光的衍射习题测验解答

合集下载

光的衍射习题及答案

光的衍射习题及答案

光的衍射习题及答案第二章光的衍射1.单色平面光照射到一小圆孔上,将其波面分成半波带。

求第K个带的半径。

若极点到观察点的距离r。

为1m,单色光波长为450nm,求此时第一半波带的半径。

k解:2r02而r r0匸k:2 2kr k r02\ k r°r02将上式两边平方,得2 22 2 2, kk r0 r0 kr04略去k2 2项,则k Jkr°将k 1, r°100cm, 450010-8 cm带入上式,得0.067 cm2.平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m的P 点的光强分别得到极大值和极小值;(2)P点最亮时,小孔直径应为多大?设此时的波长为500nm解:(1)根据上题结论 k *0k .400 5 10 5k 0.1414 .. kcm当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2) P 点最亮时,小孔的直径为2 12 r 00.2828cm3•波长为500nm 的单色点光源离光阑1m 光 阑上有一个内外半径分别为 0.5mm 和1mm 勺透光圆环,接收点P 离光阑1m 求P 点的光强I 与 没有光阑时的光强度I 0之比 解:根据题按圆孔里面套一个小圆屏幕将r o400cm,10-5cm代入,得k 12 hk1r 。

k2R :k2 R 1 mr1m Rhk .0.5mm R hk2 1mm 有光阑时,由公式 得0.52 1 1 500 10 6 1000 100012 1 1500 10 6 1000 1000500nmRf(R r °)鱼丄丄r ° Rr 0 R11 1111a p a 1 a 3a 1 a 2 a 2 a 3 a 12 2 2 2 2没有光阑时a oa i所以4•波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

光的衍射习题答案

光的衍射习题答案

思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。

对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。

2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。

由此可知,这时人眼看到的是夫琅和费衍射图样。

3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。

答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。

离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。

4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。

(B)光强之和。

(C)振动振幅之和的平方。

(D)振动的相干叠加。

答:衍射光强是所有子波相干叠加的结果。

选(D)。

5波长为?的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o,则缝宽的大小( )(A) a =?。

(B) a =?。

(C)a =2?。

(D)a =3?。

答:[ C ]6波长为?的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30?,则缝宽a 等于( )(A) a =? 。

(B) a =2?。

(C) a =23?。

(D) a =3?。

答:[ D ]7在单缝夫琅和费衍射实验中波长为?的单色光垂直入射到单缝上,对应于衍射角为30?的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) ? 。

(B) ?。

(C) 2?。

(D) 3?。

答:[ D ]8在单缝夫琅和费衍射实验中,波长为?的单色光垂直入射到宽度a=4?的单缝上,对应于衍射角为30?的方向,单缝处波面可分成的半波带数目为( ) (A)2个。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。

光的衍射习题答案

光的衍射习题答案

思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。

对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。

2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。

由此可知,这时人眼看到的是夫琅和费衍射图样。

3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。

答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。

离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。

4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。

(B)光强之和。

(C)振动振幅之和的平方。

(D)振动的相干叠加。

答:衍射光强是所有子波相干叠加的结果。

选(D)。

5波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o ,则缝宽的大小( )(A) a =。

(B) a =。

(C)a =2。

(D)a =3。

答:[ C ]6波长为的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30,则缝宽a 等于( )(A) a = 。

(B) a =2。

(C) a =23。

(D) a =3。

答:[ D ]7在单缝夫琅和费衍射实验中波长为的单色光垂直入射到单缝上,对应于衍射角为30的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) 。

(B) 。

(C) 2。

(D) 3。

答:[ D ]8在单缝夫琅和费衍射实验中,波长为的单色光垂直入射到宽度a=4的单缝上,对应于衍射角为30的方向,单缝处波面可分成的半波带数目为( ) (A)2个。

14光的衍射习题解答

14光的衍射习题解答


(1)条纹相重合就是位置相同,或衍射角相同。 根据暗条纹条件:a sin 1 22 1 2 2 即1是2的两倍。
k1 2 1 (2)同样, a sin k11 k22 k2 1 2
即衍射级别成两倍关系的条纹重合。
第 11 页
三、计算题 2. 波长=600nm的单色光垂直入射到一光栅上,测得第二级明条 纹衍射角为30°,且第三级是缺级。(1) 光栅常数(a+b)等于 多少?(2) 透光缝可能的最小宽度a等于多少? (3) 在选定了上述 (a+b)和a之后,求在屏幕上可能呈现的全部明条纹的级次。
d 3μm k k k 3k ,即k 3, 6.的明条纹谱 线有5条。
第 14 页
光的衍射
习题解答
第 15 页
可能出现的全部主极大的级次为0, 1, 2,共5条
第 12 页
三、计算题 3. 一 衍 射 光 栅 , 每 厘 米 有 200 条 透 光 缝 , 每 条 透 光 缝 宽 为 a=2103mm,在光栅后放一焦距f =1m的凸透镜,现以的单 色平行光垂直照射光栅,求:(1) 透光缝a的单缝衍射中央明纹 宽度为多少?(2) 在该宽度内,有几个光栅衍射明条纹?
解 (1)
(a b)sin 30 2 (a b) ... 2.4μm
ab ab (2) k k a k , 已知第三级缺级 a k ab a ... 0.8μm 3 (a b) sin 90 (3) (a b) sin k kmax 4 第三级缺级,

