4.2 平行四边形及其性质(2)教案

合集下载

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。

《平行四边形的性质》第二课时教案 (公开课)2022年1

《平行四边形的性质》第二课时教案 (公开课)2022年1

平行四边形的性质(二)一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:〔1〕本节课的主要内容是平行四边形的性质3,它是通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分的性质.这一节综合性较强,教学中要注意引导学生.要注意让学生稳固根底知识和根本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.〔2〕教学时要讲明线段互相平分的意义和表示方法.如图,设四边形HEFG 的对角线HF、EG相交于点O,假设HF与EG互相平分,那么有OH=OF,OE =OG.〔3〕在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底〞是相对高而言的.在平行四边形中,有时高是指垂线段本身,如作平行四边形的高,就是指作垂线段.所以平行四边形的高,在作图时一般是指垂线段本身.在进行计算时,它的意义是距离,即长度.〔4〕平行四边形的面积等于它的底和高的积,即=a·h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,如图〔1〕.要防止学生发生如图〔2〕的错误.为了区别,有时也可以把高记成、,说明它们所对应的底是a或AB.〔5〕学完本节后,归纳总结一下平行四边形比一般四边形多哪些性质,平行四边形有哪些性质.可以按边、角、对角线进行总结.通过复习总结,使学生掌握这些知识,也培养学生随时复习总结的习惯,并提高他们归纳总结的能力.三、课堂引入1.复习提问:〔1〕什么样的四边形是平行四边形?四边形与平行四边形的关系是:〔2〕平行四边形的性质:①具有一般四边形的性质〔内角和是〕.②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从图中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:〔1〕平行四边形是中心对称图形,两条对角线的交点是对称中心;〔2〕平行四边形的对角线互相平分.四、例习题分析例1〔补充〕:如图,ABCD的对角线AC、BD相交于点O,EF过点O 与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF〔ASA〕.∴OE=OF,AE=CF〔全等三角形对应边相等〕.∵ABCD,∴ AB=CD〔平行四边形对边相等〕.∴ AB—AE=CD—CF.即BE=FD.※【引申】假设例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?假设将EF向两方延长与平行四边形的两对边的延长线分别相交〔图c和图d〕,例1的结论是否成立,说明你的理由.解略例1是性质3的直接运用,然后对它进行了引申,可以根据学生实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的根本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2〔教材P85的例2〕四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高〔高为此底上的高〕,可求得ABCD的面积.〔平行四边形的面积小学学过,再次强调“底〞是对应着高说的,平行四边形中,任一边都可以作为“底〞,“底〞确定后,高也就随之确定了.〕3.平行四边形的面积计算解略〔参看教材P85〕.例2是复习稳固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

平行四边形及其性质教案

平行四边形及其性质教案

《平行四边形及其性质》教学过程一、 情境创设 同学们,我们今天的新课就从用两个全等三角形拼图开始。

二、探究新知 1.探索平行四边形的概念(1)动手操作:拼四边形 用两张全等的三角形纸片拼出多少种不同的四边形? (学生展示拼图结果,并说出拼图思路.)把相等的边重合在一起作为对角线拼出一个四边形,交换重合边的位置又拼出一个四边形,这样一共可以拼出六个不同的四边形. (编号)(2)探索:平行四边形的特征在拼出的四边形中,哪些是我们熟悉的?这是什么四边形?(平行四边形)本节课我们就一起来探究平行四边形。

(课题)我们就从这些四边形入手(拆掉非平行四边形,回顾对边对角的概念对边是指四边形中不相邻的边,也就是没有公共顶点的边。

(区分三角形的对边,三角形中的对边是指角对的边)观察:平行四边形的对边具有什么位置关系?你认为它们是平行的,有没有根据? (因为两个三角形是全等的,所以对应角相等,所以AD ∥BC ,同理可得另一组对边也平行.) (教师板书平行四边形定义,再课件展示)(3)归纳定义: 两组对边分别平行的四边形叫做平行四边形.理解平行四边形的定义关键在哪里?(①四边形 ②两组对边分别平行)为了表述的方便,我们把平行四边形ABCD记作:“□ABCD ”,读作:平行四边形ABCD根据定义完成下面填空-------这就是定义的双重性,既表示平行四边形的一个性质,又是判定一个四边形是否是平行四边形的依据。

