<x<1时,ax+b>k,其中正确的结论是()A.①②③B.①③④C.①②④D.②③④二、填空题(本题有6小题,每小题4分,共24分)11.若二次根式有意义,则x的取值范围是.12.因式分解:a3+2a2+a=.13.不等式组的解集为.14.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为.15.如图,在四边形ABCD中,AD∥BC,∠A=Rt∠,AD=2cm,AB=4cm,BC=6cm,点E是CD中点,过点B画射线BF交CD于点F,交AD延长线于点G,且∠GBE=∠CBE,则线段DG的长为cm.16.图1是一种推磨工具模型,图2是它的示意图,已知AB⊥PQ,AP=AQ=3dm,AB=12dm,点A在中轴线l上运动,点B在以O为圆心,OB长为半径的圆上运动,且OB =4dm.(1)如图3,当点B按逆时针方向运动到B′时,A′B′与⊙O相切,则AA′=dm.(2)在点B的运动过程中,点P与点O之间的最短距离为dm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.4sin60°﹣+|﹣3|+(π﹣2020)0.18.解分式方程:.19.如图1是一手机支架,其中AB=8cm,底座CD=1cm,当点A正好落在桌面上时如图2所示,∠ABC=80°,∠A=60°.(1)求点B到桌面AD的距离;(2)求BC的长.(结果精确到0.1cm;参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.73)20.某学校为了解学生疫情期间一天在线学习时长,进行了一次随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图,并求出一天在线学习“5﹣7个小时”的扇形圆心角度数.(3)若该校共有学生1800名,试估计全校一天在线学习“7小时以上”的学生人数.21.如图,在8×4的网格中,每个小正方形的边长均为1,点A,B,C都是格点(小正方形的顶点),完成下列画图.(1)画出△ABC的重心P.(2)在已知网格中找出所有格点D,使点D与△ABC的其中两个顶点构成的三角形的面积与△ABC的面积相等.22.如图,已知⊙C过菱形ABCD的三个顶点B,A,D,连结BD,过点A作AE∥BD交射线CB于点E.(1)求证:AE是⊙C的切线.(2)若半径为2,求图中线段AE、线段BE和围成的部分的面积.(3)在(2)的条件下,在⊙C上取点F,连结AF,使∠DAF=15°,求点F到直线AD的距离.23.我们知道求函数图象的交点坐标,可以联立两个函数解析式组成方程组,方程组的解就是交点的坐标.如:求直线y=2x+3与y=﹣x+6的交点坐标,我们可以联立两个解析式得到方程组,解得,所以直线y=2x+3与y=﹣x+6的交点坐标为(1,5).请利用上述知识解决下列问题:(1)已知直线y=kx﹣2和抛物线y=x2﹣2x+3,①当k=4时,求直线与抛物线的交点坐标;②当k为何值时,直线与抛物线只有一个交点?(2)已知点A(a,0)是x轴上的动点,B(0,4),以AB为边在AB右侧做正方形ABCD,当正方形ABCD的边与反比例函数y=的图象有4个交点时,试求a的取值范围.24.如图1,矩形ABCD中,AB=8,BC=6,点E,F分别为AB,AD边上任意一点,现将△AEF沿直线EF对折,点A对应点为点G.(1)如图2,当EF∥BD,且点G落在对角线BD上时,求DG的长;(2)如图3,连接DG,当EF∥BD且△DFG是直角三角形时,求AE的值;(3)当AE=2AF时,FG的延长线交△BCD的边于点H,是否存在一点H,使得以E,H,G为顶点的三角形与△AEF相似,若存在,请求出AE的值;若不存在,请说明理由参考答案一、选择题(本题有10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣2B.2C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.解:﹣2的倒数是﹣,故选:C.2.下列计算不正确的是()A.a2•a3=a5B.(a2)3=a6C.a3÷a2=a D.a3+a3=a6【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.解:A、a2•a3=a5,正确,故此选项不合题意;B、(a2)3=a6,正确,故此选项不合题意;C、a3÷a2=a,正确,故此选项不合题意;D、a3+a3=2a3,原题错误,故此选项符合题意;故选:D.3.截至2020年5月4日,海外确诊病例累计逾349.5万例,数349.5万用科学记数法表示为()A.3.495×106B.34.95×105C.3.495×105D.0.3495×107【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.解:349.5万=3495000=3.495×106,故选:A.4.如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.解:∵直线a、b被直线c所截,∴∠2的同旁内角是∠4.故选:C.5.如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.6.中国抗击疫情最宝贵的经验就是“早发现,早报告,早隔离,早治疗”.在这12个字中“早”字出现的频率是()A.B.C.D.【分析】根据频率=进行计算即可.解:在这12个字中“早”字出现的频率是:=,故选:D.7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.如图,将边长分别为10cm和4cm的矩形纸片沿着虚线剪成两个全等的梯形纸片.裁剪线与矩形较长边所夹的锐角是45°,则梯形纸片中较短的底边长为()A.2cm B.2.5cm C.3cm D.3.5cm【分析】根据矩形的性质得出∠A=∠B=90°,AB=DC=4,AD∥BC,根据矩形的判定得出四边形ABFQ是矩形,求出AB=FQ=DC=4,求出EQ=FQ=4,即可得出答案.解:过F作FQ⊥AD于Q,则∠FQE=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,AB=DC=4,AD∥BC,∴四边形ABFQ是矩形,∴AB=FQ=DC=4,∵AD∥BC,∴∠QEF=∠BFE=45°,∴EQ=FQ=4,∴AE=CF=×(10﹣4)=3(cm),故选:C.9.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ+cosθ)2=()A.B.C.D.【分析】先由两个正方形的面积分别得出其边长,设AC=BD=a,由勾股定理解得a的值,后按照正弦函数和余弦函数的定义得出sinθ和cosθ的值,最后代入要求的式子计算即可.解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长是5,小正方形的边长是5,设AC=BD=a,如图,△ABD中,由勾股定理得:a2+(5+a)2=,解得a=5,∴sinθ==,cosθ==,∴(sinθ+cosθ)2==.故选:A.10.如图,抛物线y=ax2+bx+1的顶点在直线y=kx+1上,对称轴为直线x=1,有以下四个结论:①ab<0,②b<,③a=﹣k,④当0<x<1时,ax+b>k,其中正确的结论是()A.①②③B.①③④C.①②④D.②③④【分析】根据二次函数的图象与系数的关系即可求出答案.解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∴ab<0,所以①正确,符合题意;②∵x=﹣1时,y<0,即a﹣b+1<0,∵b=﹣2a,∴a=﹣,∴﹣﹣b+1<0,∴b>,所以②错误,不符合题意;③当x=1时,y=a+b+1=a﹣2a+1=﹣a+1,∴抛物线的顶点坐标为(1,﹣a+1),把(1,﹣a+1)代入y=kx+1得﹣a+1=k+1,∴a=﹣k,所以③正确,符合题意;④当0<x<1时,ax2+bx+1>kx+1,即ax2+bx>kx,∴ax+b>k,所以④正确,符合题意.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.若二次根式有意义,则x的取值范围是x≥﹣1.【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.解:由题意得:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.12.因式分解:a3+2a2+a=a(a+1)2.【分析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a2±2ab+b2=(a±b)2.解:a3+2a2+a,=a(a2+2a+1),…(提取公因式)=a(a+1)2.…(完全平方公式)故答案为:a(a+1)2.13.不等式组的解集为2<x≤5.【分析】分别求出各不等式的解集,再求出其公共解集即可.解:,由①得,x>2,由②得x≤5,故此不等式组的解集为:2<x≤5.故答案为:2<x≤5.14.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为8.【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.解:∵样本1,3,9,a,b的众数是9,∴a,b中至少有一个是9,∵样本1,3,9,a,b的平均数为6,∴(1+3+9+a+b)=6,∴a+b=17,∴a,b中一个是9,另一个是8,∴这组数为1,3,9,8,9,即1,3,8,9,9,∴这组数据的中位数是8.故答案为:8.15.如图,在四边形ABCD中,AD∥BC,∠A=Rt∠,AD=2cm,AB=4cm,BC=6cm,点E是CD中点,过点B画射线BF交CD于点F,交AD延长线于点G,且∠GBE=∠CBE,则线段DG的长为1cm.【分析】延长BE交AG的延长线于H,由“AAS”可证DH=BC=6cm,由等腰三角形的性质可得BG=GH=6﹣DG,由勾股定理可求解.解:如图,延长BE交AG的延长线于H,∵AD∥BC,∴∠H=∠EBC,∠C=∠HDE,∵点E是CD中点,∴DE=CE,∴△DEH≌△CEB(AAS),∴DH=BC=6cm,∵∠GBE=∠CBE,∴∠GBE=∠H,∴BG=GH=6﹣DG,∵BG2=AG2+AB2,∴(6﹣DG)2=(2+DG)2+16,∴DG=1cm,故答案为:1.16.图1是一种推磨工具模型,图2是它的示意图,已知AB⊥PQ,AP=AQ=3dm,AB=12dm,点A在中轴线l上运动,点B在以O为圆心,OB长为半径的圆上运动,且OB =4dm.(1)如图3,当点B按逆时针方向运动到B′时,A′B′与⊙O相切,则AA′=(16﹣4)dm.(2)在点B的运动过程中,点P与点O之间的最短距离为(3﹣4)dm.【分析】(1)A′A=OA﹣OA′=AB+OB﹣OA,即可求解;(2)当B、O、P三点共线时,OP的距离最短,即可求解.解:(1)A′A=OA﹣OA′=AB+OB﹣OA=12+4﹣=16﹣=16﹣4,故答案为:(16﹣4);(2)当B、O、P三点共线时,OP的距离最短,则OP=BP﹣OB===3﹣4(dm),故答案为:(3﹣4).三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.4sin60°﹣+|﹣3|+(π﹣2020)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案.解:原式=4×﹣2+3+1=2﹣2+3+1=4.18.解分式方程:.【分析】按解分式方程的步骤求解即可,注意检验.解:去分姆,得3x=x﹣2解方程,得x=﹣1经检验,x=﹣1是分式方程的解.所以,原分式方程的解为x=﹣1.19.如图1是一手机支架,其中AB=8cm,底座CD=1cm,当点A正好落在桌面上时如图2所示,∠ABC=80°,∠A=60°.(1)求点B到桌面AD的距离;(2)求BC的长.(结果精确到0.1cm;参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.73)【分析】(1)过点B作BE⊥AD于点E,根据含30度角的直角三角形的性质即可求出答案.(2)延长交BE于点F,根据锐角三角函数的定义即可求出答案.解:(1)过点B作BE⊥AD于点E,∴∠AEB=90°,∵∠A=60°,AB=8,∴BE=4,∴点B到桌面AD的距离是4.(2)延长交BE于点F,∴∠BFC=90°∵∠A=60°,∠ABC=80°,∴∠CBF=50°,由题意可知:BF=4﹣1,∵cos50°=,∴BC=≈9.3cm,∴BC的长度为9.3cm.20.某学校为了解学生疫情期间一天在线学习时长,进行了一次随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图,并求出一天在线学习“5﹣7个小时”的扇形圆心角度数.(3)若该校共有学生1800名,试估计全校一天在线学习“7小时以上”的学生人数.【分析】(1)利用A类的人数除以所占百分比即可;(2)利用总人数乘以B类所占百分比可得B类人数,再减去18可得B类男生人数,再补图即可.利用360°乘以C类人数所占比例可得一天在线学习“5﹣7个小时”的扇形圆心角度数;(3)利用样本估计总体的方法计算即可.解:(1)参与问卷调查的总人数:(40+26)÷55%=120(人);(2)120×25%﹣18=12(人),一天在线学习“5﹣7个小时”的扇形圆心角度数:360°×=18°;(3)1800×=45(人),答:估计全校一天在线学习“7小时以上”的学生人数为45人.21.如图,在8×4的网格中,每个小正方形的边长均为1,点A,B,C都是格点(小正方形的顶点),完成下列画图.(1)画出△ABC的重心P.(2)在已知网格中找出所有格点D,使点D与△ABC的其中两个顶点构成的三角形的面积与△ABC的面积相等.【分析】(1)重心是三角形的中线的交点,作△ABCD的中线CE,BF交于点P,点P 即为所求.(2)根据等高模型解决问题即可.解:(1)如图1中,点P即为所求.(2)如图2中,点D,D′,D″即为所求.22.如图,已知⊙C过菱形ABCD的三个顶点B,A,D,连结BD,过点A作AE∥BD交射线CB于点E.(1)求证:AE是⊙C的切线.(2)若半径为2,求图中线段AE、线段BE和围成的部分的面积.(3)在(2)的条件下,在⊙C上取点F,连结AF,使∠DAF=15°,求点F到直线AD的距离.【分析】(1)连接AC.证明AE⊥AC即可解决问题.(2)证明△ABC是等边三角形,推出∠ACB=60°,AE=AC•tan60°=2,根据S=S△AEC﹣S扇形ACB求解即可.阴(3)分两种情形:①如图2中,当点F在上时.②如图3中,当点F在优弧上时,分别求解即可.【解答】(1)证明:如图1中,连结AC,∵四边形ABCD是菱形,∴AC⊥BD,又∵BD∥AE,∴AC⊥AE,∴AE是⊙O的切线.(2)如图1中,∵四边形ABCD是菱形,∴AB=BC,又∵AC=BC,∴△ABC是等边三角形,∴∠ACB=60°,∵AC=2,∴AE=AC•tan60°=2,∴S阴=S△AEC﹣S扇形ACB=×2×2﹣=2﹣π.(3)①如图2中,当点F在上时,∵∠DAF=15°,∴∠DCF=30°,∵∠ACD=60°,∴∠ACF=∠FCD,∴点F是弧AD的中点,∴CF⊥AD,∴点F到直线AD的距离=CF﹣CA•cos30°=2﹣.②如图3中,当点F在优弧上时,∵∠DAF=15°,∴∠DCF=30°,过点C作CG⊥AD于D,过点F作FH⊥CG于H,可得∠AFH=15°,∠HFC=30°,∴CH=1,∴点F到直线AD的距离=CG﹣CH=AC•cos30°﹣CH=﹣1.综上所述,满足条件的点F到直线AD的距离为2﹣或﹣1.23.我们知道求函数图象的交点坐标,可以联立两个函数解析式组成方程组,方程组的解就是交点的坐标.如:求直线y=2x+3与y=﹣x+6的交点坐标,我们可以联立两个解析式得到方程组,解得,所以直线y=2x+3与y=﹣x+6的交点坐标为(1,5).请利用上述知识解决下列问题:(1)已知直线y=kx﹣2和抛物线y=x2﹣2x+3,①当k=4时,求直线与抛物线的交点坐标;②当k为何值时,直线与抛物线只有一个交点?(2)已知点A(a,0)是x轴上的动点,B(0,4),以AB为边在AB右侧做正方形ABCD,当正方形ABCD的边与反比例函数y=的图象有4个交点时,试求a的取值范围.【分析】(1)①由题意得:,解得,,即可求解;②利用△=0,即可求解;(2)分a>0、a<0两种情况,探讨正方形的边与反比例函数图象交点的情况,进而求解.解:(1)①由题意得:,解得:,,所以直线与抛物线的交点坐标是(1,2),(5,18);②联立两个函数并整理得:x2﹣(k+2)x+5=0,△=(﹣k﹣2)2﹣4×5=0,解得:k=﹣2;(2)①当a>0时,如图1,点A、B的坐标分别为:(a,0)、(0,4),由点A、B的坐标得,直线AB的表达式为:y=﹣x+4,当线段AB与双曲线有一个交点时,联立AB表达式与反比例函数表达式得:﹣x+4=,整理得:4x2﹣4ax+2a=0,△=(﹣4a)2﹣16×2a=0,解得:a=2,故当a>2时,正方形ABCD与反比例函数的图象有4个交点;②当a<0时,如图2,(Ⅰ)当边AD与双曲线有一个交点时,过点D作ED⊥x轴于点E,∵∠BAO+∠DAE=90°,∠DAE+∠ADE=90°,∴∠ADE=∠BAO,∵AB=AD,∠AOB=∠DEA=90°,∴△AOB≌△DEA(AAS),∴ED=AO=﹣a,AE=OB=4,故点D(a+4,a),由点A、D的坐标可得,直线AD的表达式为:y=a(x﹣a),联立AD与反比例函数表达式并整理得:ax2﹣a2x﹣16=0,△=(﹣a2)2﹣4a×(16)=0,解得:a=﹣4(不合题意值已舍去);(Ⅱ)当边BC与双曲线有一个交点时,同理可得:a=﹣16,所以当正方形ABCD的边与反比例函数的图象有4个交点时,a的取值范围为:﹣16<a <﹣4;综上所述,a的取值范围是a>2或﹣16<a<﹣4.24.如图1,矩形ABCD中,AB=8,BC=6,点E,F分别为AB,AD边上任意一点,现将△AEF沿直线EF对折,点A对应点为点G.(1)如图2,当EF∥BD,且点G落在对角线BD上时,求DG的长;(2)如图3,连接DG,当EF∥BD且△DFG是直角三角形时,求AE的值;(3)当AE=2AF时,FG的延长线交△BCD的边于点H,是否存在一点H,使得以E,H,G为顶点的三角形与△AEF相似,若存在,请求出AE的值;若不存在,请说明理由【分析】(1)连接AG,如图2所示,首先证明AG⊥BD,解直角三角形即可解决问题.(2)分两种情形:①当∠DGF=90°时,此时点D,G,E三点共线,②当∠GDF=90°时,点G在DC上,过点E作EH⊥CD于H,则四边形ADHE是矩形,分别求解即可.(3)分四种情形:①当△AEF∽△GHE时,如图4﹣1,过点H作HP⊥AB于P.②当△AEF∽△GHE时,如图4﹣2,过点H作HP⊥AB于P.③当△AEF∽△GEH时,如图4﹣3,过点G作MN∥AB交AD于点M,过点E作EN⊥MN于N.④当△AEF ∽△GEH时,如图4﹣4,过点G作MN∥AB交AD于点M,过点E作EN⊥MN于N,过点H作HQ⊥AD于Q,分别求解即可.解:(1)连接AG,如图2所示,由折叠得:AG⊥EF,∵EF∥BD,∴AG⊥BD,在矩形ABCD中,AB=8,BC=6,∴∠DAB=90°,AD=BC=6,∴DB===10,∴cos∠ADB===,∴DG=AD•cos∠ADB=6×=.(2)①当∠DGF=90°时,此时点D,G,E三点共线,设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,在Rt△DFG中,DG2+FG2=DF2,即DG2=(6﹣3t)2﹣(3t)2=36﹣36t,∵tan∠FDG==,∴=,解得t=,∴AE=.②当∠GDF=90°时,点G在DC上,过点E作EH⊥CD于H,则四边形ADHE是矩形,EH=AD=6.设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,∵∠FDG=∠FGE=∠EHG=90°,∴∠DGF+∠DFG=90°,∠DGF+∠EGH=90°,∴∠DFG=∠EGH,∴△GDF∽△EHG,∴==,∴==,∴DG=,GH=8﹣4k,∵DG+GH=AE,∴+8﹣4k=4k,∴k=,∴AE=.综上所述:AE=或.(3)①当△AEF∽△GHE时,如图4﹣1,过点H作HP⊥AB于P,∵∠AEF=∠FEG=∠EHG,∠EHG+∠HEG=90°,∴△FEG+∠HEG=90°,∴∠A=∠FEH=90°,∴△AEF∽△EHF,∴EF:HE=AF:AE=1:2,∵∠A=∠HPE=90°,∴∠AEF+∠HEP=90°,∠HEP+∠EHP=90°,∴∠AEF=∠EHP,∴△AEF∽△HPE,∴EA:HP=EF:EH=1:2,∵HP=6,∴AE=3.②当△AEF∽△GHE时,如图4﹣2,过点H作HP⊥AB于P,同法可得EF:HE=1:2,EA:HP=1:2,设AF=t,则AE=2t,EP=2t,HP=4t,∴BP=8﹣4t,∵△BHP∽△BDA,∴4t:6=(8﹣4t):8,解得:t=,AE=.③当△AEF∽△GEH时,如图4﹣3,过点G作MN∥AB交AD于点M,过点E作EN ⊥MN于N.设AF=t,则AE=2t,DF=6﹣t,由翻折可知:△AEF≌△GEF,AE=GE,∵△AEF∽△GEH,AE=GE,∴△AEF≌△GEH(AAS或ASA),∴FG=GH,∵MG∥DH,∴FM=(6﹣t),∴AM=EN=AF+FM=,又∵△FMG∽△GNE,且GF:GE=1:2,∵MG=NE=AM=,GN=2FN=6﹣t,∵MN=AE,∴+6﹣t=2t,解得t=,∴AE=.④当△AEF∽△GEH时,如图4﹣4,过点G作MN∥AB交AD于点M,过点E作EN ⊥MN于N,过点H作HQ⊥AD于Q,设AF=t,则AE=2t,设FM=a,∴NG=2a,NE=a+t,∴MG=EN=AM=,∴+2a=2t①,由上题可知:MF=MQ=a,QH=2MG=a+t,∴DQ=6﹣t﹣2a,∵=,∴=②,解得t=,∴AE=,综上所述,满足条件的AE的值为3或或或.。
2020年浙江省金华市中考数学第一次模拟试卷 Word解析版
![2020年浙江省金华市中考数学第一次模拟试卷 Word解析版](https://img.taocdn.com/s3/m/a1f9bce7011ca300a7c3905e.png)
