八年级数学下册 6 平行四边形 课题 平行四边形的判定(一)学案 (新版)北师大版
6.2平行四边形的判定(1) 课件 2023—2024学年北师大版八年级数学下册

附加
如图,A、B、C、D四点在同一直线上,AB=CD,线段AE与线段DF平 行,AE=DF. 求证:四边形EBFC是平行四边形.
如图,已知E,F,G,H分别是平行四边形ABC D的边AB, BC,CD,DA上的点,且AE=CG,BF=DH.
求证:四边形EFGH是平行四边形.
谢谢!
平行四边形的判定(1)
学习目标
• 1、通过类比、猜想、验证,掌握平行四边形的判定定理 • 2、综合应用平行四边形的性质及判定
课堂导入
平行线的性质:
(1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。
平行线的判定:
同位角相等,两直线平行。 内错角相等,两直线平行。 同旁内角互补,两直线平行。
∵AB= DC,AD= BC ∴四边形ABCD是平行四边形
A
D
∵AD∥BC且AD=BC ∴四边形ABCD是平行四边形
B
C
随堂练习
1、下列条件中,不能确定四边形ABCD是平行四边形的是( )
A. AB=CD,AB∥CD
A
B.AB∥CD ,AD∥BC
D
C. AB=CD, AD=BC
D.AB=CD,AD∥BC
对角线互相平分的四边形是平 行四边形.
自主学习
1、两组对边分别平行的四边形是平行四边形.
平行四边形的定义
A B
D C
数学语言:
四边形ABCD 中, AB//CD , AD //BC 四边形ABCD 为平行四边形
例1
如图, ABCD中,∠ABC的平分线BE交AD于E,∠ADC的平分线DF交 BC于点F, 求证:四边形BFDE是平行四边形.
平行四边形的判定说课稿(通用8篇)

平行四边形的判定说课稿平行四边形的判定说课稿(通用8篇)作为一名老师,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。
快来参考说课稿是怎么写的吧!下面是小编整理的平行四边形的判定说课稿范文,仅供参考,欢迎大家阅读。
平行四边形的判定说课稿篇1一、说教材本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。
它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。
二、说学情八年级的学生已经学习了初中阶段包括全等三角形的相关知识、平行四边形的性质在内的绝大多数几何概念及定理。
学生的抽象思维能力、逻辑推理能力有了很大的提高,学生对于新鲜的知识也充满着好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。
因此,由教师组织教学,让学生自主探索平行四边形的判定定理不仅成为可能,又可以作为初中几何知识综合能力的一次检验、一次再提升!三、教学目标【知识技能目标】1、运用类比的方法,通过学生的合作探究,得出平行四边形的第三个判定方法。
2、理解平行四边形的这两种判定方法,并学会简单运用。
【过程与方法目标】1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
【情感态度与价值观目标】1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。
2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。
3、通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。
四、教学重点、难点【重点】平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。
平行四边形的性质(一)学案

平行四边形的判定(第一课时)前置作业1、平行四边形的定义:的四边形叫做平行四边形。
2、如右下图:请说出平行四边形的性质:3、按老师的要求回家制作两个教具:(1)如图1将两长(相等)两短(相等)的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形。
它是平行四边形吗? (请说明理由)(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形。
它是平行四边形吗? (请说明理由)理论证明:证明猜想1已知:A BCD求证: 证明:连结 ,在△_________和△__________中∴△_________≌△__________( )∴∠_________=∠___________,∠___________=∠___________ ∴___________//_____________,_____________//___________ ∴四边形ABCD 是_______________ 证明猜想2已知: 求证: 证:在△_________和△__________中∴△_________≌△__________( )∴∠_________=∠___________,∠___________=∠___________ ∴___________//_____________,_____________//___________ ∴四边形ABCD 是_______________课堂练习及作业一、平行四边形的判定方法(如图)1、2、3、 二、随堂练习:1、1、如图,AB =DC=EF, AD=BC ,DE=CF,则图中有哪些互相平行的线段?说明理由。
2、请你识别下列四边形哪些是平行四边形?请说明理由ABCDEF三、例题讲解已知:如图 ,E 、F 是平行四边形ABCD 对角线AC 上的两点,并且 AE=CF 。
求证:四边形BFDE 是平行四边形 证明:连结 ,交 于点 ∵四边形ABCD 是平行四边形 ∴ ∵AE=CF∴ - = - 即: = 又 ∵ =∴四边形BFDE 是平行四边形 (对角线互相平分的四边形是平行四边形) 四、作业1、已知:如图 ,E 、F 是平行四边形ABCD 对角线AC 上的两点,且E.F 是OA.OC 的中点.求证:四边形BFDE 是平行四边形 7.6cmAB CDEF ADEF2、已知:如图 ,E 、F 是平行四边形ABCD 对角线AC 上的两点,且DE ⊥OA,BF ⊥OC. 求证:四边形BFDE 是平行四边形四、思考题:如上图,生物实验室有一块平行四边形的玻璃片,在做实验时,小明 一不小心碰碎了一部分(如图所示),同学们!有没有办法把原来的平行四边形重新画出来?(A,B,CBAC为三顶点,即找出第四个顶点D)(请用尺规完成)。
北师大版八年级下册数学《平行四边形的判定》平行四边形说课教学课件(第3课时)

第3课时
八年级下册
学习目标 1 探索并证明夹在平行线间的平行线段相等的性质;
利用平行线间的平行线段相等的性质解决有关问题,理解平行线间
2
的距离的含义.
回顾与思考
平行四边形的判定方法: 1.定义法 两组对边分别平行的四边形是平行四边形. 2.判定定理 ⑴两组对边分别相等的四边形是平行四边形; ⑵一组对边平行且相等的四边形是平行四边形; ⑶对角线相互平分的四边形是平行四边形.
解:笔直的铁轨彼此平行,而夹在铁轨之间的枕木也是彼此 平行的,两个哪个枕木与两根铁轨围成一个平行四边形,平行 四边形对边相等,因此,夹在笔直的铁轨之间的枕木是相等的.
合作探究
问题2:已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于 点C,点D,如图,
(1)线段AC,BD所在直线有什么样的位置关系? (2)比较线段AC,BD的长. 解:(1)AC∥BD ∵AC⊥CD,BD⊥CD ∴∠ACD+∠BDC=90°+90°=180° ∴AC∥BD (2)AC=BD ∵AB∥CD,AC∥BD ∴四边形ABCD是平行四边形, ∴AC=BD
AD,BF=
1 2
BC.
∴ ED=BF.