(4)练习议论:(口答)下面我们依据平行四边形的定义来解决问题① 下列图形中哪些是平行四边形,为什么?②如图(4),已知四边形ABCD 是平行四边形,直线EF ∥BC ,分别交AB ,CD 于点E 、F ,问EF 平行于AD 吗?为什么?2.探究平行四边形的性质(1)动手操作 将 □ABCD 绕它的两条对角线的交点O 旋转180°请将两张完全重合的胶片平行四边形,(红的在上面,蓝的在下面)放在桌上用笔尖按在点O 处,这时蓝平行四边形仅仅代表红平行四边形原来的位置.固定蓝平行四边形,将红平行四边形绕着点O 旋转180°,这时两个平行四边形还重合吗?(重合)刚才我们从整体上看到了重合,请把红平行四边形回到原来的位置.同学们再次操作旋转过程,注意观察平行四边形中的四个顶点,四条边,四个角有什么变化?还有线段之间,平行四边形的角之间有何数量关系,为什么?将你的发现在小组内交流.(2)探索:平行四边形边、角、对角线的性质(4)(3)(2)(1)F E B D C A B C DA E A BD C A CD B (4)(3)FE B D C A B C D A E D 108° 72° 120° 120° 60°A 'B 'C 'C B AD C B A O ①学生操作、观察、思考后在组内讨论,然后集体交流,教师板书学生发现的结论. ②学生发现后,教师课件演示并借助图形说明.(3)归纳结论:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分.(4)推理论证 利用三角形全等可以证明平行四边形的性质。

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。

2. 培养学生的观察力、思维能力和空间想象能力。

3. 通过实践操作,提高学生的动手能力和合作学习的能力。

二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。

2. 教学难点:理解和应用平行四边形的性质。

三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。

2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。

3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。

4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。

5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。

四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。

平行四边形的性质的教案(精选10篇)

平行四边形的性质的教案(精选10篇)

平行四边形的性质的教案平行四边形的性质的教案(精选10篇)作为一位不辞辛劳的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

教案应该怎么写呢?下面是小编精心整理的平行四边形的性质的教案,欢迎阅读与收藏。

平行四边形的性质的教案篇1教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学准备:多媒体课件教学过程第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

)1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)小组活动3:用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?(1)让学生动手操作、复制、旋转、观察、分析;(2)学生交流、议论;(3)教师利用多媒体展示实践的过程。

第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。

)实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

人教版八年级下册数学《平行四边形的性质(第2课时)》教学设计(公开课)

人教版八年级下册数学《平行四边形的性质(第2课时)》教学设计(公开课)

人教版八年级下册数学《平行四边形的性质(第2课时)》教学设计(公开课)一. 教材分析人教版八年级下册数学《平行四边形的性质(第2课时)》的教学内容主要包括平行四边形的对角相等、对边平行且相等以及邻角互补等性质。

这些性质是学生进一步学习几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在七年级已经学习了平行四边形的定义和一些基本性质,对本节课的内容有一定的了解。