2020年中考数学模拟试卷一、选择题1.点M(1,﹣2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)2.下列事件属于随机事件的是()A.明天的早晨,太阳从东方升起B.13人中至少有两人同生肖C.抛出一枚骰子,点数为0D.打开电视机,正在播放广告3.下列运算正确的是()A.a8÷a4=a2B.(a3)2=a6C.a2•a3=a6D.a4+a4=2a84.在下列立体图形中,三视图中没有圆的是()A.B.C.D.5.某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.6.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.7.如图,一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面的B点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为()A.B.C.4πD.6π8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则sin∠BAC的值为()A.B.C.D.9.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③5a﹣2b+c<0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的个数是()A.1B.2C.3D.410.如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有()A.2个B.3个C.4个D.5个二、填空题(本题有6小题,每题4分,满分24分,将答案填在答题纸上)11.因式分解:4x2﹣9=.12.数据2,9,8,4中最大值与最小值的差是.13.如图,D、E分别是△ABC的边BC、AB上的点,AD、CE相交于点F,AE=EB,BD=BC,则CF:EF=.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.15.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x >0)的图象上,已知点B的坐标是(,),则k的值为.16.如图,直线与x轴交于点A,与y轴交于点B,抛物线经过A、B两点,与x轴的另一个交点为C,点P是第一象限抛物线上的点,连结OP交直线AB于点Q,设点P的横坐为m,PQ与OQ的比值为y.(1)c=;(2)当y取最大值时,=.三、解答题:本题有8小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.计算:18.如图,在9×9网格中,每个小方格的边长看作单位1,每个小方格的顶点叫作格点,△ABC的顶点都在格点上.(1)请在网格中画出△ABC的一个位似图形△A1B1C,使两个图形以点C为位似中心,且所画图形与△ABC的相似比为2:1;(2)将△A1B1C绕着点C顺时针旋转90°得△A2B2C,画出图形,并在如图所示的坐标系中分别写出△A2B2C三个顶点的坐标.19.如图,在不是菱形的平行四边形ABCD中,E、F在对角线BD上,在以下三个条件中再选一个,①AE、CF分别是△ABD、△BCD的中线,②AE、CF分别是△ABD、△BCD的角平分线,③AE=CF.使得四边形AECF是平行四边形,并说明理由.20.某中学对本校2018届500名学生的中考体育测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图(图①,图②),请根据统计图提供的信息,解答下列问题:(1)该校毕业生中男生有人;扇形统计图中a=;500名学生中中考体育测试成绩的中位数是;(2)补全条形统计图;(3)从500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?21.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O的切线与AC的延长线交于点E,点D是弧BC的中点,连结AD交BC于点F.(1)求证:DE∥BC;(2)若AC=2,CF=1,求AB的长.22.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)若这种冰箱的售价降低50元,每天的利润是元;(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到更多的实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时利润最高,并求出最高利润.23.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.24.如图,在平面直角坐标系中,已知点A的坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线C:y=x2沿射线OA方向平移得到抛物线C',抛物线C'与直线x =2交于点P,设抛物线C'的顶点M的横坐标为m.(1)求抛物线C'的解析式(用含m的式子表示);(2)连结OP,当tan(∠OAB﹣∠AOP)=时,求点P的坐标;(3)点Q为y轴上的动点,以P为直角顶点的△MQP与△OAB相似,求m的值.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.点M(1,﹣2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.解:根据关于原点对称的点的坐标的特点,则点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故选:A.【点评】本题主要考查了关于原点对称的点的坐标的特点,比较简单.2.下列事件属于随机事件的是()A.明天的早晨,太阳从东方升起B.13人中至少有两人同生肖C.抛出一枚骰子,点数为0D.打开电视机,正在播放广告【分析】直接利用随机事件以及必然事件、不可能事件的定义分析得出答案.解:A、明天的早晨,太阳从东方升起,是必然事件,不合题意;B、13人中至少有两人同生肖,是必然事件,不合题意;C、抛出一枚骰子,点数为0,是不可能事件,不合题意;D、打开电视机,正在播放广告,是随机事件,符合题意.故选:D.【点评】此题主要考查了随机事件,正确掌握相关定义是解题关键.3.下列运算正确的是()A.a8÷a4=a2B.(a3)2=a6C.a2•a3=a6D.a4+a4=2a8【分析】分别根据同底数幂的除法、幂的乘方、同底数幂的乘法法则以及合并同类项等运算,然后选择正确选项.解:A、a8÷a4=a4,原式计算错误,故本选项错误;B、(a3)2=a6,原式计算正确,故本选项正确;C、a2•a3=a5,原式计算错误,故本选项错误;D、a4+a4=2a4,原式计算错误,故本选项错误.故选:B.【点评】本题考查了合并同类项、幂的乘方、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.4.在下列立体图形中,三视图中没有圆的是()A.B.C.D.【分析】根据三视图的概念求解.解:A、主视图、左视图是矩形,俯视图是圆,故A不符合题意;B、主视图、左视图都是三角形,俯视图是圆,故B不符合题意;C、主视图、左视图、俯视图都是正方形,故C符合题意;D、主视图、左视图、俯视图都是圆,故D不符合题意.故选:C.【点评】本题考查了简单几何体的三视图,从正面看得到的视图是主视图,从左边看得到的视图是左视图,从上面看得到的视图是俯视图.5.某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.解:画树状图得:∴一共有12种等可能的结果,甲、乙同学获得前两名的有2种情况,∴甲、乙同学获得前两名的概率是=;故选:D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【分析】设原计划每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.解:设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x 万平方米,依题意得:.故选:A.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.7.如图,一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面的B点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为()A.B.C.4πD.6π【分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理来求.解:把圆柱侧面展开,展开图如图所示,点A,B的最短距离为线段AB的长,BC=6,AC为底面半圆弧长,AC=2π,所以AB==.故选:A.【点评】此题主要考查了平面展开图的最短路径问题,本题的关键是要明确,要求两点间的最短线段,就要把这两点放到一个平面内,即把圆柱的侧面展开再计算.8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则sin∠BAC的值为()A.B.C.D.【分析】过B作BH⊥AC于H,根据三角形的面积公式得到BH,根据三角函数的定义即可得到结论.解:过B作BH⊥AC于H,∵S△ABC=BC•AD=AC•BH,∴BH==,∴sin∠BAC===,故选:B.【点评】本题考查了解直角三角形,三角形的面积的计算,正确的作出辅助线构造直角三角形是解题的关键.9.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③5a﹣2b+c<0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的个数是()A.1B.2C.3D.4【分析】根据二次函数的图象与系数的关系即可求出答案.解:①∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,不符合题意;②∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,符合题意;③∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故③正确,符合题意;④∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣0.5>﹣2,则y1<y2;故④错误,不符合题意;故选:B.【点评】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有()A.2个B.3个C.4个D.5个【分析】分别以EC为边,EC为对角线讨论可知满足条件的菱形.解:如图中,分别以EC为边,EC为对角线讨论可知满足条件的菱形有5个.故选:D.【点评】考查了菱形的判定,坐标与图形变化﹣对称,注意解题过程中“数形结合”数学思想的应用.二、填空题(本题有6小题,每题4分,满分24分,将答案填在答题纸上)11.因式分解:4x2﹣9=(2x+3)(2x﹣3).【分析】利用平方差进行分解即可.解:原式=(2x+3)(2x﹣3),故答案为:(2x+3)(2x﹣3).【点评】此题主要考查了因式分解,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.数据2,9,8,4中最大值与最小值的差是7.【分析】先从数据中找出最大的数和最小的数,然后用最大的数减去最小的数即可.解:在数据2,9,8,4中,最大的数是9,最小的数是2,所以最大值与最小值的差是:9﹣2=7.故答案为:7【点评】本题考查有理数大小比较,属于基础题型.13.如图,D、E分别是△ABC的边BC、AB上的点,AD、CE相交于点F,AE=EB,BD=BC,则CF:EF=12.【分析】作EH∥BC,根据△AEH∽△ABD,得到==,证明△CFD∽△EFH,根据相似三角形的性质列出比例式,计算即可.解:作EH∥BC交AD于H,则△AEH∽△ABD,∴==,∵BD=BC,∴CD=2BD,∴=,∵EH∥BC,∴△CFD∽△EFH,∴==12,即CF:EF=12,故答案为:12.【点评】本题考查的是相似三角形的判定和性质,掌握作辅助线构造相似三角形的一般方法是解题的关键.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为:﹣2<x<2.故答案为:﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.15.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x >0)的图象上,已知点B的坐标是(,),则k的值为8.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB =AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k 的值.解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的边长为2,B(,),∴BE=,AE==,∴OF=OE+AE+AF=++=5,∴点D的坐标为(,5),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=×5=8.故答案为:8.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.如图,直线与x轴交于点A,与y轴交于点B,抛物线经过A、B两点,与x轴的另一个交点为C,点P是第一象限抛物线上的点,连结OP交直线AB于点Q,设点P的横坐为m,PQ与OQ的比值为y.(1)c=3;(2)当y取最大值时,=.【分析】(1)对于,令x=0,则y=3,则点B(0,3),即可求解;(2)y=,求出点P(2,3),得到直线PB∥OA;再利用面积公式即可求解.解:(1)对于①,令x=0,则y=3,令y=0,则x=4,故点A、B的坐标分别为:(4,0)、(0,3);∵点B(0,3),∴c=3,故答案为3;(2)c=3,则抛物线的表达式为y=﹣x2+x+3,过点P作PH∥y轴交AB于点H,设点P(m,﹣m2+m+3),则点H(m,﹣m+3),∵PH∥y轴,则y==,整理得:y=﹣m2+m,∴<0,故y有最大值,此时m=2,故点P(2,3);而点B(0,3),即点P、B的纵坐标相同,故直线PB∥OA,设直线OP的表达式为:y=kx,将点P坐标代入上式并解得:k=,则直线OP的表达式为:y=x②,联立①②并解得:x=,y=2,即点Q(,2),故y Q=2,则△BPQ的高为3﹣2=1,===,故答案为.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,涉及到平行线分线段成比例、三角形面积计算,有一定的综合性,难度适中.三、解答题:本题有8小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.计算:【分析】首先根据负整数指数幂:a﹣p=(a≠0,p为正整数),特殊角的三角函数值、二次根式的性质和绝对值的性质进行计算,然后再算加减即可.解:原式=+4×﹣2﹣(π﹣3),=+2﹣2﹣π+3,=3﹣π.【点评】此题主要考查了实数运算,关键是熟练掌握负整数指数幂、特殊角的三角函数值、二次根式、绝对值等考点的运算.18.如图,在9×9网格中,每个小方格的边长看作单位1,每个小方格的顶点叫作格点,△ABC的顶点都在格点上.(1)请在网格中画出△ABC的一个位似图形△A1B1C,使两个图形以点C为位似中心,且所画图形与△ABC的相似比为2:1;(2)将△A1B1C绕着点C顺时针旋转90°得△A2B2C,画出图形,并在如图所示的坐标系中分别写出△A2B2C三个顶点的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.解:(1)如图所示;(2)如图所示:△A2B2C的三个顶点的坐标分别为:A2(7,﹣1),B2(7,5),C(3,3).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置解题关键.19.如图,在不是菱形的平行四边形ABCD中,E、F在对角线BD上,在以下三个条件中再选一个,①AE、CF分别是△ABD、△BCD的中线,②AE、CF分别是△ABD、△BCD的角平分线,③AE=CF.使得四边形AECF是平行四边形,并说明理由.【分析】由“ASA”可证△ABE≌△CDF,可得AE=CF,∠AEB=∠CFD,可证AE∥CF,可证四边形AECF是平行四边形.解:当AE、CF分别是△ABD、△BCD的角平分线,使得四边形AECF是平行四边形,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠BAD=∠BCD,∴∠ABD=∠CDB,∵AE、CF分别是△ABD、△BCD的角平分线,∴∠BAE=∠DAE=∠BCE=∠DCE,∵∠ABE=∠CDF,AB=CD,∠BAE=∠DCF,∴△ABE≌△CDF(ASA)∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,且AE=CF,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,证明△ABE ≌△CDF是本题的关键.20.某中学对本校2018届500名学生的中考体育测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图(图①,图②),请根据统计图提供的信息,解答下列问题:(1)该校毕业生中男生有300人;扇形统计图中a=12;500名学生中中考体育测试成绩的中位数是10分;(2)补全条形统计图;(3)从500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?【分析】(1)男生人数为20+40+60+180=300;8分对应百分数用8分的总人数÷500;(2)8分以下总人数=500×10%=50,其中女生=50﹣20,10分总人数=500×62%=310,其中女生人数=310﹣180=130,进而补全直方图;(3)可利用样本的百分数去估计总体的概率,即可求出答案.【解答】解(1)如图,男生人数为20+40+60+180=300,8分对应百分数为(40+20)÷500=12%,500名学生中中考体育测试成绩的中位数是10分.故答案为:300,12,10;(2)补图如图所示:(3)500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是=.【点评】本题考查的是条形统计图的综合运用以及概率的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O的切线与AC的延长线交于点E,点D是弧BC的中点,连结AD交BC于点F.(1)求证:DE∥BC;(2)若AC=2,CF=1,求AB的长.【分析】(1)如图,连接OD.证明DE⊥OD,BC⊥OD即可解决问题.(2)连接BD.证明△ACF∽△ADB∽△BDF,可得===2,设DF=m,则BD=2m,AD=4m,构建方程求出m即可解决问题.【解答】(1)证明:如图,连接OD.∵DE是⊙O的切线,∴DE⊥OD,∵=,∴OD⊥BC,∴DE∥BC.(2)解:连接BD.∵=,∴∠CAD=∠DAB=∠DBF,∵AB是直径,∴∠ACF=∠ADB=90°,∴△ACF∽△ADB∽△BDF,∴===2,设DF=m,则BD=2m,AD=4m,∵AF===,∵DF=AD﹣AF,∴m=4m﹣,∴m=,∴BD=,AD=,∴AB===.【点评】本题考查切线的性质,垂径定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)若这种冰箱的售价降低50元,每天的利润是4200元;(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到更多的实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时利润最高,并求出最高利润.【分析】(1)根据题意列式计算即可;(2)每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可;(3)设每台冰箱降价为x元,商场每天销售这种冰箱的利润为y元,根据题意易求y与x之间的函数表达式.利用二次函数的性质可求出y的最大值.解:(1)根据题意,得(8+4×)×(2400﹣50﹣2000)=4200元,故答案为:4200;(2)设出每台冰箱应降价x元,由题意得:(2400﹣2000﹣x)(8+×4)=4800,﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0,解这个方程,得x1=100,x2=200,要使百姓得到实惠,取x=200元,∴每台冰箱应降价200元;(3)设每台冰箱降价为x元,商场每天销售这种冰箱的利润为y元,根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元,售价2250元时,商场的利润最大,最大利润是5000元.【点评】本题考查了二次函数的应用,二次函数的最值,列出关系式并整理成顶点式形式是解题的关键.23.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.【分析】(1)证明△ABD≌△CBD(SSS),得到BD是AC的中垂线,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,即可求解;(2)①证明△ACP≌△ADQ(SAS)、△ACQ≌△DCQ(SSS)、△AKQ≌△QHP(AAS)得到QK=PH,即可求解;②证明∠QCR=60°,则QM=CQ sin∠QCM=CQ,CM=CQ,故点Q(3+CQ,CQ),即可求解.解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠PAQ=60°=∠PAC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠PAC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故PA=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠PAH,PA=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).【点评】本题考查的是反比例函数综合运用,涉及到一次函数的性质、三角形全等、解直角三角形等,综合性很强,难度大.24.如图,在平面直角坐标系中,已知点A的坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线C:y=x2沿射线OA方向平移得到抛物线C',抛物线C'与直线x =2交于点P,设抛物线C'的顶点M的横坐标为m.(1)求抛物线C'的解析式(用含m的式子表示);(2)连结OP,当tan(∠OAB﹣∠AOP)=时,求点P的坐标;(3)点Q为y轴上的动点,以P为直角顶点的△MQP与△OAB相似,求m的值.【分析】(1)设点M(m,2m),根据平移法则即可求解;(2)用两种方法表示出三角形的面积,即S△OAH=S△OBH﹣S△OBA=•OH•h,S△AOP =S△OAB﹣S△OBP=OP×h,利用两个三角形高相同,进而求解;(3)△MQP与△OAB相似,则;△PGQ∽△MNP,则,即可求解.解:(1)设直线OA的解析式为y=kx,将点A(2,4)代入y=kx中,得2k=4,∴k =2,∴直线OA的解析式为y=2x,∵点M在射线OA上,且点M的横坐标为m,∴点M(m,2m),∵抛物线C'是抛物线C:y=x2平移所得,∴抛物线C'的解析式为y=(x﹣m)2+2m;(2)如图1,连接OP,过点O作直线OH交BA的延长线于点H,使∠HOA=∠AOP,∵∠OHA=∠OAB﹣∠HOA=∠OAB﹣∠AOP,则tan∠OHA=,则sin∠OHA=,在Rt△OBH中,OH==,∵∠HOA=∠AOP,∴点A到OH的距离等于点A到OP的距离,设这个距离为h,设点P的坐标为(2,t),则OP=,则S△OAH=S△OBH﹣S△OBA=2×4﹣2×t=OH•h=××h,解得:h=,同理S△AOP=S△OAB﹣S△OBP=×2×4﹣×2×t=OP×h=×,整理得:24t2﹣202t+399=0,解得:t=或(舍去),故点P的坐标为:(2,);(3)如图2,∵△MQP与△OAB相似,∴,即;由(1)知:抛物线C'的解析式为y=(x﹣m)2+2m,点M(m,2m),当x=2时,y=(x﹣m)2+2m=m2﹣2m+4,故点P(2,m2﹣2m+4),过点Q作QG⊥AB交BA的延长线于点G,作MN⊥AB于点N,则GQ=OB=2,PN=(m2﹣2m+4)﹣2m=m2﹣4m+4;∵∠MPN+∠PMN=90°,∠MPN+∠QPG=90°,∴∠QPG=∠PMN,而∠PGQ=∠MNP=90°,∴△PGQ∽△MNP,∴,即,解得:m=0或1或3或4(舍去0),故m=1或3或4.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形相似、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2020年浙江省金华市中考数学模拟试卷(一)
![2020年浙江省金华市中考数学模拟试卷(一)](https://img.taocdn.com/s3/m/2cefba07c850ad02de80419e.png)
2020年浙江省金华市中考数学模拟试卷(一)
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.点M(1,﹣2)关于原点对称的点的坐标是()
A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)
2.(3分)下列事件属于随机事件的是()
A.明天的早晨,太阳从东方升起
B.13人中至少有两人同生肖
C.抛出一枚骰子,点数为0
D.打开电视机,正在播放广告
3.(3分)下列运算正确的是()
A.a8÷a4=a2B.(a3)2=a6C.a2•a3=a6D.a4+a4=2a8
4.(3分)在下列立体图形中,三视图中没有圆的是()
A.B.
