4光的衍射参考标准答案
《大学物理教程》郭振平主编第四章光的衍射课后习题答案
第四章 光的衍射一、基本知识点光的衍射:当光遇到小孔、狭缝或其他的很小障碍物时,传播方向将发生偏转,而绕过障碍物继续前行,并在光屏上形成明暗相间的圆环或条纹。
光波的这种现象称为光的衍射。
菲涅耳衍射:光源、观察屏(或者是两者之一)到衍射屏的距离是有限的,这类衍射又称为近场衍射。
夫琅禾费衍射:光源、观察屏到衍射屏的距离均为无限远,这类衍射也称为远场衍射。
惠更斯-菲涅耳原理:光波在空间传播到的各点,都可以看作一个子波源,发出新的子波,在传播到空间某一点时,各个子波之间可以相互叠加。
这称为惠更斯-菲涅耳原理。
菲涅耳半波带法:将宽度为a 的缝AB 沿着与狭缝平行方向分成一系列宽度相等的窄条,1AA ,12A A ,…,k A B ,对于衍射角为θ的各条光线,相邻窄条对应点发出的光线到达观察屏的光程差为半个波长,这样等宽的窄条称为半波带。
这种分析方法称为菲涅耳半波带法。
单缝夫琅禾费衍射明纹条件:sin (21)(1,2,...)2a k k λθ=±+=单缝夫琅禾费衍射暗纹条件:sin (1,2,...)a k k θλ=±=在近轴条件下,θ很小,sin θθ≈, 则第一级暗纹的衍射角为 1aλθ±=±第一级暗纹离开中心轴的距离为 11x f faλθ±±==±, 式中f 为透镜的焦距。
中央明纹的角宽度为 112aλθθθ-∆=-=中央明纹的线宽度为 002tan 2l f f faλθθ=≈∆=衍射图样的特征:① 中央明纹的宽度是各级明纹的宽度的两倍,且绝大部分光能都落在中央明纹上。
② 暗条纹是等间隔的。
③ 当入射光为白光时,除中央明区为白色条纹外,两侧为由紫到红排列的彩色的衍射光谱。
④ 当波长一定时,狭缝的宽度愈小,衍射愈显著。
光栅: 具有周期性空间结构或光学性能(透射率,反射率和折射率等)的衍射屏,统称为光栅。
光栅常数: 每两条狭缝间距离d a b =+称为光栅常数。
光的衍射参考答案
光的衍射参考解答一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度aff f x λϕϕ2sin 2tan 211=≈=∆中。
衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。
2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。
3.波长λ=5500?的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=sin 及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。
4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。
[ D ][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。
第十四章 光的衍射(单章答案)
习题十四 光的衍射14-3 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.14-4 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.14-5 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a 284sin λλϕ⨯==a 14-6 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小. 14-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.14-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽? 答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.14-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1)a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k ab a k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.14-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.(2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 14-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长?解:单缝衍射的明纹公式为)12(sin +=k a ϕ2λ 当6000=λo A 时,2=k x λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ 得 4286600075=⨯=x λo A 14-12 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f =40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1) 由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k 由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA (2) 若60003=λo A ,则P 点是第3级明纹;若47004=λo A ,则P 点是第4级明纹.(3) 由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带;当4=k 时,单缝处的波面可分成912=+k 个半波带. 14-13 用λ=590nm 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A由λϕk b a =+sin )(知,最多见到的条纹级数max k 对应的2πϕ=, 所以有39.35900100.24max ≈⨯=+=λb a k ,即实际见到的最高级次为3max =k . 这就是中央明条纹的位移值.14-14 波长λ=600nm 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2) 因第四级缺级,故此须同时满足λϕk b a =+sin )(λϕk a '=sin解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m(3) 由λϕk b a =+sin )(λϕsin )(b a k += 当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λb a k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).14-15 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800o A 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹? 解:(1)中央明纹宽度为02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm (2)由缺级条件λϕk a '=sinλϕk b a =+sin )(知k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.14-16 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000o A ,求在透镜焦平面处屏幕上呈现的爱里斑半径.解:由爱里斑的半角宽度47105.302.010500022.122.1--⨯=⨯⨯==D λθ ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 14-17 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 D λθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm。
4-5 光的衍射(人教版2019版选择性必修第一册) (解析版)
4.5 光的衍射学习目标:1.知道光的衍射现象及衍射条件,知道几种衍射现象的图样。
2.理解光产生明显衍射的条件。
3.知道偏振现象,知道偏振是横波特有的性质。
4.了解光的波动性。
5.了解激光的特性和应用。
重点:1.发生明显衍射现象的条件。
2.三种衍射图样的特点。
难点:1.三种衍射图样的对比。
2.单缝衍射与双缝干涉的比较知识点一、光的衍射1.定义:用单色平行光照射狭缝,当缝很窄时,光没有沿直线传播,它绕过了缝的边缘,传播到了相当宽的地方。
2.发生明显衍射现象的条件:在障碍物的尺寸与光的波长相当,甚至比光的波长还小的时候,衍射现象十分明显。
3.衍射条纹特点:衍射条纹是一些明暗相间的条纹,中央条纹最宽、最亮,离中央条纹越远,亮条纹的宽度越小,亮度越低。
4.光是一种波:光的干涉现象表明光是一种波,由于衍射是波的特点,则光能够衍射,因此,光能够绕过障碍物或通过小孔进入几何阴影区而传播,即发生衍射现象。
5.可见光的波长范围:10−6m~10−7m,由发生明显衍射现象的条件可知,光的衍射现象不易观察。
【题1】让太阳光垂直照射一块遮光板,板上有一个可以自由收缩的三角形孔,当此三角形孔缓慢缩小直至完全闭合时,在孔后的屏上将先后出现A.由大变小的三角形光斑,直至光斑消失B.由大变小的三角形光斑、明暗相间的彩色条纹,直至条纹消失C.由大变小的三角形光斑,明暗相间的条纹,直至黑白色条纹消失D.由大变小的三角形光斑、圆形光斑、明暗相间的彩色条纹,直至条纹消失【答案】D【解析】当孔足够大时,由于光的直线传播,所以屏上首先出现的是三角形光斑,之后随着孔的继续缩小,出现小孔成像,成的是太阳的像,故为小圆形光斑,随着孔的进一步缩小,当尺寸与光波波长相当时,出现明暗相间的衍射条纹,最后随孔的闭合而全部消失,所以只有D正确。
【题2】关于光的衍射,下列说法正确的是A.电磁波中频率最高的γ射线,最容易用它来观察衍射现象B.泊松亮斑是光通过小圆盘发生衍射时形成的C.单缝衍射形成的条纹宽度相同、亮度相同D.光的衍射现象说明光具有粒子性【答案】B【解析】电磁波中频率最大为γ射线,波长最短,最不容易发生衍射现象,故A错误;泊松亮斑是光通过不透明的小圆盘发生衍射时形成的,故B正确;单缝衍射形成的条纹宽度与亮度都不相同,故C错误;光的衍射现象说明光具有波动性,并不是粒子性,故D错误。
光的衍射习题、答案与解法(2010.11.1)