但部分学生对于平行四边形性质的理解仍然较为模糊,需要通过实例和操作来进一步巩固。

此外,学生对于证明过程的书写和逻辑推理能力还有待提高。

三. 教学目标1.理解并掌握平行四边形的对角相等、对边平行且相等以及邻角互补等性质。

2.学会运用平行四边形的性质解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

4.提高学生的证明过程书写和逻辑推理能力。

四. 教学重难点1.重点:平行四边形的对角相等、对边平行且相等以及邻角互补等性质的证明和应用。

2.难点:对于特殊四边形(如矩形、菱形、正方形)的性质与平行四边形性质的融合和运用。

五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、讨论来探索平行四边形的性质。

2.运用几何画板等软件辅助教学,直观展示平行四边形的性质。

3.通过实例分析和练习题,巩固所学知识,提高学生的应用能力。

4.分组合作学习,培养学生的团队协作能力。

六. 教学准备1.准备相关的几何图形模型和教具。

2.制作课件,包括平行四边形的性质、实例分析、练习题等。

3.准备黑板和粉笔,以便于板书和讲解。

七. 教学过程1.导入(5分钟)利用几何画板展示一个平行四边形,引导学生观察并提问:“你们能发现平行四边形有哪些性质吗?”让学生回顾已学的平行四边形知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍平行四边形的对角相等、对边平行且相等以及邻角互补等性质,并通过几何画板软件进行直观展示。

让学生分组讨论,尝试用自己的语言归纳这些性质,并板书出来。

平行四边形及其性质第二课时数学教案

平行四边形及其性质第二课时数学教案

平行四边形及其性质第二课时数学教案标题:平行四边形及其性质第二课时数学教案一、教学目标:1. 知识与技能:掌握平行四边形的性质和判定定理,能够灵活运用这些知识解决实际问题。

2. 过程与方法:通过观察、实验、猜想、验证等过程,培养学生的探究能力和逻辑推理能力。

3. 情感态度价值观:体验数学学习的乐趣,增强自我学习的信心,形成积极的学习态度。

二、教学重点:1. 平行四边形的性质和判定定理的理解和应用。

2. 培养学生的问题解决能力和创新能力。

三、教学难点:如何将理论知识应用于实际问题的解决。

四、教学过程:(一)导入新课首先复习上节课的内容,提问学生关于平行四边形的基本概念和性质。

然后引入新的主题:“今天我们继续探讨平行四边形的性质和判定”。

(二)讲授新课1. 平行四边形的性质通过实例展示,引导学生发现平行四边形的对边相等、对角相等、对角线互相平分的性质。

并让学生自己动手画图,加深理解。

2. 平行四边形的判定引导学生从已知条件出发,推导出“两组对边分别平行的四边形是平行四边形”、“一组对边平行且相等的四边形是平行四边形”、“两组对角分别相等的四边形是平行四边形”、“对角线互相平分的四边形是平行四边形”的判定定理。

(三)课堂练习设计一些相关的习题,让学生独立完成,然后集体讨论答案,以此来检查学生对所学知识的理解程度。

(四)小结请学生总结本节课的主要内容,教师进行补充和完善。

五、作业布置设计一些难度适中的题目,让学生在课后完成,以便巩固所学知识。

六、教学反思在教学过程中,要注意观察学生的学习情况,及时调整教学策略,以满足不同层次学生的学习需求。

同时,要鼓励学生积极参与,提高他们的学习积极性。

二年级下册数学教案-4.2 平行四边形 ︳西师大版

二年级下册数学教案-4.2 平行四边形   ︳西师大版

二年级下册数学教案-4.2 平行四边形 | 西师大版一、教学目标1. 让学生理解平行四边形的特征,能够识别平行四边形。

2. 培养学生观察、操作和探究的能力,激发学生对数学学习的兴趣。

3. 使学生能够运用平行四边形的性质解决实际问题,提高学生的数学应用能力。

二、教学内容1. 平行四边形的定义及特征2. 平行四边形的性质3. 平行四边形的识别与应用三、教学重点与难点1. 教学重点:平行四边形的定义及性质,能够识别平行四边形。