C.D.
5.(3分)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()
A.B.C.D.
6.(3分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x万平方米,则下面所列方程中正确的是()
A.B.。
2020年浙江省初中毕业生学业一模考试数学试题(附答案)
![2020年浙江省初中毕业生学业一模考试数学试题(附答案)](https://img.taocdn.com/s3/m/a62380606bd97f192279e9a3.png)
浙江省初中毕业生学业一模考试数学试题参考公式:二次函数y=ax 2+bx+c 的顶点坐标是)4ab 4ac ,2a b (2--.试题卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.下列四个数2-,0,0.5,2中,属于无理数...的是( ▲ ) A .2-B .0C .0.5D .22.如图,桌面上有一个一次性纸杯,它的主视图应是( ▲ )A .B .C .D .3.要使分式21x x +-有意义,则x 的取值应满足( ▲ ) A .2x ≠- B .1x ≠ C .2x =- D .1x =4.一次函数24y x =+的图象与x 轴的交点坐标是( ▲ )A .(-2,0)B .(0,-2)C .(4,0)D .(0,4)5.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数 是( ▲ )A .7环B .8环C .9环D .10环6.如图,AC 是旗杆AB 的一根拉线,测得BC =6米,ACB ∠=50°,则拉线AC 的长为( ▲ ) A .6sin 50︒ B .6cos50︒ C .6sin 50︒ D .6cos50︒B ACl 1l 2321(第6题图) (第7题图)7.如图,直线1l ∥2l ,1∠=35°,2∠=75°,则3∠等于( ▲ )A .55°B .60°C .65°D .70° 8.小明为研究反比例函数2y x=的图象,在-2、-1、1中任意取一个数为横坐标,在-1、2中任意取一个数为纵坐标组成点P 的坐标,点P 在反比例函数2y x=的图象上的概率是( ▲ )A .16B .13C .12D .23(第2题图) 主视方向9.如图,Rt ABC ∆中,90ACB ∠=︒,30B ∠=︒,AC A B C ''∆, 使得点A '恰好落在AB 上,A B ''与BC 交于点D ,则A .32B .C .3D .23(第9题图) (第10题图)10.如图,矩形OABC 的顶点A 在y 轴上,C 在x 轴上,双曲线ky x=与AB 交于点D ,与BC 交于点E , DF x ⊥轴于点F ,EG y ⊥轴于点G ,交DF 于点H ,若矩形OGHF 和矩形HDBE 的面积分别是1和2,则k 的值为( ▲ ) A .125 B .21+ C .52D . 22 试题卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:23a a -= ▲ . 12.方程240x -=的解是 ▲ .13.如图,已知AB ∥CD ∥EF ,若:AC CE =2:3,BD =6,那么BF = ▲ .14.如图,AB 是O e 的直径,点C ,D 在O e 上,且在AB 的同侧,若40AOD ∠=︒,则C ∠的度数 为 ▲ .FED C B ABOADC(第14题图) (第15题图) (第16题图)15.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与 宽之比为5:3,则:AD AB = ▲ .16.如图,在四边形ABCD 中,AD ∥BC ,B Rt ∠=∠,60C ∠=︒,AD =4,CD =8,点E 在BC 上,点F 在C D 上,现将四边形ABCD 沿EF 折叠,若点C 洽与点A 重合,EF 为折痕, 则CE = ▲ , sin AFE ∠= ▲ . 三、解答题(本题有8小题,共80分)17.(本题10分)(1016(3)tan 45π--︒; (2)化简:2(2)(3)x x x +--.B'D A'CA BxH F G E D C A O B yFEAD B C18.(本题6分)如图,在直角坐标系中有一个格点三角形ABC (顶点都在格点上的三角形),已知A (- 2,1),B (- 3,4),C (- 4,1),直线MN 过点M (2,5),N (5,2).(1)请在图中作出格点三角形ABC 关于x 轴对称的格点三角形'''A B C (A ,B ,C 的对应点依次为'A ,'B ,'C );(2)连结AM ,AN ,则tan MAN ∠= .19.(本题8分)如图,已知A (-2,-2)、B (n ,4)是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式; (2)求AOB ∆的面积.20.(本题10分)如图,在正方形ABCD 中,点G 是CD 上任意一点,连接BG ,作AE BG ⊥于点E ,CF BG ⊥于点F .(1)求证:BE CF =; (2)若BC =2,65CF =,求EF 的长. G FEDC BA(第20题图)(第19题图)BAO xy(第18题图)21.(本题10分)某校举办初中生演讲比赛,每班派一名学生参赛,现某班有A 、B 、C 三名学生竞选,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图①:A B C 笔试 85 95 90 口试▲8085(1)请将表和图1中的空缺部分补充完整;(2)竞选的最后一个程序是由本校的300名学生代表进行投票,每票计1分,三名候选人的得票情况如图2(没有弃权票,每名学生只能推荐一人).①若将笔试、口试、得票三项测试得分按4:3:3的比例确定最后成绩,请计算学生A 的最后成绩; ②若规定得票测试分占20%,要使学生B 最后得分不低于91分,则笔试成绩在总分中所占比例的取值范围应是 ▲ .22.(本题10分)如图,在O e 中,AOB ∠=150°,ABC ∠=45°.延长OB 到D ,使BD OB =,连结CD . (1)求证:CD 与O e 相切;(2)若CD =6,求弓形BC (劣弧所对)的面积. (结果保留π和根号)23.(本题12分)今年3月12日植树节前夕,我校购进A 、B 两个品种的树苗,已知A 种比B 种每株多20元,买1株A 种树苗和2株B 种树苗共需110元. (1)问A 、B 两种树苗每株分别是多少元?(2)4月,为美化校园,学校花费4000元再次购入A 、B 两种树苗,已知A 种树苗数量不少于B 种数量的一半,则此次至多购买B 种树苗多少株?C 25%B 40%A 35%笔试口试CB A竞选人分数/分757080859095100(第22题图)DBOAC图1图224.(本题14分)如图,抛物线2(0)y ax bx c a =++≠的图象经过点A ,B ,C ,已知点A 的坐标为 (-3,0),点B 坐标为(1,0),点C 在y 轴的正半轴,且CAB ∠=30°. (1)求抛物线的函数解析式;(2)若直线l :y =3x +m 从点C 开始沿y 轴向下平移,分别交x 轴、y 轴于点D 、E .①当m >0时,在线段AC 上否存在点P ,使得点P ,D ,E 构成等腰直角三角形?若存在,求出 点P 的坐标;若不存在,请说明理由.②以动直线l 为对称轴,线段AC 关于直线l 的对称线段A C '' 与二次函数图象有交点,请直接写出 m 的取值范围.lD A C O BExylD AC OBExy(第24题图) 备用图参考答案一、选择题(本题有10小题,每小题4分,共40分.) 1 2 3 4 5 6 7 8 9 10 DABACDDBAB二、填空题(本题有6小题,每小题5分,共30分)三、解答题(本题有8小题,共80分)17.(本题10分)(1)解:016(3)tan 45π+--︒;411=+- ......(3分)4= ......(2分)(2)化简:2(2)(3)x x x +--解:原式= 22443++-+x x x x ......(3分) = 74+x ......(2分) 18. (本题6分)(1) 作出△'''A B C ...... (3分) (2) 3tan 4∠=MAN ...... (3分)19.(本题8分)11 12 13 14 15 16 (3)-a a 122,2=-=x x 15110°47:297,5714解:(1)把A (-2,-2)代入=my x,可得:4=m ∴4=y x......(1分) C 把B (n ,4)代入4=y x,可得:1=n ......(1分)把A (-2,-2), B (n ,4)代入=+y kx b ,可得:⎩⎩∴22=+y x ......(2分)(2)将一次函数22=+y x 与y 轴的交点记为C (0,2)......(1分) ∴112221322∆∆∆=+=⨯⨯+⨯⨯=AOB AOC BOC S S S ......(3分)20.(本题10分)证明:(1)∵AE ⊥BG, CF ⊥BG,∴∠AEB=∠BFC=90°......(1分)又∵∠ABE+∠FBC=90°, ∠ABE+∠BAE=90°∴∠FBC =∠BAE......(2分) ∵AB=BC∴△ABE ≌△BCF......(1分) ∴BE=CF ......(1分) (2)∵CF ⊥BG, BC=2, CF=65∴BF 222268255⎛⎫=-=-= ⎪⎝⎭BC CF ......(3分)又∵BE=CF=85......(1分) ∴EF=BF-BE=862555=-=......(1分)21.(本题10分)(1)90......(1分),C 口试补充如下......(1分)BA O xyG FE DCBA(第20题图)(2)①A 得票情况:30035%105? ...... (1分)A 的最后成绩:8549031053433???++ ...... (3分)92.5= ...... (1分)答:A 的最后成绩为92.5分. ②取值范围:0.2x 0.8# ...... (3分)22.(本题10分) 解:(1)连结OC , ∵OA=OB,∠AOB=150°∴∠OAB=∠OBA=15°......(1分) 又∵∠ABC=45°∴∠OBC=60° ......(1分) ∵OC=OB ,BD=OB∴∠OCB=60°,∠BCD=∠D=30°......(2分) ∴∠OCD=90°∴半径OC ⊥CD......(1分) ∴CD 与⊙O 相切 (2)作OH ⊥BC ,∵∠COB=60°,OB=OC∴∠COH=30°,∴32OH OC =......(1分)在Rt △OCD 中,∠D=30°,CD=6∴23OC = ......(1分 ∴OH=3......(1分)∴S 弓形AB =S 扇形OBC -S △OBC = ()2601232332333602ππ⨯-⨯⨯=- ....(2分) 23.(本题12分)解:(1)设A 种树苗每株x 元,B 种树苗每株y 元,可得方程202110x y x y -=⎧⎨+=⎩......(4分)解得5030x y =⎧⎨=⎩∴A 种树苗每株50元,B 种树苗每株30元 ......(2分) (2)设购买A 种树苗a 株,B 种树苗b 株。
2020年浙江省金华市初中毕业生学业水平考试初中数学
![2020年浙江省金华市初中毕业生学业水平考试初中数学](https://img.taocdn.com/s3/m/c5290047b7360b4c2f3f6430.png)
2020年浙江省金华市初中毕业生学业水平考试初中数学数 学 试 题 卷考生须知:1.全卷共三大题,24小题,总分值为120分.考试时刻为100分钟,本次考试采纳开卷形式.2.全卷分试卷Ⅰ〔选择题〕和试卷Ⅱ〔非选择题〕两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔答在答题纸的相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.卷 Ⅰ讲明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(此题有10小题,每题3分,共30分)1.假如+3吨表示运入仓库的大米吨数, 那么运出5吨大米表示为〔 〕A .-5吨B .+5吨C .-3吨D .+3吨2.化简()a b a b ++-的最后结果是〔 〕 A.2a +2bB.2bC.2aD.03.在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小.小亮在观看左边的热水瓶时,得到的左视图是〔 〕4.2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川那个地点位置的是〔 〕A.北纬31oB.东经103.5oC.金华的西北方向上D.北纬31o ,东经103.5o 5.金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并运算得到质量的方差如表所示,你认为包装质量最稳固的切割包装机是〔〕包装机甲乙丙方差(克2) 1.70 2.29 7.22A.甲B.乙C.丙D.不能确定6.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜, 光线从点A动身经平面镜反射后刚好射到古城墙CD的顶端C处, AB⊥BD,CD⊥BD, 且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是〔〕A. 6米B. 8米C. 18米D.24米7.如图, CD为⊙O的直径,过点D的弦DE平行于半径OA,假设∠D的度数是50o,那么∠C 的度数是〔〕A.50oB. 40oC. 30oD.25o8.在a2□4a□4的空格□中,任意填上〝+〞或〝-〞,在所有得到的代数式中,能构成完全平方式的概率是〔〕A.1B.12C.13D.149.某抗震蓬的顶部是圆锥形,那个圆锥的底面直径为10米,母线长为6米,为了防雨,需要在它的顶部铺上油毡,所需油毡的面积至少是〔〕A.30米2B.60米2C.30π米2D.60π米210.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先动身,从部队基地到该小镇只有唯独通道,且路程为24km.如图是他们行走的路程关于时刻的函数图象,四位同学观看此函数图象得出有关信息,其中正确的个数是〔〕A.1B.2C.3D.4卷 Ⅱ讲明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (此题有6小题,每题4分,共24分) 11.分式11x x +-的值为0,那么x 的值为 . 12.相交两圆的半径分不为6cm 和8cm ,请你写出一个符合条件的圆心距为 cm . 13.假如x +y =-4,x -y =8,那么代数式x 2-y 2的值是 .14.如图是我市某景点6月份1~10日每天的最高温度折线统计图.由图中信息可知该景点这10天最高温度的中位数是 ℃.15.把两块含有30o 的相同的直角三角尺按如下图摆放,使点C 、B 、E 在同一直线上,连结CD ,假设AC =6cm ,那么△BCD 的面积是 cm 2.16.如图,第〔1〕个多边形由正三角形〝扩展〞而来,边数记为3a ,第〔2〕个多边形由正方形〝扩展〞而来,边数记为4a ,…,依此类推,由正n 边形〝扩展〞而来的多边形的边数记为n a 〔n ≥3〕.那么5a 的值是 ,当3451111n a a a a +++⋅⋅⋅+的结果是197600时,n 的值 . 甲队到达小镇用了6小时,途中停顿了1小时甲队比乙队早动身2小时,但他们同时到达乙队动身 2.5小时后追上甲队乙队到达小镇用了4小时,平均速度是6km /h1 2 3 4 5 6 时刻〔h 〕24 0 4.5 12路程〔km 〕三、解答题 (此题有8小题,共66分,各小题都必须写出解答过程) 17.(此题6分)〔1〕运算:102(2008)3cos30π---+ 〔2〕解不等式:5x -3<1-3x18.(此题6分)如图,在△ABC 和△DCB 中,AC 与BD 相交于点O ,AB =DC ,AC =BD . 〔1〕求证: △ABC ≌△DCB ;〔2〕△OBC 的形状是 (直截了当写出结论,不需证明).19.(此题6分)在平面直角坐标系中, △ABC 的三个顶点的位置如下图,点A'的坐标是〔-2,2〕, 现将△ABC 平移,使点A 变换为点A', 点B ′、C ′分不是B 、C 的对应点.〔1〕请画出平移后的像△A'B'C'〔不写画法) ,并直截了当写出点B ′、C ′的坐标: B ′ 〔 〕 、C ′ 〔 〕 ;〔2〕假设△ABC 内部一点P 的坐标为〔a ,b 〕,那么点P 的对应点P ′的坐标是 〔 〕 . 〔温馨提示:作图时,不忘了用黑色字迹的钢笔或签字笔描黑喔!〕 20.(此题8分)如图, CD 切⊙O 于点D ,连结OC , 交⊙O 于点B,过点B 作弦A B ⊥OD ,点E 为垂足,⊙O的半径为10,sin∠COD=4 5 .求:〔1〕弦A B的长;〔2〕CD的长;〔3〕劣弧AB的长〔结果保留三个有效数字, sin53.13o≈0.8, ≈3.142〕.21.(此题8分)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如下图的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.〔1〕求该抛物线的解析式;〔2〕假如小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;〔3〕假如身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超.过.她的头顶,请结合图像,写出t的取值范畴.22.(此题10分)九(3)班学生参加学校组织的〝绿色奥运〞知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段显现的频数,填入频数分布表,并绘制频数分布直方图.九(3)班〝绿色奥运〞知识竞赛成绩频数分布表分数段〔分〕49.5~59.559.5~69.569.5~79.579.5~89.589.5~99.5组中值54.5 64.5 74.5 84.5 94.5〔分〕频数 a 9 10 14 5频率0.050 0.225 0.250 0.350 b〔1〕频数分布表中a= ,b= ;〔2〕把频数分布直方图补充完整;〔3〕学校设定成绩在69.5分以上的学生将获得一等奖或二等奖, 一等奖奖励作业本15本及奖金50元, 二等奖奖励作业本10本及奖金30元,这部分学生共获得作业本335本,请你求出他们共获得的奖金.23.(此题10分)如图1,双曲线(0)ky kx=>与直线y k x'=交于A,B两点,点A在第一象限.试解答以下咨询题:〔1〕假设点A的坐标为〔4,2〕,那么点B的坐标为;假设点A的横坐标为m, 那么点B的坐标可表示为;〔2〕如图2,过原点O作另一条直线l,交双曲线(0)ky kx=>于P,Q两点,点P在第一象限.①讲明四边形APBQ一定是平行四边形;②设点A,P的横坐标分不为m,n, 四边形APBQ可能是矩形吗?可能是正方形吗?假设可能, 直截了当写出m,n应满足的条件;假设不可能,请讲明理由.24.(此题12分)九(3)班〝绿色奥运〞知识竞赛成绩54.5 64.5 74.5 84.5 94.5频数(人)成绩(分)810121491014如图,在平面直角坐标系中,△AOB是等边三角形,点A的坐标是〔0,4〕,点B在第一象限,点P是x轴上的一个动点,连结AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.〔1〕求直线AB的解析式;〔2〕当点P运动到点〔3,0〕时,求现在DP的长及点D的坐标;〔3〕是否存在点P,使△OPD的面积等于34,假设存在,要求出符合条件的点P的坐标;假设不存在,请讲明理由.。
浙江省金华市2019-2020学年中考数学一模试卷含解析
![浙江省金华市2019-2020学年中考数学一模试卷含解析](https://img.taocdn.com/s3/m/9b46a98e0740be1e650e9ad1.png)
浙江省金华市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P 截得的弦AB的长为42,则a的值是()A.4 B.3+2C.32D.33+2.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.73.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A.5B.51-C.12D.14.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.5.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A .B .C .D .6.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是( )A .B .C .D .7.最小的正整数是( )A .0B .1C .﹣1D .不存在8.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( )A .1或5B .5-或3C .3-或1D .3-或59.如图,A,B 两点分别位于一个池塘的两端,小聪想用绳子测量A,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B 的点C,找到AC,BC 的中点D,E,并且测出DE 的长为10m,则A,B 间的距离为( )A .15mB .25mC .30mD .20m10.如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .11.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A.115°B.120°C.130°D.140°12.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.14.计算:(π﹣3)0﹣2-1=_____.15.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.16.一次函数y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲ (结果保留π).18.方程3211xx x---=1的解是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.20.(6分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.21.(6分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?22.(8分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.23.(8分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24.(10分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?25.(10分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.26.(12分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)27.(12分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D 点坐标为(3,3),∴CD=3,∴△OCD 为等腰直角三角形,∴△PED 也为等腰直角三角形,∵PE ⊥AB ,∴AE=BE=12AB=12×, 在Rt △PBE 中,PB=3,∴,∴,∴.故选B .考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.2.C【解析】【分析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.B【解析】分析:由于点P 在运动中保持∠APD=90°,所以点P 的路径是一段以AD 为直径的弧,设AD 的中点为Q ,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=221512⎛⎫+=⎪⎝⎭,∴CP=QC-QP=51-,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.4.D【解析】【分析】根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.5.B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为2、2、10、只有选项B的各边为1、2、5与它的各边对应成比例.故选B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.6.C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.7.B【解析】【分析】根据最小的正整数是1解答即可.【详解】最小的正整数是1.故选B .【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答.8.D【解析】【分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h<时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可.【详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上, ∴①若13h x <-≤≤,当1x =-时,y 取得最小值4,可得:24(1)h =--4,解得3h =-或1h =(舍去);②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4,∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4,可得:24(3)h =-,解得:h=5或h=1(舍).综上所述,h 的值为-3或5,故选:D .【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键. 9.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm ,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.10.D【解析】【分析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.11.A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.12.A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.41【解析】【分析】已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.【详解】依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac是解决问题的关键.14.【解析】【分析】分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可.【详解】解:(π﹣3)0﹣2-1=1-=.故答案为:.【点睛】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.15.3 5【解析】【分析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可. 【详解】∵点A坐标为(3,4),∴OA=2234=5,∴cosα=35,故答案为3 5【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.16.x>1【解析】分析:题目要求kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.