又∵ ED ∥ BF,
∴四边形BFDE是平行四边形.
ED C
思考:我们可以从平行四边的定义出发判定平行四
边形吗?
A
D
B
C
已知:四边形ABCD中,AB∥CD,BC∥AD,
求证:四边形ABCD是平行四边形.
证明:
连接AC
∵AB∥CD
∴∠1=∠2
∵BC∥AD
∴∠3=∠4
已知:如图,在四边形ABCD中,AB//CD.
第18讲平行四边形的判定八年级数学下册讲义(北师大版)(原卷版)

第18讲平行四边形的判定目标导航1.掌握平行四边形性质与判定定理。
2.会应用平行四边形的性质与判定定理解决相关的几何证明和计算问题.知识精讲知识点01 平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.【知识拓展】(2021秋•芙蓉区校级期末)如图,在▱ABCD中,∠ABC的平分线交AD于E,∠BEA=30°,则∠A的大小为()A.150°B.130°C.120°D.100°【即学即练1】(2022•乐清市一模)如图,在▱ABCD中,AB=BE,∠C=70°,则∠BAE的度数为()A.35°B.45°C.55°D.65°【即学即练2】(2022春•睢宁县月考)▱ABCD的对角线相交于点O,BD=14,AC=10,则BC的长可以是()A.8B.20C.14D.22知识点02 平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.【知识拓展】(2021秋•芝罘区期末)如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC 上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t(s),则当以A、M、E、F为顶点的四边形是平行四边形时,t的值是()A.B.3C.3或D.或【即学即练1】(2022春•金华月考)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.OB=OD,OA=OC B.AD∥BC,AB=CDC.AB∥CD,AD∥BC D.AB∥CD,AB=CD【即学即练2】(2022春•渝中区校级月考)在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB∥CD,∠A=∠C B.AB∥CD,AD=BCC.AB=BC,CD=DA D.∠A=∠B,∠C=∠D【即学即练3】(2022春•丹徒区月考)在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,M 是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为时,以A、M、E、F为顶点的四边形是平行四边形.知识点03 平行四边形的判定与性质平行四边形的判定与性质的作用平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.【知识拓展】(2021秋•仓山区校级期末)下列条件中,能判定四边形是平行四边形的是()A.一组对边平行B.对角线互相平分C.一组对边相等D.对角线互相垂直【即学即练1】(2021秋•开福区校级期末)如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,,求AB的长.【即学即练2】(2022春•九龙坡区校级月考)在四边形ABCD中,AC、BD交于点O,AD∥BC,BO=DO.(1)证明:四边形ABCD是平行四边形;(2)过点O作OE⊥BD交BC于点E,连接DE.若∠CDE=∠CBD=15°,求∠ABC的度数.【即学即练3】(2021秋•栖霞市期末)在△ABC中,∠C=90°,AC=6,BC=8,若以A,B,C,D为顶点的四边形是平行四边形,则此平行四边形的周长为.【即学即练4】(2021秋•栖霞市期末)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.【即学即练5】(2021秋•栖霞市期末)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形.(1)证明:四边形AEFD是平行四边形;(2)求∠DFE的度数.【即学即练6】(2021秋•曲阳县期末)如图所示,△AOD关于直线l进行轴对称变换后得到△BOC,则以下结论中,不一定正确的是(填字母序号)A.∠1=∠2B.∠3=∠4C.l垂直平分AB,且l垂直平分CDD.AC与BD互相平分【即学即练7】(2022春•渝水区校级月考)如图,在▱ABCD中,AB=8cm,AD=12cm,点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止运动).设运动t(s)(其中t>0)时,以P、D、Q、B四点组成的四边形是平行四边形,则t 的所有可能取值为.能力拓展一.选择题(共2小题)1.(2019•湖北自主招生)如图,平行四边形DEFG 内接于△ABC,已知△ADE ,△EFC,△DBG的面积为1,3,1,那么▱DEFG的面积为()A.2B.2C.3D.42.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二.填空题(共2小题)3.(2019•湖北自主招生)如图,直线AB、IL、JK、DC互相平行,直线AD、IJ、LK、BC互相平行,四边形ABCD面积为90,四边形EFGH面积为55,则四边形IJKL面积为.4.(2017•金牛区校级自主招生)如图,点P是▱ABCD内一点,S△P AB=7,S△P AD=4,则S△P AC=.三.解答题(共8小题)5.(2017•市南区校级自主招生)如图,E是平行四边形ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若AB=AF,试判断四边形ACFD的形状,并说明理由.6.(2018•西湖区校级自主招生)如果用铁丝围成如图一样的平行四边形,需要用铁丝多少厘米?7.(2020•北碚区自主招生)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE =∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.8.(2019•麻城市校级自主招生)如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD 中点.求证:AP=BC.9.(2019•南岸区自主招生)如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.10.(2018•宝山区校级自主招生)AB∥CD,AB=15,CD=10,AD=3,CB=4,求S四边形ABCD.11.(2018•江岸区校级自主招生)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连接AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.12.(2019•渝中区校级自主招生)如图,平行四边形ABCD中,BD为对角线,点F在AB上,连接DF、CF,且BD=BC,过F点作FE⊥CB交CB的延长线于点E.(1)如图1,当F为AB的中点,∠A=60°,AD=2,求CE;(2)如图2,若∠FDB=2∠FCB,求证:FD=2BE.分层提分题组A 基础过关练一.选择题(共7小题)1.(2021•南岗区校级开学)在▱ABCD中,若∠A=38°,则∠C等于()A.142°B.132°C.38°D.52°2.(2021•唐山一模)证明:平行四边形的对角线互相平分.已知:如图四边形ABCD是平行四边形,对角线AC、BD相交于点O.求证:OA=OC,OB=OD,嘉琪的证明过程如图.证明过程中,应补充的步骤是()A.AB=CD,AD=BC B.AB∥BC,AD=BCC.AB∥CD,AD∥BC D.AB∥CD,AB=CD3.(2021秋•襄都区校级期末)平行四边形ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm4.(2022•大渡口区模拟)如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠ADC=()A.30°B.45°C.60°D.80°5.(2021秋•桓台县期末)如图,在▱ABCD中,若∠A=∠D+40°,则∠B的度数为()A.110°B.70°C.55°D.35°6.(2022春•洪泽区月考)平行四边形的对角线长为x,y,一边长为14,则x,y的值可能是()A.8和16B.10和14C.18和10D.10和247.(2021秋•高新区校级期末)如图,点P是平行四边形ABCD边AD上的一点,E,F分别是BP,CP的中点,已知平行四边形ABCD面积为24,那么△PEF的面积为()A.12B.3C.6D.4二.填空题(共4小题)8.(2021秋•芝罘区期末)如图,平行四边形ABCD中,AC、BD相交于点O,OE⊥BD交AD、BC于E、F,若△ABE的周长为10,则四边形ABCD的周长是.9.(2022春•泰州月考)已知▱ABCD周长是48cm,AC和BD相交于O,且△AOB的周长比△BOC的周长小4cm,则CD的长是cm.10.(2022春•玉林月考)如图,在平行四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC =4,AC=10,则平行四边形ABCD的面积为.11.(2022春•洪泽区月考)在▱ABCD中,若∠B+∠D=160°,∠C=°.三.解答题(共4小题)12.(2021秋•沂源县期末)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形,并说明理由.13.