2. 教学难点:运用平行四边形的性质解决实际问题。

四、教学过程1. 导入新课通过展示生活中的平行四边形实例,引导学生关注平行四边形,激发学生的学习兴趣。

2. 探究平行四边形的特征(1)让学生观察平行四边形模型,讨论并总结平行四边形的特征。

(2)教师引导学生发现平行四边形的对边平行且相等,对角相等。

(3)通过练习,加深学生对平行四边形特征的理解。

3. 学习平行四边形的性质(1)教师引导学生探究平行四边形的性质,如对角线互相平分,相邻角互补等。

(2)通过实例验证平行四边形的性质,让学生感受数学的严谨性。

(3)设计练习题,巩固平行四边形的性质。

4. 识别平行四边形(1)让学生观察并判断平行四边形的实例,提高学生的识别能力。

(2)教师提供一些非典型的平行四边形,让学生进行判断,培养学生的观察力。

(3)设计趣味性练习,如“找出隐藏的平行四边形”,提高学生的学习兴趣。

5. 平行四边形的应用(1)让学生了解平行四边形在实际生活中的应用,如建筑设计、图形设计等。

(2)设计实际问题,让学生运用平行四边形的性质解决问题,提高学生的数学应用能力。

6. 课堂小结教师引导学生回顾本节课所学内容,总结平行四边形的定义、性质及应用。

五、课后作业1. 完成课后练习题,巩固平行四边形的知识。

2. 观察生活中的平行四边形实例,拍照并分享给同学和老师。

3. 准备下一节课的预习内容。

六、教学反思1. 教师应关注学生在课堂上的参与度,调动学生的积极性,提高教学效果。

平行四边形及其性质

平行四边形及其性质

《平行四边形及其性质》教案
靖边县第六中学杨向军
邮编:718500 一.教材依据:
二.设计思路:
1、教材分析:
学情分析
2、设计理念:
根据学生已有的知识结构,结合教材特点,选择引导式教学法、自主式探究法,积极培养学生的学习兴趣,争取让更多的学生达到学习目标。

注重“学生是学习的主体”这一教学思想的体现,教学中通过设计开放性问题让学生认真分析、主动探索、积极讨论、友谊合作、尝试总结。

使学生由被动接受知识变为主动地去获得知识。

三、教学目标:
(一)知识与技能
1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.
3.培养学生发现问题、解决问题的能力及逻辑推理能力.
(二)情感、态度、价值观
1、通过运用平行四边形性质知识解决实际问题的过程,体会数学与现实生活的紧密联系,增强学生的应用意识。

2、通过实验、探索、思考、交流、合作等探索过程,培养学生的探索精神和创造能力,体验发现的快乐,培养良好的学习习惯。

四、教学重点
1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
五.教学难点:
运用平行四边形的性质进行有关的论证和计算.
六、教学方法:探究法,在教师引导下探究平行四边形的性质和应用
学习方法:操作实验(拼图)——观察——猜想——探究——应用
七、教具准备:多媒体课件、平行四边形的演示图若干三角形
学具准备:自主学习学案、剪刀、直尺(三角板)、彩色纸(白纸)
八、教学设计
九、教学反思:。

平行四边形性质(2)教案

平行四边形性质(2)教案

19.1 平行四边形(2)第二课时平行四边形的性质(二)林州市第七中学郝建朝教学目标:(1)知识与技能:探索并掌握平行四边形的性质;平行四边形的对角线互相平分;能灵活应用平行四边形的性质进行推理和计算。

(2)过程与方法:在观察、操作、推理、归纳的探索过程中,发展合情推理能力、合作学习能力、动手操作能力和逻辑推理论证能力,进一步培养学生的数学说理能力与习惯,渗透“类比”、“转化”的数学思想。