详解:∵kx+b>0,∴一次函数的图像在x 轴上方时,∴x的取值范围为:x>1.故答案为x>1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.17.【解析】【分析】【详解】过D点作DF⊥AB于点F.∵AD=1,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=1.∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=.故答案为:.18.x=﹣4【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解. 【详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】【分析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD 的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB 两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:9303b cc-++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O 关于BC 的对称点O′,则O′(1,1).∵O′与O 关于BC 对称, ∴PO=PO′.∴OP+AP=O′P+AP≤AO′. ∴OP+AP 的最小值=O′A=()()221330--+-=2.O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97 ,127) (1)y=﹣x 2+2x+1=﹣(x ﹣1)2+4, ∴D (1,4).又∵C (0,1,B (1,0),∴2,2,5 ∴CD 2+CB 2=BD 2, ∴∠DCB=90°.∵A (﹣1,0),C (0,1), ∴OA=1,CO=1. ∴13AO CD CO BC ==. 又∵∠AOC=DCB=90°, ∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB .如图所示:连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ 为直角三角形,CO ⊥AQ , ∴△ACQ ∽△AOC . 又∵△AOC ∽△DCB , ∴△ACQ ∽△DCB . ∴CD AC BD AQ =21025=AQ=3. ∴Q (9,0).综上所述,当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似. 【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.20.(1)223y x x =+-32m =-时,S 最大为278(1)(-1,1)或33333322⎛-- ⎝⎭,或33333322⎛-+ ⎝⎭,或(1,-1) 【解析】试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式. (2)设出M 点的坐标,利用S=S △AOM +S △OBM ﹣S △AOB 即可进行解答;(1)当OB 是平行四边形的边时,表示出PQ 的长,再根据平行四边形的对边相等列出方程求解即可;当OB 是对角线时,由图可知点A 与P 应该重合,即可得出结论. 试题解析:解:(1)设此抛物线的函数解析式为:y=ax 2+bx+c (a≠0),将A (-1,0),B (0,-1),C (1,0)三点代入函数解析式得:93030a b c c a b c -+=⎧⎪=-⎨⎪++=⎩ 解得123a b c =⎧⎪=⎨⎪=-⎩:,所以此函数解析式为:223y x x =+-.(2)∵M 点的横坐标为m ,且点M 在这条抛物线上,∴M 点的坐标为:(m ,223m m +-),∴S=S △AOM +S △OBM -S △AOB =12×1×(-223m m +-)+12×1×(-m )-12×1×1=-(m+32)2+278, 当m=-32时,S 有最大值为:S=278-. (1)设P (x ,223x x +-).分两种情况讨论: ①当OB 为边时,根据平行四边形的性质知PB ∥OQ , ∴Q 的横坐标的绝对值等于P 的横坐标的绝对值, 又∵直线的解析式为y=-x ,则Q (x ,-x ). 由PQ=OB ,得:|-x-(223x x +-)|=1解得: x=0(不合题意,舍去),-1, 333-±,∴Q 的坐标为(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,; ②当BO 为对角线时,如图,知A 与P 应该重合,OP=1.四边形PBQO 为平行四边形则BQ=OP=1,Q 横坐标为1,代入y=﹣x 得出Q 为(1,﹣1).综上所述:Q 的坐标为:(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,或(1,-1).点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.21.(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x 2+100x+2000,当x=5时,商场获取最大利润为2250元. 【解析】 【分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【详解】解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5时,y取得最大值为2250元.答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【点睛】本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式.22.(1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;(3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C 1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C 1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).【详解】(1)抛物线的解析式为y=(x-4)(x+2)=x2-x-4.(2)连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=× 4m+× 4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=4,CD=C 1D=,AD=4-=3,设点P,过P作PQ垂直于x轴,垂足为Q.∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴,即,化简得=(8-2n),即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-,或n=-,或n=4(舍去),∴点P的横坐标为-或-.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.23.(1)1m.(1)1.5 m.【解析】【分析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=221.6 1.2求出即可;(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【详解】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,DF==1.答:DF长为1m.(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1•sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E点离墙面AB的最远距离为1.5 m.【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
浙江省金华市2020年中考数学仿真模拟考试题(含答案)
![浙江省金华市2020年中考数学仿真模拟考试题(含答案)](https://img.taocdn.com/s3/m/35a57395eff9aef8951e0620.png)
浙江省金华市2020年中考数学仿真模拟考试题一.选择题(共10小题,满分30分,每小题3分)1.向北行驶3km,记作+3km,向南行驶2km记作()A.+2 km B.﹣2 km C.+3 km D.﹣3 km2.计算a6÷a2的结果是()A.a2B.a3C.a4D.a53.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.04.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.3、1、1D.4、6、95.从一个物体的不同方向看到的是如图所示的三个图形,则该物体的形状为()A.圆柱B.棱柱C.球D.圆锥6.在一个不透明的口袋中装有2个红球和若干个黑球,这些球除颜色外其他都相同,将袋中的球搅匀,从中任意摸出一个球,是黑球的概率是,则袋中原有黑球()A.2B.3C.4D.67.在如图所示的网格中有M,N,P,Q四个点,鹏鹏在该网格中建立了一个平面直角坐标系,然后得到点M的坐标为(﹣3,﹣1),点P的坐标为(0,﹣2),则点N和点Q的坐标分别为()A.(2,1),(1,﹣2)B.(1,1),(2,﹣2)C.(2,1),(﹣1,2)D.(1,1),(﹣2,2)8.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1B.k<1C.k≥1D.k≤19.如图,将直角三角形ABC(∠BAC=90°)绕点A逆时针旋转一定角度得到直角三角形ADE,若∠CAE=65°,若∠AFB=90°,则∠D的度数为()A.60°B.35°C.25°D.15°10.如图①,一个立方体铁块放置在圆柱形水槽内,现以每秒固定的流量往水槽中注水,28秒时注满水槽,水槽内水面的高度y(厘米)与注水时间x(秒)之间的函数图象如图②所示,则圆柱形水槽的容积(在没放铁块的情况下)是()A.8000cm3B.10000 cm3C.2000πcm3D.3000πcm3二.填空题(共6小题,满分24分,每小题4分)11.分解因式:4﹣m2=.12.一组数据30,18,24,26,33,28的中位数是.13.若x﹣2y=4,则4x﹣8y﹣2=.14.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为米.15.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC =60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三.解答题(共8小题,满分66分)17.计算:4cos30°﹣+20180+|1﹣|18.解分式方程:﹣=1.19.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△P AB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△P AB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.如图①,在平行四边形OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求∠OAB的度数;(2)如图②,点E在⊙O上,连接CE与⊙O交于点F,若EF=AB,求∠COE的度数.22.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.23.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.浙江省金华市2020年中考数学仿真模拟考试题参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:向北行驶3km,记作+3km,向南行驶2km记作﹣2km,故选:B.2.解:a6÷a2=a4,故选:C.3.解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.4.解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.5.解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:D.6.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故选:C.7.解:如图建立平面直角坐标系,则点N和点Q的坐标分别为(1,1),(﹣2,2),故选:D.8.解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠BAD=∠CAE=65°,∠B=∠D,∵∠AFB=90°,∴∠B=90°﹣∠BAD=25°,∴∠B=∠D=25°.故选:C.10.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正方体的棱长为10cm;∴正方体的体积为:103=1000cm3设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:解得:∴圆柱形水槽的容积为:400×20=8000 cm3故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).12.解:数据30,18,24,26,33,28的中位数是,故答案为:2713.解:∵x﹣2y=4,∴原式=4(x﹣2y)﹣2=16﹣2=14.故答案为:14.14.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==(米).故答案为:.15.解法一:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法二:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法三:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,设BD=a,则EF=a,∵点A(2,3)和点B(0,2),∴DF=2﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴2﹣a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).16.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共8小题,满分66分)17.解:原式==2﹣2+1+﹣1=.18.解:去分母得:4x2+10x﹣2x+5=4x2﹣25,解得:x=﹣,经检验x=﹣是分式方程的解.19.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.20.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△P AB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△P AB如图所示.21.解:(1)如图①,连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠OAB=45°;(2)如图②,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°,∴∠COE=180°﹣45°﹣30°=105°.22.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;23.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.。
2020年浙江金华中考模拟试卷数学试题
![2020年浙江金华中考模拟试卷数学试题](https://img.taocdn.com/s3/m/26a687a367ec102de3bd8994.png)
2020年浙江金华中考模拟卷数学考试题号一二三总分评分一、选择题(本题有10小题,每小题3分,共30分)1.下列各组数中,不是互为相反数的是()A. 与B. 与C. 与D. 与2.下列运算正确的是()A. B. C. D.3.下列各组数中,能作为一个三角形的三边边长的是()A. 1,2,3B. 2,3,4C. 2,4,1D. 2,5,24.已知一组数据的方差是3,则这组数据的标准差是()A. B. 3 C. D. 95.同时掷两枚质地均匀的硬币,出现结果是“一正一反”的概率为()A. B. C. D.6.如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是()A. AB. BC. CD.D7.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A. (x+1)2=6B. (x﹣1)2=6C. (x+2)2=9D. (x﹣2)2=98.如图,点是矩形的对角线上一点,正方形的顶点、都在边上,,,则的值为( )A. B. C. D.9.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A. 3B. 4C. 5D.710.如图所示,把一个正方形三次对折后沿虚线剪下,将剩余部分展开所得的图形是()A. B. C. D.二、填空题(本题有6小题,每小题4分,共24分)11.当m________时,一次函数y=(m+1)x+6的函数值随x的增大而减小.12.某校开展了主题为“青春˙梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是________。
13.分解因式:a2﹣2ab+b2﹣c2=________.y2﹣7y+12=________.14.如图,在△ABC中,∠ABO=20°,∠ACO=25°,∠A=65°,则∠BOC的度数________.15.元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________ .16.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.( ≈1.4)三、解答题(本题有8小题,共66分)17.计算或化简(1)﹣22+(﹣)﹣2﹣(π﹣5)0﹣|﹣3|(2)(﹣3a)3+(﹣2a4)2÷(﹣a)5(3)(a+3b﹣2c)(a﹣3b﹣2c)(4)y(x+y)+(x﹣y)2﹣(x+y)(﹣y+x),其中x=﹣、y=3.18.解方程组.19.某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:用户季度用水量频数分布表平均用水量(吨)频数频率3<x≤6 10 0.16<x≤9 m 0.29<x≤12 36 0.3612<x≤15 25 n15<x≤18 9 0.09(1)在频数分布表中:m=________,n=________;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?20.如图,已知△ABC,请用尺规作△ABC的中位线EF,使EF∥BC.21.已知:如图,在平面直角坐标系中,直线AB分别与x,y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO= ,OB=8,OE=4.(1)求BC的长;(2)求反比例函数的解析式;(3)连接ED,求tan∠BED.22.如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N 为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.23.对于二次函数y=x2﹣4x+3和一次函数y=﹣x+1,我们把y=t(x2﹣4x+3)+(1﹣t)(﹣x+1)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E上的点B(2,n),请完成下列任务:(1)【尝试】判断点A是否在抛物线E上;(2)求n的值.(3)【发现】通过(1)和(2)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,请你求出定点的坐标.(4)【应用】二次函数y=﹣3x2+8x﹣5是二次函数y=x2﹣4x+3和一次函数y=﹣x+1的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.24.(1)【初步探究】如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.(2)【解决问题】如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.(3)【拓展应用】如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是________.(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C 按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是________.答案解析部分一、选择题(本题有10小题,每小题3分,共30分)1.D2.D3.B4.A5.A6.C7.A8.A9.B10.C二、填空题(本题有6小题,每小题4分,共24分)11. m<-1∵一次函数y=(m+1)x+6的函数值随x的增大而减小,∴m+1<0,解得:m<−1.故答案为:m<−1.【分析】由于一次函数的函数值随x的增大而减小,所以一次项的系数m+1<0,解一元一次不等式即可。
2020年金华市中考数学仿真模拟试题(附答案)
![2020年金华市中考数学仿真模拟试题(附答案)](https://img.taocdn.com/s3/m/ea6fc815ed630b1c59eeb5b8.png)
2020年金华市中考数学仿真模拟试题(附答案)考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D四个选项,其中只有一个是正确的。
)1.计算:20200﹣|﹣2|=()A.2020 B.2019 C.﹣1 D.32.下列计算正确的是()A.a3+a3=a6 B.3a﹣a=3 C.(a3)2=a5 D.a•a2=a33.在△ABC中,∠C=90°.若AB=3,BC=1,则sinA的值为()A. B. C. D.34.如图,线段BD,CE相交于点A,DE∥BC.若AB=4,AD=2,DE=1.5,则BC的长为()A.1 B.2 C.3 D.45. 已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )A. 图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)=0的两个根D.当x<1时,y随x的增大而增大7.如图是一个空心圆柱体,其俯视图是()8.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30 B.x(x+1)=30C.=30 D.=309.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④10.近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A.10% B.15% C.20% D.25%第Ⅱ卷非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分)11.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x、y)落在直线y=﹣x+5 上的概率为.12.科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美.某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为cm.(精确到0.1cm)13.如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=.14.抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为.15.如图,在计算机白色屏幕上有一个矩形画刷ABCD,它的边AB=1,AD=,以B点为中心,将矩形ABCD按顺时针方向转动到A′B′C′D′的位置(A′点在对角线BD上),则与线段A′D及线段A′D′所围成的图形的面积为(结果保留π).16.在平面直角坐标系中,对于点P(a,b),我们把Q(﹣b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为.三、解答题(共7小题,计72分)17.(本题8分)化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.18.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点).请你根据统计图解答下列问题:(1)此次抽样调查的总户数是100 户;扇形图中“10吨﹣15吨”部分的圆心角的度数是36 度;(2)求“15吨﹣20吨”部分的户数,并补全频数分布直方图;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区120万用户中约有多少用户的用水全部享受基本价格?19.(本题10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.(本题10分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)21.(本题12分)为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y 万元,x 个月还清贷款,若y 是x 的反比例函数,其图象如图所示:(1)求y 与x 的函数解析式;(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?22.(本题12分)如图,在平面直角坐标系中,抛物线32++=bx ax y 与y 轴交于点A ,与x 轴交于点B 和点C (3,0),且图象过点D (2,3),连结AD ,点P 是线段AD 上一个动点,过点P 作y 轴平行线分别交抛物线和x 轴于点E ,F .连结AE ,过点F 作FG //AE 交AD 的延长线于点G . (1)求抛物线的函数表达式; (2)若tan ∠G =43,求点E 的坐标; (3)当△AFG 是直角三角形时,求DG 的长.23.(本题12分)在正方形中,,点在边上,,点是在射线上的一个动点,过点作的平行线交射线于点,点在射线上,使始终与直线垂直.(1)如图1,当点与点重合时,求的长;(2)如图2,试探索:的比值是否随点的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点在线段上,设,,求关于的函数关系式,并写出它的定义域.参考答案第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。
2020年浙江省金华市中考数学模拟试卷(一)
![2020年浙江省金华市中考数学模拟试卷(一)](https://img.taocdn.com/s3/m/bbb0345d960590c69fc3767b.png)