(2022春•泰州月考)如图所示,已知点E,F在▱ABCD的对角线BD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)连接AF,CE,求证:四边形AECF是平行四边形.14.(2022春•东台市月考)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.求证:四边形EGFH是平行四边形.15.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.题组B 能力提升练一.选择题(共3小题)1.(2022春•盐都区月考)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.正确的个数是()A.1个B.2个C.3个D.4个2.(2022春•江都区月考)如图,在平行四边形ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E和F,若BE=6,则CF=()A.6B.8C.10D.133.(2021秋•莱州市期末)如图,在▱ABCD中,E是AD边的中点,BE平分∠ABC.若AB=2,则▱ABCD 的周长是()A.11B.12C.13D.14二.填空题(共4小题)4.(2022春•宝应县月考)在四边形ABCD中,分别给出四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.以其中的两个条件能判定四边形ABCD为平行四边形的有种不同的选择.5.(2022春•沭阳县月考)已知在平面直角坐标系中,有点O(0,0)、A(2,2)、B(5,2)、C这四点.以这四点为顶点画平行四边形,则点C的坐标为.6.(2022春•江都区月考)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=18,则△BOC的周长为.7.(2022春•江都区月考)在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别是(0,2)、(﹣3,﹣4)、(2,﹣4),则顶点D的坐标是.三.解答题(共4小题)8.(2021秋•莱阳市期末)如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连接EF,分别交CD,AB于点G,H,连接AG,CH.求证:四边形AGCH是平行四边形.9.(2021秋•东阳市期末)如图,在平行四边形ABCD中,AD=8,AB=12,∠A=60°,点E,G分别在边AB,AD上,且AE=AB,AG=AD,作EF∥AD、GH∥AB,EF与GH交于点O,分别在OF、OH上截取OP=OG,OQ=OE,连结PH、QF交于点I.(1)四边形EBHO的面积四边形GOFD的面积(填“>”、“=”或“<”);(2)比较∠OFQ与∠OHP大小,并说明理由.(3)求四边形OQIP的面积.10.(2021秋•沙坪坝区校级期末)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.11.(2021秋•莱芜区期末)点E是▱ABCD的边CD上的一点,连接EA并延长,使EA=AM,连接EB并延长,使EB=BN,连接MN,F为MN的中点,连接CF,DM.(1)求证:四边形DMFC是平行四边形;(2)连接EF,交AB于点O,若OF=2,求EF的长.题组C 培优拔尖练一.填空题(共8小题)1.(2021春•贵阳期末)如图所示,点O为▱ABCD内一点,连接BD,OA,OB,OC,OD,已知△BCO的面积为3,△ABO的面积为5,则阴影部分的面积是.2.(2021春•沙坪坝区校级期中)如图,在平行四边形ABCD中,∠A=90°,AD=10,AB=8,点P在边AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交CP于点F,过点M作ME⊥CP于E,则EF=.3.(2021春•永嘉县校级期中)如图所示,在平行四边形ABCD中,AB=3,BC=4,∠B=60°,E是BC 的中点,EF⊥AB于点F,则△DEF的面积为平方单位.4.(2020秋•仓山区校级期末)如图,在平行四边形ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD 的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG,BG,则S△BEG=.5.(2021春•武汉期末)如图,在△ABC中,∠BAC=60°,∠ABC=45°,AD平分∠CAB交BC于点D,P为直线AB上一动点.以DP、BD为邻边构造平行四边形DPQB,连接CQ,若AC=4.则CQ的最小值为.6.(2021•太原一模)如图,在▱ABCD中,AD=6,对角线BD⊥CD,∠BAD=30°,∠BAD与∠CDB的平分线交于点E,延长DB到点F,使DF=AD,连接EF,则EF的长为.7.(2020春•鹿城区期中)如图在平行四边形ABCD中,∠ABC=60°,AB=4,四条内角平分线围成四边形EFGH面积为,则平行四边形ABCD面积为.8.(2020•青羊区模拟)如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP =60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=.二.解答题(共6小题)9.(2020春•北碚区校级月考)在平行四边形ABCD中,AC⊥CD,E为BC中点,点M在线段BE上,连接AM,在BC下方有一点N,满足∠CAD=∠BCN,连接MN.(1)若∠BCN=60°,AE=5,求△ABE的面积;(2)若MA=MN,MC=EA+CN,求证:AB=AE.10.(2020•南海区一模)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.11.(2019秋•沙坪坝区校级期中)如图所示,平行四边形ABCD和平行四边形CDEF有公共边CD,边AB 和EF在同一条直线上,AC⊥CD且AC=AF,过点A作AH⊥BC交CF于点G,交BC于点H,连接EG.(1)若AE=2,CD=5,求△BCF的周长;(2)求证:BC=AG+EG.12.(2019春•阿荣旗期末)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC =26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,从运动开始.使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?13.(2019春•萧县期末)如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C 出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.14.(2018秋•东湖区校级期末)如图,等边△ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以3cm/s的速度运动,动点N从点C出发,沿C→A→B→C方向以2cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.。
平行四边形判定(一)教案

平行四边形判定(一)教学目标(一)知识技能目标1、运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法。
2、理解平行四边形的判定方法,并学会简单运用。
(二)数学思考1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
(三)解决问题1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。
2、通过对平行四边形判定方法的探究,提高学生解决问题的能力。
(四)情感态度通过对平行四边形判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。
教学重点、难点1、教学重点:平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。
2、教学难点:对平行四边形判定方法的证明以及平行四边形的性质和判定的综合运用。
教学方法先学后交(交流),当堂拔高先学:学生在教师编制的预习学案的指导下先自学,遇到困难可以在小组内交流,也可以和教师交流,完成预习任务,在学生预习期间,教师参与到各学习小组中,对学生预习中出现的疑难进行点拨,指导。
后交:学生以小组为单位展示自己的预习成果,在学生展示的过程中,教师及时追问,点评,拓展,评价。
教具与学具:硬纸片,三角形教学过程:活动一:问题(多媒体展示问题)1、平行四边形的定义是什么?它有什么性质?2、你能说出:“平行四边形两组对边分别相等”这条性质的逆命题吗?教师提出问题1、2,由学生独立思考,并口答得出定义正反两方面的作用,总结出平行四边形的其他几条性质。
并在此基础上由学生通过小组合作整理出上述各性质的逆命题的文字表达。
两组对边分别平行的四边形叫做平行四边形。
边 对边平行并且相等平行四边形的性质: 角 对角相等邻角互补对角线 对角线互相平分逆命题:两组对边分别相等的四边形是平行四边形。
《平行四边形的判定(第1课时)》教案 人教数学八年级下册