(3)情感态度与价值观:通过小组交流合作探究学习,促进同学间的情感交流,体会学习的乐趣,在自我评价中学会自我肯定,增强学习的自信心。

在应用平行四边形的性质的过程中养成独立思考的习惯,在数学学习活动中获得成功的体验。

教学重点、难点:教学重点:平行四边形的对角线互相平分教学难点:平行四边形性质的灵活运用及几何计算题的解题表达教学准备教师准备:多媒体课件,实物投影仪,制作教具,内容:(1)课本P85“探究”,制作投影片,内容:(1)课本例2,(2)补充资料.学生准备:复习平行四边形定义,性质一、二;•预习本节课内容;•制作课本P85“探究”学具.学法解析1.认知起点:已学习了三角形全等证明,平行四边形定义,性质一、•二的基础上,在积累了一定的经验的情况下学习本节课内容.2.知识线索:教学过程(一)设置疑问、复习旧知1、平行四边形的定义?2、平行四边形有哪些性质?3、如何证明平行四边形的这些性质的?(二)情境引入、探究新知教师活动:操作课件,显示“探究”中的问题(课本P85)组织学生分四人小组进行讨论,从操作中发现□ABCD的边、角关系:“对边相等,对角相等”,然后进一步启发学生去发现对角线交点O到平行四边形四个顶点的距离的关系.学生活动分四人小组,•画图、•操作、•交流,•从中领悟并验证□ABCD绕点O(两个对角线的交点)旋转180°仍和□EFGH重合,•从中观察出平行四边形对边相等、对角相等、对角线互相平分的三个性质.教师展示课件验证总结。

数学教案-平行四边形及其性质 第二课时

数学教案-平行四边形及其性质 第二课时

数学教案-平行四边形及其性质第二课时一、教学目标1.理解平行四边形的定义及其性质。

2.掌握平行四边形判定定理的应用。

3.培养学生的逻辑思维能力和空间想象能力。

二、教学重难点1.重点:平行四边形的性质及其判定定理。

2.难点:运用平行四边形的性质和判定定理解决实际问题。

三、教学过程1.导入新课师:同学们,上一节课我们学习了平行四边形的定义和性质,那么如何判定一个四边形是平行四边形呢?这节课我们就来学习平行四边形的判定定理。

2.学习平行四边形的判定定理(1)引导学生回顾平行四边形的定义和性质。

师:请同学们回忆一下,平行四边形有哪些性质?生:平行四边形的对边平行且相等,对角相等,邻角互补。

(2)讲解平行四边形的判定定理。

①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分。

(3)举例说明判定定理的应用。

师:下面我们来看几个例子,运用平行四边形的判定定理来解决问题。

例1:已知四边形ABCD中,AD∥BC,AB=CD,求证:ABCD是平行四边形。

例2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD是平行四边形。

3.练习师:同学们,下面我们来做一些练习题,巩固一下平行四边形的判定定理。

(1)练习题1:已知四边形ABCD中,AB∥CD,AD∥BC,求证:ABCD是平行四边形。

(2)练习题2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD 是平行四边形。

4.课堂小结师:通过这节课的学习,我们掌握了平行四边形的判定定理,可以运用这些定理来解决实际问题。

在今后的学习中,我们要熟练运用这些定理,提高解题能力。

5.作业布置(1)课后作业1:完成教材P页的练习题。

四、教学反思本节课通过讲解平行四边形的判定定理,让学生掌握了判定一个四边形是平行四边形的方法。

在教学过程中,注重引导学生回顾已学的知识,充分发挥学生的主体作用,让学生在练习中巩固所学知识。

但在教学过程中,发现部分学生对判定定理的应用还不够熟练,需要在今后的教学中加强训练。

4.2平行四边形及其性质(2) 浙教版2014

4.2平行四边形及其性质(2) 浙教版2014

夹在两条平行线间的垂线段相等。


练一练:
1、如图,在 ABCD中,AB与CD的距离为____ 1cm
D 45 A
O
C
2cm
B
构造直角三角形求两平行线间的距离.

练一练: 2、已知 ______ 10
D C
ABCD中,AB=20,AD=16,AB和
A
4
B
利用三角形面积求两平行线间的距离

能力冲浪
1.已知:如图, ABCD中, E, F分别是AB上 的点,且DE=BF.求证:AE=CF. E D


F


能力冲浪
2、如图,在 ABCD中,AB=8cm,AD=5cm, ∠BAD的平分线交CD于点E,∠ABC的平分线交CD 于点F,求线段EF的长。
夹在两条平行线间的平行线段相等。

如图, l1 // l2, AB⊥l1 , CD⊥l2. EF 与 GH
相等吗?请说明理由. E G
l1 l2
F
H
夹在两条平行线间的垂线段相等。 垂线段EF的长度就是平行线l1、l2之间的距离