2020年浙江省金华市中考数学模拟试卷(一)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.点M(1,﹣2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)2.(3分)下列事件属于随机事件的是()A.明天的早晨,太阳从东方升起B.13人中至少有两人同生肖C.抛出一枚骰子,点数为0D.打开电视机,正在播放广告3.(3分)下列运算正确的是()A.a8÷a4=a2B.(a3)2=a6C.a2•a3=a6D.a4+a4=2a8 4.(3分)在下列立体图形中,三视图中没有圆的是()A.B.C.D.5.(3分)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.6.(3分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.7.(3分)如图,一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面的B点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为()A.B.C.4πD.6π8.(3分)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则sin∠BAC 的值为()A.B.C.D.9.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③5a﹣2b+c<0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的个数是()A.1B.2C.3D.410.(3分)如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有()A.2个B.3个C.4个D.5个二、填空题(本题有6小题,每题4分,满分24分,将答案填在答题纸上)11.(4分)因式分解:4x2﹣9=.12.(4分)数据2,9,8,4中最大值与最小值的差是.13.(4分)如图,D、E分别是△ABC的边BC、AB上的点,AD、CE相交于点F,AE=EB,BD=BC,则CF:EF=.14.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组的解集为.15.(4分)如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为.16.(4分)如图,直线与x轴交于点A,与y轴交于点B,抛物线经过A、B两点,与x轴的另一个交点为C,点P是第一象限抛物线上的点,连结OP交直线AB于点Q,设点P的横坐标为m,PQ与OQ的比值为y.(1)c=;(2)当y取最大值时,=.三、解答题:本题有8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:18.(8分)如图,在9×9网格中,每个小方格的边长看作单位1,每个小方格的顶点叫作格点,△ABC的顶点都在格点上.(1)请在网格中画出△ABC的一个位似图形△A1B1C,使两个图形以点C为位似中心,且所画图形与△ABC的相似比为2:1;(2)将△A1B1C绕着点C顺时针旋转90°得△A2B2C,画出图形,并在如图所示的坐标系中分别写出△A2B2C三个顶点的坐标.19.(8分)如图,在不是菱形的平行四边形ABCD中,E、F在对角线BD上,在以下三个条件中再选一个,①AE、CF分别是△ABD、△BCD的中线,②AE、CF分别是△ABD、△BCD的角平分线,③AE=CF.使得四边形AECF是平行四边形,并说明理由.20.(8分)某中学对本校2018届500名学生的中考体育测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图(图①,图②),请根据统计图提供的信息,解答下列问题:(1)该校毕业生中男生有人;扇形统计图中a=;500名学生中中考体育测试成绩的中位数是;(2)补全条形统计图;(3)从500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?21.(8分)如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O的切线与AC的延长线交于点E,点D是弧BC的中点,连结AD交BC于点F.(1)求证:DE∥BC;(2)若AC=2,CF=1,求AB的长.22.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)若这种冰箱的售价降低50元,每天的利润是元;(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到更多的实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时利润最高,并求出最高利润.23.(10分)如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.24.(10分)如图,在平面直角坐标系中,已知点A的坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线C:y=x2沿射线OA方向平移得到抛物线C',抛物线C'与直线x=2交于点P,设抛物线C'的顶点M的横坐标为m.(1)求抛物线C'的解析式(用含m的式子表示);(2)连结OP,当tan(∠OAB﹣∠AOP)=时,求点P的坐标;(3)点Q为y轴上的动点,以P为直角顶点的△MQP与△OAB相似,求m的值.2020年浙江省金华市中考数学模拟试卷(一)参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.点M(1,﹣2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【解答】解:根据关于原点对称的点的坐标的特点,则点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故选:A.【点评】本题主要考查了关于原点对称的点的坐标的特点,比较简单.2.(3分)下列事件属于随机事件的是()A.明天的早晨,太阳从东方升起B.13人中至少有两人同生肖C.抛出一枚骰子,点数为0D.打开电视机,正在播放广告【分析】直接利用随机事件以及必然事件、不可能事件的定义分析得出答案.【解答】解:A、明天的早晨,太阳从东方升起,是必然事件,不合题意;B、13人中至少有两人同生肖,是必然事件,不合题意;C、抛出一枚骰子,点数为0,是不可能事件,不合题意;D、打开电视机,正在播放广告,是随机事件,符合题意.故选:D.【点评】此题主要考查了随机事件,正确掌握相关定义是解题关键.3.(3分)下列运算正确的是()A.a8÷a4=a2B.(a3)2=a6C.a2•a3=a6D.a4+a4=2a8【分析】分别根据同底数幂的除法、幂的乘方、同底数幂的乘法法则以及合并同类项等运算,然后选择正确选项.【解答】解:A、a8÷a4=a4,原式计算错误,故本选项错误;B、(a3)2=a6,原式计算正确,故本选项正确;C、a2•a3=a5,原式计算错误,故本选项错误;D、a4+a4=2a4,原式计算错误,故本选项错误.故选:B.【点评】本题考查了合并同类项、幂的乘方、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.4.(3分)在下列立体图形中,三视图中没有圆的是()A.B.C.D.【分析】根据三视图的概念求解.【解答】解:A、主视图、左视图是矩形,俯视图是圆,故A不符合题意;B、主视图、左视图都是三角形,俯视图是圆,故B不符合题意;C、主视图、左视图、俯视图都是正方形,故C符合题意;D、主视图、左视图、俯视图都是圆,故D不符合题意.故选:C.【点评】本题考查了简单几何体的三视图,从正面看得到的视图是主视图,从左边看得到的视图是左视图,从上面看得到的视图是俯视图.5.(3分)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有12种等可能的结果,甲、乙同学获得前两名的有2种情况,∴甲、乙同学获得前两名的概率是=;故选:D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【分析】设原计划每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.【解答】解:设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,依题意得:.故选:A.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.7.(3分)如图,一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面的B点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为()A.B.C.4πD.6π【分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理来求.【解答】解:把圆柱侧面展开,展开图如图所示,点A,B的最短距离为线段AB的长,BC=6,AC为底面半圆弧长,AC=2π,所以AB==.故选:A.【点评】此题主要考查了平面展开图的最短路径问题,本题的关键是要明确,要求两点间的最短线段,就要把这两点放到一个平面内,即把圆柱的侧面展开再计算.8.(3分)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则sin∠BAC 的值为()A.B.C.D.【分析】过B作BH⊥AC于H,根据三角形的面积公式得到BH,根据三角函数的定义即可得到结论.【解答】解:过B作BH⊥AC于H,∵S△ABC=BC•AD=AC•BH,∴BH==,∴sin∠BAC===,故选:B.【点评】本题考查了解直角三角形,三角形的面积的计算,正确的作出辅助线构造直角三角形是解题的关键.9.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③5a﹣2b+c<0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的个数是()A.1B.2C.3D.4【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,不符合题意;②∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,符合题意;③∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故③正确,符合题意;④∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣0.5>﹣2,则y1<y2;故④错误,不符合题意;故选:B.【点评】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有()A.2个B.3个C.4个D.5个【分析】分别以EC为边,EC为对角线讨论可知满足条件的菱形.【解答】解:如图中,分别以EC为边,EC为对角线讨论可知满足条件的菱形有5个.故选:D.【点评】考查了菱形的判定,坐标与图形变化﹣对称,注意解题过程中“数形结合”数学思想的应用.二、填空题(本题有6小题,每题4分,满分24分,将答案填在答题纸上)11.(4分)因式分解:4x2﹣9=(2x+3)(2x﹣3).【分析】利用平方差进行分解即可.【解答】解:原式=(2x+3)(2x﹣3),故答案为:(2x+3)(2x﹣3).【点评】此题主要考查了因式分解,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.(4分)数据2,9,8,4中最大值与最小值的差是7.【分析】先从数据中找出最大的数和最小的数,然后用最大的数减去最小的数即可.【解答】解:在数据2,9,8,4中,最大的数是9,最小的数是2,所以最大值与最小值的差是:9﹣2=7.故答案为:7【点评】本题考查有理数大小比较,属于基础题型.13.(4分)如图,D、E分别是△ABC的边BC、AB上的点,AD、CE相交于点F,AE=EB,BD=BC,则CF:EF=12.【分析】作EH∥BC,根据△AEH∽△ABD,得到==,证明△CFD∽△EFH,根据相似三角形的性质列出比例式,计算即可.【解答】解:作EH∥BC交AD于H,则△AEH∽△ABD,∴==,∵BD=BC,∴CD=2BD,∴=,∵EH∥BC,∴△CFD∽△EFH,∴==12,即CF:EF=12,故答案为:12.【点评】本题考查的是相似三角形的判定和性质,掌握作辅助线构造相似三角形的一般方法是解题的关键.14.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y =﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为:﹣2<x<2.故答案为:﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.15.(4分)如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为8.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB =AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的边长为2,B(,),∴BE=,AE==,∴OF=OE+AE+AF=++=5,∴点D的坐标为(,5),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=×5=8.故答案为:8.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.(4分)如图,直线与x轴交于点A,与y轴交于点B,抛物线经过A、B两点,与x轴的另一个交点为C,点P是第一象限抛物线上的点,连结OP交直线AB于点Q,设点P的横坐标为m,PQ与OQ的比值为y.(1)c=3;(2)当y取最大值时,=.【分析】(1)对于,令x=0,则y=3,则点B(0,3),即可求解;(2)y=,求出点P(2,3),得到直线PB∥OA;再利用面积公式即可求解.【解答】解:(1)对于①,令x=0,则y=3,令y=0,则x=4,故点A、B的坐标分别为:(4,0)、(0,3);∵点B(0,3),∴c=3,故答案为3;(2)c=3,则抛物线的表达式为y=﹣x2+x+3,过点P作PH∥y轴交AB于点H,设点P(m,﹣m2+m+3),则点H(m,﹣m+3),∵PH∥y轴,则y==,整理得:y=﹣m2+m,∴<0,故y有最大值,此时m=2,故点P(2,3);而点B(0,3),即点P、B的纵坐标相同,故直线PB∥OA,设直线OP的表达式为:y=kx,将点P坐标代入上式并解得:k=,则直线OP的表达式为:y=x②,联立①②并解得:x=,y=2,即点Q(,2),故y Q=2,则△BPQ的高为3﹣2=1,===,故答案为.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,涉及到平行线分线段成比例、三角形面积计算,有一定的综合性,难度适中.三、解答题:本题有8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:【分析】首先根据负整数指数幂:a﹣p=(a≠0,p为正整数),特殊角的三角函数值、二次根式的性质和绝对值的性质进行计算,然后再算加减即可.【解答】解:原式=+4×﹣2﹣(π﹣3),=+2﹣2﹣π+3,=3﹣π.【点评】此题主要考查了实数运算,关键是熟练掌握负整数指数幂、特殊角的三角函数值、二次根式、绝对值等考点的运算.18.(8分)如图,在9×9网格中,每个小方格的边长看作单位1,每个小方格的顶点叫作格点,△ABC的顶点都在格点上.(1)请在网格中画出△ABC的一个位似图形△A1B1C,使两个图形以点C为位似中心,且所画图形与△ABC的相似比为2:1;(2)将△A1B1C绕着点C顺时针旋转90°得△A2B2C,画出图形,并在如图所示的坐标系中分别写出△A2B2C三个顶点的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示;(2)如图所示:△A2B2C的三个顶点的坐标分别为:A2(7,﹣1),B2(7,5),C(3,3).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置解题关键.19.(8分)如图,在不是菱形的平行四边形ABCD中,E、F在对角线BD上,在以下三个条件中再选一个,①AE、CF分别是△ABD、△BCD的中线,②AE、CF分别是△ABD、△BCD的角平分线,③AE=CF.使得四边形AECF是平行四边形,并说明理由.【分析】由“ASA”可证△ABE≌△CDF,可得AE=CF,∠AEB=∠CFD,可证AE∥CF,可证四边形AECF是平行四边形.【解答】解:当AE、CF分别是△ABD、△BCD的角平分线,使得四边形AECF是平行四边形,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠BAD=∠BCD,∴∠ABD=∠CDB,∵AE、CF分别是△ABD、△BCD的角平分线,∴∠BAE=∠DAE=∠BCE=∠DCE,∵∠ABE=∠CDF,AB=CD,∠BAE=∠DCF,∴△ABE≌△CDF(ASA)∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,且AE=CF,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,证明△ABE ≌△CDF是本题的关键.20.(8分)某中学对本校2018届500名学生的中考体育测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图(图①,图②),请根据统计图提供的信息,解答下列问题:(1)该校毕业生中男生有300人;扇形统计图中a=12;500名学生中中考体育测试成绩的中位数是10分;(2)补全条形统计图;(3)从500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?【分析】(1)男生人数为20+40+60+180=300;8分对应百分数用8分的总人数÷500;(2)8分以下总人数=500×10%=50,其中女生=50﹣20,10分总人数=500×62%=310,其中女生人数=310﹣180=130,进而补全直方图;(3)可利用样本的百分数去估计总体的概率,即可求出答案.【解答】解(1)如图,男生人数为20+40+60+180=300,8分对应百分数为(40+20)÷500=12%,500名学生中中考体育测试成绩的中位数是10分.故答案为:300,12,10;(2)补图如图所示:(3)500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是=.【点评】本题考查的是条形统计图的综合运用以及概率的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(8分)如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O的切线与AC的延长线交于点E,点D是弧BC的中点,连结AD交BC于点F.(1)求证:DE∥BC;(2)若AC=2,CF=1,求AB的长.【分析】(1)如图,连接OD.证明DE⊥OD,BC⊥OD即可解决问题.(2)连接BD.证明△ACF∽△ADB∽△BDF,可得===2,设DF=m,则BD=2m,AD=4m,构建方程求出m即可解决问题.【解答】(1)证明:如图,连接OD.∵DE是⊙O的切线,∴DE⊥OD,∵=,∴OD⊥BC,∴DE∥BC.(2)解:连接BD.∵=,∴∠CAD=∠DAB=∠DBF,∵AB是直径,∴∠ACF=∠ADB=90°,∴△ACF∽△ADB∽△BDF,∴===2,设DF=m,则BD=2m,AD=4m,∵AF===,∵DF=AD﹣AF,∴m=4m﹣,∴m=,∴BD=,AD=,∴AB===.【点评】本题考查切线的性质,垂径定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)若这种冰箱的售价降低50元,每天的利润是4200元;(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到更多的实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时利润最高,并求出最高利润.【分析】(1)根据题意列式计算即可;(2)每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可;(3)设每台冰箱降价为x元,商场每天销售这种冰箱的利润为y元,根据题意易求y与x之间的函数表达式.利用二次函数的性质可求出y的最大值.【解答】解:(1)根据题意,得(8+4×)×(2400﹣50﹣2000)=4200元,故答案为:4200;(2)设出每台冰箱应降价x元,由题意得:(2400﹣2000﹣x)(8+×4)=4800,﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0,解这个方程,得x1=100,x2=200,要使百姓得到实惠,取x=200元,∴每台冰箱应降价200元;(3)设每台冰箱降价为x元,商场每天销售这种冰箱的利润为y元,根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元,售价2250元时,商场的利润最大,最大利润是5000元.【点评】本题考查了二次函数的应用,二次函数的最值,列出关系式并整理成顶点式形式是解题的关键.23.(10分)如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.【分析】(1)证明△ABD≌△CBD(SSS),得到BD是AC的中垂线,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,即可求解;(2)①证明△ACP≌△ADQ(SAS)、△ACQ≌△DCQ(SSS)、△AKQ≌△QHP(AAS)得到QK=PH,即可求解;②证明∠QCR=60°,则QM=CQ sin∠QCM=CQ,CM=CQ,故点Q(3+CQ,CQ),即可求解.【解答】解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠P AQ=60°=∠P AC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠P AC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故P A=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠P AH,P A=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).【点评】本题考查的是反比例函数综合运用,涉及到一次函数的性质、三角形全等、解直角三角形等,综合性很强,难度大.24.(10分)如图,在平面直角坐标系中,已知点A的坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线C:y=x2沿射线OA方向平移得到抛物线C',抛物线C'与直线x=2交于点P,设抛物线C'的顶点M的横坐标为m.(1)求抛物线C'的解析式(用含m的式子表示);(2)连结OP,当tan(∠OAB﹣∠AOP)=时,求点P的坐标;(3)点Q为y轴上的动点,以P为直角顶点的△MQP与△OAB相似,求m的值.【分析】(1)设点M(m,2m),根据平移法则即可求解;(2)用两种方法表示出三角形的面积,即S△OAH=S△OBH﹣S△OBA=•OH•h,S△AOP=S﹣S△OBP=OP×h,利用两个三角形高相同,进而求解;△OAB(3)△MQP与△OAB相似,则;△PGQ∽△MNP,则,即可求解.【解答】解:(1)设直线OA的解析式为y=kx,将点A(2,4)代入y=kx中,得2k=4,∴k=2,∴直线OA的解析式为y=2x,∵点M在射线OA上,且点M的横坐标为m,∴点M(m,2m),∵抛物线C'是抛物线C:y=x2平移所得,∴抛物线C'的解析式为y=(x﹣m)2+2m;(2)如图1,连接OP,过点O作直线OH交BA的延长线于点H,使∠HOA=∠AOP,∵∠OHA=∠OAB﹣∠HOA=∠OAB﹣∠AOP,则tan∠OHA=,则sin∠OHA=,在Rt△OBH中,OH==,∵∠HOA=∠AOP,∴点A到OH的距离等于点A到OP的距离,设这个距离为h,设点P的坐标为(2,t),则OP=,则S△OAH=S△OBH﹣S△OBA=2×4﹣2×t=OH•h=××h,解得:h=,同理S△AOP=S△OAB﹣S△OBP=×2×4﹣×2×t=OP×h=×,整理得:24t2﹣202t+399=0,解得:t=或(舍去),故点P的坐标为:(2,);(3)如图2,∵△MQP与△OAB相似,∴,即;由(1)知:抛物线C'的解析式为y=(x﹣m)2+2m,点M(m,2m),当x=2时,y=(x﹣m)2+2m=m2﹣2m+4,故点P(2,m2﹣2m+4),过点Q作QG⊥AB交BA的延长线于点G,作MN⊥AB于点N,则GQ=OB=2,PN=(m2﹣2m+4)﹣2m=m2﹣4m+4;∵∠MPN+∠PMN=90°,∠MPN+∠QPG=90°,∴∠QPG=∠PMN,而∠PGQ=∠MNP=90°,∴△PGQ∽△MNP,∴,即,解得:m=0或1或3或4(舍去0),故m=1或3或4.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形相似、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2020年浙江省金华市中考数学模拟试卷(一)(含答案解析)
![2020年浙江省金华市中考数学模拟试卷(一)(含答案解析)](https://img.taocdn.com/s3/m/e15e9ff5a5e9856a57126031.png)