本题中要求考虑缺级问题。 由题意可知:
ab k k 2k a 即k 2, 4...缺级
因此,两侧的两级分别为第1级和第3级。

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

7光的衍射习题详解.doc

7光的衍射习题详解.doc

Y» = asin&ua— = 0.2 x 10~3 f ? X |-------- =10"6 m=l 000nm=2/i0.4即"2x2牛吟因此,一、选择题1.在单缝衍射实验小,缝宽d = 0.2mm,透镜焦距/=0.4m,入射光波长/l = 500nm,则在距离中央亮纹中心位置2mm处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为儿个半波带?[ ](A)亮纹,3个半波带;(B)亮纹,4个半波带;(C)暗纹,3个半波带;(D)暗纹,4个半波带。

答案:D解:沿衍射方向&,最人光程羌为根据单缝衍射亮、暗纹条件,可判断出该处是暗纹,从该方向上可分为4个半波带。

2.波长为632.8nm的单色光通过一狭缝发生衍射。

已知缝宽为1.2mm,缝与观察屏Z间的距离为D =2.3mo则屏上两侧的两个第8级极小之间的距离/匕为[ ](A) 1.70cm;(B) 1.94cm;(C) 2.18cm;(D) 0.97cm。

答案:B解:第k级暗纹条件为asin^ = Uo据题意有j 2注:总::Ax = 2D tan 0 « 2£>sin 0 = 2D —a代入数据得A c oa 8x632.8x10—9 2Ax = 2x2.3x --------------- -—— =1.94x10 m=1.94cm1.2x10』3.波长为600nm的单色光垂直入射到光栅常数为2.5xl()-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为[ ](A) 0、±1、±2、±3、±4;(B) 0、±1、±3:(C) ±1、±3;(D) 0、±2、±4o答案:B解:光栅公式dsing",最高级次为k祁=色=2.5"():“ (取整数)。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。

光的衍射习题解答

光的衍射习题解答
•14
•6
2-9 波长为546.1nm的平行光垂直地射在 1mm宽的缝上,若将焦 距为 100cm的透镜紧贴于缝的后面,并使光聚焦到屏上,试问 衍射图样的中央到(1)第一最小值;(2)第一最大值;(3) 第三最小值的距离分别为多少?
7•7
2-11 *以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出 三缝的夫琅禾费衍射(包括缝与缝之间的干涉)图样。设缝宽
2-1 单色平面光照射到一小圆孔上,将其波面分成半波带。求第 k个带的半径。若极点到观察点的距离r0为1m,单色光波长为 450 nm,求此时第一半波带的半径 。(P111)
•1
2-3 波长为500nm的单色点光源离光阑 1m,光阑上有一内外半 径分别为 0.5mm 和1mm的透光圆环,接收点 P离光阑 1m,求 P点的光强 I与没有光阑时的光强度 I0之比。
为 b,相邻缝间的距离为 d, d = 3b。注意缺级问题。
8•8
2-13 用可见光(760~400 nm)照射全息光栅时,一级光谱和二级 光谱是否重叠?二级和三级怎样?若重叠,则重叠范围是多少?
•9
2-14 *用波长为589 nm的单色光照射一衍射光栅,其光谱的中央 最大值和第二十级主最大值之间的衍射角为15o10’,求该光栅 1 cm内的缝数是多少?
•10
2-15 用每毫米内有400 条刻痕的平面透射光栅观察波长为589 nm的纳光谱。试问: (1)光垂直入射时,最多能观察到几级光谱? (2)光以30o角入射时,最多能观察到几级光谱?
•11
2-16 白光垂直照射到一个每毫米250条刻痕的平面透射光栅上, 试问在衍射角为30o处会出现哪些波长的光?颜色如何?
•4
2-7 平面光的波长为480 nm,垂直照射到宽度为 0.4mm的狭缝 上,会聚透镜的焦距为 60 cm。分别计算当缝的两边到 P点的相 位差为 p/2和 p/6时, P点离焦点的距离。