18.1.2 平行四边形的判定第1课时一、教学目标【知识与技能】1.在探索平行四边形的判定条件中,理解并掌握用边、角、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.【过程与方法】经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力.【情感态度与价值观】培养学生合情推理的能力及严谨的书写表达,体会几何思维的真正内涵.二、课型新授课三、课时第1课时共3课时四、教学重难点【教学重点】理解和掌握平行四边形的判定定理.【教学难点】对平行四边形的判定与性质定理的综合运用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)一天,八年级的李明同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是他想把原来的平行四边形重新在纸上画出来,然后带上图纸去就行了,可原来的平行四边形怎么画出来呢?(二)探索新知1.出示课件4-6,探究平行四边形的判定定理1教师问:如图,将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变,在图形变化过程中,它一直是一个平行四边形吗?学生答:是平行四边形.教师问:由上面的过程你得到了什么结论?学生答:两组对边分别相等的四边形是平行四边形. 教师问:如何证明这个结论呢?学生回答:写出已知,求证和画出图形.如下:已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.教师问:你能用平行四边形的定义来证明吗?师生一起解答:证明:连接AC,在△ABC和△CDA中,AB=CD (已知),AC=CA (公共边),BC=DA(已知),∴△ABC≌△CDA(SSS).∴∠1=∠4 ,∠2=∠3.∴AB∥CD, AD∥ BC.∴四边形ABCD是平行四边形.总结归纳:(出示课件6)由上述证明可以得到平行四边形的判定定理1:两组对边分别相等的四边形是平行四边形.教师问:你能利用几何语言描述一下平行四边形的判定定理吗?学生回答:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.教师强调:几何语言:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.考点1:利用两组对边分别相等识别平行四边形如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.(出示课件7)师生共同讨论解答如下:证明:在Rt△MON中,由勾股定理得(x-5)2+42=(x-3)2,解得x=8.∴PM=11-x=3,ON=x-5=3,MN=x-3=5.∴PM=ON,OP=MN,∴四边形PONM是平行四边形.出示课件8,学生自主练习后口答,教师订正.2.出示课件9-12,探究平行四边形的判定定理2教师问:怎么处理本课开头遗留的玻璃碎片问题呢?接下来跟着老师一起解决吧!学生讨论后回答:使∠B=∠D,∠A=∠C即可教师:我们一起来试一下作图如下,学生回答:这样看着与原来的一样了.教师问:对于两组对角分别相等的四边形的形状你的猜想是什么?学生回答:猜想两组对角分别相等的四边形是平行四边形.教师问:如何证明呢?学生回答:已知:四边形ABCD, ∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.师生共同解答如下:证明:∵∠A=∠C,∠B=∠D(已知),又∵∠A+∠B+∠C+∠D =360 °,∴2∠A+ 2∠B=360 °,即∠A+ ∠B=180 °.∴AD∥BC (同旁内角互补,两直线平行).同理可证AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).总结归纳:(出示课件13)平行四边形的判定定理2:两组对角分别相等的四边形是平行四边形.教师问:你能利用几何语言描述一下两对角相等判定四边形是平行四边形吗?师生一起总结:符号语言:∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形.(两组对角分别相等的四边形是平行四边形)考点1:利用平行四边形的判定定理2判定平行四边形如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.(出示课件14)学生独立思考后,师生共同解答.(1) 解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB.∴∠DAB=∠1+∠2=125°.∵∠DCB+∠DAB+∠D+∠B=360°,又∵∠D=∠B=55°∴∠DCB=∠DAB=125°.∴四边形ABCD是平行四边形.出示课件15,学生自主练习后口答,教师订正.3.出示课件16-17,探究平行四边形的判定定理3教师问:如图,将两根木条AC,BD的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD,转动两根木条,四边形ABCD一直是一个平行四边形吗?学生回答:是.教师问:由此得到什么结论呢?学生回答:猜想对角线互相平分的四边形是平行四边形.教师问:你能证明上边的问题吗?师生共同解答如下:已知:如图,在四边形ABCD中,AC与BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△ADO 和△CBO中,OA=OC,∠AOD=∠COB,OB=OD,∴△ADO ≌△CBO.∴∠1=∠2.∴AD∥BC.同理AB∥CD.∴四边形ABCD是平行四边形.教师总结点拨:(出示课件18)平行四边形的判定定理3:对角线互相平分的四边形是平行四边形.教师问:你能利用几何语言描述一下判定定理3吗?师生总结:几何语言:∵OA=OC , OB=OD,∴四边形ABCD是平行四边形.(对角线互相平分的四边形是平行四边形)考点1:利用平行四边形的判定定理3判定平行四边形如图,□ABCD 的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形. (出示课件19)学生独立思考后,师生共同解答.证明:∵四边形ABCD是平行四边形,∴ AO=CO,BO=DO.∵AE=CF ,∴ AO-AE=CO-CF,即EO=OF.又∵BO=DO,∴四边形BFDE是平行四边形.出示课件20,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧。
平行四边形教学方案

平行四边形教学方案平行四边形教学方案9篇为了确保工作或事情能高效地开展,往往需要预先制定好方案,方案可以对一个行动明确一个大概的方向。
那么大家知道方案怎么写才规范吗?下面是店铺整理的平行四边形教学方案,仅供参考,欢迎大家阅读。
平行四边形教学方案1考点要求:1、掌握平行四边形的概念和性质及它们之间的关系2、以下定理可以作为证明和计算的依据:平行四边形的对边相等、对角相等、对角线互相平分;一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形.一、预习准备:1.完成《导学式》P76-78,了解平行四边形的判定和性质。
2.记录下你的问题和其他同学交流。
二、例题精讲:例1、将下列图形(1)(2)(3)分别剪一刀后拼成平行四边形、梯形、平行四边形。
例2、如图1,有一张菱形纸片ABCD,, .(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长。
(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形。
(注:上述所画的平行四边形都不能与原菱形全等)周长为__________ 周长为__________例3、如图,四边形ABCD是平行四边形,AE⊥BD,CF⊥BD,垂足分别为E、F,连结AF、CE。
求证:AF=CE巩固案1.下面几组条件中,能判断一个四边形是平行四边形的是()A.一组对边相等 B.两条对角线互相平分C.一组对边平行 D.两条对角线互相垂直2.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()A.三角形B.平行四边形C.矩形D.正方形3.平行四边形四内角平分线所围成的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形4.在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 .5.以三角形的三个顶点及三边中点为顶点的平行四边形共有个6.如图,□ABCD的对角线、相交于点,点是的中点,的周长为16cm,则的周长是 cm.7.如图,在□ABCD中,已知AD=8?,AB=6?,DE平分∠ADC交BC边于点E,则BE等于8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=9.在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC 和DA的三等分点,已知四边形A4 B2 C4 D2的积为1,则平行四边形ABCD面积为10.如图,平行四边形中,,,.对角线相交于点,将直线绕点顺时针旋转,分别交于点.(1)证明:当旋转角为时,四边形是平行四边形;(2)试说明在旋转过程中,线段与总保持相等;(3)在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时绕点顺时针旋转的度数.平行四边形教学方案2教学目标:1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应实际问题。
北师大版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件(第1课时)

探究新知
例2 如图,在平行四边形ABCD中,E,F分别是AD和BC的中点. 求证:四边形BFDE是平行四边形.