2020年浙江省金华市中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分)1.点P(3,−2)关于原点的对称点坐标是()A. (−3,2)B. (3,2)C. (−3,−2)D. (3,−2)2.下列事件中是随机事件的是()A. 打开电视机正在播放欧洲杯B. 深圳的夏天会下雨C. 掷一枚质地均匀的骰子,掷出的点数为8D. 平行于同一条直线的两条直线平行3.下列运算中结果正确的是()A. a3⋅a2=a6B. 3x2+2x2=5x4C. (2x2)3=6x6D. a10÷a9=a4.分别从正面、左面和上面看下列立体图形,得到的平面图形都一样的是()A. B. C. D.5.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A. 16B. 14C. 13D. 126.为了早日实现“绿色江阴”的目标,江阴对4000米长的西横河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A. 4000x −4000x+10=2 B. 4000x+10−4000x=2C. 4000x−10−4000x=2 D. 4000x−4000x−10=27.如图,圆柱底面半径为2πcm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A. 12cmB. 15cmC. 18cmD. 21cm8.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A. 3√55B. √175C. 35D. 459.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(−1,0),(3,0)两点,则下列说法:①abc<0;②a−b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且−1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是()A. ①⑤B. ②④C. ②③④D. ②③⑤10.已知点A(−1,−4),B(−1,4),则()A. A、B关于x轴对称B. A、B关于y轴对称C. 直线AB平行于x轴D. 直线AB垂直于y轴二、填空题(本大题共6小题,共24.0分)11.因式分解:4m2−n2=.12.比较大小:−821______−37(填“>”“<”或“=”).13.如图,已知△ABC,D、E分别是边BA、CA延长线上的点,且DE//BC.如果DEBC =35,CE=4,那么AE的长为______.14.如图,函数y=−2x和y=ax+4的图象相交于A(m,3),则关于x的不等式0<ax+4<−2x的解集是______.(x>0)的15.如图,在Rt△ABC中,AB=AC=2√5,顶点A在y轴上,顶点C在反比例函数y=12x 图象上,已知点C的纵坐标是3,则经过点B的反比例函数的解析式为.x2−3与x轴交于A,B两点,与y轴交于16.如图所示,抛物线y=13点C,M为第一象限抛物线上一点,且∠MCB=15°,则S△MCB=______.三、解答题(本大题共8小题,共66.0分)17.计算:√27−|1−√3|−sin30°+2−1.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,−1).①以O为位似中心在第二象限作位似比为1:2变换,得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;②以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2,并写出C2的坐标.19.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交BC、AD于点E、F,G、H分别是OB、OD的中点.求证:(1)OE=OF;(2)四边形GEHF是平行四边形.20.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.(1)成绩记为2分的学生共有______名,这些学生成绩的中位数是______;(2)这些学生的平均分数是多少?21.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE⋅DC=20,求⊙O的面积.(π取3.14)22.百货商场服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.(1)假设每件童装降价x元,商场每天销售这种童装的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种童装销售中每天盈利1200元,同时又要使顾客得到实惠,每件童装应降价多少元?(3)每件童装降价多少元时,商场每天销售这种童装的利润最高?最高利润是多少?23.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE//BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.24.如图,已知抛物线y=√33x2−2√33x与x轴相交于O、A两点,B为顶点,C是第二象限内抛物线上一点,且∠AOC=120°.(1)求点C的坐标;(2)向下平移该抛物线得到一条新抛物线,设新抛物线与x轴相交于点O′、A′(点A′在点O′的右侧).问:是否存在以点A′、A、B为顶点且与△OBC相似的三角形?若存在,求出新抛物线对应的函数表达式;若不存在,请说明理由.【答案与解析】1.答案:A解析:解:根据关于原点对称的点的坐标的特点,∴点A(3,−2)关于原点过对称的点的坐标是(−3,2).故答案为(−3,2).故选:A.根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即关于原点的对称点,横纵坐标都变成相反数”解答.本题主要考查了关于原点对称的点的坐标的特点,此题比较简单,易于掌握.2.答案:A解析:随机事件就是可能发生也可能不发生的事件,根据定义即可判断.本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解:A、打开电视机正在播放欧洲杯是随机事件,选项正确;B、深圳的夏天会下雨,是必然事件,选项错误;C、掷一枚质地均匀的骰子,掷出的点数为8,是不可能事件,选项错误;D、平行于同一条直线的两条直线平行,是必然事件,选项错误.故选A.3.答案:D解析:解:A、原式=a5,错误;B、原式=5x2,错误;C、原式=8x6,错误;D、原式=a,正确,故选D.利用同底数幂的乘除法,幂的乘方以及合并同类项法则计算得到结果,即可作出判断.此题考查了同底数幂的乘除法,幂的乘方、合并同类项,熟练掌握运算法则是解本题的关键.4.答案:A解析:此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.分别判断出四个立体图形的三视图,即可得到答案.解:A.球从正面、左面和上面看都是圆,故此选项正确;B.圆锥从上面看是有圆心的圆、从左面和正面看都是三角形,故此选项错误;C.长方体从正面、左面、上面看都是长方形,但是长方形的形状不同,故此选项错误;D.圆柱体从正面、左面看都是长方形,从上面看是圆形,故此选项错误;故选A.5.答案:A解析:解:列表得:∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:212=16,故选:A.此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比6.答案:A解析:本题考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找等量关系.本题用到的关系为:工作时间=工作总量÷工作效率.关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间−实际的工作时间=2.解:若设原计划每天绿化x米,则实际每天绿化(x+10)米,原计划的工作时间为:4000x ,实际的工作时间为:4000x+10,根据题意得:4000x −4000x+10=2.故选A.7.答案:B解析:本题主要考查了圆柱的计算、平面展开--路径最短问题,勾股定理,线段的性质:两点之间线段最短,圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.求圆柱体上两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.解:如图圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2πcm,∴长方形的宽即是圆柱体的底面周长:2π×2π=4cm,又∵圆柱高为9cm,∴小长方形的一条边长是3cm;根据勾股定理求得AC=CD=DB=5cm;∴AC+CD+DB=15cm.故选B.8.答案:D解析:解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC=√AH2+CH2=√42+32=5,∴sin∠ACH=AHAC =45,故选:D.如图,过点A作AH⊥BC于H.利用勾股定理求出AC即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.答案:D解析:解:①abc<0,由图象知c<0,a、b异号,所以,①错误;②a−b+c=0,当x=−1时,y=a−b+c=0,正确;=1,故正确;③2a+b=0,函数对称轴x=−b2a④2a+c>0,由②、③知:3a+c=0,而−a<0,∴2a+c<0,故错误;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且−1<x1<x2<1,x3>3,则y2<y1<y3,把A、B、C坐标大致在图上标出,可知正确;故选:D.根据二次函数的性质,图像上的点坐标特征对选项一一分析求解即可.主要考查图象与二次函数系数之间的关系,会求对称轴、x=±1等特殊点y的值.10.答案:A解析:本题主要考查的是关于x轴对称的点的坐标的有关知识,根据A(−1,−4),B(−1,4)横坐标不变,纵坐标互为相反数进行求解即可.解:∵A(−1,−4),B(−1,4)中横坐标都为−1,纵坐标−4和4互为相反数,∴A、B关于x轴对称.故选A.11.答案:(2m+n)(2m−n)解析:此题考查了平方差公式进行因式分解,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.解:原式=(2m+n)(2m−n).故答案为:(2m+n)(2m−n).12.答案:>解析:本题是对有理数的大小比较的考查,先通分,比较二者绝对值的大小,然后比较大小.本题主要考查了有理数的大小比较,属于基础题.解:−37= −921,|−821|=821<|−921|=921,所以−821> −37.故答案为:>.13.答案:32解析:解:∵DE//BC ∴△ADE∽△ABC∴DE=AE=3∴设AE=3k,AC=5k(k≠0)),∴CE=3k+5k=4,∴k=1∴AE=3k=3 2故答案为:32根据相似三角形的性质可得DEBC =AEAC=35,即可求AE的长.本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.14.答案:−6<x<−32解析:本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.先把A(m,3)代入y=−2x得到A(−32,3),再把A点坐标代入y=ax+4求出a,接着计算出直线y= ax+4与x轴的交点坐标,然后找出直线y=ax+4在x轴上方且在直线y=−2x的下方所对应的自变量的范围即可.解:当y =3时,−2x =3,解得x =−32,则两直线的交点A 坐标为(−32,3),把(−32,3)代入y =ax +4得−32a +4=3,解得a =23,当y =0时,23x +4=0,解得x =−6,则直线y =ax +4与x 轴的交点坐标为(−6,0),所以当−6<x <−32时,0<ax +4<−2x .故答案为−6<x <−32. 15.答案:y =−2x解析:本题主要考查了待定系数法求反比例函数解析式以及反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k ,即xy =k.过C 作CD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,即可得到△ABE≌△CAD ,依据全等三角形的性质以及点C 的坐标,即可得到点B 的坐标,进而得出经过点B 的反比例函数的解析式.解:如图所示,过C 作CD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,则∠CDA =∠AEB =90°,又∵∠BAC =90°,∴∠BAE +∠CAD =∠ACD +∠CAD =90°,∴∠BAE =∠ACD ,又∵AB =CA ,∴△ABE≌△CAD(AAS),(x>0)的图象上,点C的纵坐标为3,又∵顶点C在反比例函数y=12x∴点C的横坐标为4,∴CD=4=AE,OD=3,∴Rt△ACD中,AD=√AC2−CD2=√(2√5)2−42=2,∴BE=AD=2,AO=AD+DO=2+3=5,∴OE=AO−AE=5−4=1,∴B(−2,1),∴经过点B的反比例函数的解析式为y=−2.x.故答案为y=−2x16.答案:27−9√32x2−3,解析:解:∵抛物线y=13∴当x=0时,y=−3,当y=0时,x=±3,∴点A(−3,0),点B(3,0),点C(0,−3),∴OC=OB=3,∵∠COB=90°,∴∠OCB=∠OBC=45°,∵∠MCB=15°,OC=3,∴∠COM=30°,设CM与x轴的交点为N,∴ON =3×tan30°=√3, ∴点N 的坐标为(√3,0),BN =3−√3, 设过点C(0,−3),N(√3,0)直线解析式为y =kx +b ,{b =−3√3k +b =0,得{k =√3b =−3, ∴y =√3x −3,由{y =13x 2−3y =√3x −3得,{x =0y =−3或{x =3√3y =6, ∴点M 的坐标为(3√3,6),∴S △MCB =S △NCB +S △NBM =(3−√3)×32+(3−√3)×62=27−9√32, 故答案为:27−9√32.根据题意可以求得点A 、点B 、点C 、点M 的坐标,从而可以求得△MCB 的面积,本题得以解决. 本题考查抛物线与x 轴的交点坐标、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.17.答案:2√3+1解析:[分析]原式利用二次根式性质,绝对值的意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.[详解]解:原式=3√3−√3+1−12+12=2√3+1.[点睛]本题考查实数的混合运算,掌握二次根式性质,绝对值的意义,特殊角的三角函数值,以及负整数指数幂法则是解题的关键.18.答案:解:①如图所示:△A 1B 1C 1,即为所求,C1的坐标为:(−8,2);②如图所示:△A2B2C2,即为所求,C2的坐标为:(−1,−4).解析:①直接利用位似图形的性质得出对应点位置进而得出答案;②直接利用旋转的性质得出对应点位置,进而得出答案.此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.19.答案:证明:(1)∵四边形ABCD是平行四边形∴AD//BC,OA=OC,OB=OD∴∠DAC=∠BCA,且OA=OC,∠AOE=∠COF∴△AOE≌△COF(ASA)∴OE=OF(2)∵OB=OD,G、H分别是OB、OD的中点∴GO=OH,且OE=OF∴四边形GEHF是平行四边形.解析:(1)由“AAS”证明△AOE≌△COF,可得OE=OF;(2)由对角线互相平分的四边形是平行四边形可证四边形GEHF是平行四边形.本题考查了平行四边形的判定与性质,全等三角形的判定和性质,灵活运用平行四边形的判定和性质是本题的关键.20.答案:解:(1)8;3;(2)平均分是:(3×1+8×2+17×3+12×4)÷40=2.95(分).答:这些学生的平均分数是2.95分.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)根据分数是4分的有12人,占30%,据此即可求得总人数,然后根据百分比的定义求得成绩是3分的人数,进而用总数减去其它各组的人数求得成绩是2分的人数,根据中位数的定义求解可得;(2)利用加权平均数公式求解.解:(1)参加体育测试的人数是:12÷30%=40(人),成绩是3分的人数是:40×42.5%=17(人),成绩是2分的人数是:40−3−17−12=8(人),∴这些学生成绩的中位数是3分,故答案为:8;3;(2)见答案.21.答案:解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵AC=PC,∴∠P=∠CAO,又∵∠2=2∠CAO,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∵D为AB⏜的中点,∴∠ACD=∠DAE,又∵∠ADE=∠CDA,∴△ACD∽△EAD,∴ADDE =DCAD,即AD2=DC⋅DE,∵DC⋅DE=20,∴AD=2√5,∵AD⏜=BD⏜,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴Rt△ADB为等腰直角三角形,∴AB=2√10,∴OA=1AB=√10,2∴S⊙O=π⋅OA2=10π=31.4.解析:此题考查了相似三角形的判定与性质,圆心角、弧,弦的关系定理和圆周角定理,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.(1)连接OC,由PC为圆的切线,利用切线的性质得到∠OCP为直角,利用等边对等角及圆周角定理求出所求即可;(2)连接AD,由D为弧AB的中点,利用等弧所对的圆周角相等,再由公共角相等,得到△ACD与△EAD 相似,由相似得比例求出AD的长,进而求出AB的长,求出OA的长,求出面积即可.22.答案:解:(1)∵每件童装降价1元,那么平均每天就可多售出2件,∴每件童装降价x元,那么平均每天就可多售出:2x件,那么平均每天就可售出:20+2x(件),每天销售这种童装的利润是(40−x)(20+2x)元,∴y与x之间的函数表达式y=(20+2x)(40−x),即y=−2x2+60x+800;(2)设降价x元的盈利为w,则w=(20+2x)(40−x)=−2x2+60x+800,当w=1200时,−2x2+60x+800=1200,解得:x=10或20,∵要使顾客得到实惠,∴当降价20元时,平均每天销售这种童装上盈利1200元;(3)w=−2x2+60x+800=−2(x−15)2+1250当x=15时,w取最大值,最大值为1250,即当降阶15元时,商场盈利最多为1250元.答:当降阶15元时,商场盈利最多,最多盈利为1250元.解析:本题考查了二次函数的应用,解答本题需要得出降价与盈利之间的函数关系式,要求熟练运用配方法求函数解析式,难度一般.(1)先求出降价x元后的销售量,然后得出每件的利润,继而可求出每天的盈利y,得出y与x之间的函数表达式;(2)设降价x元的盈利为w则可得出w关于x的函数关系式,令w=1200,即可解出x的值.(3)根据(2)的函数关系式,运用配方法求函数最值即可.23.答案:解:(1)∵△ABC为等边三角形,∴∠ACB=60°,∵DE//BC,∴∠EDC=∠ACB=60°,又∵DE=DC,∴△CDE为等边三角形;(2)过点E作EH⊥BC于H,∵BD⊥AC,∴CD=12AC=12AB=2,又∵△CDE为等边三角形,∴CE=CD=2,∵∠ECH=60°,∴EH=EC⋅sin60°=2×√32=√3,CH=EC⋅cos60°=1,∴BE=√BH2+EH2=√52+(√3)2=√28=2√7.解析:(1)根据∠EDC=60°,DE=DC,运用有一个角是60°的等腰三角形是等边三角形进行判断即可.(2)过点E作EH⊥BC于H,构造直角三角形,先求得EH=EC⋅sin60°=2×√32=√3,CH=EC⋅cos60°=1,进而得到BE=√BH2+EH2=√52+(√3)2=√28=2√7.本题主要考查了等边三角形的判定与性质,解直角三角形以及勾股定理的运用,解决问题的关键是作辅助线构造直角三角形.解题时注意:有一个角是60°的等腰三角形是等边三角形. 24.答案:解:(1)令y =0,则x =2,则函数对称轴为x =1,故点A(2,0)、B(1,−√33), ∠AOC =120°,则直线OC 的倾斜角为60°,则直线OC 的表达式为:y =−√3x ,将直线OC 的表达式与二次函数表达式联立并解得:x =−1,即点C(−1,√3);(2)存在,理由:如图所示,△ABA′只可能∠BAA′为钝角,OB 2=12+(−√33)2=43,同理CO 2=4,AB 2=43, ①当△A′AB∽△COB 时,AA′AB =OCOB ,解得:AA′=2, ②当△BAA′∽△COB 时,同理可得:AA′=23,故点A′的坐标为(4,0)或(83,0);设抛物线向下平移n 个单位,则平移后的表达式为:y =√33x 2−2√33x +n , 将点A′的坐标代入上式并解得:n =−8√33或−16√327, 则新抛物线对应的函数表达式:y =√33x 2−2√33x −8√33或y =√33x 2−2√33x −16√327.解析:本题考查的是二次函数综合运用,涉及到函数平移、三角形相似等知识,难度不大,但要避免遗漏.(1)求出点A(2,0)、B(1,−√3),∠AOC=120°,则直线OC的倾斜角为60°,则直线OC的表达式为:3y=−√3x,即可求解;(2)分△A′AB∽△COB、△BAA′∽△COB,两种情况讨论求解.。
浙江省金华市2020年中考数学仿真模拟考试题(参考答案)
![浙江省金华市2020年中考数学仿真模拟考试题(参考答案)](https://img.taocdn.com/s3/m/5be13bf548d7c1c709a1451d.png)
浙江省金华市2020年中考数学仿真模拟考试题参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:向北行驶3km,记作+3km,向南行驶2km记作﹣2km,故选:B.2.解:a6÷a2=a4,故选:C.3.解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.4.解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.5.解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:D.6.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故选:C.7.解:如图建立平面直角坐标系,则点N和点Q的坐标分别为(1,1),(﹣2,2),故选:D.8.解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠BAD=∠CAE=65°,∠B=∠D,∵∠AFB=90°,∴∠B=90°﹣∠BAD=25°,∴∠B=∠D=25°.故选:C.10.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正方体的棱长为10cm;∴正方体的体积为:103=1000cm3设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:解得:∴圆柱形水槽的容积为:400×20=8000 cm3故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).12.解:数据30,18,24,26,33,28的中位数是,故答案为:2713.解:∵x﹣2y=4,∴原式=4(x﹣2y)﹣2=16﹣2=14.故答案为:14.14.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==(米).故答案为:.15.解法一:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法二:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法三:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,设BD=a,则EF=a,∵点A(2,3)和点B(0,2),∴DF=2﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴2﹣a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).16.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共8小题,满分66分)17.解:原式==2﹣2+1+﹣1=.18.解:去分母得:4x2+10x﹣2x+5=4x2﹣25,解得:x=﹣,经检验x=﹣是分式方程的解.19.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.20.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△P AB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△P AB如图所示.21.解:(1)如图①,连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠OAB=45°;(2)如图②,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°,∴∠COE=180°﹣45°﹣30°=105°.22.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;23.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.。
浙江省金华市2020年中考数学预测试题
![浙江省金华市2020年中考数学预测试题](https://img.taocdn.com/s3/m/a503443a680203d8cf2f249d.png)
