培优法拉第电磁感应定律辅导专题训练含答案解析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优法拉第电磁感应定律辅导专题训练含答案解析

一、法拉第电磁感应定律

1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:

(1)将金属框拉出的过程中产生的热量Q ;

(2)线框的电阻R .

【答案】(1)2.0×10-3 J (2)1.0 Ω

【解析】

【详解】

(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:

10.02N F BIL ==

可得:

10.02A 0.2A 1.00.1

F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:

Q W =安310.020.1J 2.010J F L -==⨯=⨯

(2) 金属框拉出的过程中产生的热量:

2Q I Rt =

线框的电阻:

3

222.010Ω 1.0Ω0.20.05

Q R I t -⨯===⨯

2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小;

(2)电阻的阻值. 【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220 B l t m

【解析】

【分析】

【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=- ⎪⎝⎭

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥

因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦ 联立④⑤⑥⑦式得: R =220B l t m

3.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量

m=0.1kg .(sin37°=0.6,g=10m/s 2)

(1)求导体棒下滑的最大速度;

(2)求当速度达到5m/s 时导体棒的加速度;

(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).

【答案】(1)18.75m/s (2)a=4.4m/s 2

(3)222mgs mv Rt - 【解析】

【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;

解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= ,

根据安培力公式有: F BIL =,

根据欧姆定律有: cos E BLv I R R θ=

=, 解得: 222sin 18.75cos mgR v B L θθ

==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,

cos 1BLv I A R

θ=

=, 0.2F BIL N ==, 24.4/a m s =;

(3)根据能量守恒有:22012

mgs mv I Rt =

+ , 解得: 202mgs mv I Rt -=

4.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取2

10/g m s =.

()1求0t =时棒所受到的安培力0F ;

()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系

式;

()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .

【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J

【解析】

【详解】

解:()1由图b 知:0.20.1T /s 2

B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:

0.05V B E Ld t t

Φ===V V V V 感应电流为:0.25A E I R

== 可得0t =时棒所受到的安培力:

000.025N F B IL ==,方向水平向右;

()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=

故前3s 内导体棒静止不动,由平衡条件得: f BIL =

由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=-

联立解得: ()0.01252(3s)f t N t =-<;

()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=

设3s 后到撤去外力F 时又运动了1s ,则有:

11BLs q q I t R R

Φ-===V V & 解得:16m s =

此时ab 棒的速度设为1v ,则有:221012v v as -=

解得:14m /s v =

此后到停止,由能量守恒定律得: 可得:21210.195J 2

Q mv mgs μ=-=

5.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的

相关文档
最新文档