光的衍射习题解答

光的衍射习题解答

习题19-1.波长为nm 546的平行光垂直照射在缝宽为mm 437.0的单缝上,缝后有焦距为cm 40的凸透镜,求透镜焦平面上出现的衍射中央明纹的线宽度。

解:中央明纹的线宽即为两个暗纹之间的距离 利用两者相等,所以:m a f x 339100.110437.04.010546222---⨯=⨯⨯⨯⨯==λ 19-2.波长为nm 500和nm 520的两种单色光同时垂直入射在光栅常数为cm 002.0的光栅上,紧靠光栅后用焦距为m 2的透镜把光线聚焦在屏幕上。

求这两束光的第三级谱线之间的距离。

解:两种波长的第三谱线的位置分别为x 1,x 2所以: 120.006m x x x ∆=-=19-3.在通常的环境中,人眼的瞳孔直径为mm 3。

设人眼最敏感的光波长为nm 550=λ,人眼最小分辨角为多大?如果窗纱上两根细丝之间的距离为mm 0.2,人在多远处恰能分辨。

解:最小分辨角为:rad D 439102.21031055022.122.1---⨯=⨯⨯⨯==λθ 如果窗纱上两根细丝之间的距离为mm 0.2,人在多远处恰能分辨。

19-4.已知氯化钠晶体的晶面距离nm 282.0=d ,现用波长nm 154.0=λ的X 射线射向晶体表面,观察到第一级反射主极大,求X 射线与晶体所成的掠射角.解: 212sin λϕ)(+±=k d 第一级即k=0。

19-5. 如能用一光栅在第一级光谱中分辨在波长间隔nm 18.0=∆λ,发射中心波长为nm 3.656=λ的红双线,则该光栅的总缝数至少为多少? 解:根据瑞利判据:)(λλλ∆+-=NkN k 1 )(18.06.65316.653+-=NN 所以N=3647。

19-6.一缝间距d=0.1mm ,缝宽a=0.02mm 的双缝,用波长 nm 600=λ的平行单色光垂直入射,双缝后放一焦距为f=2.0m 的透镜,求:(1)单缝衍射中央亮条纹的宽度内有几条干涉主极大条纹;(2)在这双缝的中间再开一条相同的单缝,中央亮条纹的宽度内又有几条干涉主极大?解: λϕk a ±=sin 所以中央亮条纹位置为:m a f x 12.01021060022259=⨯⨯⨯==--λ 中央明条纹位于:中心位置的上下方各0.06m 处。

光的衍射习题答案

光的衍射习题答案

思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住? 答:只有当障碍物的大小比波长大得不多时,衍射现象才显著。

对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显著。

2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样?为什么?答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。

由此可知,这时人眼看到的是夫琅和费衍射图样。

3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。

答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。

离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。

4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。

(B)光强之和。

(C)振动振幅之和的平方。

(D)振动的相干叠加。

答:衍射光强是所有子波相干叠加的结果。

选(D)。

5波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30º,则缝宽的大小( )(A ) a =0.5λ。

(B ) a =λ。

(C )a =2λ。

(D )a =3λ。

答:[ C ]6波长为λ的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30︒,则缝宽a 等于( )(A ) a =λ 。

(B ) a =2λ。

(C ) a =23λ。

(D ) a =3λ。

答:[ D ]7在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍射角为30︒的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) λ 。

(B) 1.5λ。

第07章 光的衍射 习题答案

第07章 光的衍射 习题答案

可得暗纹位置
uk = π (b sinθk )λ = kπ
Δθk = kλ / b 所以中央亮纹角宽度为θ = 2λ / b ,宽度则为
(2)各级亮纹
l1
=
f

= 500× 2× 632.8×10−6 0.1
= 6.328mm
l2
=
f
'( k +1 λ − k λ) = 500× 632.8×10−6
解:根据光栅方程错误!未找到引用源。式,可得
⎧⎪0.02 ⎨
sin
θ1
⎪⎩0.02 sinθ1
= =
500 ×10−6 520 ×10−6

Δ
=
f
(θ2
− θ1 )
=
2000(520 ×10−6 0.02

500 ×10−6 ) = 0.02
2mm
7.9 在夫琅禾费圆孔衍射中,设圆孔半径为 0.10mm ,透镜的焦距为 50cm ,所用单色光的波长为
(2)干涉条纹宽度为:
l = 2λ f = 2× 480×10−6 × 500mm = 24mm 。
b
0.12
l ' = Nλ f = N × 480×10−6 × 500mm = 24mm
b
0.12
所以 N=12,再包括中央明纹一共有 13 条。
7.8 波长为 500nm 及 520nm 的平行单色光同时垂直照射在光栅常数为 0.02mm 的衍射光栅上,在光 栅后面用一焦距为 2m 的透镜把光线聚在屏上,求这两种单色光的第一级光谱线间的距离?
可见。
7.7 一双缝,两缝间距为 0.1mm ,每缝宽为 0.02mm ,用波长 λ = 480nm 的平行单色光垂直入射双