光衍射习题、答案与解法一、填空题1.根据惠更斯—菲涅耳原理,若已知光在某时间的波阵面为S ,则S 的前方某点P 的光强取决于波阵面S 上所有面积元发出的子波各自传到P 点( D )(A )振动振幅之和 (B )光强之和 (C )振动振幅之和的平方 (D )振动的相干叠加 2.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变大时,除中央明纹的中心位置不变外,各级衍射条纹 ( A ) (A )对应的衍射角变小 (B )对应的衍射角变大(C )对应的衍射角也不变 (D )光强也不变 参考答案:λϕk a =sin ⎪⎭⎫⎝⎛=-a k λϕ1sin 3.在单缝夫琅禾费单缝衍射实验中,波长λ为的单色光垂直入射到单缝上,对应于衍射角为030的方向上,若单缝处波面可分为6个半波带,则缝宽度a 等于( B )(A )λ (B )λ6 (C )λ2 (D )λ4 参考答案:2sin λϕka = λλλϕλ6212630sin 26sin 20=⨯=⨯==ka4.一束波长为λ的平行单色光垂直入射到一单色AB 上,装置如图1所示,在屏幕P 上形成衍射图样,如果Q 是中央PQCλfALB亮纹一侧第二个暗纹的中心所在位置,则BC 得长度为 ( D )(A )2/λ (B )λ (C )2/3λ (D )λ2 参考答案:λϕk a =sin λλϕ2sin ==k a5. 波长为nm 600=λ)m 10nm 1(9-=的单色光垂直照射到宽mm 3.0=a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕中央明条纹一侧第一个暗条纹和另一侧第一个暗条纹之间的距离为mm 4=∆x ,则凸透镜的焦距f 为 ( C )(A )m 2 (B ) m 1.0 (C )m 1 (D )m 5.0参考答案:⎪⎪⎩⎪⎪⎨⎧==-=∆=-12k x x x x k a f x k k k k λ ()m 1106002103.01042933=⨯⨯⨯⨯⨯=∆=---a x f λ6.一束平行单色光垂直入射在光栅上,当光栅常数()b a +,为下列哪种情况时(a 代表每条缝的宽度),k=3、6、9等级次的明纹均不出现 ( B )(A )a b a 2=+ (B )a b a 3=+(C )a b a 4=+(D )a b a 6=+参考答案:()⎪⎪⎪⎩⎪⎪⎪⎨⎧==='==+963sin sin k k k k a k b a λϕλϕ ===='=+392613k k a b a 7.一束白光垂直照射在一光栅上,在形成的同一级光栅谱中,离中央明纹最近的是 ( A )(A )紫光 (B )绿光 (C )黄光 (D )红光参考答案:()λϕk b a =+sin⎪⎭⎫ ⎝⎛+=-b a k λϕ1sin 红λλ〈3 8.若用衍射光栅准确测定一单色光可见光的波长,在下列各种光栅中选用那一种最为合适?( D )(A )mm 5.0(B ) mm 1(C )mm 01.0(D )mm 100.13-⨯参考答案:()⎪⎪⎩⎪⎪⎨⎧===+21sin πϕλϕk k b a()()mm 107nm 7001107001sin 49--⨯==⨯⨯==+ϕλk b a9.波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上,取⋅⋅⋅⋅±±=2,1,0k ,则决定出现明纹的衍射角θ的公式可写成( C )(A )λθk Na =sin (B )λθk a =sin (C )λθk d =sin (D )λθk Nd =sin 参考答案:()λϕk b a =+sin λϕk d =sin10.提高光仪器分辨率本领的方法是:( B ) ( A )增大透光孔径,增大入射光的波长 ( B )增大透光孔径,减小入射光的波长 ( C ) 减小透光孔径,增大入射光的波长 ( D ) 减小透光孔径,减小入射光的波长 参考答案:λ22.1D R = Dλθ22.1= 二、填空题1.在单缝夫琅禾费衍射实验中,波长nm 400=λ的平行光垂直入射单缝,所用凸透镜焦距m 5.1=f ,第三级暗纹离中央明纹中心m 100.33-⨯,另一波长为0λ的光的第二级暗纹在屏的同一位置上,则单缝的缝宽m 103.5-4⨯=a ,波长nm 0060=λ。
2025高考物理步步高同步练习选修1第四章 光光的衍射含答案
2025高考物理步步高同步练习选修1第四章光5光的衍射[学习目标] 1.知道光的衍射现象,了解产生明显衍射现象的条件(重点)。
2.知道衍射条纹的特点,会区分衍射条纹和干涉条纹(重难点)。
一、光的衍射1.用单色平行光照射狭缝,当缝很窄时,光没有沿直线传播,它绕过了缝的边缘,传播到了相当宽的地方。
这就是光的衍射现象。
2.各种不同形状的障碍物都能使光发生衍射,致使影的轮廓模糊不清,出现明暗相间的条纹。
3.发生明显衍射现象的条件:在障碍物或狭缝的尺寸足够小的时候,衍射现象十分明显。
有同学说:“光照到较大圆孔上出现大光斑,说明光沿着直线传播,光不再发生衍射现象”,这种说法对吗?答案不对。
衍射现象是一定会发生,大光斑说明光是沿直线传播的,衍射现象不明显,但大光斑的边缘模糊,正是光的衍射造成的。
三种衍射图样的特点:1.单缝衍射(1)单色光通过狭缝时,在屏上出现明暗相间的条纹,中央条纹最宽最亮,两侧的亮条纹逐渐变暗变窄;白光通过狭缝时,在屏上出现彩色条纹,中央为白色条纹。
(2)波长一定时,单缝窄的中央条纹宽,条纹间距大;单缝不变时,光波波长大的中央条纹宽,条纹间距大。
2.圆孔衍射:光通过小孔(孔很小)时,在光屏上出现明暗相间的圆环。
如图所示。
(1)中央是大且亮的圆形亮斑,周围分布着明暗相间的同心圆环,且越靠外,圆形亮条纹的亮度越弱,宽度越小。
(2)圆孔越小,中央亮斑的直径越大,同时亮度越弱。
(3)用不同单色光照射圆孔时,得到的衍射图样的大小和位置不同,波长越大,中央圆形亮斑的直径越大。
(4)白光的圆孔衍射图样中,中央是大且亮的白色光斑,周围是彩色的同心圆环。
3.圆板衍射(泊松亮斑)(1)若在单色光传播途中放一个较小的圆形障碍物,会发现在影的中心有一个亮斑,这就是著名的泊松亮斑。
衍射图样如图所示。
(2)中央是亮斑(与圆孔衍射图样中心亮斑比较,泊松亮斑较小),圆板阴影的边缘是模糊的,在阴影外还有不等间距的明暗相间的圆环。
光的衍射习题(附答案)之欧阳理创编
光的衍射(附答案)一.二.填空题1.波长λ = 500 nm(1 nm = 10−9m)的单色光垂直照射到宽度a = 0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈ 589 nm)中央明纹宽度为4.0mm,则λ2 ≈ 442 nm(1 nm = 10−9m)的蓝紫色光的中央明纹宽度为3.0mm.3.平行单色光垂直入射在缝宽为a = 0.15mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8mm,则入射光的波长为500nm (或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b=3a时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2μm(1 μm = 10−6 m)的光栅上,用焦距f=0.500m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l=0.1667m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3cm,焦距为20cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00nm和589.59nm(1 nm = 10−9m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1= 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.三.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1, 2, …)sinθ1=2k1λ2/ aa sinθ2=k2λ2(k2=1, 2, …)sinθ2=2k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500 nm,会聚透镜的焦距f= 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sin θ1= λx 1=f tan θ1 ≈ f sin θ1≈ f λ /a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x 2为a sin θ2= 2λx 2=f tan θ2 ≈ f sin θ2≈ 2f λ /a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx 1=x 2 − x 1≈ f (2λ /a − λ /a )=f λ /a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm ,λ2= 760 nm (1 nm = 10−9m ).已知单缝宽度a =1.0×10−2cm ,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a =1.0×10-3cm 的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sin φ1=12 (2 k + 1) λ1 = 12 λ1(取k = 1)a sin φ2= 12 (2 k + 1) λ2=32 λ2tan φ1= x 1/f ,tan φ2= x 1/f由于 sin φ1 ≈tan φ1,sin φ2 ≈tan φ2所以 x 1= 32 f λ1 /ax 2= 32 f λ2 /a 则两个第一级明纹之间距为Δx1=x2− x1=32fΔλ/a =0.27cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ=tanφ =x / f所以Δx1=x2− x1=fΔλ/a =1.8cm14.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ = 480 nm(1 nm = 10−9m)的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sinθ =kλ第k级亮条纹位置:x1=f tanθ1≈ f sinθ1≈ kf λ /d相邻两亮纹的间距:Δx=x k+1− x k=(k+ 1) fλ /d −k λ /d=f λ /d= 2.4×10−3 m= 2.4 mm(2)单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx0=f tanθ1≈ f sinθ1≈ kf λ/d=12mmΔx0/Δx=5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0,±1, ±2, ±3, ±4级亮纹或根据d/a=5指出双缝干涉缺第±5 级主极大,同样可得出结论。
光的衍射习题解答
•6
2-9 波长为546.1nm的平行光垂直地射在 1mm宽的缝上,若将焦 距为 100cm的透镜紧贴于缝的后面,并使光聚焦到屏上,试问 衍射图样的中央到(1)第一最小值;(2)第一最大值;(3) 第三最小值的距离分别为多少?