证明:
∵ 四边形ABCD是平行四边形,
∴ AD=CB, AD//BC.
思路:根据平行四边形定义证明
证明四边形两组对边分别平行
通过角之间的关系得到平行
通过三角形全等找到角之 间的关系
通过作辅助线可以构造出全 等三角形
探究新知
已知: 四边形ABCD中,AB=CD,AD=CB.
求证: 四边形ABCD是平行四边形.
证明: 连接BD,
在△ABD和△CDB中,
A
AB=CD,
AD=CB,
探究新知
思考:
将两根同样长的木条AD,BC平行放置,再用木条AB,DC
加固,得到的四边形ABCD是平行四边形.ADB NhomakorabeaC
猜想:一组对边平行且相等的四边形是平行四边形.
探究新知
猜想验证:
如图,在四边形ABCD中,AB ∥CD.求证:四边形ABCD是
平行四边形.
你能想到几种证
连接四边形对角线
明方法?
构造全等三角形
探究新知
(1)窗扇完全打开,张角∠CAB=85°,求 此时窗扇与窗框的夹角∠DFB的度数.
(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距 离(精确到0.1 cm). (参考数据: 3≈1.732, 6 ≈2.449)
解:(1)∵AC=DE=20 cm,AE=CD=10 cm, ∴四边形ACDE是平行四边形,∴AC∥DE,∴∠DFB=∠CAB, ∵∠CAB=85°,∴∠DFB=85°.
北师大版数学八年级下册期末复习(六) 平行四边形

期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
八年级数学下册第六章平行四边形试题(新版)北师大版

第六章平行四边形1.平行四边形的性质(1)根据平行四边形对边相等,可知平行四边形相邻两边长之和是平行四边形周长的一半.(2)平行四边形的对角相等,邻角互补,这是根据平行线的性质进行推导得出的,可以用来求角的度数.(3)平行四边形的对角线互相平分,且一条对角线将平行四边形分成两个全等的三角形,两条对角线将平行四边形分成两组全等的三角形,可以应用全等三角形的性质进行解题.【例1】在▱ABCD中,AB=6cm,BC=8cm,则▱ABCD的周长为__________cm.【标准解答】∵在▱ABCD中,AB=6cm,BC=8cm,∴CD=AB=6cm,AD=BC=8cm,∴▱ABCD的周长为6+6+8+8=28(cm).答案:28【例2】在平面直角坐标系中,▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为( )A.(7,2)B.(5,4)C.(1,2)D.(2,1)【标准解答】选C.如图.∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),∴顶点D的坐标为(1,2).【例3】如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.【标准解答】∵四边形ABCD是平行四边形,∴AB=CD=3,AD=BC=4,∵EF⊥AB,∴EH⊥DC,∠BFE=90°,∵∠ABC=60°,∴∠HCB=∠B=60°,∴∠FEB=∠CEH=180°-∠B-∠BFE=30°,∵E为BC的中点,∴BE=CE=2,∴CH=BF=1,由勾股定理得:EF=EH=.∴△DEF的面积是EF·DH=2.答案:2【例4】如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.【标准解答】猜想:BE DF.证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF在△BCE和△DAF中,∴△BCE≌△DAF.∴BE=DF,∠BEC=∠DFA.∴BE∥DF,故BE DF.【例5】如图,在▱ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=( )A.40°B.50°C.60°D.80°【标准解答】选B.因为∠B=80°,所以∠BAD=100°,又AE平分∠BAD,所以∠BAE=∠DAE=∠BEA=50°,因为CF∥AE,所以∠1=∠BEA=50°.【例6】如图,在四边形ABCD中,AB∥CD,AD∥BC,AC,BD相交于点O.若AC=6,则线段AO的长度等于________.【标准解答】易知四边形ABCD是平行四边形,所以AO=OC=AC=3.答案:3【例7】如图所示,在▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是( )A.AC⊥BDB.AB=CDC.BO=ODD.∠BAD=∠BCD【标准解答】选A.∵四边形ABCD为平行四边形,∴AB=CD,则选项B正确;又根据平行四边形的对角线互相平分,∴BO=OD,则选项C正确;又∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠BCD=180°,∠BAD+∠ABC=180°,∴∠BAD=∠BCD,则选项D正确;由BO=OD,假设AC⊥BD,又∵OA=OA,∴△ABO≌△ADO,∴AB=AD与已知AB≠AD矛盾,∴AC不垂直BD,则选项A错误.1.已知▱ABCD的周长为32,AB=4,则BC=( )A.4B.12C.24D.282.若平行四边形ABCD的周长为22cm.AC,BD相交于O,△AOD的周长比△AOB的周长小3cm,则AD=________,AB=________.2.平行四边形的判定(1)利用“两组对边分别平行的四边形是平行四边形”来说明【例1】如图,在平行四边形ABCD中,点E是AB的延长线上的一点,且EC∥BD,试说明:四边形BECD 是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴AB∥CD,即BE∥CD,∵EC∥BD,∴四边形BECD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)利用“两组对边分别相等的四边形是平行四边形”来说明【例2】在平行四边形ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB,试说明:四边形AFCE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°,∴∠ADE=∠CBF=60°,又∵AE=AD,CF=CB,∴△AED,△CFB是等边三角形,又在平行四边形ABCD中,AD=BC,DC=AB,∴AE=CF,ED=BF,∴ED+DC=BF+AB,即EC=AF,∴四边形AFCE是平行四边形(两组对边分别相等的四边形是平行四边形)(3)利用“一组对边平行且相等的四边形是平行四边形”来说明【例3】如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.试判断四边形DBCF是怎样的四边形,说明你的理由.【标准解答】四边形DBCF是平行四边形.