第12章 光的衍射

第12章 光的衍射

第十二章 光的衍射一、选择题12.1 一束波长为λ的平行单色光垂直射到一单缝AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长为[ ] (A )λ (B )2λ (C )23λ (D )λ212.2 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为6πθ±=,则狭缝的大小为[ ](A )2λ (B )λ (C )λ2 (D )λ312.3 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为λ4=a 的单缝上,对应于衍射角为︒30的方向,单缝处波阵面可分成的半波带数目为[ ] (A )2个 (B )4个 (C )6个 (D )8个二、填空题12.4 一单色平行光垂直入射一单缝,其衍射第三级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,则该单色光波长 。

12.5 一块光栅,每毫米有400条刻痕线,用波长范围在400nm~590nm 的复色光垂直照射,可以测得 级不重叠的完整光谱。

12.6 光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是。

12.7 单缝宽度mm a 02.0=,用平行光的纳黄光(nm 3.589=λ)垂直照射到狭缝上,一级暗纹的衍射角=1φ 弧度;若将此装置全部浸入折射率为62.1=n 的溶液中,一级明纹的衍射角将为 弧度。

P D12.8 单色平行光垂直射向缝数足够多的透射光栅,此时将在屏幕上得到一组光栅谱线。

现将光栅的奇数(或偶数)号缝遮住,则将看到屏幕上相邻谱线的间距变为原来的 倍。

12.9 一束平行光垂直入射在光栅上,若光栅的透明部分a 是不透明部分b 宽度的一半,则衍射光谱缺级的可能级次为 。

12.10 若X 射线以掠射角︒=300α入射,已知晶体原子层的间距nm d 275.0=,则第三级谱线的波长是 nm 。

二、计算题12.11 使波长为480nm 的单色光垂直入射到每毫米有250条狭缝的光栅上,光栅常数为一条缝宽的3倍,求(1)第一级谱线的角位置; (2)总共可以观察到几条光谱线?12.12 用白光(白光所含光波波长范围为400~760nm )照射一光栅,通过透镜将衍射光谱聚焦于屏幕上,透镜与屏幕距离为0.8m ,(1)试说明第一级光谱能否出现完整的不重叠的光谱; (2)第二级光谱从哪一个波长开始与第三级光谱发生重叠?(3)若第二级光谱被重叠的部分长度为2.5cm ,求这光栅每cm 有多少条刻痕?12.13 在宽度mm b 6.0=的单缝后有一薄透镜,其焦距cm f 40=,在焦平面处有一个与狭缝平行的屏,以平行光垂直入射,在屏上形成衍射条纹。

4-2光-光 的 衍 射 大学物理作业习题解答

4-2光-光 的 衍 射 大学物理作业习题解答
当 u 0, 1.43, 2.46, 3.47 时,光强取得极大值.
1的第三级明纹与2=600nm的第二级在同一衍射方向上,因
此有
asin 3.47,
(1)
1
asin 600106
2.46.
(2)
解方程(1)和(2)得 1 425 .4nm .
6
2-6 一单色平行光垂直照射在单缝上,紧靠缝放置一凸透镜, 在其后焦平面上观察衍射图样.若做如下单项变动,则衍射图 样将怎样变化?
16
2-18 用水银蒸汽放电的光照明,正入射到一总宽W = 2.54厘米 的光栅上,光栅上总共有800条刻痕,求蓝光谱线435.8纳米) (在 第三级光谱中的角色散.(2)在第五级光谱中的分)辨本领.(3)第五级 光谱能分辨得最小波长间隔
解(1)光栅总宽2.54厘米,共有800条刻痕,75 10 5 m . N 800
屏 幕
上式中,k为衍射极大的级次.在个衍射方向上,同时出现1
的第三级和2的第二级衍射极大,因此
(231) 1 (221) 2
2
2
5
已知2=600nm,代入上式求出 1 428.6nm
(2)振幅矢量法:
屏式幕中上夫u 琅和as费in单 缝, 衍是射单光缝强边公缘式光为束在I方 I向0 的sinu光22 u程. 差.
(3)单缝加宽,各级明条纹中心靠拢,条纹变窄;单缝变窄, 各级明条纹向两边扩展,条纹变宽.
(4)衍射图样不变.
7
2-7 迎面驶来的汽车上,两盏前灯相距1.2米,试问汽车离人多 远的地方,眼睛恰好可分辨这两盏灯?夜间人眼瞳孔直径为5.0 毫米,入射光波长500纳米.(仅考虑人眼瞳孔的衍射效应)
解 人眼圆形瞳孔的衍射为圆孔衍射.根据瑞利判据,人