7•7
2-11 *以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出 三缝的夫琅禾费衍射(包括缝与缝之间的干涉)图样。设缝宽
2-1 单色平面光照射到一小圆孔上,将其波面分成半波带。求第 k个带的半径。若极点到观察点的距离r0为1m,单色光波长为 450 nm,求此时第一半波带的半径 。(P111)
•1
2-3 波长为500nm的单色点光源离光阑 1m,光阑上有一内外半 径分别为 0.5mm 和1mm的透光圆环,接收点 P离光阑 1m,求 P点的光强 I与没有光阑时的光强度 I0之比。
为 b,相邻缝间的距离为 d, d = 3b。注意缺级问题。
8•8
2-13 用可见光(760~400 nm)照射全息光栅时,一级光谱和二级 光谱是否重叠?二级和三级怎样?若重叠,则重叠范围是多少?
•9
2-14 *用波长为589 nm的单色光照射一衍射光栅,其光谱的中央 最大值和第二十级主最大值之间的衍射角为15o10’,求该光栅 1 cm内的缝数是多少?
•10
2-15 用每毫米内有400 条刻痕的平面透射光栅观察波长为589 nm的纳光谱。试问: (1)光垂直入射时,最多能观察到几级光谱? (2)光以30o角入射时,最多能观察到几级光谱?
•11
2-16 白光垂直照射到一个每毫米250条刻痕的平面透射光栅上, 试问在衍射角为30o处会出现哪些波长的光?颜色如何?
•4
2-7 平面光的波长为480 nm,垂直照射到宽度为 0.4mm的狭缝 上,会聚透镜的焦距为 60 cm。分别计算当缝的两边到 P点的相 位差为 p/2和 p/6时, P点离焦点的距离。
光的衍射习题答案
第六章 光的衍射6-1 求矩形夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。
解:对角线上第一个次极大对应于πβα43.1==,其相对强度为:0022.043.143.1sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I 对角线上第二个次极大对应于πβα46.2==,其相对强度为:00029.046.246.2sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I6-2 由氩离子激光器发出波长488=λnm 的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75mm ×0.25mm 。
在位于矩形孔附近正透镜(5.2=f m )焦平面处的屏上观察衍射图样,试求中央亮斑的尺寸。
解:中央亮斑边缘的坐标为:63.175.010********±=⨯⨯±=±=-a f x λmm 26.32=x mm 88.425.010********±=⨯⨯±=±=-b f y λmm 76.92=y mm ∴中央亮斑是尺寸为3.26mm ×9.76mm 的竖直矩形6-3 一天文望远镜的物镜直径D =100mm ,人眼瞳孔的直径d =2mm ,求对于发射波长为5.0=λμm 光的物体的角分辨极限。
为充分利用物镜的分辨本领,该望远镜的放大率应选多大?解:当望远镜的角分辨率为: 636101.610100105.022.122.1---⨯=⨯⨯⨯==D λθrad 人眼的最小分辨角为: 4361005.3102105.022.122.1---⨯=⨯⨯⨯==d e λθrad ∴望远镜的放大率应为:50===dDM e θθ 6-4 一个使用汞绿光(546=λnm )的微缩制版照相物镜的相对孔径(f D /)为1:4,问用分辨率为每毫米380条线的底片来记录物镜的像是否合适? 解:照相物镜的最大分辨本领为: 375411054622.1122.116=⨯⨯⨯==-f D N λ/mm∵380>375∴可以选用每毫米380条线的底片。
大学物理光的衍射试题及答案
电气系\计算机系\詹班 《大学物理》(光的衍射)作业4一 选择题1.在测量单色光的波长时,下列方法中最准确的是(A )双缝干涉 (B )牛顿环 (C )单缝衍射 (D )光栅衍射[ D ]2.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度aff f x λϕϕ2sin 2tan 211=≈=∆中。
衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。
3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=sin 及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。
4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离不变,而把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央明纹区变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央明纹区变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央明纹区变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央明纹区变窄,其中包含的干涉条纹的数目变少。
[ D ][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。
或由缺级条件分析亦可。
5.某元素的特征光谱中含有波长分别为1λ=450nm 和2λ=750nm 的光谱线,在光栅光谱中,这两种波长的谱线有重叠现象,重叠处的谱线2λ主极大的级数将是(A) 2、3、4、5… (B) 2、5、8、11… (C) 2、4、6、8… (D) 3、6、9、12…【 D 】1.惠更斯——菲涅耳原理的基本内容是:波阵面上各面积元发出的子波在观察点P 的 相干叠加 ,决定了P 点合振动及光强。
光的衍射计算题答案
《光的衍射》计算题答案1. 解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222s i n λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得212λλ= 3分 (2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分 2. 解:(1) 对于第一级暗纹,有a sin ϕ 1≈λ因ϕ 1很小,故 tg ϕ 1≈sin ϕ 1 = λ / a故中央明纹宽度 ∆x 0 = 2f tg ϕ 1=2f λ / a = 1.2 cm 3分 (2) 对于第二级暗纹,有 a sin ϕ 2≈2λx 2 = f tg ϕ 2≈f sin ϕ 2 =2f λ / a = 1.2 cm 2分3. 解: a sin ϕ = λ 2分a f f f x /sin tg 1λφφ=≈== 0.825 mm 2分∆x =2x 1=1.65 mm 1分4. 解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3 2分因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f 2分= 500 nm 1分5. 