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果关于x的分式方程1311a xx x--=++有负数解,且关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.32.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.323.函数1y x=-的自变量x的取值范围是()A.1x>B.1x<C.1x≤D.1x≥4.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.5.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③6.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A .50°B .70°C .80°D .110°7.已知点P (a ,m ),Q (b ,n )都在反比例函数y=2x -的图象上,且a <0<b ,则下列结论一定正确的是( )A .m+n <0B .m+n >0C .m <nD .m >n8.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( )A .5B .6C .7D .99.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和3二、填空题(本题包括8个小题)11.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是________.12.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .13.如图,已知函数y =x+2的图象与函数y =k x (k≠0)的图象交于A 、B 两点,连接BO 并延长交函数y =k x(k≠0)的图象于点C ,连接AC ,若△ABC 的面积为1.则k 的值为_____.14.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.15.已知⊙O半径为1,A、B在⊙O上,且2AB ,则AB所对的圆周角为__o.16.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN =40°,则∠P的度数为___17.已知|x|=3,y2=16,xy<0,则x﹣y=_____.18.81的算术平方根是_______.三、解答题(本题包括8个小题)19.(6分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.20.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;△A2B2C2的面积是平方单位.21.(6分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=3,AD=1,求DB的长.22.(8分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天清理道路的米数.23.(8分)如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,∠ACD=120°.求证:CD 是O的切线;若O的半径为2,求图中阴影部分的面积.24.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26.(12分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,可整理得242y ay+⎧⎨<-⎩∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.2.D【解析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.3.D【解析】【分析】根据二次根式的意义,被开方数是非负数.【详解】x-≥,根据题意得10x≥.解得1故选D.【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.D【解析】【分析】根据ab <0及正比例函数与反比例函数图象的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论得出答案.【详解】解:∵ab <0,∴分两种情况:(1)当a >0,b <0时,正比例函数y=ax 数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D 符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题. 5.D【解析】【详解】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点,∴AE=13CE , ∵AD ∥BC ,∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确;∵S △AEF =4, AEF BCE S S =(AF BC )2=19, ∴S △BCE =36;故②正确;∵EF AE BE CE =13, ∴AEF ABE S S =13, ∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D .6.C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.7.D【解析】【分析】根据反比例函数的性质,可得答案. 【详解】∵y=−2x的k=-2<1,图象位于二四象限,a <1, ∴P (a ,m )在第二象限,∴m >1;∴Q (b ,n )在第四象限,∴n <1.∴n <1<m ,即m >n ,故D 正确;故选D .【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k <1时,图象位于二四象限是解题关键. 8.B【解析】【分析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B .【点睛】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键.9.A【解析】【分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A【点睛】考核知识点:点的坐标与象限的关系.10.A【解析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.二、填空题(本题包括8个小题)11.94 m≤【解析】【分析】由题意可得,△=9-4m≥0,由此求得m的范围.【详解】∵关于x的一元二次方程x2-3x+m=0有实数根,∴△=9-4m≥0,求得m≤.故答案为:94 m≤【点睛】本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义. 12.1【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BDEC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=1(米).故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.3【解析】【分析】连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=12S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=12×2×(a-b)=2,∴a-b=2 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=12 k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴12(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2 ②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC 是解题的突破口.14.4﹣π【解析】 【分析】由题意可以假设A (-m ,m ),则-m 2=-4,求出点A 坐标即可解决问题.【详解】由题意可以假设A (-m ,m ),则-m 2=-4,∴m=≠±2,∴m=2,∴S 阴=S 正方形-S 圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题15.45º或135º【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB === 在Rt △AOC 中,OA=1, 22AC = 根据勾股定理得:222OC OA AC =-=即OC=AC ,∴△AOC 为等腰直角三角形,45AOC ∴∠=,同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=,∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135.故答案为45或135.16.100°【解析】【分析】由条件可证明△AMK ≌△BKN ,再结合外角的性质可求得∠A =∠MKN ,再利用三角形内角和可求得∠P .【详解】解:∵PA =PB ,∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩,∴△AMK ≌△BKN (SAS ),∴∠AMK =∠BKN ,∵∠A+∠AMK =∠MKN+∠BKN ,∴∠A =∠MKN =40°,∴∠P =180°﹣∠A ﹣∠B =180°﹣40°﹣40°=100°,故答案为100°【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK ≌△BKN 是解题的关键.17.±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy<0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.18.3【解析】【分析】.【详解】3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.三、解答题(本题包括8个小题)19.(1)(2)作图见解析;(3).2【解析】【分析】(1)利用平移的性质画图,即对应点都移动相同的距离.(2)利用旋转的性质画图,对应点都旋转相同的角度.(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.(3)∵2211290222222,? BB B Bππ⋅⋅=+===,∴点B所走的路径总长=2222π+.考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.20.(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理21.BD= 2.【解析】【详解】试题分析:根据∠ACD=∠ABC ,∠A 是公共角,得出△ACD ∽△ABC ,再利用相似三角形的性质得出AB 的长,从而求出DB 的长.试题解析:∵∠ACD=∠ABC ,又∵∠A=∠A ,∴△ABC ∽△ACD , ∴AD AC AC AB=, ∵3,AD=1, ∴33AB=, ∴AB=3,∴BD= AB ﹣AD=3﹣1=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB 的长是解题关键.22.1米.【解析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论.试题解析:解:设原来每天清理道路x 米,根据题意得:600480060092x x-+= 解得,x=1.检验:当x=1时,2x≠0,∴x=1是原方程的解.答:该地驻军原来每天清理道路1米.点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根. 23.(1)见解析 (2)图中阴影部分的面积为23π. 【解析】【分析】(1)连接OC .只需证明∠OCD =90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD ,然后根据勾股定理求出CD ,则阴影部分的面积即为直角三角形OCD 的面积减去扇形COB 的面积.【详解】(1)证明:连接OC .∵AC =CD ,∠ACD =120°,∴∠A =∠D =30°.∵OA =OC ,∴∠2=∠A =30°.∴∠OCD =∠ACD -∠2=90°,即OC ⊥CD ,∴CD 是⊙O 的切线;(2)解:∠1=∠2+∠A =60°.∴S 扇形BOC =2602360π⨯=23π. 在Rt △OCD 中,∠D =30°,∴OD =2OC =4,∴CD =22OD OC -=23.∴S Rt △OCD =12OC×CD =12×2×23=23. ∴图中阴影部分的面积为:23-23π. 24.(1)反比例函数的表达式y=,(2)点P 坐标(,0), (3)S △PAB = 1.1.【解析】(1)把点A (1,a )代入一次函数中可得到A 点坐标,再把A 点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD 即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=kx,得k=3,∴反比例函数的表达式y=3x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=1,∴直线AD的解析式为y=﹣2x+1,令y=0,得x=52,∴点P坐标(52,0),(3)S△PAB=S△ABD﹣S△PBD=12×2×2﹣12×2×12=2﹣12=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.25.(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.26.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】【分析】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“A 型公交车1辆,B 型公交车2辆,共需400万元;A 型公交车2辆,B 型公交车1辆,共需350万元”列出方程组解决问题; (2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由“购买A 型和B 型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得24002350x y x y +=⎧⎨+=⎩, 解得100150x y =⎧⎨=⎩, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得100150(10)122060100(10)650a a a a +-⎧⎨+-⎩, 解得:283554a ≤≤, 因为a 是整数,所以a =6,7,8;则(10﹣a )=4,3,2;三种方案:①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元;②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.2.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.43.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)4.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟5.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<26.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C3D37.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤38.下列各式:33②177;2682;2432;其中错误的有().A.3个B.2个C.1个D.0个9.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是610.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191乙55 135 151 110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③二、填空题(本题包括8个小题)11.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.12.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.13.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.14.如图,数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,若原点O 是线段AC 上的任意一点,那么a+b-2c= ______ .15.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 16.观察下列一组数:13579,,,,,49162536⋯,它们是按一定规律排列的,那么这一组数的第n 个数是_____. 17.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F ,若AD=1,BD=2,BC=4,则EF=________.18.如图,用10 m 长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m 1.三、解答题(本题包括8个小题)19.(6分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w 元.求w 与x 之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20.(6分)已知△OAB 在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O 逆时针旋转90°得△OA 1B 1,再以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2;直接写出点A 1的坐标,点A 2的坐标.21.(6分)解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=mx的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与mx的大小.23.(8分)解方程:3xx--239x-=124.(10分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?25.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.26.(12分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.2.B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=12|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.3.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.4.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】 解:设反比例函数关系式为:k y x =,将(7,100)代入,得k=700, ∴700y x=, 将y=35代入700y x =, 解得20x ;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C .【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.5.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m 的取值范围.【详解】∵函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大, ∴m+1<0,解得m <-1.故选B .6.B【解析】作AD ⊥BC 的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则2BD.cos∠ACB=222ADAB==,故选B.7.D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8.A【解析】33②177,错误;2682,错误,不能计算;2432,正确.故选A.9.D【解析】【分析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;。
浙江省金华市2020中考数学预测试题
![浙江省金华市2020中考数学预测试题](https://img.taocdn.com/s3/m/6fb6ef983169a4517623a398.png)
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:22.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成 一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .53cm3.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球4.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .1255.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×1086.下列各式中的变形,错误的是(( )A .B .C .D .7.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤8.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.3y-2x=B.2y3x=C.3y2x=D.2y-3x=9.如图所示,ABC△的顶点是正方形网格的格点,则sin A的值为()A.12B.55C.255D.101010.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个二、填空题(本题包括8个小题)11.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg12.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.13.函数21yx=-中,自变量x的取值范围是_____.14.若一个棱柱有7个面,则它是______棱柱.15.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.16.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点'A处,且点'A在△ABC的外部,则阴影部分图形的周长为_____cm.17.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42cm,则EF+CF的长为cm.18.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.三、解答题(本题包括8个小题)19.(6分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).20.(6分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.21.(6分)如图,AB 是O 的直径,AF 是O 切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作DA 的平行线与AF 相交于点F ,已知CD 23=,BE 1=.()1求AD 的长;()2求证:FC 是O 的切线.22.(8分)已知a ,b ,c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判定△ABC 的形状.23.(8分)如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .24.(10分)如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.写出图中小于平角的角.求出∠BOD 的度数.小明发现OE 平分∠BOC ,请你通过计算说明道理.25.(10分)如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM ∥AN ).求灯杆CD 的高度;求AB 的长度(结果精确到0.1米).(参考3.sin37°≈060,cos37°≈0.80,tan37°≈0.75)26.(12分)在等边三角形ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ .求证:△ABP ≌△CAQ ;请判断△APQ 是什么形状的三角形?试说明你的结论.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B2.B【解析】试题分析:∵从半径为9cm 的圆形纸片上剪去13圆周的一个扇形,∴留下的扇形的弧长=()2293π⨯=12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r=122ππ=6cm , ∴圆锥的高为2296-=35cm故选B.考点: 圆锥的计算.3.A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .4.B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴222243AB BE +=+=5,∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245 , ∵FE=BE=EC ,∴∠BFC=90°,∴CF=2222246()5BC BF -=-=185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.6.D【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A 、,故A 正确;B 、分子、分母同时乘以﹣1,分式的值不发生变化,故B 正确;C 、分子、分母同时乘以3,分式的值不发生变化,故C 正确;D 、≠,故D 错误;故选:D .【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.7.C【解析】【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤.故选C8.A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx ,根据题意得:2k=﹣3,解得:k=32-. ∴ 函数的解析式是:32y x =-. 故选A .9.B【解析】【分析】连接CD ,求出CD ⊥AB ,根据勾股定理求出AC ,在Rt △ADC 中,根据锐角三角函数定义求出即可.解:连接CD (如图所示),设小正方形的边长为1,∵BD=CD=2211+=2,∠DBC=∠DCB=45°, ∴CD AB ⊥,在Rt △ADC 中,10AC =,2CD =,则25sin 510CD A AC ===.故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.10.D【解析】【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b <4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】 解不等式2x−a≥0,得:x≥2a , 解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3,则1<2a ≤2、3≤3b <4, 解得:2<a≤4、9≤b <12,则a =3时,b =9、10、11;当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.二、填空题(本题包括8个小题)11.20设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg12.AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=12AC;同理EF∥AC且EF=12AC,同理可得EH=12 BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.13.x≠1【解析】【分析】根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1,【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15.1【解析】【分析】先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.16.3【解析】【分析】由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】∵△A'DE与△ADE关于直线DE对称,∴AD=A'D,AE=A'E,C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.17.5【解析】分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.∴△BAE是等腰三角形,即BE=AB=6cm.同理可证△CFE也是等腰三角形,且△BAE∽△CFE.∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.∵BG⊥AE,BG=42cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.∴EF+CF=5cm.18.2【解析】【详解】解:这组数据的平均数为2,有16(2+2+0-2+x+2)=2,可求得x=2.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,其平均数即中位数是(2+2)÷2=2.故答案是:2.三、解答题(本题包括8个小题)19.