第15章光的衍射习题答案

第15章光的衍射习题答案
(2)由缺级条件:
ab ' k k k 3 a ab ' ab a k 8.0 10 7 m 3 3
(3)由光栅方程:
( a b ) sin 90 k max

k max 4
由第三级缺级,在屏上可能呈现的全部主极大级200条透光缝,每条透光缝宽 为a=2*10-3cm,在光栅后放一焦距f=1m的凸透镜,现 以波长为600nm的单色平行光垂直照射光栅,求: (1)透光缝a的单缝衍射中央明纹宽度为多少? (2)在该宽度内,有几个光栅衍射主极大? x 解:(1)单缝衍射中央明纹宽度
7 5.89 10 5.用每毫米有425条刻痕的平面光栅观察 m 的钠光谱,垂直入射时,能看到的最高级次谱线是 第 3 级;以i=30°斜入射时,能看到的最高级次 谱线是第 5 级,原来的0级谱线处现在是第 2 级。
6.在单缝夫琅和费衍射实验中,波长为 的单色光垂 直入射在宽度 a 5 的单缝上,对应于衍射角 的方 向上若单缝处波面恰好可分成5个半波带,则衍射角 = 30° 。
(3)若入射角i为负,衍射角分别为正和负:k=2.1和6.3,所以明纹级次为:k=-5,-4,-2,-1,0,1,2
7.一单色平行光垂直入射一单缝,其衍射第三级明纹 位置恰好与波长600nm的单色光垂直入射该缝时衍射的 第二级明纹重合,则该单色光的波长为 428.6 nm 。 8.衍射光栅主极大公式 ( a b ) sin k , k 0,1, 2 ,在 k=2的方向上第一条缝与第六条缝对应点发出的两条 衍射光的光程差 = 10λ 。 9.在单缝衍射中,衍射角愈大(级数愈大)的那些明 条纹的亮度愈 小 ,原因是 。
第十五章
光的衍射
一、选择题

光的衍射习题答案

光的衍射习题答案

光的衍射习题答案第六章光的衍射6-1 求矩形夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。

解:对角线上第一个次极大对应于πβα43.1==,其相对强度为:0022.043.143.1sin sin sin 422=??? ??=?=ππββααI I 对角线上第二个次极大对应于πβα46.2==,其相对强度为:00029.046.246.2sin sin sin 422=??? ??=?=ππββααI I6-2 由氩离子激光器发出波长488=λnm 的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75mm ×0.25mm 。

在位于矩形孔附近正透镜(5.2=f m )焦平面处的屏上观察衍射图样,试求中央亮斑的尺寸。

解:中央亮斑边缘的坐标为:63.175.01048825006±=??±=±=-a f x λmm 26.32=x mm88.425.01048825006±=??±=±=-b f y λmm 76.92=y mm∴中央亮斑是尺寸为3.26mm ×9.76mm 的竖直矩形6-3 一天文望远镜的物镜直径D =100mm ,人眼瞳孔的直径d =2mm ,求对于发射波长为5.0=λμm 光的物体的角分辨极限。

为充分利用物镜的分辨本领,该望远镜的放大率应选多大?解:当望远镜的角分辨率为: 636101.610100105.022.122.1---?===Dλθrad人眼的最小分辨角为: 4361005.3102105.022.122.1---?===de λθrad∴望远镜的放大率应为:50===dD M e θθ6-4 一个使用汞绿光(546=λnm )的微缩制版照相物镜的相对孔径(f D /)为1:4,问用分辨率为每毫米380条线的底片来记录物镜的像是否合适?解:照相物镜的最大分辨本领为: 375411054622.1122.116=?==-fD N λ/mm∵380>375∴可以选用每毫米380条线的底片。

光的衍射单元测试题及答案

光的衍射单元测试题及答案

光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。

1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。

根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。

2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。

- 主极大强度会变弱,即主极大上的亮度会减弱。

- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。

请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。

光的衍射检测试题(含答案)

光的衍射检测试题(含答案)