解:第二级与第三级暗纹之间的距离∆x = x 3 –x 2≈f λ / a . 2分 ∴ f ≈a ∆x / λ=400 mm 3分6. 解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分 ()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= 1分a f x /2322λ= 1分则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分 (2) 由光栅衍射主极大的公式1111sin λλϕ==k d2221sin λλϕ==k d 2分且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm 2分7. 解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分 当两谱线重合时有 ϕ1= ϕ2 1分即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ160sin 61λ=d =3.05×10-3 mm 2分 8. 解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分9. 解:对于第一级谱线,有:x 1 = f tg ϕ 1, sin ϕ 1= λ / d 1分 ∵ sin ϕ ≈tg ϕ ∴ x 1 = f tg ϕ 1≈f λ / d 2分λ和λ'两种波长光的第一级谱线之间的距离∆x = x 1 –x 1'= f (tg ϕ 1 – tg ϕ 1')= f (λ-λ') / d =1 cm 2分10. 解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ' 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ'λ'= (d sin θ / )2==λ23600nm 4分∴第二级光谱被重叠的波长范围是 600 nm----760 nm 1分11. 解:由光栅公式得sin ϕ= k 1 λ 1 / (a +b ) = k 2 λ 2 / (a +b )k 1 λ 1 = k 2 λ 2将k 2 / k 1约化为整数比k 2 / k 1=3 / 2=6 / 4=12 / 8 ......k 2 / k 1 = λ 1/ λ 2=0.668 / 0.447 3分 取最小的k 1和k 2 , k 1=2,k 2 =3,3分 则对应的光栅常数(a + b ) = k 1 λ 1 / sin ϕ =3.92 μm2分12. 解:(1) (a + b ) sin ϕ = 3λa +b =3λ / sin ϕ , ϕ=60° 2分 a + b =2λ'/sin ϕ' ϕ'=30° 1分3λ / sinϕ=2λ'/sinϕ'1分λ'=510.3 nm 1分(2) (a + b) =3λ / sinϕ=2041.4 nm 2分2ϕ'=sin-1(2×400 / 2041.4) (λ=400nm) 1分2ϕ''=sin-1(2×760 / 2041.4) (λ=760nm) 1分白光第二级光谱的张角∆ϕ=22ϕϕ'-''= 25°1分13. 解:由光栅公式(a+b)sinϕ=kλk =1,φ =30°,sinϕ1=1 / 2∴λ=(a+b)sinϕ1/ k =625 nm 3分实际观察不到第二级谱线2分若k =2, 则sinϕ2=2λ / (a + b) = 1, ϕ2=90°14. 解:d=1 / 500 mm,λ=589.3 nm,∴sinθ =λ /d=0.295 θ =sin-10.295=17.1°3分第一级衍射主极大: d sinθ = λ2分15. 解:光栅公式,d sinθ =kλ.现d=1 / 500 mm=2×10-3 mm,λ1=589.6 nm,λ2=589.0 nm,k=2.∴sinθ1=kλ1/ d=0.5896,θ1=36.129°2分sinθ2=kλ2 / d=0.5890,θ2=36.086°2分δθ=θ1-θ2=0.043°1分16. 解:光栅常数 d = 1m / (5×105) = 2 ×10-5m.2分设λ1 = 450nm,λ2 = 650nm,则据光栅方程,λ1和λ2的第2级谱线有d sinθ1 =2λ1;dsinθ2=2λ2据上式得:θ1 =sin-12λ1/d=26.74°θ2 = sin-12λ2 /d=40.54°3分第2级光谱的宽度x2 - x1 = f (tgθ2-tgθ1)∴透镜的焦距f = (x1 -x2) / (tgθ2 - tgθ1) =100 cm.3分17. 解:光栅常数d=2×10-6m 1分(1) 垂直入射时,设能看到的光谱线的最高级次为k m,则据光栅方程有d sinθ =k mλ∵sinθ ≤1∴k mλ / d≤1 ,∴k m≤d / λ=3.39∵k m为整数,有k m=3 4分(2) 斜入射时,设能看到的光谱线的最高级次为mk',则据斜入射时的光栅方程有()λθmkd'='+sin30sindkm/sin21λθ'='+∵sinθ'≤1 ∴5.1/≤'dkmλ∴λ/5.1dkm≤'=5.09∵mk'为整数,有mk'=5 5分18. 解:双缝干涉条纹:(1) 第k级亮纹条件:d sinθ =kλ第k级亮条纹位置:x k = f tgθ ≈f sinθ ≈kfλ / d相邻两亮纹的间距:∆x = x k+1-x k=(k+1)fλ / d-kfλ / d=fλ / d=2.4×10-3 m=2.4 mm 5分(2) 单缝衍射第一暗纹:a sinθ1 = λ∆x 0 = f tgθ1≈f sinθ1≈fλ / a=12 mm∆x0 / ∆x =5∴双缝干涉第±5极主级大缺级.3分∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 1分分别为k = 0,±1,±2,±3,±4级亮纹1分或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.。
光的衍射参考答案
光的衍射参考解答一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将(A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ] [参考解]一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度af f f x λϕϕ2sin 2tan 211=≈=∆中。
衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。
2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ] [参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。
3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ] [参考解]由光栅方程λϕk d ±=sin 及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。