理由如下:∵△ADE绕点E顺时针旋转180°,得到△CFE,∴△ADE≌△CFE,且A,E,C和D,E,F在一条直线上,∴AD=CF,∠A=∠ECF,∴AB∥CF,又∵D是AB的中点,∴AD=DB=CF,∴四边形DBCF是平行四边形(一组对边平行且相等的四边形为平行四边形).(4)利用“两组对角分别相等的四边形是平行四边形”来说明【例4】如图,已知,在平行四边形ABCD中,∠ABC,∠ADC的平分线分别交CD,AB于点E,F,求证:四边形DFBE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴∠ABC =∠ADC,∠A=∠C,∵BE,DF分别平分∠ABC,∠ADC,∴∠1=∠3=∠ADC,∠2=∠4=∠ABC,∴∠1=∠2=∠3=∠4,又∵∠DEB=∠4+∠C,∠DFB=∠3+∠A,∠A=∠C,∴∠DEB=∠DFB,∴四边形DFBE是平行四边形(两组对角分别相等的四边形是平行四边形).(5)利用“对角线互相平分的四边形是平行四边形”来说明【例5】如图,平行四边形ABCD的对角线AC和BD交于O,点E,F分别为OB,OD的中点,过O任作一直线分别交AB,CD于点G,H.说明:四边形EHFG是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠BAO=∠DCO,又∵∠AOG=∠COH,∴△AOG≌△COH.∴OG=OH.又∵E,F分别为OB,OD的中点,∴OE=OF,∴四边形EHFG是平行四边形(对角线互相平分的四边形是平行四边形).1.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD是平行四边形.2.已知:如图,在四边形ABCD中,AB∥CD,点E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.3.三角形中位线(1)三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.(2)三角形的中位线定理中说明了三角形中位线与三角形第三边的位置关系与数量关系,为我们证明平行或求线段的长度提供了依据.【例1】如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O,再分别取OA,OB的中点M,N,量得MN=20m,则池塘的宽度AB为__________m.【标准解答】由三角形的中位线定理可知,AB=2MN=40m.答案:40【例2】已知:如图,在△ABC中,DE,DF是△ABC的中位线,连接EF,AD,其交点为O.求证:(1)△CDE≌△DBF.(2)OA=OD.【标准解答】(1)∵DE,DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中∴△CDE≌△DBF(SAS).(2)∵DE,DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD.1.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A,D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为________.2.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1的三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为________.4.多边形的有关问题(1)多边形的角度计算①利用多边形内角和公式计算多边形的内角和或边数【例1】一个多边形的内角和是900°,则这个多边形的边数为( )A.6B.7C.8D.9【标准解答】选B.设边数为n,由题意得(n-2)·180°=900°,解得n=7.②利用多边形外角和,计算多边形中各角的度数或边数.【例2】已知一个正多边形的一个内角是120°,则这个多边形的边数是________.【标准解答】外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.答案:六③利用多边形内角和公式和外角和,计算多边形中对角线条数【例3】若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是________.【标准解答】由题意可知(n-2)×180°=1260°,解得n=9,所以从一个顶点出发能引9-3=6(条)对角线. 答案:61.正八边形的每个内角为( )A.120°B.135°C.140°D.144°2.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A.12B.11C.10D.93.如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )A.六边形B.五边形C.四边形D.三角形(2)解决多边形问题的方法①将多边形问题转化为三角形问题解决在解决多边形问题时,如果无法直接应用内角和公式或外角和时,我们可以将多边形通过连接对角线转化成三角形问题解决.【例1】求五边形的内角和.【标准解答1】连接对角线AC,AD,将五边形ABCDE转化成三个三角形:△ABC,△ADC,△ADE,此时五边形ABCDE的内角和=3×180°=540°.【标准解答2】在五边形ABCDE内部任取一点O,连接AO,BO,CO,DO,EO,将五边形ABCDE转化为五个三角形△ABO,△BCO,△DCO,△DEO,△AEO,∴五边形ABCDE的内角和=5×180°-360°=540°.实际上点O的位置也可以放在五边形的任意一条边上,或五边形的外部.②将内角问题转化为外角来解决一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数,根据任何多边形的外角和都是360度,利用360除以多边形的边数就可以求出外角的度数,再转化为内角的度数.或者利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【例2】正五边形的每一个内角都等于________°.【标准解答】正五边形的外角是:360÷5=72°,则内角的度数是:180°-72°=108°.答案:1081.正多边形的一个内角为135°,则该多边形的边数为( )A.9B.8C.7D.42.正多边形的一个外角等于20°,则这个正多边形的边数是________.(3)多边形剪去一个角的三种情况①过多边形的一条对角线剪去一个角,则新多边形的边数比原多边形的边数少1.②过多边形的一个顶点剪去一个角,则新多边形的边数与原多边形的边数相同.③不过多边形的顶点剪去一个角,则新多边形的边数比原多边形的边数多1.【例】若把一个多边形剪去一个角,剩余部分的内角和为1440°,那么原多边形有________条边.【标准解答】设新多边形是n边形,由多边形内角和公式得(n-2)180°=1440°,解得n=10,原多边形边数是10-1=9或10+1=11或10.答案:9,10或11凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.