如图:在笔直的铁轨上夹在两根铁轨之间 的枕木是否一样长?
l1
l2

D
夹在两条平行线间的平行线段相等。

如图, l1 // l2, AB, CD 是夹在 l1 与 l2 之间 的平行线段. AB 与CD相等吗?请说明理由.
A C 证明:
l1

D
∵ l1 ∥ l2,AB∥CD. ∴四边形ABCD是平行四边形. l 2 ∴AB=CD.
D
F E
C
A

B

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案生:升降机,楼梯上的扶手,伸缩衣架,梯子师:所以在生活中我们可以找到许多平行四边形的形状。

师:小学我们就学习过平行四边形,那大家还记得平行四边形的定是什么吗?生:有两组对边分别平行的四边形叫做平行四边形.师:如图1,如何用符号语言来描述平行四边形的定义?生:、AB∥CD, BC∥AD,所以四边形ABCD是师:表达方法是什么?图1生:口ABCD师:口ABCD的高是?对边,对角有哪些?生:口ABCD的高有AE,AF.对边:AD与BC,AB与CD.对角有∠BAC与∠C,∠B与∠D.(师生问答)设计意图:使学生回忆出平行四边形定义,表达方式及相关概念、,从而使学生融融入本节课的学习氛围中,增强学生学习兴趣。

(二)、合作探究:1、动手操作: (约8分钟)师:根据定义画一个平行四边形,观察它,除了“两组对边分别平行”外它的边之间有什么关系?它们的角之间有什么关系,动手量一量,测一测,是不是和自己猜测的一样?(独立操作)师:根据图1,大家测量以后有什么发现? (举手回答)生1: AB=CD, AD=BC,生2: ∠A=∠C ,∠B二∠D师:大家都找到了它们之间的联系,怎么用语言来表达呢?生:平行四边形的对边相等。

生:平行四边形的对角相等。

(先让同学动测量发现平行四边形之间的联系,再让学生归纳用语言方式表达出来。

)设计意图:加强学生的动于能力,语言根概述能力,使全体学生都参与到课堂情境中。

2、师生交流,推理论证。

(约10分钟)师: 通过观察和度量,我们猜想:平行四边形的对边相等;平行四边形的对角相等,下而我们对它进行证明。

例1:如图2,在口ABCD 中,求证:AB=CD ,BC=DA, ∠B 二∠D, ∠A=∠C 。

师:上述猜想涉及线段相等、角相等.我们知道.利用三角形全等得出全等三角形的对应边边、对应角都相等,是证明线段相等、角相等的一种重要的方法,为此,我们通过添加辅助线,构造两个三角形,通过三角形全等进行证明。

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案一、教学目标1.知识与能力:(1)了解平行四边形的定义和性质;(2)掌握判断平行四边形的方法;(3)掌握计算平行四边形的面积和周长的方法;(4)能够解决与平行四边形相关的数学问题。