4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多;(D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。
[ D ][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。
2023-2024(上) 全品学练考 高中物理 选择性必修第一册第4章 光光的衍射导学案含答案
2023-2024(上)全品学练考高中物理选择性必修第一册第4章光5光的衍射学习任务一光的衍射[教材链接] 阅读教材,填写光的衍射的相关知识.(1)衍射现象:当光通过很窄的缝或很小的孔时,光没有沿直线传播,而是绕过缝或孔的边缘,传播到的地方,这就是光的衍射现象.(2)发生明显衍射的条件:障碍物或孔的尺寸跟光的波长,甚至比光的波长,衍射现象十分明显.例1 (多选)对衍射现象的定性分析正确的是()A.光的衍射是光在传播过程中绕过障碍物发生传播的现象B.衍射条纹图样是光波相互叠加的结果C.光的衍射现象为光的波动说提供了有力的证据D.光的衍射现象完全否定了光的直线传播理论变式1 (多选)下列情况中能产生明显衍射现象的是()A.光的波长比孔或障碍物的尺寸大得多B.光的波长与孔或障碍物的尺寸可相比C.光的波长等于孔或障碍物的尺寸大小D.光的波长比孔或障碍物的尺寸小得多【要点总结】光在没有障碍物的均匀介质中沿直线传播,在障碍物的尺寸比光的波长大得多时,衍射现象不明显,也可以认为光沿直线传播.学习任务二三种不同的衍射现象[物理观念](1)单缝衍射①单色光的单缝衍射图样是明暗相间、从中央向两边的亮度越来越暗且不等距的条纹,中央是亮条纹,亮度高,宽度大;单色光的波长越长,条纹间距越大,中央亮条纹越宽.②白光的单缝衍射图样中央是白色亮条纹,两边是彩色条纹,其中最靠近中央亮条纹的色光是紫光,最远离中央的是红光.(2)圆孔衍射①单色光的圆孔衍射图样中央亮条纹的亮度大,外面是明暗相间的不等距的圆环,越向外,亮环亮度越低.②白光的圆孔衍射图样中央亮环为白色,周围是彩色圆环.(3)泊松亮斑——障碍物的衍射现象各种不同形状的障碍物都能使光发生衍射,使影的轮廓模糊不清.若在单色光传播途中,放一个较小的圆形障碍物,会发现在阴影中心有一个亮斑,这就是著名的泊松亮斑.例2如图所示,A、B、C、D四个图是某种单色光形成的干涉或衍射图样.请在四个图当中找出与其他三个不同类型的图样()A BC D[反思感悟]变式2用如图甲所示装置做圆孔衍射实验,在屏上得到的衍射图样如图乙所示,实验发现,光绕过孔的边缘,传播到了相当大的范围.下列说法正确的是()A.此实验说明了光不沿直线传播且具有粒子性B.用不同波长的光做实验,衍射图样完全相同C.若只将圆孔变小,则中央亮斑和亮纹的亮度反而变大D.若只将圆孔变小,则屏上得到的衍射图样的范围将会变大学习任务三单缝衍射与双缝干涉的比较[物理观念]种类单缝衍射双缝干涉不同点产生条件只要缝或孔足够小,任何光都能发生频率和振动方向相同、相位差恒定的两列光波相遇叠加条纹宽度条纹宽度不等,中央条纹最宽条纹宽度相等条纹间距不相等相等亮度中央条纹最亮,两边条纹变暗条纹清晰,亮度基本相同成因干涉、衍射都形成明暗相间的条纹,条纹都是光波叠加时加强或削弱的结果相同点意义干涉、衍射都是波特有的现象,表明光是一种波例3 [2022·山东青岛二中月考]用红光、蓝光分别做双缝干涉实验,用黄光、紫光分别做单缝衍射实验,得到的图样如图所示(黑色部分表示亮纹).在四个图中从左往右排列,亮条纹的颜色依次是()A.红、黄、蓝、紫B.红、紫、蓝、黄C.蓝、紫、红、黄D.蓝、黄、红、紫变式3利用图甲所示的装置,观察光的干涉、衍射现象,在光屏上得到图乙和图丙两种图样.则()A.乙对应单缝,丙对应双缝B.乙对应双缝,丙对应单缝C.都是单缝,乙对应的缝宽较大D.都是双缝,乙的双缝间距较大变式4某同学自己动手制作如图所示的装置观察光的干涉现象,其中A为单缝,B为双缝,整个装置位于一暗箱中,实验过程如下:(1)该同学用一束太阳光照射A时,屏C上没有出现干涉条纹;移去B后,在屏上出现不等间距条纹,此条纹是由产生的.(2)移去A后,遮住缝S1与缝S2中的任一个,C上均出现一窄亮斑,出现以上实验结果的主要原因是.(3)若光通过缝S1或缝S2后在C上依次出现如图甲、乙、丙、丁所示条纹,说明.1.( 光的衍射)让太阳光垂直照射一块大的遮光板,板上有一个可以自由收缩的三角形孔,当此三角形孔缓慢缩小直至完全闭合时,在孔后的屏上将先后出现()A.由大变小的三角形光斑,直至光斑消失B.由大变小的三角形光斑,明暗相间的彩色条纹,直至条纹消失C.由大变小的三角形光斑,明暗相间的黑白色条纹,直至黑白色条纹消失D.由大变小的三角形光斑,小圆形光斑,明暗相间的彩色条纹,直至条纹消失2.(光的干涉和衍射图样的区分)如图所示的四种明暗相间的条纹分别是红光、蓝光各自通过同一个双缝干涉仪器和同一个单缝衍射仪器形成的图样(黑色部分表示亮纹,保持缝到屏的距离不变),其中属于蓝光的衍射图样的是()3.(衍射光栅)(多选)关于衍射光栅,下列说法正确的是()A.衍射光栅是由许多等宽度的狭缝组成的B.衍射光栅分为透射光栅和反射光栅两类C.透射光栅中刻痕的部分相当于透光的狭缝D.透射光栅中未刻痕的部分相当于透光的狭缝5光的衍射[教材链接] (1)相当宽(2)相当还小例1ABC[解析] 衍射现象是波绕过障碍物发生传播的现象,衍射条纹是波的叠加的结果,干涉、衍射是一切波所具有的特性,选项A、B、C正确;光的直线传播只是近似的,只有在光的波长比障碍物尺寸小得多的情况下,光才被看作是沿直线传播的,所以光的衍射现象和直线传播是不矛盾的,选项D错误.变式1ABC[解析] 发生明显衍射的条件是障碍物、缝、孔的尺寸可以与光的波长相比甚至比光的波长还小.例2B[解析] 干涉图样的条纹间距相等,衍射图样的中央条纹最宽,所以B是光的干涉图样,A单缝衍射,C圆孔衍射,D是泊松亮斑(圆盘衍射),故B符合题意.变式2D[解析] 此实验说明了光的衍射现象,且光具有波动性,A错误;用不同波长的光做实验,衍射图样并不相同,因为波长越长,对同一圆孔而言,衍射现象越明显,B错误;圆孔变小,透光强度变小,中央亮斑和亮纹的亮度变弱,C错误;圆孔变小,衍射现象更明显,衍射图样的范围反而变大,D正确.例3B[解析] 双缝干涉的图样是明暗相间的干涉条纹,所有亮条纹宽度相同且等间距,根据双缝干涉条纹λ可知,波长λ越大,则Δx越大,故左边第一个是红光的,第三个是蓝光的;单缝衍射条纹是中间明亮间距Δx=ld且宽大,越向两侧宽度越小越暗,且波长越大,则中央亮条纹越粗,选项B正确.变式3A[解析] 单缝衍射图样为中央亮纹最宽最亮,往两边变窄,双缝干涉图样是明暗相间的条纹,条纹间距相等,条纹宽度相等,结合图乙、丙可知,乙对应单缝,丙对应双缝,A正确,B、C、D错误.变式4(1)光的衍射(2)双缝S1、S2太宽(3)缝S1或缝S2越来越窄[解析] (1)移去B后,只剩下单缝,发生单缝衍射现象,形成不等间距的条纹,故此条纹是由光的衍射产生的. (2)没有出现明暗相间的条纹,只出现一个窄亮斑,说明衍射现象不明显,其主要原因是双缝S1、S2太宽.(3)从四张单缝衍射图样可以看出,由图甲到图丁,衍射现象越来越明显,说明缝S1或S2越来越窄.