(4)多边形的镶嵌问题判断多边形能否进行平面镶嵌,关键是检验拼接在同一点的各个角的和是否等于360°.若等于360°,则可以镶嵌;若不等于360°,则不能进行镶嵌.【例】下列正多边形中,不能铺满地面的是( )A.正三角形B.正方形C.正六边形D.正七边形【标准解答】选D.A.∵正三角形的内角是60°,6×60°=360°,∴正三角形能铺满地面;B.∵正方形的内角是90°,4×90°=360°,∴正方形能铺满地面;C.∵正六边形的内角是120°,3×120°=360°,∴正六边形能铺满地面;D.∵正七边形的内角是,同任何一个正整数相乘都不等于360°,∴正七边形不能铺满地面.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是( )跟踪训练答案解析1.平行四边形的性质【跟踪训练】1.【解析】选B.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.2.【解析】由平行四边形对角线互相平分知BO=OD,故△AOD周长比△AOB的周长小3cm,实际上就是AB-AD=3(cm).由平行四边形的周长为22cm可知AD+AB=11cm,解得AB=7cm,AD=4cm.答案:4cm 7cm2.平行四边形的判定【跟踪训练】1.【解析】∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.答案:BO=DO2.【证明】∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.3.三角形中位线【跟踪训练】1.【解析】由题意得:CE=CB=12,∵点F是AD的中点,FG∥CD,∴FG是△ADC的中位线,所以CG=AC=9,∵点E是AB的中点,∴EG是△ABC的中位线,∴GE=BC=6,∴△CEG的周长为:CE+GE+CG=12+6+9=27.答案:272.【解析】因为A2,B2,C2是△A1B1C1的三边中点,所以△A2B2C2的周长是=8,以此类推△A5B5C5的周长为=1.答案:14.多边形的有关问题(1)多边形的角度计算【跟踪训练】1.【解析】选B.根据多边形的内角和公式,可得正八边形内角和为:(8-2)×180°=1080°,又因为正八边形的每个内角都相等,所以正八边形的每个内角等于1080°÷8=135°. 2.【解析】选A.∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°-150°=30°,∴这个正多边形的边数==12.3.【解析】选D.根据题意,得(n-2)·180°=180°,解得:n=3.(2)解决多边形问题的方法【跟踪训练】1.【解析】选B.∵正多边形的一个内角为135°,∴外角是180°-135°=45°,∵360÷45=8,则这个多边形是八边形.2.【解析】因为外角是20°,360÷20=18,则这个正多边形是18边形.答案:18(3)多边形剪去一个角的三种情况【跟踪训练】【解析】∵六边形剪去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7,5,6三种情况,如图:(4)多边形的镶嵌问题【跟踪训练】【解析】选B.A.正八边形、正三角形内角分别为135°,60°,显然不能构成360°的周角,故不能铺满;B.正方形、正八边形内角分别为90°,135°,由于135×2+90=360,故能铺满;C.正六边形和正八边形内角分别为120°,135°,显然不能构成360°的周角,故不能铺满;D.正八边形、正五边形内角分别为135°,108°,显然不能构成360°的周角,故不能铺满.。
北师大版数学八年级:平行四边形的判定(1)

4.2平行四边形的判别(一)宁夏中宁县第二中学马勇教材分析在第一节研究了平行四边形的性质的基础上,此节研究其逆问题———平行四边形的判定。
由于性质与判定联系十分紧密,可以逆向思考较为理性的进行研究,但考虑到九年级上册还要严格证明,以此这里更多的关注于在活动操作中探索平行四边形的判定条件。
学情分析初二的学生思维能力比较弱,逻辑推理能力还很稚嫩,所以通过本节的学习,要达到让学生经历平行四边形判别条件的探索过程,使学生逐步掌握说理的基本方法;并在与他人交流的过程中,能合理清晰地表达自己的思维过程。
探索并掌握平行四边形的判别条件:对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。
一、教学目标:⒈认知目标:⑴平行四边形的判别方法1。
⑵平行四边形的判别方法2。
⒉能力目标:⑴经历平行四边形判别条件的探索过程,使学生逐步掌握说理的基本方法;并在与他人交流的过程中,能合理清晰地表达自己的思维过程。
⑵探索并掌握平行四边形的判别条件:对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
⑶在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。
⒊情感目标:⑴让学生主动参与探索的活动,在做“数学实验”的过程中,发展学生的合情推理意识、主动探究的习惯,激发学生学习数学的热情和兴趣。
⑵通过探索式证明学习,开拓学生的思路,发展学生的思维能力。
⑶在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神。
二、教学重点、难点:重点:平行四边形的判别条件。
难点:平行四边形的判别条件的应用。
三、教学方法:探索法:让学生在动手拼摆各种平行四边形的活动过程中,积累数学活动经验。
北师大版(新)八年级下册数学6.2 平行四边形判定(1)

第四环节 回顾小结:
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
第三环节 巩固练习
例1如图6-10,在平行四边形ABCD中,E、F分别是AD和BC的中点.
求证:四边形BFDE是平行四边形.
随堂练习:
A
B
C
D
1.如图:线段AD是线段BC经过平移所得到的,分别连接AB、CD.四边形ABCD是平行四边形吗?为什么?
2.如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?
(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.
课后反思:
课题:第3课时平行四边形判定
教师个性化设计、学法指导或学生笔记
教学目标:知识技能目标:1.会证明平行四边形的2种判定方法.2.理解平行四边形的这两种判定方法,并学会简单运用.过程与方法目标:1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.情感态度价值观目标:通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
已知:如图6-8(1),在四边形ABCD中,AB=CD,BC=AD
求证:四边形ABCD是平行四边形.