2.情感态度与价值观:培养学生对数学的兴趣,并提高他们的数学思维能力和解决实际问题的能力。

二、教学重难点1.教学重点:(1)平行四边形的定义和性质;(2)判断平行四边形的方法;(3)计算平行四边形的面积和周长的方法。

2.教学难点:(1)平行四边形的性质的证明;(2)解决实际问题的能力。

三、教学过程Step 1 导入新知教师出示一幅平行四边形的图片,引导学生观察并回答以下问题:这个图形有什么特点?通过学生的回答来引出平行四边形的定义。

Step 2 学习新知1.讲解平行四边形的定义和性质。

(1)平行四边形:具有两组对边互相平行的四边形叫做平行四边形。

(2)平行四边形的性质:①对边相等:平行四边形的对边相等。

②对角线互相等长:平行四边形的对角线互相等长。

③对角线平分:平行四边形的对角线互相平分。

④邻角和为180度:相邻两个角之和等于180度。

让学生观察其他几种特殊的平行四边形,如矩形、菱形、正方形等,并总结它们的性质。

2.判断平行四边形的方法。

(1)观察法:通过观察四边形的形状,如果具有两组对边平行的特点,可以判断为平行四边形。

(2)测量法:通过测量四边形的边和角度,如果对边相等、相对角度相等,可以判断为平行四边形。

(3)工具法:使用平行四边形画板或直尺,通过平行四边形工具的辅助,可以判断为平行四边形。

3.计算平行四边形的面积和周长的方法。

(1)面积:S=底边长×高度。

(2)周长:P=2×(底边长+左边长)。

让学生通过具体例子进行计算练习,加深对计算公式的理解与运用。

Step 3 拓展延伸1.平行四边形的性质证明。

让学生以小组形式讨论,选取一条平行四边形的性质进行证明,并将证明过程展示给全班。

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案2

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案2

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案2一. 教材分析《平行四边形》是浙教版数学八年级下册第4章的内容,本节课主要让学生掌握平行四边形的性质。

教材通过引入平行四边形的概念,引导学生探究平行四边形的性质,从而培养学生对几何图形的认识和推理能力。

本节课的内容是学生进一步学习几何图形的基础,对于学生来说具有重要的意义。

二. 学情分析学生在学习本节课之前,已经学习了三角形的性质,具备了一定的几何图形认知和推理能力。

但部分学生对于平行四边形的性质的理解可能会受到之前学习的影响,需要在本节课中进一步巩固和提高。

此外,学生对于平行四边形的实际应用可能还不够了解,需要在教学过程中加强引导。

三. 教学目标1.知识与技能:使学生了解平行四边形的概念,掌握平行四边形的性质,并能够运用平行四边形的性质解决实际问题。

2.过程与方法:通过观察、操作、推理等方法,培养学生的几何图形认知和推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:平行四边形的性质。

2.难点:平行四边形性质的证明和应用。

五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。

2.问题驱动法:引导学生提出问题,并进行自主探究,培养学生的推理能力。

3.合作学习法:学生进行小组讨论,增强学生的合作意识。

六. 教学准备1.教学课件:制作课件,展示平行四边形的性质及其应用。

2.学生活动材料:准备一些几何图形,供学生进行观察和操作。

3.教学视频:准备一些与平行四边形相关的教学视频,用于导入和拓展环节。

七. 教学过程1.导入(5分钟)利用教学视频展示平行四边形的实际应用,引导学生关注平行四边形。

然后提出问题:“你们认为什么是平行四边形?”让学生进行思考和讨论。

2.呈现(10分钟)通过课件展示平行四边形的性质,引导学生观察并总结平行四边形的性质。

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

平行四边形及其性质 第二课时

平行四边形及其性质 第二课时

平行四边形及其性质第二课时在第一课时中,我们对平行四边形有了初步的认识,了解了它的定义和基本特征。

这一课时,让我们更深入地探究平行四边形的性质。

首先,我们来回顾一下平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

基于这个定义,我们可以得出平行四边形的许多重要性质。

平行四边形的对边相等。

这是一个非常关键的性质。

我们可以通过简单的几何推理来证明它。

假设我们有一个平行四边形 ABCD,因为AB 平行于 CD,AD 平行于 BC,根据平行线的性质,内错角相等。

然后通过三角形全等的证明方法,比如利用角边角(ASA)或者角角边(AAS),可以证明三角形 ABC 全等于三角形 CDA,从而得出 AB =CD,AD = BC。

平行四边形的对角相等。

同样以平行四边形 ABCD 为例,因为 AB平行于 CD,所以∠A 与∠D 是同旁内角,互补;因为 AD 平行于 BC,所以∠A 与∠B 也是同旁内角,互补。

由此可以得出∠A =∠C,∠B=∠D。

平行四边形的对角线互相平分。

我们来看平行四边形 ABCD 中的两条对角线 AC 和 BD 相交于点 O。

因为 AB 平行于 CD,所以∠OAB =∠OCD,∠OBA =∠ODC。

又因为对顶角相等,即∠AOB =∠COD,所以可以证明三角形 AOB 全等于三角形 COD,从而得出 OA = OC,OB = OD,即平行四边形的对角线互相平分。