随堂巩固1.D[解析] 三角形孔稍大时,根据光的直线传播规律,可知屏上呈现的是三角形光斑;逐渐减小三角形孔,到一定程度又符合小孔成像原理,屏上呈现小圆形光斑,即太阳的像;再减小三角形孔,至其大小与光的波长可比时,屏上又会呈现出彩色条纹,这是光通过小孔后的衍射图样.D正确.2.B[解析] 条纹间距相等的图样属于光的干涉图样,故A、C错误;条纹间距不相等的图样属于衍射图样,由于红光的波长大于蓝光的波长,所以红光的衍射图样中的中央亮条纹的宽度比蓝光的大,故B正确,D错误.3.ABD[解析] 衍射光栅是由许多等宽度的狭缝组成的,分为透射光栅和反射光栅两类,对于透射光栅来说,当光照到刻痕上时,由于光发生漫反射而不太透光,未刻痕的部分相当于透光的狭缝,故A、B、D正确,C错误.5光的衍射建议用时:40分钟◆知识点一光的衍射1.下列几种光中,最容易观察到光的衍射现象的是()A.紫光B.绿光C.黄光D.红光2.如图所示是用游标卡尺两测量爪间的狭缝观察光源时所得到的三种图像.当游标卡尺两测量爪间的狭缝宽度从0.8 mm逐渐变小时,所得到的图像的顺序是()A.abcB.cbaC.bacD.cab3.如图所示为一束红光经过狭缝装置得到的图样,下列说法正确的是()A.图为干涉图样B.图为衍射图样C.只减小狭缝宽度,中央亮纹会变窄D.只将红光换成蓝光,中央亮纹会变宽4.如图所示的四个图形中表示著名的泊松亮斑的是 ()◆知识点二单缝衍射与双缝干涉的比较5.关于光的干涉和衍射现象,下列说法正确的是()A.光的干涉现象遵循波的叠加原理,衍射现象不遵循波的叠加原理B.光的干涉条纹是彩色的,衍射条纹是黑白相间的C.光的干涉现象说明光具有波动性,光的衍射现象不能说明这一点D.光的干涉和衍射现象都是光波叠加的结果6.一束红光射向一块有双缝的不透光的薄板,在薄板后的光屏上呈现明暗相间的干涉条纹.现将其中一条窄缝挡住,让这束红光只通过一条窄缝,则在光屏上可以看到()A.与原来相同的明暗相间的条纹,只是亮条纹比原来暗些B.与原来不相同的明暗相间的条纹,而中央亮条纹变宽些C.只有一条与缝宽对应的亮条纹D.无条纹,只存在一片红光7.[2019·北京卷] 利用图所示的装置(示意图),观察光的干涉、衍射现象,在光屏上得到图中甲和乙两种图样.下列关于P处放置的光学元件说法正确的是()A.甲对应单缝,乙对应双缝B.甲对应双缝,乙对应单缝C.都是单缝,甲对应的缝宽较大D.都是双缝,甲对应的双缝间距较大8.(多选)[2022·苏州中学月考] 中国女科学家屠呦呦因发现青蒿素而获得2015年诺贝尔医学奖,屠呦呦也成为首位获得该奖的中国人.在研究青蒿素化学结构中,研究人员用比可见光波长更短的X射线衍射方法最终确定了其化学结构.在做单缝衍射实验中,下列说法中正确的是()A.将入射光由可见光换成X射线,衍射条纹间距变窄B.使单缝宽度变小,衍射条纹间距变窄C.换用波长较长的光照射,衍射条纹间距变宽D.增大单缝到屏的距离,衍射条纹间距变窄9.(多选)在抽制很细的金属丝的过程中,可以用某种特殊强光随时监测抽丝的粗细情况.其装置如图甲所示,在抽丝机的细丝出口附近,用一束特殊强光沿与细丝垂直的方向照射细丝,在细丝的另一侧用光屏接收光.工作人员通过观察光屏上明暗相间亮斑的情况(如图乙所示为沿光传播方向看到的光屏情况),便可知道抽制出的细丝是否合格.对于这种监控抽丝机的装置,下列说法中正确的是()A.这是利用光的直线传播规律B.这是利用光的衍射现象C.如果屏上条纹变宽,表明细丝粗了D.如果屏上条纹变宽,表明细丝细了10.某研究性学习小组用特殊强光照射圆孔和不透明圆板后,得到了如图甲、乙所示的衍射图样.据此可以判断出()A.甲是光线射到圆孔后的衍射图样,乙是光线射到圆板后的衍射图样B.甲是光线射到圆板后的衍射图样,乙是光线射到圆孔后的衍射图样C.甲、乙都是光线射到圆孔后的衍射图样,甲孔的直径较大D.甲、乙都是光线射到圆板后的衍射图样,乙孔的直径较大11.某同学使用特殊强光作为光源,在不透光的挡板上开一条缝宽为0.05 mm的缝,进行光的衍射实验,如图所示,则他在光屏上看到的条纹是图中的()A B C D12.[2022·广东佛山一中月考] 如图所示,在挡板上开一个大小可以调节的小圆孔P,用点光源S(波长为0.5 μm)照射小孔,小孔后面放一个光屏MN,点光源和小孔的连线垂直于光屏,并与光屏交于其中心.当小孔的直径从1.0 μm逐渐减小到0.1 μm时,在光屏上看到的现象将会是()A.光屏上始终有一个圆形亮斑,并且其直径逐渐减小B.光屏上始终有明暗相间的同心圆环,并且其范围逐渐增大C.光屏上先形成直径逐渐减小的圆形亮斑,然后形成范围逐渐增大而亮度逐渐减弱的明暗相间的同心圆环D.光屏上先形成直径逐渐减小的圆形亮斑,然后形成范围逐渐减小而亮度逐渐增大的明暗相间的同心圆环13.如图甲、乙、丙所示为光分别通过狭缝、正方形孔与圆孔后产生的衍射图样.当光通过正六边形孔时,会在光屏上产生如图丁所示的衍射图样.根据图甲、乙、丙中提供的信息,分析说明产生图丁衍射图样的原因.5光的衍射1.D[解析] 光的波长越长,越容易观察到光的衍射现象,红光的波长最长,最容易观察到红光的衍射现象,选项D正确.2.A[解析] 用游标卡尺两测量爪间的狭缝观察光源时所看到的是光的衍射现象,狭缝越小,衍射现象越明显.故选A.3.B[解析] 由题图可以看到,其条纹的特点是中央条纹最宽最亮,且条纹间距不相等,所以图为衍射图样,而不是干涉图样,故A错误,B正确;由衍射图样的特征可知,中央亮条纹的宽度与入射光的波长和单缝宽窄有关,入射光波长越长,单缝越窄,中央亮条纹的宽度越大,而红光的波长比蓝光的波长要长,故C、D错误.4.B[解析] 泊松亮斑是光入射到不透明的圆盘上产生的衍射现象,衍射条纹的特点是在中央有一个亮斑,但亮斑较小,亮斑外侧的暗条纹较宽,即在较大阴影中心有一亮点,选项B正确.5.D[解析] 从成因分析,光的干涉现象、衍射现象都是光波叠加的结果,两者都表明光是一种波,故A、C 错误,D正确;从条纹特点看,虽然条纹宽度、间距方面两者有所区别,但单色光的干涉条纹、衍射条纹都是明(由单色光的颜色决定)暗相间的,白光的干涉条纹、衍射条纹都是彩色的,故B错误.6.B[解析] 双缝为相干光源的干涉,单缝为光的衍射,且干涉和衍射的图样不同.衍射图样和干涉图样的异同点:中央都出现亮条纹,但衍射图样中央亮条纹较宽,两侧都出现明暗相间的条纹,干涉图样为等间隔的明暗相间的条纹,而衍射图样两侧为不等间隔的明暗相间的条纹,且距中央亮条纹远的亮条纹亮度迅速减弱,选项B正确.7.A[解析] 根据衍射和干涉得到的图样特点可以得出结论,选项A正确.8.AC[解析] 将入射光由可见光换成X射线,即波长λ变小,衍射条纹间距变窄,选项A正确;使单缝宽度变小,则衍射条纹间距变宽,选项B错误;换用波长较长的光照射,衍射条纹间距变宽,选项C正确;增大单缝到屏的距离,则衍射条纹间距变宽,选项D错误.9.BD[解析] 由题意知条纹的形成属单缝衍射,并非运用光的直线传播规律,而是利用光的衍射现象,A错误;单缝衍射现象,其原理是利用光的衍射现象,B正确;由单缝衍射知缝变窄而条纹宽度变宽,故如果屏上条纹变宽,表明细丝变细了,C错误;屏上条纹变宽,表明细丝细了,D正确.10.A[解析] 圆孔衍射图样的中央是大亮斑,亮斑周围存在有限宽度的明暗相间的圆环,其外是阴影;圆板衍射图样的中央是阴影,阴影中心有一小亮斑,阴影周围存在明暗相间的圆环.11.B[解析] 由于单缝衍射条纹与单缝平行,且条纹中间宽、两边窄,故B正确,A、C、D错误.12.C[解析] 能观察到明显的衍射现象的小孔的尺寸应该小于0.5 μm.本题小孔直径是从1.0 μm逐渐减小到0.1 μm的,所以在开始阶段没有明显的衍射现象,光基本上是沿直线传播的,因此在光屏上应该得到和小圆孔相似的圆形亮斑,当孔的直径减小到接近0.5 μm时,将发生较为明显的衍射现象,所以光屏上出现明暗相间的圆环;随着小孔直径的减小,光的衍射现象越来越明显,衍射图样的范围越来越大,相邻亮纹和相邻暗纹间的距离也逐渐增大,同时由于通过小孔的光越来越少,所以衍射图样的亮度将变得越来越暗,选项C正确.13.见解析[解析] 衍射为光绕过障碍物偏离原来直线传播的现象,由图甲、乙、丙中提供的信息可知,光通过狭缝(两边)时光向两边衍射,光通过四边形孔时光向四边衍射,光通过圆孔时,光向整个圆周围衍射(展开),即衍射的方向数与缝或孔的边数有关,当光通过正六边形孔时,向六边的方向发生衍射,故呈现图丁衍射图样.。