光的衍射检测试题(含答案)5.2《光的衍射》每课一练13一、选择题1.一个不透光的薄板上有两条平行的窄缝,有一频率单一的红光通过两窄缝,在与薄板平行的屏上呈现明暗相间的间隔均匀的红色条纹.若将其中一窄缝挡住让另一缝通过红光,则在屏上可观察到 ( )A.与原相同的明暗相间,间隔均匀的红色条纹B.与原不相同的明暗相间,间隔不相等的红色条纹.无条纹,只有一片红光D.既无条纹,也不是一片红光,而是光的像2.用单色光通过小圆盘和小圆孔做衍射实验时,在光屏上得到衍射图形,它们的特征是 ( )A.用小圆盘时中央是暗的,用小圆孔时中央是亮的B.中央均为亮点的同心圆形条纹.中央均为暗点的同心圆形条纹 D.用小圆盘时中央是亮的,用小圆孔时中央是暗的3.在太阳光照射下,水面油膜上会出现彩色的花纹,这是两列相干波发生干涉的结果,这两列相干光波是太阳光分别经___________而形成的,用平行的单色光垂直照射不透明的小圆板,在圆板后面的屏上发现圆形影中心处有一个亮斑,这是光的________现象.4.某同学把卡尺间的窄缝调节到0.5去观察某一线光,看到了彩色条纹,若他把缝的宽度增加到0.8,再观察同一光线,看到的彩色条纹将______;若他把缝的宽度减小到0.2,则看到的彩色条纹将_______,这说明在衍射现象中衍射条纹的间距与________有关,当单缝宽度______时.衍射现象更为明显.5.如图所示A、B两幅图片是由单色光分别入射到圆孔而形成的图像,其中图A是光的______图像(填干涉或衍射).由此可以判断出图A所对应的圆孔的孔径______(填大于或小于)图B所对应的圆孔的孔径.6.对于单缝衍射现象,以下说法正确的是 ( )A.缝的宽度d越小,衍射条纹越亮 B.缝的宽度d越小,衍射现象越明显.缝的宽度d越小,光的传播路线越接近直线 D.入射光的波长越短,衍射现象越明显7.在用《游标卡尺观察光的衍射现象》实验中,可以调节游标卡尺的狭缝宽度,图中是A、B两把卡尺的游标位置,它们的下脚狭缝的宽度,A尺是_____,B尺是_____,通过它们能观察到明显衍射图样的是_____尺.如图所示.8.使太阳光垂直照射到一块遮光板上,板上有可以自由收缩的正方形孔,孔的后面放置一个光屏,在正方形孔逐渐变小直至闭合的过程中,光屏上依次可以看到几种不同的现象,试把下列现象依次排列:A.圆形光斑 B.明暗相间的彩色条纹.变暗消失 D.正方形光斑 E.正方形光斑由大变小二、填空题9.在双缝干涉实验中,用频率ν=5×1014Hz的单色光照射双缝,若在屏上P点到双缝之差为0.9μ,则P点将出现______条纹.若将整个装置放入n=2的介质中进行上述实验,则P点将出现______条纹.10.频率 7.5×1014Hz的红光,射入折射率为 1.5的玻璃中,波长缩短了______,频率增加了______Hz,传播速度变为______/s.11.在太阳光照射下,水面油膜上会出现彩色条纹,这是两列相干光波发生干涉的结果,这两列相干光波是太阳光分别经______而形成的.12.用平行的单色光垂直照射不透明的小圆板,在圆板后面的屏上发现圆形阴影的中心处有一个亮斑,这是光的______现象.13.肥皂泡在阳光照射下呈彩色,这是属于光的______现象.三、计算题14.频率为6×1014Hz的单色光从S1和S2投射到屏上,并且S1与S2振动相同.若屏上的点P到S1与P到S2的路程差为3×10-6,问 P点是亮条纹还是暗条纹?设为到S1和S2路程相等的点,则P间有几条暗纹?几条亮纹?15.红光在水中的波长与绿光在真空中的波长相等,水对红光的折(2)红光与绿光的频率之比.参考答案1.B(点拨:是单缝衍射,抓住双缝干涉与单缝衍射条纹的不同点,是解决此题的关键。

18光的衍射习题解答

18光的衍射习题解答

第十八章 光的衍射一 选择题1.平行单色光垂直入射到单缝上,观察夫朗和费衍射。

若屏上P 点处为第2级暗纹,则单缝处波面相应地可划分为几个半波带 ( )A. 一个B. 两个C. 三个D. 四个解:暗纹条件:....3,2,1),22(sin =±=k ka λθ,k =2,所以2k =4。

故本题答案为D 。

2.波长为λ的单色光垂直入射到狭缝上,若第1级暗纹的位置对应的衍射角为θ =±π/6,则缝宽的大小为 ( )A. λ/2B. λC. 2λD. 3λ解:....3,2,1),22(sin =±=k k a λθ6,1πθ±==k ,所以λλπ2,22)6sin(=∴⨯±=±a a 。

故本题答案为C 。

3.一宇航员在160km 高空,恰好能分辨地面上两个发射波长为550nm 的点光源,假定宇航员的瞳孔直径为5.0mm ,如此两点光源的间距为 ( )A. 21.5mB. 10.5mC. 31.0mD. 42.0m解:m 5.2122.1,22.11==∆∴∆==h Dx h x D λλθ。

本题答案为A 。

4.孔径相同的微波望远镜与光学望远镜相比,前者的分辨本领小的原因是( )A. 星体发光的微波能量比可见光能量弱B. 微波更易被大气吸收C. 大气对微波的折射率较小D. 微波波长比光波波长大解:本题答案为D5.波长λ=550nm 的单色光垂直入射于光栅常数d =2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 ( )A. 2B. 3C. 4D. 5解:k d k k d 。