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED 中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×3=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin ∠CED=CDCE,∴CE=23 1.53=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题20.(1)见解析;(2)见解析;(3)AG=1.【解析】【分析】(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.(2)利用直径所对圆周角为90和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴AC CE=,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD=DF=0.6,AF∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴DF AD=,CD DG∴2.4 3.2,=6.4DG∴DG=8.2,∴AG=DG﹣AD=1.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.21.(1)AD23=;(2)证明见解析.【解析】【分析】(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF 、OC ,先证明四边形AFCD 是菱形,易证得△AFO ≌△CFO ,继而可证得FC 是⊙O 的切线.【详解】 证明:()1连接OD ,AB 是O 的直径,CD AB ⊥,11CE DE CD 23322∴===⨯= 设OD x =, BE 1=,OE x 1∴=-,在Rt ODE 中,222OD OE DE =+,222x (x 1)3)∴=-+, 解得:x 2=,OA OD 2∴==,OE 1=,AE 3∴=,在Rt AED 中,2222AD AE DE 3(3)23=+=+=()2连接OF 、OC ,AF 是O 切线,AF AB ∴⊥,CD AB ⊥,AF//CD ∴,CF//AD ,∴四边形FADC 是平行四边形,AB CD ⊥AC AD ∴=AD CD ∴=,∴平行四边形FADC 是菱形FA FC ∴=,FAC FCA ∠∠∴=,AO CO =,OAC OCA ∠∠∴=,FAC OAC FCA OCA ∠∠∠∠∴+=+,即OCF OAF 90∠∠==,即OC FC ⊥,点C 在O 上,FC ∴是O 的切线.【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.等腰直角三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC 的形状.【详解】解:∵a 2c 2-b 2c 2=a 4-b 4,∴a 4-b 4-a 2c 2+b 2c 2=0,∴(a 4-b 4)-(a 2c 2-b 2c 2)=0,∴(a 2+b 2)(a 2-b 2)-c 2(a 2-b 2)=0,∴(a 2+b 2-c 2)(a 2-b 2)=0得:a 2+b 2=c 2或a=b ,或者a 2+b 2=c 2且a=b ,即△ABC 为直角三角形或等腰三角形或等腰直角三角形.考点:勾股定理的逆定理.23.证明见解析【解析】试题分析:证明三角形△ABC ≅△DEF,可得AB =DE .试题解析:证明:∵BF =CE ,∴BC=EF,∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,AC=DF,∴△ABC ≅△DEF,∴AB=DE.24.(1)答案见解析(2)155°(3)答案见解析【解析】【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.25.(1)10米;(2)11.4米【解析】【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt △BCH 中,CH=12BC=5,3, ∴DH=15,在Rt △ADH 中,AH=tan 37DH ︒≈150.75=20, ∴AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.26. (1)证明见解析;(2) △APQ 是等边三角形.【解析】【分析】(1)根据等边三角形的性质可得AB =AC ,再根据SAS 证明△ABP ≌△ACQ;(2)根据全等三角形的性质得到AP =AQ ,再证∠PAQ = 60°,从而得出△APQ 是等边三角形.【详解】证明:(1)∵△ABC 为等边三角形, ∴AB=AC ,∠BAC=60°,在△ABP 和△ACQ 中,AB AC ABP ACQ BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△ACQ(SAS), (2)∵△ABP ≌△ACQ , ∴∠BAP=∠CAQ ,AP=AQ ,∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ 是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP ≌△ACQ 是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm22.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°3.若x=-2是关于x的一元二次方程x2+32ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4C.1或-4 D.1或44.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩5.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+6.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA 5,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处7.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19988.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A.1个B.2个C.3个D.49.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°10.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.二、填空题(本题包括8个小题)11.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.12.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________13.当x为_____时,分式3621xx-+的值为1.14.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,OE3=OA5,则EFGHABCDSS四边形四边形=_____.15.已知16xx+=,则221xx+=______16.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.17.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.三、解答题(本题包括8个小题)19.(6分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20.(6分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.21.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).23.(8分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.24.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.25.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,26.(12分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C2.B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC 是等腰直角三角形, ∴∠BAC=90°,∠ACB=45°, ∴∠1+∠BAC=30°+90°=120°, ∵a ∥b ,∴∠ACD=180°-120°=60°, ∴∠2=∠ACD-∠ACB=60°-45°=15°; 故选B .点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD 的度数是解决问题的关键. 3.C 【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0, 解得 a 1=-2,a 2=1. 即a 的值是1或-2. 故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 4.C 【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系. 5.D【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算. 【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1, ∵△ABC 放大到原来的2倍得到△A′B′C , ∴2(﹣1﹣x )=a+1, 解得x =﹣12(a+3), 故选:D . 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键. 6.D 【解析】 如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =, ∴54DC AC AC ==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D. 7.B 【解析】 【分析】根据乘法分配律和有理数的混合运算法则可以解答本题. 【详解】原式=-999×(52+49-1)=-999×100=-1. 故选B . 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.B 【解析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确; ②对称轴x 2ba=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误. 综上所述:正确的结论有2个. 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 9.C 【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°.∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°. 故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质. 10.C 【解析】 【分析】根据题意可以写出y 关于x 的函数关系式,然后令x=40求出相应的y 值,即可解答本题. 【详解】 解:由题意可得, y=308x ⨯=240x, 当x=40时,y=6, 故选C . 【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键. 二、填空题(本题包括8个小题)【分析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E 和C 是对应顶点,G 和A 是对应顶点;另一种是A 和E 是对应顶点,C 和G 是对应顶点. 【详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1), ∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点, 设AG 所在直线的解析式为y=kx+b (k≠0), ∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩.∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点, 设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩, 故此直线的解析式为115y x =-…② 联立①②得1122115y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得52x y =-⎧⎨=-⎩,故AE 与CG 的交点坐标是(-5,-2).故答案为:(1,0)、(-5,-2). 12.2. 【解析】考点:一元二次方程根的判别式. 13.2 【解析】 【分析】分式的值是1的条件是,分子为1,分母不为1. 【详解】 ∵3x-6=1, ∴x=2,当x=2时,2x+1≠1. ∴当x=2时,分式的值是1. 故答案为2. 【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1. 14.925【解析】试题分析:∵四边形ABCD 与四边形EFGH 位似,位似中心点是点O , ∴EF AB =OE OA =35, 则EFGH ABCD S S 四边形四边形=2()OE OA =23()5=925. 故答案为925. 点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键. 15.34 【解析】∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭,故答案为34. 16.y 1<y 1 【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 1的大小,从而可以解答本题. 详解:∵反比例函数y=-4,-4<0,。
金华市2020年(春秋版)数学中考一模试卷(I)卷
![金华市2020年(春秋版)数学中考一模试卷(I)卷](https://img.taocdn.com/s3/m/207294f058fb770bf68a5515.png)
金华市2020年(春秋版)数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在-(-5),-(-5)2 ,-|-5|,(-5)2中负数有()A . 0个B . 1个C . 2个D . 3个2. (2分) (2012·湛江) 国家发改委已于2012年5月24日核准广东湛江钢铁基地项目,项目由宝钢湛江钢铁有限公司投资建设,预计投产后年产10200000吨钢铁,数据10200000用科学记数法表示为()A . 102×105B . 10.2×106C . 1.02×106D . 1.02×1073. (2分)(2018·天津) 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .4. (2分)四边形ABCD中,对角线AC与BD交于点O ,下列条件不能判定这个四边形是平行四边形是()A . OA=OC , OB=ODB . AD∥BC ,AB∥CDC . AB=DC , AD=BCD . AB∥DC , AD=BC5. (2分) (2015九下·郴州期中) 某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A . 8,8B . 8.4,8C . 8.4,8.4D . 8,8.46. (2分)已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|-|a-1|+|b+2|的结果是()A .B . 2b+3C . 2a-3D . -17. (2分) (2019八上·惠山期中) 下列图形中,不是轴对称图形的是()A .B .C .D .8. (2分) (2019九上·镇原期末) 点M(a,2a)在反比例函数y=的图象上,那么a的值是()A . 4B . ﹣4C . 2D . ±29. (2分) (2019八下·新乡期中) 当时,一次函数的图象经过A . 第一、二、三象限B . 第一、二、四象限C . 第二、三、四象限D . 第一、三、四象限10. (2分)如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为()A . 20cmB . cmC . 10πcmD . πcm二、填空题 (共8题;共8分)11. (1分)在函数:中,自变量x的取值范围是________.12. (1分)(2017·临海模拟) 计算:cos260°=________.13. (1分)(2018·滨州) 若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是________.14. (1分)(2017·临沂模拟) 分解因式:ax2﹣4axy+4ay2=________.15. (1分)已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16. (1分)(2017·呼和浩特模拟) 一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图扇形的圆心角度数是________度.17. (1分) (2017八上·老河口期中) 如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.18. (1分) (2019七上·宜兴期末) 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆.(用含n 的代数式表示)三、解答题 (共10题;共111分)19. (15分) (2019八上·宜兴月考) 求x的值:(1)(x﹣2)2=81(2)(2x﹣1)3+27=0(3)计算:;20. (5分) (2017七上·宁江期末) 已知m、x、y满足:(1)﹣2abm与4ab3是同类项;(2)(x﹣5)2+|y ﹣ |=0.求代数式:2(x2﹣3y2)﹣3()的值.21. (5分)(2017·娄底) 先化简,再求值:(a+b)(a﹣b)+(a﹣b)2﹣(2a2﹣ab),其中a,b是一元二次方程x2+x﹣2=0的两个实数根.22. (20分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5m3 ,那么水池中的水将要多长时间排完?23. (10分) (2017八下·东台开学考) 如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.24. (10分) (2019八上·建邺期末) 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25. (9分)(2017·永定模拟) 为了进一步了解义务教育阶段学生的体质健康状况,某县从全县九年级学生中随机抽取了部分学生进行了体质抽测.体质抽测的结果分为四个等级:A级:优秀;B级:良好;C级:合格;D 级:不合格.并根据抽测结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽测的学生人数是________人;(2)图(1)中∠α的度数是________,并把图(2)条形统计图补充完整________;(3)该县九年级有学生4800名,如果全部参加这次体质测试,请估计不合格的人数为________.(4)测试老师想从4位同学(分别记为E、F、G、H,其中H为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.26. (10分) (2020七下·通榆期末) 某商场打折前,买60件A商品和30件B商品需要1 080元,买50件A商品和10件B商品需要840元.(1)买一件A商品和一件B商品各要多少元?(2)若两种商品按相同的折扣打折,打折后,买500件A商品和500件B商品,比不打折至少节约1 000元钱,问最多打几折?27. (12分) (2018九下·广东模拟) 如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图1,连接PD,填空:∠PFD=________,四边形PEAD的面积是________;(2)如图2,当PF经过点D时,求△PEF运动时间t的值;(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请求出S与t的函数关系式.28. (15分) (2017七下·江阴期中) 直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小;(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,在△AEF 中,如果有一个角是另一个角的4倍,试求∠ABO的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共111分)19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B . 80元
C . 100元
D . 104元
8. (2分) 如图,已知等腰梯形ABCD中,AD∥BC,∠A=110°,则∠C=( )
A . 90°
B . 80°
C . 70°
D . 60°
9. (2分) (2019九上·杭州期末) 如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )
(1) 求一个篮球和一个足球的售价各是多少元?
(2) 学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?
19. (20分) (2016·义乌模拟) 成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).
②▱OABC是否可以形成矩形?如果可以,请求出矩形OABC的面积;若否,请说明理由.
③四边形AECG是否可以形成菱形?如果可以,请求出菱形AECG的面积;若否,请说明理由.
(2)
在点A、C移动的过程中,若点B不在x轴上,且当▱OABC为正方形时,直接写出点C的坐标.
22. (10分) (2017·丹江口模拟) 如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+ x+c经过B、C两点,点E是直线BC上方抛物线上的一动点.
21. (10分) (2017八下·江阴期中) 已知▱OABC的顶点A、C分别在直线x=2和x=4上,O为坐标原点,直线x=2分别与x轴和OC边交于D、E,直线x=4分别与x轴和AB边的交于点F、G.
(1)
如图,在点A、C移动的过程中,若点B在x轴上,
①直线 AC是否会经过一个定点,若是,请直接写出定点的坐标;若否,请说明理由.
5. (2分) (2017·广东模拟) 如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是( )
A .
B .
C .
D .
6. (2分) (2018八上·青山期中) 已知一个多边形的内角和是900°,则这个多边形是( )
A . 五边形
B . 七边形
C . 九边形
D . 不能确定
7. (2分) 五一期间,万州新世纪将单价标为160元的T恤按7.5折出售仍可获利20%,则每件T恤的进价是( )
(1) 求出该班的总人数,并补全频数分布直方图;
(2) 求出“足球”在扇形的圆心角是多少度;
(3) 该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
20. (10分) 如图,河对岸有古塔AB.小敏在C处测得塔顶A的仰角为30°,向塔前进20米到达D.在D处测得A的仰角为45°,则塔高是多少米?
A .
B .
C . 7.9965×104
D .
3. (2分) 下列各数中,最小的数是( )
A . 3﹣2
B .
C . 1-பைடு நூலகம்
D .
4. (2分) (2017·五华模拟) 下列运算或变形正确的是( )
A . ﹣2a+2b=﹣2(a+b)
B . a2﹣2a+4=(a﹣2)2
C . (2a2)3=6a6
D . 3a2•2a3=6a5
A .
B .
C .
D .
12. (2分) (2015九上·丛台期末) 现有五张分别画有等边三角形、平行四边形、矩形、正五边形和圆的五个图形的卡片,它们的背面相同,小梅将它们的背面朝上,从中任意抽出一张,下列说法中正确的是( )
A . “抽出的图形是中心对称图形”属于必然事件
B . “抽出的图形是六边形”属于随机事件
浙江省金华市2020年初中毕业生学业模拟考试数学试卷(一)
姓名:________班级:________ 成绩:________
一、 单选题 (共12题;共24分)
1. (2分) (2019·南浔模拟) 2019的绝对值等于( )
A . ﹣2019
B . 2019
C . ﹣
D .
2. (2分) 2010年上海世博会共有园区志愿者79965名。他们敬业的精神和热情的服务“征服”了海内外游客。79965用科学记数法表示为( )
22-2、
22-3、
(1)
求抛物线的解析式;
(2)
过点E作y轴的平行线交直线BC于点M、交x轴于点F,当S△BEC= 时,请求出点E和点M的坐标;
(3)
在(2)的条件下,当E点的横坐标为1时,在EM上是否存在点N,使得△CMN和△CBE相似?如果存在,请直接写出点N的坐标;如果不存在,请说明理由.
参考答案
一、 单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、 填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、 解答题 (共6题;共70分)
17-1、
18-1、
18-2、
19-1、
19-2、
19-3、
20-1、
21-1、
21-2、
22-1、
C . 抽出的图形为四边形的概率是
D . 抽出的图形为轴对称图形的概率是
二、 填空题 (共4题;共4分)
13. (1分) 若 =﹣ ,则A=________.
14. (1分) (2017·中山模拟) 已知点P(3﹣m,m)在第二象限,则m的取值范围是________.
15. (1分) (2016·武侯模拟) 如图,线段AB=16,以AB为直径的半圆上有一点C,连接BC并延长到点D,使DC=2BC,连接OD、AC交于点E,当∠B=2∠D时,线段OE的长为________
16. (1分) (2016八下·高安期中) 已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于________.
三、 解答题 (共6题;共70分)
17. (10分) 计算:
(1)( - + )×
(2)-12014- +(π-2014)0-
18. (10分) (2018·东莞模拟) 学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.
A . 50°
B . 60°
C . 80°
D . 100°
10. (2分) 菱形AOCB在平面直角坐标系中的位置如图,若OA=2,∠AOC=45°,则B点的坐标是( )
A . (﹣2﹣ , )
B . (﹣2+ , )
C . (2+ , )
D . (2﹣ , )
11. (2分) (2019·道外模拟) 如图, , , 、 分别交 于点 、 ,则下列结论错误的是( )