光的衍射习题答案
光的衍射习题答案光的衍射习题答案光的衍射是光波在通过一个孔或者绕过一个障碍物时发生的现象。
它是光的波动性质的直接证明,也是物理学中的重要概念之一。
在学习光的衍射时,我们经常会遇到一些习题,下面我将为大家提供一些光的衍射习题的答案。
1. 一束波长为500纳米的单色光通过一个宽度为0.1毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。
求出相邻两个亮纹之间的间距。
解答:根据衍射的基本公式,亮纹的位置可以通过以下公式计算:sinθ = mλ / a其中,θ是衍射角,m是亮纹的次序,λ是波长,a是狭缝的宽度。
由题可知,波长λ为500纳米,即0.5微米,狭缝宽度a为0.1毫米,即0.1微米。
代入公式可得:sinθ = m * 0.5微米 / 0.1微米由于sinθ的值很小,我们可以使用近似公式sinθ ≈ θ,即:θ ≈ m * 0.5微米 / 0.1微米根据小角近似,当θ很小时,sinθ ≈ θ。
因此,亮纹之间的间距可以近似为:d ≈ λ / sinθ代入已知数据可得:d ≈ 0.5微米 / (m * 0.1微米 / 0.1微米)化简得:d ≈ 5微米 / m所以,相邻两个亮纹之间的间距与亮纹的次序m成反比关系。
当m为1时,相邻两个亮纹之间的间距为5微米;当m为2时,相邻两个亮纹之间的间距为2.5微米,依此类推。
2. 一束波长为600纳米的单色光垂直照射到一个宽度为0.2毫米的狭缝上,距离狭缝1米处的屏上出现了衍射条纹。
求出最亮的亮纹的角度。
解答:最亮的亮纹对应的是m=0的情况,即中央最亮的部分。
根据衍射公式sinθ = mλ / a,代入已知数据可得:sinθ = 0 * 0.6微米 / 0.2微米sinθ = 0由于s inθ的值为0,我们可以得到θ的值为0。
因此,最亮的亮纹的角度为0度,即光线垂直照射到屏上。
3. 一束波长为400纳米的单色光通过一个宽度为0.3毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。
人教版高中物理选修3-4同步练习:《光的衍射》(含答案)
光的衍射同步练习一.选择题(每小题5分,共60分)1.对衍射现象的下述定性分析中,不正确的是()A.光的衍射是光在传播过程中绕过障碍物发生弯曲传播的现象B.衍射花纹图样是光波互相叠加的结果C.光的衍射现象为光的波动说提供了有力的证据D.光的衍射现象完全否定了光的直线传播结论2.下列现象哪些是光的衍射产生的()A,著名的泊松亮斑B.阳光下茂密树阴中地面上的圆形亮斑C.光照到细金属丝后在其后面屏上的阴影中间出现亮线D.阳光经凸透镜后形成的亮斑3. 在一次观察光衍射的实验中,观察到如图所示的清晰的明暗相间的图样,那么障碍物应是(黑线为暗纹) ()A.很小的不透明的圆板B.很大的中间有大圆孔的不透明的圆板C.很大的不透明的圆板D.很大的中间有小圆孔的不透明的圆板4.点光源照射到一个障碍物,在屏上所成的阴影的边缘部分模糊不清.产生的原因是()A.光的反射B.光的折射C.光的干涉D.光的衍射5.关于衍射的下列说法中正确的是()A.衍射现象中衍射花样的明暗条纹的出现是光干涉的结果B.双缝干涉中也存在着光的衍射现象C.影的存在是一个与衍射现象相矛盾的客观事实D.一切波都可以产生衍射6.下列现象中能产生明显衍射现象的是()A.光的波长比孔或障碍物的尺寸大B.光的波长与孔或障碍物的尺寸可相比C.光的波长等于孔或障碍物的尺寸D.光的波长比孔或障碍物的尺寸小得多7.一束平行单色光,通过双缝后,在屏上得到明暗相间的条纹,则()A.相邻的明条纹或暗条纹的间距不等B.将双缝中某一缝挡住,则屏上一切条纹将消失,而出现一亮点C.将双缝中某一缝挡住,屏上出现间距不等的明、暗条纹D.将双缝中某一缝挡住,则屏上条纹与原来一样,只是亮度减半8.用单色光做双缝干涉实验和单缝衍射实验,比较屏上的条纹,正确的是()A.双缝干涉条纹是等间距的明暗相间的条纹B.单缝衍射条纹是中央宽、两边窄的明暗相间的条纹C.双缝干涉条纹是中央宽、两边窄的明暗相间的条纹D.单缝衍射条纹是等间距的明暗相间的条纹9. 关于光的干涉和衍射现象,下面各种说法中正确的是()A.光的干涉和衍射是相同的物理过程,只是干涉图样和衍射图样不同B.光的干涉只能用双缝,而光的衍射只能用单缝C.在双缝干涉过程中,也有衍射现象存在D.单缝衍射过程中也存在着干涉现象10. 在用单色平行光照射单缝观察衍射现象的实验中,下列哪些说法是正确的()A.缝越窄,衍射现象越显著B.缝越宽,衍射现象越显著C.照射光的波长越长,衍射现象越显著D.照射光的频率越高,衍射现象越显著11.下列关于光的干涉和衍射的叙述中正确的是()A.光的干涉和衍射都遵循光波的叠加原理B.光的干涉说明光的波动性,光的衍射说明光不是沿直线传播C.光的干涉呈黑白间隔条纹,光的衍射呈彩色条纹D.光的干涉遵循光波叠加原理,光的衍射不遵循这一原理12.下列哪些现象是光的衍射产生的()A.阳光下茂密的树荫下地面上的圆形亮斑B.泊松亮斑C.点光源照到不透明物体上,在物体背后的光屏上形成的阴影的边缘部分模糊不清D.透过树叶的缝隙观看太阳呈现产生的光环二.填空题(每题5分、总分20分)13.将一个大的不透明障碍板中的正三角形孔从边长10cm逐渐减小到零,让阳光从孔中通过.在障碍板后面暗箱中的白屏上看到的现象是。
光的衍射(有答案)
光的衍射一、光的衍射的基础知识1、发生明显衍射的条件只有当障碍物的尺寸跟光的波长相差不多,甚至比光的波长小的时候,衍射现象才会明显.2、衍射图样①单缝衍射a.单色光:明暗相间的不等距(等距、不等距)条纹,中央亮纹最宽最亮,两侧条纹具有对称性.b.白光:中间为宽且亮的白色条纹,两侧是窄且暗的彩色条纹,最靠近中央的是紫光,远离中央的是红光.②圆孔衍射:明暗相间的不等距(等距、不等距)圆环,圆环面积远远超过孔的直线照明的面积.③圆盘衍射:明暗相间的不等距(等距、不等距)圆环,中心有一亮斑称为泊松亮斑.二、衍射与干涉的比较三、习题1、对于光的衍射的定性分析,下列说法中不正确的是()A.只有障碍物或孔的尺寸可以跟光波波长相比甚至比光的波长还要小的时候,才能明显地产生光的衍射现象B.光的衍射现象是光波相互叠加的结果C.光的衍射现象否定了光的直线传播的结论D.光的衍射现象说明了光具有波动性答案 C解析光的干涉和衍射现象说明了光具有波动性,而小孔成像说明了光沿直线传播,而要出现小孔成像现象,孔不能太小,可见光的直线传播规律只是近似的,只有在光波波长比障碍物小得多的情况下,光才可以看做是直线传播的,所以光的衍射现象和直线传播并不矛盾,它们是在不同条件下出现的两种光现象,单缝衍射实验中单缝光源可以看成是无限多个光源排列而成,因此光的衍射现象也是光波相互叠加的结果.2、如图所示的4种明暗相间的条纹,分别是红光、蓝光通过同一个双缝干涉仪形成的干涉图样和黄光、紫光通过同一个单缝形成的衍射图样(黑色部分代表亮纹),那么1、2、3、4四个图中亮条纹的颜色依次是()123 4A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫解析由于双缝干涉条纹是等间距的,而单缝衍射条纹除中央亮条纹最宽最亮之外,两侧条纹亮度、宽度都逐渐减小,因此1、3为双缝干涉条纹,2、4为单缝衍射条纹.