,64.3sin sin ===λθλθ的可能最大值对应1sin =θ,所以[]3=k 。

故本题答案为B 。

6.一束单色光垂直入射在平面光栅上,衍射光谱中共出现了5条明纹。

若已知此光栅缝宽度与不透明宽度相等,那么在中央明纹一侧的第二条明纹是第几级?( )A. 1级B. 2级C. 3级D. 4级解:,2,sin =+±=ab a k d λθ因此...6,4,2±±±等级缺级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题
19-1.波长为nm 546的平行光垂直照射在缝宽为mm 437.0的单缝上,缝后有焦距为cm 40的凸透镜,求透镜焦平面上出现的衍射中央明纹的线宽度。

解:中央明纹的线宽即为两个暗纹之间的距离
a
λϕϕϕ2210=-=∆ f
x 20=
∆ϕ 利用两者相等,所以:m a f x 339100.110
437.04
.010546222---⨯=⨯⨯⨯⨯==λ 19-2.波长为nm 500和nm 520的两种单色光同时垂直入射在光栅常数为cm 002.0的
光栅上,紧靠光栅后用焦距为m 2的透镜把光线聚焦在屏幕上。

求这两束光的第三级谱线之间的距离。

解:两种波长的第三谱线的位置分别为x 1,x 2
λϕk a ±=sin f
x =
=ϕϕtan sin a f x 113λ=
a
f x 2
23λ= 所以: 120.006m x x x ∆=-=
19-3.在通常的环境中,人眼的瞳孔直径为mm 3。

设人眼最敏感的光波长为nm 550=λ,
人眼最小分辨角为多大?如果窗纱上两根细丝之间的距离为mm 0.2,人在多远处恰能分辨。

解:最小分辨角为:rad D 439
102.210
31055022.122.1---⨯=⨯⨯⨯==λ
θ 如果窗纱上两根细丝之间的距离为mm 0.2,人在多远处恰能分辨。

m s mm l rad s
l
1.9210
2.24==⨯==
-,可得:,当θ
19-4.已知氯化钠晶体的晶面距离nm 282.0=d ,现用波长nm 154.0=λ的X 射线射向晶体表面,观察到第一级反射主极大,求X 射线与晶体所成的掠射角.
解: 2
12sin λ
ϕ)(+±
=k d 第一级即k=0。

sin 0.2762rad d
λ
ϕϕ==
=
19-5. 如能用一光栅在第一级光谱中分辨在波长间隔nm 18.0=∆λ,发射中心波长为
nm 3.656=λ的红双线,则该光栅的总缝数至少为多少?
解:根据瑞利判据:)
(λλλ∆+-=
N
kN k 1

(18.06.6531
6.653+-=
N
N 所以N=3647。

19-6.一缝间距d=0.1mm ,缝宽a=0.02mm 的双缝,用波长 nm 600=λ的平行单色光垂直入射,双缝后放一焦距为f=2.0m 的透镜,求:(1)单缝衍射中央亮条纹的宽度内有几条干涉主极大条纹;(2)在这双缝的中间再开一条相同的单缝,中央亮条纹的宽度内又有几条干涉主极大?
解: λϕk a ±=sin 所以中央亮条纹位置为:m a f x 12.010
21060022259
=⨯⨯⨯==--λ 中央明条纹位于:中心位置的上下方各0.06m 处。

而干涉条纹的条纹间距为:m d f x 012.010
11060024
9
=⨯⨯⨯==∆--λ 中央明条纹在中心位置的上下方各0.006m 的位置上,第K 级明条纹的位置为:
06.0012.0006.0π⨯+=k x 所以对应的k=4,
即在单缝衍射中央亮条纹的宽度内有9条干涉主极大条纹(两边各四条+中央明纹)。

(2)在这双缝的中间再开一条相同的单缝,
干涉条纹的条纹间距将变为:m d f x 024.0105.01060022
149
=⨯⨯⨯==∆--λ
中央明条纹在中心位置的上下方各0.012m 的位置上,第K 级明条纹的位置为:
06.0024.0012.0π⨯+=k x 所以对应的k=2,
即在单缝衍射中央亮条纹的宽度内有5条干涉主极大条纹(两边各两条+中央明纹)。

19-7 一个平面透射光栅,当用光垂直入射时,能在30度角的衍射方向上得到600nm 的第二级主极大,并且第二级主极大能分辨nm 05.0=∆λ的两条光谱线,但不能得到400nm 的第三级主极大,求:(1)此光栅的透光部分的宽度a 和不透光部分的宽度b ;(2)此光栅的总缝数N 。

解:(1)利用: λϕk b a ±=+sin )(
根据题意:30度角的衍射方向上得到600nm 的第二级主极大,所以:
nm b a 24002
1600
2sin 2
=⨯
==+ϕ
λ
不能得到400nm 的第三级主极大:说明第三级条纹缺级。