得出:_________________________________________________是平行四边形。
人教版八下数学18.1.2 课时1 平行四边形的判定(1)教案+学案

人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)教案【教学目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【教学难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学过程设计】一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究知识点一:两组对边分别相等的四边形是平行四边形例1如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF =60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC =DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.知识点二:两组对角分别相等的四边形是平行四边形例2如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB =∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D =∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.知识点三:对角线相互平分的四边形是平行四边形例3如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎨⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.知识点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等例4如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用例5如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎨⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC=∠BCA .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、教学小结本节课我们主要学习了平行四边形的判定方法:平行四边形的定义文字语言:两组对边分别平行的四边形叫做平行四边形.符号语言:∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形.平行四边形的判定定理1文字语言:两组对边分别相等的四边形是平行四边形.符号语言:∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形.平行四边形的判定定理2文字语言:两组对角分别相等的四边形是平行四边形.符号语言:∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形.平行四边形的判定定理3文字语言:对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.四、学习检测1..如图所示,在四边形ABCD中,AC,BD相交于点O.(1)若AD=8 cm,AB=4 cm,那么当BC=cm,CD=cm时,四边形ABCD为平行四边形;(2)若AC=8 cm,BD=10 cm,那么当AO=cm,DO=cm时,四边形ABCD为平行四边形.解析:(1)此题主要考查了平行四边形的判定定理的应用.根据两组对边分别相等的四边形是平行四边形,即可确定BC,CD的长.(2)此题主要考查了平行四边形的判定定理的应用.根据对角线互相平分的四边形是平行四边形,即可确定AO,DO的长.答案:(1)84(2)4 52.如图所示,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件: (只添加一个即可),使四边形ABCD是平行四边形.解析:答案不唯一.所填条件能使△AOB≌△COD,或者△AOD≌△COB即可.可填:①AB∥CD,②AD∥BC,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠ADO=∠CBO,⑥∠DAO=∠BCO等.故可填AB∥CD.3.如图所示的是由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察、分析发现:①第4个图形中平行四边形的个数为.②第8个图形中平行四边形的个数为.解析:根据“两组对边分别相等的四边形是平行四边形”,可以判断图中的平行四边形的个数.通过观察、分析,寻找规律,即可解决问题.答案:①6②204.如图所示,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.求证∠EBF=∠FDE.解析:要证明∠EBF=∠FDE,根据平行四边形的性质,只要证明四边形BEDF是平行四边形即可.由AE,CF在▱ABCD的对角线上,可考虑利用“对角线互相平分的四边形是平行四边形”,证明EF与BD互相平分即可.证明:连接BD交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∴四边形BEDF是平行四边形,∴∠EBF=∠FDE.【板书设计】18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)征1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用【教学反思】在本节数学课的教学中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)学案【学习目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【学习重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【学习难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【自主学习】一、知识回顾1.平平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?二、自主探究知识点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,在△ABC和△CDA中,AB=CD ,AC=CA,∴△ABC_____△CDA(________).BC=DA,∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.【典例探究】例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2 如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.【跟踪练习】如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.知识点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.【典例探究】例3如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【跟踪练习】1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2知识点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,∠AOB=∠COD,∴△AOB______△COD(________).OB=OD,∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.【典例探究】例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC 于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天林莉同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,她想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是她想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)【跟踪练习】1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.四、学习中我产生的疑惑【学习检测】1.判断题(对的在括号内填“√”,错的填“×”):(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.下列命题中,正确的是()A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形3.四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是()A.①②B.①③④C.②③D.②③④4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD5.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是___ _______.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.6.如图所示,在▱ABCD中,E,F分别为AB,CD的中点,求证四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∵E,F分别为AB,CD的中点,∴AE=BE=AB,CF=DF=CD.∴AE=CF,BE=DF,在△ADF和△CBE 中,AD=BC,∠B=∠D,BE=DF,∴△ADF≌△CBE(SAS).∴AF=CE,∴四边形AECF 是平行四边形.7.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形AB PE是平行四边形.第4题图第5题图8.如图,平行四边形ABCD的对角线AC,BD相交于点O,M,N分别是OA,OC的中点,求证BM∥DN,且BM=DN.证明:连接DM,BN,如图所示.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵M,N分别是OA,OC的中点,∴OM=OA,ON=OC,∴OM=ON.∴四边形BMDN是平行四边形,∴BM∥DN,且BM=DN.9.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.10.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.11.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?12.如图,在▱ABCD中,E,F,G,H分别是四条边上的点,且满足AE=CF,BG=DH,连接EF,GH.(1)猜想EF与GH的关系;(2)证明你的猜想.(1)解:EF与GH互相平分.(2)证明:连接EG,GF,FH,HE,∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.又∵DH=BG,∴AD-DH=BC-BG,即AH=CG.又∵AE=CF,∴△AEH≌△CFG.∴EH=FG,同理可证明HF=GE.∴四边形EGFH是平行四边形.∴EF与GH互相平分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题平行四边形的判定(一)
【学习目标】
1.探索并掌握平行四边形的判定定理1、2,并学会简单运用.
2.通过对平行四边形判定方法的探究和运用,培养学生的分析、推理能力.
【学习重点】
平行四边形判定定理1、2的证明和应用.
【学习难点】
综合利用平行四边形性质和判定进行解答和证明.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.
知识链接:本节所学平行四边形的判定定理需证明至少有一组对边相等,一般情况下证明线段的相等,可转化为证三角形全等.
情景导入生成问题
旧知回顾:
1.我们学过的平行四边形的性质有哪些?
答:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分.
2.你能写出以上命题的逆命题吗?它们是真命题吗?这就是我们将要学习的平行四边形的判定.
自学互研生成能力
知识模块一两组对边分别相等的四边形是平行四边形
【自主探究】
阅读教材P140的内容,回答下列问题:
用两支等长的铅笔和两支等长的钢笔首尾顺次相接可以摆成一个平行四边形吗?其中蕴含什么道理?如何证明?
答:能.两组对边分别相等的四边形是平行四边形.
证明如下:
已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.
证明:连接AC.在△ABC和△CDA中,∵AB=CD,BC=DA,CA=AC,∴△ABC≌△CDA(SSS),∴∠1=∠2,∠3=∠4.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(平行四边形的定义).
归纳:平行四边形的判定定理:两组对边分别相等的四边形是平行四边形.
范例1:
如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF,试探究四边形DAEF是平行四边形.
解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF,∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
知识模块二一组对边平行且相等的四边形是平行四边形
【自主探究】
阅读教材P141内容,回答下列问题:
如果四边形有一组对边平行且相等,那么它是平行四边形吗?如何证明?
答:是平行四边形.证明如下:
已知:四边形ABCD中,AB綊CD.求证:四边形ABCD是平行四边形.
证明:连接AC.∵AB∥CD,∴∠BAC=∠DCA,又∵AB=CD,AC=CA,∴△ABC≌△CDA,∴BC=DA.∴四边形ABCD是平行四边形.
归纳:平行四边形的性质与判定往往综合运用,先利用性质解决边、角相等或平行问题,再判断一个四边形为平行四边形;或先判断一个四边形为平行四边形,再利用性质解决角相等或互补、线段相等或平行等问题.学习笔记:
行为提示:在群学后期教师可有意安排每组的展示问题,并给学生板书题目和组内演练的时间.有展示,有补充、有质疑、有评价穿插其中.
学习笔记:
检测可当堂完成.
范例2:
如图,已知:AB∥CD,BE⊥AD,垂足为E,CF⊥AD,垂足为F,并且AE=DF.求证:四边形BECF是平行四边形.
证明:∵BE⊥AD,CF⊥AD,∴BE∥CF,在△ABE和△DCF中,AB∥CD,∴∠A=∠D,又AE=DF,∠AEB=∠DFC=90°,∴△ABE≌△DCF.∴BE=CF.又BE∥CF,∴四边形BECF是平行四边形.
交流展示生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】
知识模块一两组对边分别相等的四边形是平行四边形
知识模块二一组对边平行且相等的四边形是平行四边形
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。