又双缝干涉条纹的间距Δx=ldλ,在l、d都不变的情况下,干涉条纹间距Δx与波长λ成正比,红光波长比蓝光波长长,则红光干涉条纹间距比蓝光干涉条纹间距大,即1、3分别对应红光和蓝光.而在单缝衍射中,当单缝宽度一定时,波长越长,衍射越明显,即中央条纹越宽越亮,黄光波长比紫光波长长,则黄光的中央条纹较宽较亮,故2、4分别对应紫光和黄光.综上所述,1、2、3、4四个图中亮条纹的颜色依次是红、紫、蓝、黄,选项B正确.答案 B3、在单缝衍射实验中,下列说法正确的是()A.其他条件不变,将入射光由黄色换成绿色,衍射条纹间距变窄B.其他条件不变,使单缝宽度变小,衍射条纹间距变窄C.其他条件不变,换用波长较长的光照射,衍射条纹间距变宽D.其他条件不变,增大单缝到屏的距离,衍射条纹间距变宽答案ACD解析当单缝宽度一定时,波长越长,衍射现象越明显,条纹间距也越大,黄光波长大于绿光波长,所以条纹间距变窄,A、C正确;当光的波长一定时,单缝宽度越小,衍射现象越明显,衍射条纹间距越宽,B错误;当光的波长一定,单缝宽度也一定时,增大单缝到屏的距离,衍射条纹间距也会变宽,D正确.4、(2011·浙江·18)关于波动,下列说法正确的是()A.各种波均会发生偏振现象B.用白光做单缝衍射与双缝干涉实验,均可看到彩色条纹C.声波传播过程中,介质中质点的运动速度等于声波的传播速度D.已知地震波的纵波波速大于横波波速,此性质可用于横波的预警答案BD解析偏振现象是横波特有的现象,纵波不会发生偏振现象,故选项A错误.用白光做单缝衍射实验和双缝干涉实验看到的都是彩色条纹,故选项B正确.声波在传播过程中,质点在平衡位置附近振动,其振动速度周期性变化,而声波的传播速度是单位时间内声波传播的距离,故选项C错误.地震波的纵波传播速度比横波传播速度大,纵波可早到达地面,能起到预警作用,故选项D正确.5、在光的单缝衍射实验中可观察到清晰的明暗相间的图样,图4的四幅图片中属于光的单缝衍射图样的是()图4A.a、c B.b、c C.a、d D.b、d答案 D6、用单色光通过小圆盘和小圆孔分别做衍射实验,在光屏上得到衍射图形,则()A.用小圆盘时,图形中央是暗的,用小圆孔时,图形中央是亮的B.用小圆盘时,图形中央是亮的,用小圆孔时,图形中央是暗的C.两个图形中央均为亮点的同心圆形条纹D.两个图形中央均为暗点的同心圆形条纹答案 C7、(1)肥皂泡在太阳光照射下呈现的彩色是______现象;露珠在太阳光照射下呈现的彩色是________现象;通过狭缝看太阳光时呈现的彩色是________现象.(2)凡是波都具有衍射现象,而把光看作直线传播的条件是_____________.要使光产生明显的衍射,条件是______________________________________.(3)当狭缝的宽度很小并保持一定时,分别用红光和紫光照射狭缝,看到的衍射条纹的主要区别是____________________________________________________________.(4)如图6所示,让太阳光或白炽灯光通过偏振片P和Q,以光的传播方向为轴旋转偏振片P或Q,可以看到透射光的强度会发生变化,这是光的偏振现象,这个实验表明________________________________________________________________________________________________________________________________________________.图6答案见解析解析(1)肥皂泡呈现的彩色是光的干涉现象,露珠呈现的彩色是光的色散,通过狭缝看太阳光呈现的彩色是光的衍射现象.(2)障碍物或孔的尺寸比波长大得多时,可把光看作沿直线传播;障碍物或孔的尺寸跟波长相差不多或比波长更小时,可产生明显的衍射现象.(3)红光的中央亮纹宽,红光的中央两侧的亮纹离中央亮纹远.(4)这个实验说明了光是一种横波.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理(下)》作业 N o.4 光的衍射
(电气、计算机、詹班)
一 选择题
1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将
(A)变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动
[
A
]
[参考解]
一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度
a
f
f f x λ
ϕϕ2sin 2tan 211=≈=∆中。
衍射角0=ϕ的水平平行光线必汇聚于透镜主
光轴上,故中央明纹向上移动。
2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹
(A )间距变大 (B)间距变小
(C)不发生变化 (D)间距不变,但明纹的位置交替变化
[ C ]
[参考解]
单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。
3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-
4cm的平面衍射光栅上,可能观察到的光谱线的最大级次为
(A)2 (B)3 (C)4 (D)5
[ B ]
[参考解
]
由光栅方程λϕk d ±=sin 及衍射角2
π
ϕ<
可知,观察屏可能察到的光谱线
的最大级次64.310
550010210
6
=⨯⨯=<--λd
k m ,所以3=m k 。
4.在双缝衍射实验中,若保持双缝S 1和S2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A)单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B)单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D)单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。
[ D ]
[参考解]
参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。
或由缺级条件分析亦可。
二 填空题
1.惠更斯——菲涅耳原理的基本内容是:波阵面上各面积元发出的子波在观察点P 的 相干叠加 ,决定了P 点合振动及光强。
2.在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波阵面可划分为 6 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是 明 纹。
[参考解]
由单缝衍射条件(其中n 为半波带个数,k 为对应级次)可知。
⎪⎪⎩⎪
⎪⎨⎧±⋅+±=⋅==,各级暗纹
,次极大,主极大λλλϕδk k n a 2
)12(02sin
3.如图所示的单缝夫琅和费衍射中,波长λ的单色光垂直入射
在单缝上,若对应于会聚在P点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中CD BC AB ==,那么光线1和2在P 点的相位差为 π 。