接下来,我们通过一些实际的例子来感受这些性质的应用。

假设我们要在一块平行四边形的土地上建造房屋,已知其中一条边的长度和一个角的度数,那么我们就可以利用平行四边形的性质计算出其他边的长度和角的度数,从而更好地规划房屋的布局。

再比如,在制作平行四边形的框架时,如果我们知道了两条相邻边的长度,就可以根据对边相等的性质,确定另外两条边的长度,从而准确地制作出框架。

平行四边形的这些性质在数学解题中也经常用到。

比如,在证明两个三角形全等或者相似时,如果它们分别是平行四边形的一部分,那么就可以利用平行四边形的性质来找到对应的相等或者成比例的边和角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2平行四边形的性质(2)
【教学目标】
掌握性质:“夹在两条平行线间的平行线段相等”。

掌握推论:“夹在两条平行线间的垂线段相等”。

【教学重点、难点】
重点:平行四边形的性质定理“夹在两条平行线间的平行线段相等”.
难点:例1涉及平行四边形性质的应用和根据定义判定四边形是平行四边形两方面推理过程,是本节教学的难点.
【教学过程】
一、创设情境
我们研究特殊四边形的性质,一般不外乎研究它的边、角和对角线的性质,现在我们已经知道平行四边形的两组对边分别平行以及对角相等这两方面的性质,那么平行四边形的对边和对角线还有哪些性质呢?今天我们着重来探究平行四边形的对边性质。

1、学生活动
画一个平行四边形ABCD,用三角板量一量,有哪些线段相等?
2、形成概念
交流测量和猜想结果,让学生完成平行四边形的性质。

老师板书:
定理1 平行四边形的两组对边分别相等
根据几何命题证明的三步曲,师生共同完成证明过程。

二、合作学习
1、学生尝试:课本做一做;
2、四人小组开展讨论;
3、从新知识的生长点出发,采取观察——分析——猜想——证明的探索方法,使学生的“最近发展区”向现实水平转化。

三、构建新知,解决问题
1、学生口述从做一做归纳出的两个推论,老师帮助学生概括出平行四边形性质定理1的两上推论。

板书:夹在两条平行线间的平行线段相等。

夹在两条平行线间的垂线段相等。

2、老师在解释两个推论时,重点突出第一个推论是平行四边形性质定理1的具体应用;第二个推论很容易从第一个推论推理得出,并和八年级上册已经学过的两平行线之间的距离的概念有着密切的关系,启发学生回顾当时学习平行线之间的距离的情形。

3、例1的讲解采取层层推导法。

教学中可以教师提问,学生回答,教师逐步板演交替进行。

本例也可要求学生给出不同的证法,比如通过证明△ABF与△CDE全等,激发学生对几何证明的兴趣,培养他们不懈探索和创新的精神
四、深化知识,培养能力
1、学生活动:四人小组共同完成课本“课内练习”(1)(2)
2、教师引导:巡视整个教室,重点辅导学困生,指正个别学生解题习惯。

五、适当提高,应用新知
1、让学生思考此题:
已知:如图在△ABC 中,∠C=Rt ∠,D ,E ,F 分别是边BC , AB ,AC 上的点,且DF//AB ,DE//AC ,EF//BC 。

求证:△DEF 是直角三角形,且D ,E ,F 分别是BC ,AB ,AC 的中点。

2、教师点拨:解题的关键是找出入手点,四边形DEFC 和四边形AEDF 和四边形BEFD 都是平行四边形。

3、期望达到的目标:步步深入,探索新知,学生亲身体验,巩固所学内容,思维能力有所提高。

六、小结内容,自我反馈
学生自由发言,这节课你学了什么?老师略作小结。

七、分层作业
1、 作业本和课本“作业题”A 组、B 组;
2、 学有余力的学生思考“课内练习”中的探究活动和作业题C 组。

F D E A B
C。

相关文档
最新文档