由缺级的定义可得到:
3=+a
b
a 所以:a=800nm ,b=1600nm 。

(2)根据瑞利判据:)
(λλλ∆+-=
N
kN k 1

(05.06001
26002+-=
⨯N
N 所以:N=6000。

19-8 波长400nm 到750nm 的白光垂直照射到某光栅上,在离光栅0.50m 处的光屏上测得第一级彩带离中央明条纹中心最近的距离为4.0cm ,求:(1)第一级彩带的宽度;(2)第三级的哪些波长的光与第二级光谱的光相重合。

解:(1)衍射光栅中a
k x 212λ

(+=
波长越小,则离中央明纹就越近,所以:a 210400304.07-⨯⨯=
那么750nm 的波长的第一级条纹位置在:m a
x 075.021075037
=⨯⨯
=- 第一级彩带的宽度:cm m x 5.3035.004.0075.0==-=∆
(2)第二级的750nm 的波长对应的光的位置:m a
x 125.021075057
2=⨯⨯
=- 第三级中有一部分和它将重合:m a
x 125.0103
7
2733≤⨯=

=λλ
对应的波长为400——500nm 的波
19-9 如要用衍射光谱区别氢原子巴尔末系第11条和第12条谱线,光栅的分辨本领应为多大?如光栅常数为每毫米200条的光栅,要想在第2级中能分辨这两条谱线,这光栅的宽度至少多宽?(提示:巴尔末系第11条和第12条谱线由量子数n 分别为13和14到n=2的跃迁所产生。


解:(1)根据瑞利判据:光栅的分辩本领为λ
λ
∆=
R ,只要知道它们的波长就可以了。

n 从13→2:v
~ =R [1/22
-1/132
]=(3/4)R , λ2=676/(165R) n 从14→2:v
~ =R [1/22-1/142]=(5/36)R ,λ3=(49)/(12R) 所以:323
300R λλλλλ=
==∆- (2) 根据瑞利判据: )
(λλλ∆+-=N
kN k 1
k=2,所以:37341
237222⨯-=⨯N
N 得出: N=151条, 如光栅常数为每毫米200条的光栅,那么只要光栅的宽度为:151
0.75200
mm =就可以满
足要求了。

19-10 用每毫米500条栅纹的光栅,观察钠光光谱(ο
A 5900=λ)。

问:(1)光线垂直入射;(2)光线以入射角30。

入射时,最多能看到几级条纹?
解:(1)正入射时, m d 63
102500
10--⨯== λϕk d ±=sin 所以当1sin =ϕ,对应的级次(取整数)最大:3==λ
d
k
能看到的条纹为:3,2,1,0,-1,-2,-3。

(2)斜入射时,λθϕk d ±=±)(sin sin
所以当2330sin sin =
+ο
ϕ,对应的级次(取整数)最大:523==λd
k 当2130sin sin -=+ο
ϕ,对应的级次(取整数)最小:12-=-=λ
d k
能看到的条纹为:5,4,3,2,1,0,-1。

思考题
19-1.要分辨出天空遥远的双星,为什么要用直径很大的天文望远镜?
答:最小分辨角为:D
λ
θ22
.1=,它的倒数为分辨本领,当D 越大,θ越小,那么分辨
本领就越大。

所以用的天文望远镜的直径很大,提高了分辨本领。

19-2.使用蓝色激光在光盘上进行数据读写较红色激光有何优越性?
答:最小分辨角为:D
λ
θ22
.1=,它的倒数为分辨本领,当λ越小,θ越小,那么分辨
本领就越大。

所以用的蓝色光比红色光好,提高了分辨本领。

19-3.光栅形成的光谱较玻璃棱镜形成的色散光谱有何不同?
答:两者都是分光元件。

不同点:
(1)光栅光谱有一系列的级次,每一级次都有正负两套光谱,零级光谱因波长重合而不能分光;而棱镜光谱只有一套零级光谱,相对强度大。

(2)低级次的光栅光谱波长与衍射角近似有正比关系,称为匀排光谱;而棱镜光谱的波长与角度为非线性关系,不是匀排光谱。

19-4.孔径相同的微波望远镜和光学望远镜相比较,哪个分辨本领大?为什么?
答:最小分辨角为:D
λ
θ22
.1=,它的倒数为分辨本领,当λ越小,θ越小,那么分辨
本领就越大。

由于微波的波长大于光波的波长,所以光波望远镜的分辨本领大。

19-5.登月宇航员声称在月球上唯独能够用肉眼分辨地球上的人工建筑是中国的长城。

你依据什么可以判断这句话是否真的?需要哪些数据?
答:可以根据瑞利判据。

相关文档
最新文档